S. Hrg. 113-764

SOLVING THE PROBLEM OF POLLUTED TRANSPORTATION INFRASTRUCTURE STORMWATER RUNOFF

HEARING

BEFORE THE

SUBCOMMITTEE ON WATER AND WILDLIFE OF THE

COMMITTEE ON ENVIRONMENT AND PUBLIC WORKS UNITED STATES SENATE

ONE HUNDRED THIRTEENTH CONGRESS

SECOND SESSION

MAY 13, 2014

Printed for the use of the Committee on Environment and Public Works

Available via the World Wide Web: http://www.gpo.gov/fdsys

U.S. GOVERNMENT PUBLISHING OFFICE

97-801 PDF

WASHINGTON: 2016

COMMITTEE ON ENVIRONMENT AND PUBLIC WORKS

ONE HUNDRED THIRTEENTH CONGRESS SECOND SESSION

BARBARA BOXER, California, Chairman

THOMAS R. CARPER, Delaware BENJAMIN L. CARDIN, Maryland BERNARD SANDERS, Vermont SHELDON WHITEHOUSE, Rhode Island TOM UDALL, New Mexico JEFF MERKLEY, Oregon KIRSTEN GILLIBRAND, New York CORY A. BOOKER, New Jersey EDWARD J. MARKEY, Massachusetts DAVID VITTER, Louisiana JAMES M. INHOFE, Oklahoma JOHN BARRASSO, Wyoming JEFF SESSIONS, Alabama MIKE CRAPO, Idaho ROGER WICKER, Mississippi JOHN BOOZMAN, Arkansas DEB FISCHER, Nebraska

Bettina Poirier, Majority Staff Director Zak Baig, Republican Staff Director

SUBCOMMITTEE ON WATER AND WILDLIFE

BENJAMIN L. CARDIN, Maryland, Chairman

THOMAS R. CARPER, Delaware SHELDON WHITEHOUSE, Rhode Island JEFF MERKLEY, Oregon KIRSTEN GILLIBRAND, New York CORY A. BOOKER BARBARA BOXER, California (ex officio)

JOHN BOOZMAN, Arkansas JAMES M. INHOFE, Oklahoma JOHN BARRASSO, Wyoming JEFF SESSIONS, Alabama DEB FISCHER, Nebraska DAVID VITTER, Louisiana (ex officio)

C O N T E N T S

	Page				
MAY 13, 2014					
OPENING STATEMENTS					
Cardin, Hon. Benjamin, U.S. Senator from the State of Maryland					
statement	218				
WITNESSES					
Mather, Peter, Highway Division Administrator, Oregon Department of Transportation Prepared statement Responses to additional questions from Senator Cardin Gibson, James P. Jr., Director of Integrated Watershed Management, Sanitation District No. 1 of Northern Kentucky Prepared statement Responses to additional questions from Senator Cardin Coble, Kim, Vice President For Environmental Protection and Restoration, Chesapeake Bay Foundation Prepared statement Responses to additional questions from Senator Cardin Medina, Daniel E., PhD, PE, D.WRE. CFM, Technical Director-Water, Atkins Prepared statement	6 8 13 20 22 33 44 46 52 56 58				
Responses to additional questions from Senator Cardin Cuccinelli, Hon. Ken, Cuccinelli & Associates Prepared statement Response to an additional question from Senator Cardin Response to an additional question from Senator Vitter Cohen, Greg, President & CEO, American Highway User Alliance Prepared statement Monette, Andre, Attorney, Best Best & Krieger Prepared statement Responses to additional questions from Senator Vitter	58 63 68 70 72 73 74 76 81 83 200				

SOLVING THE PROBLEM OF POLLUTED TRANSPORTATION INFRASTRUCTURE STORMWATER RUNOFF

TUESDAY, MAY 13, 2014

U.S. Senate, Committee on Environment and Public Works, Washington, DC.

The committee met, pursuant to notice, at 2:59 p.m. in room 406, Dirksen Senate Office Building, Hon. Benjamin L. Cardin (chairman of the committee) presiding.

Present: Senators Cardin, Vitter, Merkley, and Fischer.

OPENING STATEMENT OF HON. BENJAMIN L. CARDIN, U. S. SENATOR FROM THE STATE OF MARYLAND

Senator CARDIN. Let me welcome you all to the Subcommittee of Water and Wildlife of the Environment and Public Works Committee. I particularly want to thank Senator Boxer and Senator Vitter and Senator Boozman for their cooperation in allowing this subcommittee hearing to go forward.

As I mentioned to some of you before we started the hearing, this has been a very productive and busy time for the Environment and Public Works Committee. We have completed the work on the Water Resources Development Act; it has been signed by the conferees. I was pleased to be one of the conferees. That bill will be on the floor of the House and Senate next week, and we expect it to be sent to the President by the end of next week. So that is really good news.

Earlier this week, Senator Boxer and Senator Vitter, along with Senator Arrases and Senator Carper, released the reauthorization of the surface transportation MAP–21 bill, and that is a 6-year reauthorization with inflationary increases, which is really good news that we have at least a framework to move forward on the reauthorization of the Surface Transportation Act.

So it has been a very busy time for the EPW community and I thank all for allowing us to move forward on stormwater runoff, an issue that is very important to water quality. And I appreciate the opportunity of having the panel that we have here today.

Senator Boozman, as some of you may be aware, is recovering from an illness. I talked to him today and I know that he will be returning to full strength shortly, and we look forward to his return here to the U.S. Senate.

Storm runoff is a major part of water quality issues. I have looked at the great water bodies in our Country and what we can

do to improve water quality. I am particularly interested in the Chesapeake Bay, as being one of the senators that have the opportunity of representing the watershed of the Chesapeake Bay in Maryland. We have had a successful program because all stakeholders have been involved with shared responsibility and that we based our strategies on best science and cost-effective ways to accomplish our goals, and that, to me, is the standard we have to follow.

Water quality is affected through our agricultural community and what they do, and in the farm bill we were pleased to add the regional conservation partnership programs that will allow a new opportunity to help farmers deal with water quality issues coming from their operations.

Wastewater is another major source of problems for water quality. Of course, as you know, we have the partnership with local

governments with the State Revolving Fund.

Storm runoff, the subject of today's hearing, is a major source of concern as it relates to water quality. The sheer volume is a concern; first, with the impervious surfaces in this Country. As I think all of us understand, when you have a storm, if the water seeps into the soil, a lot of the pollutants will be filtered before it reaches our rivers and streams and goes into our great water bodies. If it does not, if it runs off of impervious surfaces, it tends to gush, you have scour vents and more of the pollutants will end up directly into our streams and into our rivers.

Some of these numbers I think are somewhat surprising. In rural American, 1 or 2 percent of the acreage is impervious. About 80 or 90 percent of the impervious areas are due to our roads and highways. In residential areas, the amount of impervious surface is between 10 to 50 percent, and about 50 percent of that comes from our roads. In dense urban areas it can be as high as 90 percent of impervious surface; 60 to 70 percent comes from roads.

So roads are a major part of our issue in dealing with how to deal with storm runoff. In the Chesapeake Bay watershed, 17 percent of our acreage is now impervious, and that number is increas-

ing literally every day.

One inch of rain on a one-mile four-lane highway produces a quarter of a million gallons of polluted stormwater. Our national highway system represents 180,000 miles. You do the arithmetic. And, of course, just recently in Florida we had almost 20 inches of rain in Florida.

So these are areas that need to be of concern.

The harm to our water quality, I could talk about all the oil, the grease, the antifreeze, the tons of garbage, the salt, the deicing agents, the heavy metals, the nitrogen, the chemicals, etcetera, but I think the best visual for this to me is think about a snowstorm and how beautiful that snowstorm is when the snow is just coming down and falls on our yards and falls on our roads. It is beautiful. By the next day, as you start to look at the road edges and see all the black guck that is on the sides of the road, that is the pollutants. That is what ends up in our streams and rivers, and it is not healthy. It is not healthy for human life and certainly not healthy for aquatic life.

The sheer volume, the scour events, last week I held a field hearing in Cooing with the Cooing Dam and we talked about scour events and the volume of water. When you get the big scour events, the impact on our water quality is even more multiplied and it is affecting water temperature; it brings about cooler water at times and can affect aquatic life. So the effect is on aquatic life, on photosynthesis, on respiration, growth, reproduction, etcetera. All are affected by the fact that now too much of the stormwater to enter our streams and rivers without going through a filtration that can make it less damaging to our environment.

The cost also here is a huge issue. Two weeks ago, in Baltimore, we had eight inches of rain. As a result of that, we lost East 26th Street. This was a very dangerous situation, where a whole road collapsed into a railroad bed. Clearly, the failure to manage stormwater was a contributing factor to the loss of that road. We are now trying to figure out what we are going to do for the homeowners who literally cannot return to their homes as a result. Expensive. Expensive to do the repairs after the damage is done.

The unusual, unfortunately, is becoming the usual in our weather conditions. In Mobile, Alabama, Highway 131, we had another extreme event and we have looked at the cost benefits. It would have been a lot cheaper to put into the design ways to avoid the effects of stormwater on erosion and costs than to have to pay for the cleanup after the damage is done.

Another study was done in Cincinnati with similar results.

So I look at opportunities of where we can make progress, and I am glad for the panel here today and I really look forward to all of your testimonies. I am particularly pleased that we have someone here from Oregon who has been one of the leaders in dealing with the issues of stormwater management. We look forward to all of your testimonies. Our clean water strategy is obviously one area, and I look at the reauthorization of the Surface Transportation Act as another way, another opportunity in order to deal with storm runoff

With that, I said very nice things about Senator Vitter before he got here. I would be glad to repeat that for the record, but I do congratulate him on the successful completion of the WRDA Conference and on bringing forward the framework for the reauthorization of the Surface Transportation Act. It has been a real pleasure to work with Senator Vitter, and I am glad to have you here pinchhitting for Senator Boozman. But he is never pinch-hitting, he is always here for himself.

OPENING STATEMENT OF HON. DAVID VITTER, U.S. SENATOR FROM THE STATE OF LOUISIANA

Senator VITTER. Thank you, Mr. Chairman, very much. On my rush over here, I was mumbling very nice things about you, as well, in the hall, and I appreciate your partnership, including on the recently completed WRDA Conference. And thank you for calling today's hearing. I know we all want to take a moment and express the committee's support and prayers for Senator Boozman as he recovers from surgery.

You know, it is no secret that the current Administration doesn't see Congress as a partner or a co-equal branch, but really just an

obstacle to its hostile regulatory agenda, and that President Obama and his EPA are willing to ignore multiple agency guidelines, federally mandated transparency laws in order to advance that proactive agenda by administrative fiat.

Unfortunately, the Administration's policy of legislation by regulation is pervasive and it has reached the subject of today's hear-

ing, stormwater runoff.

Now, there is no question that under the Clean Water Act Congress provided EPA with some authority to address and mitigate the discharge of pollutants into navigable waters. However, the EPA has been testing and surpassing, in some cases, the limits of this authority in an ongoing effort to regulate water bodies that were clearly left to the States and private landowners to manage. Some of the more egregious examples have been highlighted by EPW Republicans.

These cases of EPA's unlawful effort to regulate the rain creates absurd consequences for local and State officials in some cases throughout the Country. In one particular case, for instance, the Virginia Department of Transportation determined that EPA water flow regulations would cost hundreds of millions of dollars in unfunded Federal mandates, provide little to no environmental benefit, and force local authorities to condemn a vast swath of private property in order to construct required stormwater infrastructure.

The Department challenged this in court and the independent court tossed out EPA's regulation based on what I would hope is a fundamental common sense notion that flow of water on its own

is not a pollutant under the Clean Water Act.

Of course, policymakers should example the problems and potential solutions to water pollution associated with transportation infrastructure, and of course we need to recognize dangers like washouts, which were the subject of many of those photographs. But that isn't in the middle of the Clean Water Act and it is not about pollution, fundamentally.

EPA's proposed Waters of the United States Rule confirms that the Agency has no intention of abiding by the limits Congress es-

tablished in the Clean Water Act.

As the written testimony for today's hearing indicates, the Administration's quest for unfettered regulatory authority will in fact impede environmental stewardship and safety efforts by many transportation officials throughout the Country, and this calls into question either side of the aisle supporting EPA's proposed rule.

I want to make it very clear that it is the clear intention of EPW Republicans to prevent EPA from redefining Federal jurisdiction and to keep EPA bureaucrats out of the backyards of American families and off the private property of farmers, ranchers, and small businesses.

I look forward to hearing from our distinguished panel of experts this afternoon on this important issue. Thank you. [The prepared statement of Senator Vitter follows:]

STATEMENT OF HON. DAVID VITTER, U.S. SENATOR FROM THE STATE OF LOUISIANA

Mr. Chairman, thank you for calling today's hearing. Thank you as well to our distinguished witnesses for providing testimony this afternoon. I would also like to take a moment to express the Committee's support and prayers for Senator Boozman as he recovers from surgery back home in Arkansas.

It is no secret that the current Administration sees Congress as an obstacle to its hostile regulatory agenda, and that President Obama and his Environmental Protection Agency are willing to ignore multiple agency guidelines and federally mandated transparency laws in order to appease the environmental left. It was only last week that White House counselor John Podesta indicated that there is a "zero percent" chance that President Obama will refrain from imposing misguided climate regulations, as soon as this year-even if that means further undermining our energy security and economic recovery, and even if that means higher energy prices and more unemployment for the American people.

Unfortunately, the Administration's policy of "legislation by regulation" is pervasive, and it has reached the subject of today's hearing: stormwater runoff. There is no question that, under the Clean Water Act, Congress provided EPA with the authority to address and mitigate the discharge of pollutants into navigable waters. However, the EPA has been testing the limits of this authority recently in an ongoing effort to regulate water bodies that were clearly left to the states and private landowners to manage. Some of the more egregious examples have been highlighted

by EPW Republicans.

EPA's unlawful effort to regulate the rain creates absurd consequences for local and State officials throughout the country. In one particular case, the Virginia Department of Transportation determined that EPA water flow regulations would cost hundreds of millions of dollars in unfunded Federal mandates, provide little environmental benefit, and force local authorities to condemn a vast swath of private property in order to construct required stormwater infrastructure. Accordingly, the Department challenged EPA in court, which tossed out EPA's regulations based on the common sense notion that the flow of water is not a pollutant under the Clean Water Act.

Of course, policymakers should examine the problems and potential solutions to water pollution associated with transportation infrastructure. Unfortunately, the EPA's and this Administration's refusal to recognize limits to Federal authority

under current law precludes a sober discussion of these issues.

EPA's proposed "waters of the United States" rule confirms that the agency has no intention of abiding by the limits Congress established in the Clean Water Act. As the written testimony for today's hearing indicates, the Administration's quest for unfettered regulatory authority will in fact impede environmental stewardship and safety efforts by transportation and other officials throughout the country. This calls into question either side of the aisle supporting EPA's proposed rule.

I'd like to make very clear that it is the intention of EPW Republicans to prevent

EPA from redefining Federal jurisdiction, and to keep EPA bureaucrats out of the back yards of American families and off the property of our farmers, ranchers and small businesses. I look forward to hearing from our distinguished panel of experts this afternoon on these issues, and I thank Senator Cardin for holding this impor-

tant hearing.

Senator Cardin. I thank you very much, Senator Vitter.

I know that Senator Merkley was planning on trying to be here in order to introduce our first panelist, Mr. Paul Mather, the Highway Division Administrator, Oregon Department of Transportation. If Senator Merkley arrives, we will interrupt so that he will have an opportunity to say, I am sure, very nice things about you and the work that you are doing in the State of Oregon.

We also have Mr. James Gibson, who is the Director of the Integrated Watershed Management, Sanitation District No. 1 from

Northern Kentucky;

Kim Coble, who is the Vice President for Environmental Protection and Restoration, Chesapeake Bay Foundation, who I know personally and thank her very much for her work that she does on the Chesapeake Bay Foundation; an incredible success story, but still a lot more that needs to be done:

Mr. Daniel Medina, the Technical Director—Water, Atkins. Nice to have you with us today. Look forward to your testimony;

The Honorable Ken Cuccinelli, one of our distinguished guests. Wonderful to have you here with us today, who has a long record on transportation and environmental issues;

Mr. Greg Cohen, President and CEO of the American Highway Users Alliance; and Mr. Andre Monette, Attorney, Best & Krieger.

We welcome all of you. As is the tradition of our committee, your entire testimonies will be made part of our record. You may proceed as you wish.

But before we do that, we have an introduction by Senator

Merkley, as promised.

Senator Merkley. Thank you very much, Mr. Chair. I am very pleased to introduce Paul Mather from the State of Oregon, who is the Highway Division Administrator at the Oregon Department of Transportation. He has been working with ODOT since 1983. ODOT has a long history of proactively working with other State and Federal agencies to protect Oregon's environment and move forward on projects in a timely and cost-effective way.

Since salmon was added to the endangered species list, ODOT had to submit a large portion of its plans through a new regulatory process. In response, ODOT, including Mr. Mather, have worked alongside several State and Federal agencies to develop a common understanding for reviewing projects which has led to a streamlined approval process and improved management of polluted run-

off

In addition, ODOT has been implementing programs to reduce polluted runoff within its day-to-day highway operations that have had a positive result in reducing the amount of pollutants entering

the water supply.

While ODOT has been very aggressive in tackling polluted runoff, it is currently working on developing a more strategic plan to help anticipate the need for stormwater runoff management and meet the requirements of both the State of Oregon and Federal laws.

I am just going to conclude by noting that I am delighted that Mr. Mather has been so involved in this important area and is bringing his expertise to share with us before the committee. Welcome.

Senator CARDIN. Mr. Mather, you may proceed.

STATEMENT OF PETER MATHER, HIGHWAY DIVISION ADMINISTRATOR, OREGON DEPARTMENT OF TRANSPORTATION

Mr. MATHER. Thank you, Senator Merkley, for the nice remarks. Mr. Chairman, Senator Vitter, thank you for the opportunity to testify here today. I am Paul Mather, Highway Division Administration for the Organ Parasta of Theorem 19 and 19 an

trator for the Oregon Department of Transportation.

Protecting the environment is a core value for Oregonians, and the Oregon Department of Transportation is doing its part to protect our streams and rivers from stormwater runoff from our highways. In response to the listing of salmon as a threatened species under the Endangered Species Act, ODOT has worked with the State and Federal regulatory partners to develop and implement a set of measures to address stormwater. By implementing these measures, ODOT will progressively reduce the impacts highways have on the quality of the State's waters.

These measures were negotiated with our regulatory partners and address the unique circumstances we face in the Pacific Northwest. This negotiation allowed us to achieve the regulatory goals around environmental protection while protecting ODOT's regulatory certainty and measures that can be implemented at a reasonable cost. The approach we developed includes flexibility in how we meet the performance standards for a project, allowing for offsite mitigation where site conditions at a project make it difficult to achieve the goals onsite. This allows progress to be made on water quality without derailing important transportation projects. Going forward, ODOT hopes to work with regulatory agencies to

move away from the project-by-project approach and develop a more strategic watershed-based effort that focuses on areas where improvements to highways can have the greatest environmental benefit at a reasonable cost. While Federal direction in this area could improve environmental outcomes, any nationwide effort needs to take into account the unique circumstances in each State while allow flexibility for negotiating mutually beneficial outcomes

between regulators and transportation agencies.

To summarize my remaining testimony, I would like to close just with a couple main points that I think are key take-always from

my testimony

First, ODOT has found success by building a strong relationship in agreements with regulatory agencies. The biggest barrier to building these relationships was trust. It took us 2 years to develop the streamlined process we use today. It took us, ODOT, taking ownership of our responsibility and it took regulatory agencies changing their focus away from rules and regulations, and focusing

on the overall improvement to water quality in the watershed.

My second point is funding. We need funding to build and maintain these features. Without long-term funding, planning for complex projects is very difficult. To invest in new techniques and processes, we need long-term funding we can count on. The catalyst in Oregon for the development of our streamlined process was a major

investment by the Oregon legislature in transportation.

Mr. Chairman, members of the committee, again, thank you for the opportunity to testify and share a few thoughts from Oregon. [The prepared statement of Mr. Mather follows:]

Testimony of Paul Mather Oregon Department of Transportation Highway Division Administrator

Before the Senate Committee on Environment and Public Works Subcommittee on Water and Wildlife

Hearing on Solving the Problem of Polluted Transportation Infrastructure Stormwater Runoff

May 13, 2014

Introduction

Protecting the environment is a core value of Oregonians, and the Oregon Department of Transportation (ODOT) is doing its part to protect our streams and rivers from stormwater runoff from our highways. In response to the listing of salmon as a threatened species under the Endangered Species Act, ODOT has worked with its state and federal regulatory partners to develop and implement a set of measures to address stormwater from road projects that increase the amount of impervious surface. By implementing these measures ODOT will progressively reduce the impacts of the highway system on the quality of the state's waters.

These measures were negotiated with our regulatory partners and address the unique circumstances we face in the Pacific Northwest. This negotiation allowed us to achieve the regulators' goals around environmental protection while providing ODOT regulatory certainty and measures that can be implemented at a reasonable cost. The approach we developed includes flexibility in how we meet the performance standard for a project, allowing for off-site mitigation where site conditions at a project make it difficult to achieve the goal on-site. This allows progress to be made on water quality without derailing important transportation projects.

Going forward, ODOT hopes to work with regulatory agencies to move away from a project-by-project approach and develop a more strategic, watershed-based effort that focuses on areas where improvements to highways can have the greatest environmental benefit at a reasonable cost. While federal direction in this area could improve environmental outcomes, any nationwide effort needs to take into account the unique circumstances in each state while allowing flexibility for negotiating mutually beneficial outcomes between regulators and transportation agencies.

ODOT's Approach to Environmental Protection

Oregon, with its strong green ethos and focus on environmental stewardship and sustainability, has been a leader in ensuring that transportation projects complement rather than compromise the natural and built environment. ODOT's approach focuses on green outcomes, not red tape, and works to streamline regulatory processes while improving environmental outcomes. We work to build the

concept of "environmental uplift" into all of our programs so that we are leaving the environment in a better condition than we found it. We have found that working closely with all of our regulatory partners and coordinating programmatic agreements that offer a single set of terms and conditions can lead to improved environmental outcomes while reducing our costs and improving project delivery timelines.

For example, ODOT recently faced the need to repair or replace nearly 300 bridges in a decade under the Oregon Transportation Investment Act (OTIA) III State Bridge Delivery Program. In response, ODOT worked with regulatory agencies to develop programmatic agreements that allowed ODOT to develop projects that met certain terms and conditions agreed to by regulatory agencies. These projects then received an expedited review and moved quickly through the permitting process. In the end, ODOT saved time as well as an estimated \$73 million in delivering the projects, and the terms and conditions negotiated with regulatory agencies ensured the projects actually enhanced the environment.

Stormwater Management for Highway Projects

ODOT's management of highway runoff has evolved considerably over the last 25 years, going from occasionally treating stormwater from new impervious surface area to routinely treating all of a project's pavement. In the beginning, the decision to treat stormwater was based on an analysis of whether a project would result in exceeding toxicity criteria or other water quality standards. This approach was incorporated into the stormwater management plan in ODOT's permits. Regulatory oversight over individual projects was limited to projects needing water quality certification from the Oregon Department of Environmental Quality (DEQ)—the state's environmental regulatory agency— for projects requiring a permit from the Corps of Engineers for filling in waters and wetlands of the United States. DEQ did not require submittal of project stormwater management plan reports.

The Endangered Species Act (ESA) listing of salmon in Oregon's rivers and streams added a layer of complexity to the regulation of highway runoff. The National Marine Fisheries Service (NMFS), which has regulatory authority for the recovery of salmon listed under the ESA, recognized that highway runoff was a contributor to the conditions leading to the fish's decline and began including evaluation of stormwater impacts in Biological Opinions. As a result, ODOT and NMFS faced uncertainty about how to address stormwater in projects. For the first time ODOT was faced with regulatory review of stormwater for a large percentage of its projects, with requirements and demands varying from one to the next. One major project was held up for a year and a half because of delayed review by NMFS. Furthermore, DEQ responded to increased understanding of the impact of stormwater by tightening up their review and requirements, but without clear guidance. Unfortunately, there was no consistency between DEQ and NMFS, leading to consternation at ODOT when plans acceptable to one agency were rejected by the other.

The programmatic permitting for the OTIA III Bridge Program included stormwater requirements, which functioned well. The increasing awareness of the adverse effects of stormwater, particularly of metal pollution, led to escalating requirements outside of the OTIA III projects, and once again inconsistency between regulatory agencies. By the middle of the 2000s, all parties were frustrated and project delays due to stormwater were a real possibility. At that point, ODOT convened a multi-agency panel to develop practical and consistent highway runoff management criteria.

ODOT, NMFS and DEQ were the primary agencies on the Stormwater Action Team (SWAT), but other state and federal agencies—including the Federal highway Administration (FHWA), U.S. Fish and Wildlife Service (USFWS), Oregon Department of Fish and Wildlife (ODFW) and the Environmental Protection

Agency (EPA)— also participated and offered input. ODOT's goals were to develop stormwater management criteria that were permittable and constructible, while providing certainty in scope, schedule and budget. NMFS and DEQ were looking for criteria that would protect listed fish and the quality of the waters of the state, and would lead over time to an improvement in conditions. Every agency wanted improved regulatory efficiency.

The key issues addressed by the SWAT were thresholds for requiring stormwater management for environmental protection and the level of treatment to be required. The latter involved setting the size of storm to design for, identifying the area to be treated for each project, and determining how the stormwater is to be treated. Both water quality and hydrologic issues around volume of flows were included in the work. Authorities and limitations of the various agencies had to be considered, as well as practicality. All decisions were based on information from technical literature review and, where warranted, data analysis. After two years, the SWAT achieved mutual understanding and consensus on stormwater management criteria.

The water quality criteria developed by the SWAT is to treat the stormwater generated by the water quality storm from the project contributing impervious area, using best management practices (BMPs) that are effective at treating the range of standard highway runoff pollutants. All three elements are defined, and the list of BMPs is expected to change with ongoing research and development. The favored BMPs all incorporate substantial infiltration into the ground or filtration through a medium that removes pollution. Examples include bioretention basins, media filter drains, roadside vegetated filter strips and amended soil bioswales. Treatment is required when new pavement is put down, the drainage system is substantially changed, bridges and stream culverts are replaced, widened or newly built, or major reconstruction of a highway completely removes or replaces the pavement. There are common sense exemptions for new bicycle/pedestrian paths and minor features such as guardrail flares or bus pullouts.

The description of motor guide. Described installed by ODOT. On the left, a sequented water quality small of the interchange of 4.5 and 4.205 near Portland. On the right, a water quality pond along 1-84.

Implementation began at the individual project level, with the criteria included in NMFS biological opinions (BOs) and forming the basis of review for Clean Water Act (CWA) Section 401 Water Quality Certifications from DEQ. They were soon incorporated into programmatic Biological Opinions (BOs) from NMFS and incorporated into ODOT standards, manuals, and guidance documents. The use of programmatic BOs and a consistent standard has given ODOT certainty and made the BO and CWA Section 401 processes much more efficient.

A number of decisions by the SWAT were particularly crucial. Most importantly, the criteria are focused on providing high quality treatment of the stormwater using a set of preferred best management practices (BMPs), and not on achieving specific numeric pollutant concentration or removal levels. The SWAT decided that given the complexity and variability of stormwater, the science for selecting such levels was not there, and the problems associated with design and compliance monitoring are significant. More benefit could be achieved by having several projects do a good job of treating highway runoff than getting one job perfect. This is based on a system-level view of the impacts rather than a focus on individual projects. Second, all of the stormwater from the project would be subject to treatment, not just the new pavement or some percentage thereof. Third, the threshold for treatment would be project elements and scale rather than assessment of individual project impacts. And fourth, recognizing that site conditions may limit the ability to fully achieve the treatment goals, off-project mitigation is acceptable on a case by case basis.

For ODOT, the primary benefit of this approach has been certainty. ODOT hydraulics engineers and environmental staff have a clear idea of what and how stormwater should be treated. There is no more regulatory haggling and back and forth as ODOT and the resource agencies negotiate over what should be done on a project. By incorporating the stormwater management criteria in programmatic BOs, stormwater is not likely to cause project delays. The explicit ability to deal with difficult sites by using off-project mitigation allows those projects to go ahead without incurring excessive costs. The resource and regulatory agencies will see ongoing progress toward water quality improvement across the state as more of the state highway system is provided with stormwater treatment. They also benefit from the regulatory efficiencies at a time when they have stagnant or declining resources.

Other Stormwater Efforts at ODOT

New projects that increase impervious surface aren't the only areas where ODOT makes an effort to reduce stormwater impacts from the state highway system. For example, ODOT also operates a retrofit program that focuses on stand-alone projects that address some of the most significant stormwater challenges on the state highway system. This program allocated \$8.4 million for 14 projects in the Willamette River Watershed, primarily in urbanized areas, that involve installing a new stormwater treatment facility along a stretch of highway where no treatment currently exists.

Routine day to day highway maintenance and operations practices are also conducted in a manner to minimize the opportunity for contaminants to enter Oregon's waters. Examples include cleaning up spills from crashes on the system immediately and thoroughly, inspecting the drainage system for illicit discharges from third parties and neighbors, and removing sediment from ditches and storm water inlets. The ODOT Maintenance Blue Book provides a clear set of standard procedures for conducting maintenance activities in a way that protects water quality and other environmental resources. All ODOT maintenance yards participate in the Environmental Management System (EMS) program. The EMS Manual is ODOT's written stormwater management plan for the maintenance yards. The EMS program provides methods for pollutant source identification plus consistent, practical BMPs for source control and pollutant removal.

Looking to the Future

In the long-term, ODOT hopes to move away from simply addressing highway runoff on a project-by-project basis to a more strategic and holistic approach. We are endeavoring to develop a strategic program that uses asset management, planning and a watershed approach to anticipate where ODOT will have stormwater management needs, challenges and opportunities, and where ODOT can take steps that will have superior environmental benefit. Such an approach will allow ODOT to proactively

select and site treatment facilities in a corridor, reducing the life-cycle burden of multiple individual projects. Stormwater mitigation banking, if thoughtfully sited within a watershed, can more than compensate for the impacts of stormwater from roadway segments where treatment is not practical. Watershed priorities and high value locations can be targeted, providing more ecologic uplift than could be achieved by on-site treatment, potentially at a cost savings for ODOT. The establishment of mutually agreed on water resources goals and stormwater management criteria with our regulatory partners, and their recognition of the need and advantages of flexibility in meeting them has been a necessary and important first step.

The major challenge for ODOT and the rest of the nation is limited resources and increasing demand. New BMPs are developed with uncertain maintenance requirements, and the lifecycle costs of many traditional ones are poorly understood. ODOT is sandwiched between the increasing costs on the one hand and the push to eventually treat most of its stormwater on the other. The areas of the greatest concern, urban highways, are also the areas where costs associated with treatment — including right-of-way, construction and maintenance — are the highest. As we construct more stormwater treatment facilities the demand on ODOT's maintenance forces continues to grow. Even with the flexibility we have now, projects occasionally have to incorporate facilities that are expensive to maintain without assurance of a commensurate benefit. In any case, more facilities will be constructed and will have to be maintained. ODOT's challenge is to manage that growth so maintenance of these facilities does not become overwhelming.

Developing and implementing a strategic stormwater program will take time, effort and resources. ODOT is convinced that doing so will be beneficial for both the agency and the natural resources it is committed to protecting.

Conclusion

ODOT takes our responsibility for addressing stormwater from our roadways very seriously. Working with our regulatory partners, we have been able to develop a stormwater management program that will make significant progress over time. The agreement reached with regulatory partners created a win-win situation in which ODOT was offered certainty around project scope, schedule and budget and regulatory agencies received a commitment for significant environmental improvements. The agreement allows for cost-effective methods of addressing stormwater, including through off-site mitigation. Going forward, we hope to be able to modify our approach from a project-by-project effort to a more strategic, watershed level approach that will have even more benefit to the environment while reducing costs.

Any nationwide effort needs to take into account the unique circumstances in each state while allowing flexibility for negotiating mutually beneficial outcomes between regulators and transportation agencies. For Oregon, the primary driver of our effort was the listing of salmon under the Endangered Species Act, which created very unique needs that don't prevail across the nation. Other areas of the nation will need to address their unique circumstances, so federal regulations should avoid a one-size-fits-all approach and instead incentivize approaches such as Oregon's that bring regulators together with transportation agencies to work out the best solutions.

Environment and Public Works Committee Hearing on Solving the Problem of Polluted Transportation Infrastructure Stormwater Runoff May 13, 2014

Follow-Up Questions for Written Submission For Paul Mather, Oregon DOT Highway Division Administrator

Senator Ben Cardin

1) What are the specific water quality goals or standards that ODOT is aiming to achieve by incorporating advanced stormwater mitigation practices into the design of roadways?

The primary goal is that of protecting and improving the quality of the water in the state's rivers, streams, lakes and estuaries. In Oregon, there are two parallel objectives: meeting state water quality standards, and protecting and advancing the recovery of aquatic species listed as Threatened or Endangered under the Endangered Species Act.

A multi-agency working group—ODOT, Oregon Department of Environmental Quality (DEQ), National Marine Fisheries Service (NMFS) and other resource and regulatory agencies) determined that numerical pollutant load or concentration criteria were not appropriate for highway runoff. This was because of the highly variable nature of highway runoff, the very limited control a DOT has of the sources of pollutants in runoff, and the near impossibility of adequately and effectively manitoring runoff to demonstrate compliance. Instead, the working group developed stormwater management standards based on providing effective treatment for all of the normal runoff pollutants and treating runoff from the entire project's impervious surface. ODOT's guidance states that projects will "Treat all the runoff from a project's Contributing Impervious Area generated by the Water Quality Design Starm by using Preferred Best Management Practices". Designing and constructing projects under this standard is progressively leading to treatment of stormwater from all state highways. Flexibility for projects is provided by allowing off-praject mitigation, developed in coordination with the resource and regulatory agencies.

The working group also recognized that hydrologic changes caused by highway projects could be detrimental to the aquatic habitats of the state, so it was necessary to have criteria that protected stream channel form and processes. With the assistance of hydrologists and fluvial geomorphologists, the working graup identified the range of flows that needed to be maintained in their frequency and duration. Specifically, this is from about 80% of the bankfull discharge up to the bank overtopping event or the 10 year event, whichever is less. Waterbodies with upstream watersheds of 100 square miles or more, lakes, reservoirs and estuaries are exempt from the flow control requirement. Flood cantrol requirements are in addition to the flow contral requirement. Off-site mitigation is also allawable on a case by case basis.

2) What specific stormwater control measures (Best Management Practices) has ODOT adopted into its roadway designs?

ODOT and its regulatory partners have agreed that certain types of BMPs are effective at treating highway runoff. The most common are:

- Sheetflow from the highway across <u>vegetated filter strips</u>, enhanced as necessary to promote treatment and infiltration.
- <u>Bioretention focilities</u> that hold stormwater until it can either infiltrate into the ground or filter
 down through a media designed to remove pollutants before being collected and discharged.
 These may be large or small. (The media is important, and we follow research on the type and
 effectiveness of the various mixes.)
- <u>Bioswales</u>, linear flow-through facilities with enhanced soil and vegetation (in the right climate) that filter stormwater and promotes contact with the soil for pollutant removal. Infiltration con be an important, though secondary component of the treatment process.
- Media Filter Drains, originally developed by Washington DOT, which ore linear facilities along
 the highway that capture stormwater as it sheet flows off the pavement and down into
 subsurface media before being collected and discharged. Both WoshDOT and ODOT have been
 experimenting with alternative designs useable in different situations.
- <u>Proprietary media filter devices</u>. ODOT uses those that have been certified by the Washington State TAPE program as providing "enhanced treatment". These are used in developed areas where other treatment techniques are not practical.
- <u>Treatment wetlands</u>, which are artificially constructed wetlands specifically designed to remove
 pollutants from stormwater. ODOT has little experience with them, but along with the
 regulatory agencies considers treatment wetlands as effective BMPs.
- For flow control ODOT uses detention basins and infiltration facilities, including UICs. These are
 usually combined with water quality treotment BMPs (swales in the bosin treating the water
 quality design flows). We have used wetland mitigation sites for detention of treoted
 stormwater. For least one project, poor quality agricultural lond is being converted to forest,
 which produces less runoff, to compensate for new impervious surface area.

ODOT follows research on highway stormwater BMPs, and uses the results to improve and modify BMP design guidance.

3) Under what circumstances (i.e. hydrology of the landscape, size of the road, known impairments on a proximate waterbody, etc.) does ODOT apply these standards?

Specific project elements trigger the stormwater management requirements. For water quality these are:

- Construct new povement that increases capacity, widens the road prism, or relocates the roadway. Examples include adding travel lanes, passing lanes or turn refuges, shoulder widening, and highway or intersection realignments.
- Realign the roadway, even if there is a reduction in Contributing Impervious Area (CIA).
- Increase the CIA within the project orea. Along with adding new pavement, this could result from grade changes that couse highway runoff to flow into the project area that previously did not do so.

- Reconstruct o section of roodway pavement down to subgrade. This covers projects where the
 intent is to rebuild the roadway, not minor, localized repairs of the roadbed.
- Rehabilitate, restore or widen a bridge to repair structural or functional deficiencies that are too
 complicated to be corrected through normal maintenance (e.g., external post-tensioning,
 supplementary dampening). The primary trigger is expanding the width of the bridge deck.
 Seismic retrofits that make a bridge more resistant to earthquake damage are not triggers so
 long as the bridge deck is not expanded nor the drainage system substantially modified.
- Replace a stream crossing. This includes both bridges and culverts.
- Change the location, type or size of stormwater conveyance. This includes placing curbing where
 previously not present. Changing inlet locations does not require stormwater management
 unless stormwater from outside the pre-project CIA is captured as a result of the relocation.

A number of small actions, such as additional paving for guardrail flares and sidewalks are exempt, since they have little or no effect on water quality.

Flow control requirements are triggered when a project increases the peak discharge from the 10 year 24 hour storm by greater than 0.5 cubic feet per second (cfs), and the project discharges into a stream with an upstream watershed smaller than 100 square miles. Projects discharging into lakes, reservoirs or estuaries are exempt from flow control requirements.

4) Does ODOT generally accept and understand the impacts that the transportation assets it manages can have on water quality and aquatic habitat if it does not properly manage the stormwater that flows off of its roads?

Yes, this is a major reason ODOT has put a great deal of effort into the collaborative approach with its regulatory and resource agency partners. We also fund research projects investigating improved treatment techniques and understanding highway runoff.

5) Has the incorporation of advanced stormwater control measures dramatically changed the cost of roadway projects in your state?

Overall the increase in cost has not been large, but individual projects have had to spend considerable amounts of maney to provide for water quality and flow control measures. Cost is one factor taken into account when evaluating if off-praject mitigation is warranted. As described below, efficiencies in permitting provide a counterbalance to the extra costs involved in meeting the stormwater management criteria.

6) Is Oregon DOT's incorporation of effective stormwater mitigation facilities into the design of its highways prohibiting Oregon DOT from pursuing all of the road projects it would like to construct?

Adopting more stringent standards for anything usually comes with additional costs, and this has been the case with stormwater. However, the savings resulting from the collaboratively developed programmatic permitting and environmental performance standard approach mitigate increased project canstruction casts. The OTIA III Bridge Program estimated the cast savings from this approach at about \$60,000,000 out of a \$1.3 billian budget. The savings came fram reduced regulatory review and

negotiotion time and reduced redesign due to unanticipated regulatory agency demands. We expect that the same holds true for the rest of our program as a whole. The flexibility built into the programmatic permits prevents projects from having to spend an inordinate amount of their funds on stormwater management. On the other hand, the increasing number of BMPs is putting a strain on our Maintenance budget and will continue to do so. The strategic approach to stormwater management will help manage this increasing burden, but will not eliminate it. What is needed is a long term funding commitment for transportation projects forced an maintaining the system we have.

7) How has ODOT worked with the state's MS4 counties and cities to develop its design standards?

The basic stormwoter management standards were developed by the multi-agency working group. Because the focus was on highway projects, the counties were not included, but the results and decisions have been presented to them in numerous forums. The actual technical design standards for BMPs were released in draft for open public comment, which included cities and counties.

For its first NPDES MS4 permit (National Pollutant Discharge Elimination System Municipal Separated Storm Sewer System) ODOT was a co-permittee with each of the cities and counties that required the permit. While our relations with the co-permittees were good, the differences between highway stormwater issues and those of cities and counties made the permit process and conditions clumsy. ODOT does coordinate with the local authorities on joint projects.

8) Can you describe the working relationship you have in developing and implementing the necessary measures needed to reduce highway runoff?

Prior to the OTIA III project the relationship between ODOT and the state and federal resource and regulatory agencies was a varying level of wariness and mutual suspicion, though only occasionally directly antagonistic. Negotiations on project permits could be extended, complicated and frustrating. Following the establishment of Oregan's innovative Collaborative Environmental and Transportation Agreement for Streamlining (CETAS) and the initiation of the OTIA III Bridge Program, where ODOT took the initiative to approach the regulatory agencies and showed a true willingness to address environmental cancerns, the level of mutual trust increased.

The stormwater working group, referred to as the Stormwater Action Team (SWAT), was established during a period when NMFS and DEQ were both placing demonds on ODOT for stormwater management. However, there was no consistency, so projects were finding that what satisfied one agency was not acceptable to the other. Time and money were spent in drawn out negotiations and redesign, threatening project timelines and budgets.

The work of the SWAT took two years to complete. The most difficult part of the process was establishing a common language and gaining a mutual understanding of each agency's goals, authority and limitations. Establishing and maintaining mutual trust was vital for the process. The regulatory agencies had to demonstrate that it was not their intent or desire to hinder or second guess transportation projects. ODOT had to show that it was willing to take actions to protect and improve water resources. All parties agreed that technical stormwater management criteria had to be based on science, while recognizing that in the realm of stormwater and hydrolagy much remains to be learned. The use of technical experts (hydraulic engineers and fluvial geomorphologists) respected by all sides to provide and evaluate information was important for the success of the process.

Discussions and negotiations were often frustrating and contentious. Progress was made because all sides agreed that both environmental uplift and transportation improvements were important, and that any resolution hod to benefit both. Importantly, the SWAT avoided having "the perfect is the enemy of the good" syndrome.

Following the conclusion of the SWAT process, the development of stormwater conditions for programmatic Biological Opinions by NMFS was relatively easy, since the standards had already been developed. Nuances, clarifications and minor modifications based on experience with implementing the stormwater standards have been included in these Biological Opinions, but the basics have remained the same, providing a stable set of expectations for both ODOT and the regulatory ogencies.

Having well defined and accepted stormwater management standards olong with the level of mutual trust developed in the SWAT process has led to Oregon DEQ allowing ODOT to internally review and approve stormwater management plans required for Clean Water Act Section 401 Certification for prajects with pre-certified Clean Water Act Section Nationwide 404 permits. Time and effort is saved for both ODOT and DEQ without compromising environmental protection. Both parties have a vested interest in maintaining the necessary level of trust.

Occasionally, particularly early on, there have been difficulties in the implementation of the standards. These are generally the result of inadequate definitions, which are worked out through direct discussions between ODOT and regulatory agency staff. Individuals who do not understand the overall approach and level of flexibility in the stormwater standards did create problems, but these largely have been resolved.

Recent experience has been that interactions between ODOT and the regulatory agencies have been solution oriented and pragmatic on both the program and project level. In our opinion, this is due to the amount of work put into developing and maintaining mutual trust, the collaborative effort in developing stormwater management standards, the mutual acceptance of pragmatic steps towards reaching idealistic goals, the realization that all of our missions are important, and the attitude in the state that we are all working together.

9) Given the work that ODOT is already undertaking to reduce stormwater runoff from road assets, what degree of a federal requirement would ODOT be supportive of?

ODOT would support a non-prescriptive requirement, with fairly high level goals. The goals can be idealistic, but should be lorge scole, and operate ot a system level rother than at the project level. Compliance should be focused on continual substantial progress towards meeting the goal, not instant achievement of the goal. Flexibility in how standards are met is vital.

The focus on federal requirements should be on improving the working relationship between DOTs and regulations that con build walls between them.

10) Instead of prescribing a specific federal standard, would a more preferable approach be a requirement for states to develop highway stormwater management standards that a state would develop and implement on its own?

Yes, to the extent that the requirement is clear as to the averarching goal sa states, regulatory agencies and DOTs understand what they are expected to achieve. It is important that the goal covers both sides of the equatian, environmental protection and the improvement of the transportation system. DOTs and regulatory agencies, both state and federal, need to be given incentives to collaborate on developing the standards.

Watershed priorities and stormwater management opportunities vary greatly across the country and even within a single state. Any sort of single prescriptive standard would inevitably result in a substantial amount of misdirected resources.

11) How would you recommend Congress shape a federal program to reduce highway runoff to complement, or at the very least not place additional burdens on ODOT since you're ahead of the curve in responsibly managing highway stormwater runoff, the work that ODOT is already doing to reduce highway runoff?

It is important to ODOT that any federal program does not override the standards and criteria for stormwater management that we have developed with state and federal resource and regulatory agencies.

- Have clear, nan-prescriptive Program goals and abjectives that allow for the wide variety of conditions and issues faced by DOTs and watersheds acrass the country.
- Be clear how a new Federal stormwater progrom (and any accompanying regulations) is unique
 and its goals are not addressed under existing Federal programs, and coordinate ar integrate
 with other pragrams, not conflict or duplicate them.
- Standards and criteria should be developed at the state level.
- Promote and facilitate collaboration between state and federal transportation, resource and regulatory agencies to set standards that are achievable locally through practical and cost effective means.
- Promote flexibility in meeting standards and criteria by supporting a system/watershed approach for managing stormwater and mitigation.
- Provide incentives and support for making pragress towards program goals.
- Recognize that DOTs ore unique and have the ability to manage their own stormwater, but not stormwater generated by others.
- Provide support for the development of strategic stormwater management programs, stormwater facility construction, and the maintenance of the stormwater infrastructure.
- Provide the technical resources necessary to assist in the development of stormwater management standards.

12) How much of your road building budget goes into incorporating stormwater controls on highway assets?

A survey of ODOT hydraulic engineers found that costs for stormwater management for environmental protection varies widely between projects. For individual projects requiring stormwater management the percentage of the budget ranged from 1% to 15%, with an average of about 8%. Costs in urbanized

areas ore usually higher than in rural areas because of the constraints of existing development and rightof-way costs. The ability to use off-project mitigation when on-site treatment is not practical gives ODOT a tool for avoiding excessive costs.

13) How does better management of highway stormwater runoff reduce road edge soil erosion and the prevention of sheering of hillsides either directly adjacent to roadways of the hills and mounds that roadbeds are constructed on top of help maintain the condition of roadside embankments, prolong the useful life of highway assets and reduce the frequency and intensity of maintenance and repair work?

ODOT has long designed its highway drainage system to avoid stormwater damages to our facilities, including preventing stormwater from saturating and lubricating landslides. Conscientious permanent erosion control protects highway side slapes and allows them to be used as a stormwater management

Senator CARDIN. Thank you very much. Mr. Gibson.

STATEMENT OF JAMES P. GIBSON, JR., DIRECTOR OF INTE-GRATED WATERSHED MANAGEMENT, SANITATION DISTRICT NO. 1 OF NORTHERN KENTUCKY

Mr. GIBSON. Chairman Cardin, Ranking Member Vitter, and other members of the subcommittee, I appreciate the opportunity to speak before you this afternoon. My name is Jim Gibson and I am the Director of Integrated Watershed Management for SD1.

As the second largest public sewer utility in Kentucky, SD1 provides regional wastewater and stormwater services to approximately 300,000 residents and 35 municipal jurisdictions in Northern Kentucky. Stormwater management is an essential service in Northern Kentucky. It protects against property damage, that is, flooding and erosion, and it preserves the integrity of approximately 1500 miles of Northern Kentucky stream miles.

I would like to briefly touch on three impacts associated with stormwater management—stream damage, property damage, infrastructure damage—highlight some regulatory obligations, and then

conclude with the need for a regional calibrated standard.

First is impacts to stream. Stream integrity is rooted in the natural flow regime, the hydrology, of a watershed. Alteration of the landscape in any way, but particularly the addition of impervious surface, drastically changes the hydrology of a watershed and therefore impacts overall integrity of streams. For this reason, stormwater management is crucial for protecting our waterways.

Second is impacts to property. Absent or inadequate stormwater management has been documented across the U.S. to accelerate stream instability, bank erosion, and channel enlargement downstream. This is also apparent in Northern Kentucky based on several accounts offered by property owners that described dramatic changes in stream morphology after a watershed has been developed. These anecdotal observations are supported by SD1's extensive hydro modification monitoring program, which has documented at channel area, width, and depth of streams draining developed are significantly larger than those draining undeveloped watersheds of similar size.

Third, impacts to infrastructure. Impacts of unstable streams to adjacent infrastructure and property have been documented for over 30 years. As unstable streams become wider and deeper, they often expose and damage infrastructure in adjacent riparian zones. An ongoing review of costs from recent projects in our region revealed that in one Northern Kentucky County alone, during 2011, approximately \$3 million was spent on stormwater-related repairs associated with State-funded roadways.

Next, meeting water quality obligations. Currently, MS4 permitted dischargers, such as cities, counties, and special utility districts, are required to invest in controls to manage stormwater runoff. One of the largest contributors of impervious areas and, therefore, stormwater runoff in the U.S. is transportation infrastructure. In Northern Kentucky, pavement, including roadways, accounts for approximately 63 percent of the total impervious area, and State roads are one of the largest single entity sources of this impervious area, comprising approximately 24 percent of those paved surfaces. Given the contribution of State roadways to the total impervious area of Northern Kentucky, it is highly unlikely that even the best stormwater management practices applied to the remaining impervious areas would adequately protect the integrity of Northern Kentucky streams.

Finally, the need for a regionally calibrated stormwater management. SD1's experience shows that effective stormwater management is not necessarily one-size-fits-all. Although national standards can play an important role, SD1 has taken the initiative to develop a regionally calibrated approach that is protective of local streams but, more importantly, the feasibility of Northern Kentucky's region. SD1's extensive data collection and modeling efforts are consistent with international literature that indicates managing stormwater to match the natural disturbance regime is a key design goal to promoting ecological and geomorphic integrity.

In conclusion, stormwater runoff does not respect political or geographical boundaries, nor the agency that is responsible for that impervious surface. Impervious surfaces that are exempt from adequate stormwater management, such as Federal/State roadways, comes at the expense of other entities, such as downstream property owners who lose land from accelerated stream erosion or regulated stormwater utilities who might be burdened with future regulatory obligations associated with impaired or degraded waterways.

Additionally, inadequate stormwater management from impervious surfaces contributes to stream erosion that, in turn, impacts adjacent infrastructure. Therefore, adequate stormwater management of all impervious surfaces is not only in the best interest of stormwater utilities, but also in the interest of Federal and State Transportation Departments for a more sustainable approach to managing infrastructure. Ensuring that adequate stormwater management is implemented on all impervious surfaces goes beyond our Nation's water quality. Adequate stormwater management is in the best interest of anyone who pays a stormwater bill, a power bill, or even gas tax, because ineffective stormwater management causes impacts to those utilities that require repairs that are ultimately funded by ratepayers.

On behalf of Sanitation District No. 1, we thank you for the op-

portunity to provide this testimony.

[The prepared statement of Mr. Gibson follows:]

SD1 Testimony for Senate Subcommittee Hearing

Environment and Public Works Committee – Chairman: Senator Boxer; Ranking Member: Senator Vitter

Water and Wildlife Subcommittee – Chairman: Senator Cardin; Ranking Member: Senator Boozman

Scheduled for 5/13/14

Witness: James P. Gibson, Jr., Director of Integrated Watershed Management for Sanitation District No. 1 (SD1) of Northern Kentucky

Mr. Gibson joined SD1 in 2000 and was appointed Director of Water Resources in 2007, which was reorganized into the Integrated Watershed Management Department in 2013. The Integrated Watershed Management Department, which consists of a multidisciplinary staff of biologists, engineers and scientists, implements Northern Kentucky's regional storm water management program, including compliance with EPA's MS4 Phase II storm water regulations. Additionally, the department conducts comprehensive watershed assessments (i.e., water quality, biological and flow monitoring) and manages watershed model development throughout Northern Kentucky.

Prior to joining SD1, Mr. Gibson was employed for six years with the Ohio River Valley Water Sanitation Commission (ORSANCO – an interstate regulatory agency representing eight states and the Federal Government concerning water pollution control, primarily for the Ohio River) located in Cincinnati, Ohio. While at ORSANCO, Mr. Gibson was primarily involved in the development and management of ORSANCO's national demonstration studies to identify the impacts of wet weather on the water quality of the Ohio River.

As the second largest public sewer utility in Kentucky, SD1 of Northern Kentucky provides regional wastewater and storm water services to approximately 300,000 residents and 35 municipal jurisdictions in the three-county area of Boone, Campbell and Kenton. Storm water management is an essential service to Northern Kentucky—it offers protection to limit property damage from runoff, as well as the preservation of the integrity of approximately 1,500 miles of streams that drain watersheds within the 3-county area. In order to be effective, storm water management must be comprehensively implemented throughout an entire watershed in a coordinated effort that integrates all storm water management initiatives, including both public and private entities.

The value of effective storm water management is most apparent in catchment areas that do not currently have adequate measures for managing storm water runoff. Absent or otherwise ineffective storm water management causes substantial impacts to the quality of our local waterways—impacts that clearly do not meet the intent of the Clean Water Act. Beyond water quality (i.e., the physical,

Page 1 of 11

chemical, and biological integrity of waterways), inadequate storm water management can directly impact SD1 customers with property damage (e.g., flooding and erosion), and indirectly through increased rates required to repair damaged infrastructure, as well as additional regulatory compliance burdens associated with impaired waterways.

Water Quality/Stream Health: Stream integrity is rooted in the natural flow regime, the hydrology, of a watershed (Poff et al., 1997). Alteration of the landscape in any way, but particularly the addition of impervious surface, drastically changes the hydrology of a watershed, and therefore impacts the overall integrity of the stream, as demonstrated by The Stream Function Pyramid below (Harmon et al., 2012) (Figure 1). For this reason, storm water management is crucial for protecting the physical, chemical, and biological integrity of our nation's waterways—the three central objectives of the Clean Water Act. Inadequate storm water management strategies can lead to excess pollutants carried from impervious surfaces to waterways, such as oils, road salts, and metals and can also create excessively erosive flows that degrade habitat (Fitzpatrick and Peppler, 2010) and erode stream banks. This accelerated erosion has been identified as a dominant source of excess sediment in streams (Simon and Klimetz, 2008)—one of the nation's most widely documented water quality impairments (e.g., KDOW, 2008; OEPA, 2010). The aggregate effect of all of these impacts is degraded biological communities in watersheds with moderate and high levels of impervious cover such as pavement and roofs (Walsh et al., 2005).

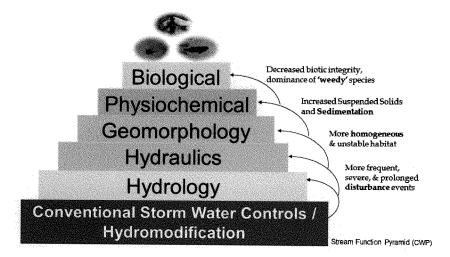


Figure 1. The Stream Function Pyramid (adapted from Harmon et al., 2012) demonstrates the cumulative nature that changes to a watershed's hydrology can have. Conventional and/or no storm water controls can exacerbate impacts, whereas storm water management techniques that seek to mimic natural hydrology and/or disturbance could reduce these same impacts.

Flooding: Storm water management impacts public and private property (Figure 2) because excess runoff from impervious surfaces upstream can increase flooding downstream (e.g., Sauer et al., 1983). This is evident even with conventional storm water flood controls, such as detention basins designed only to control peak flow rates, which extend durations of flood peaks and aggregate downstream flood peaks (Atlanta, 2001). This is also supported with numerous complaints of property owners in Northern Kentucky who have expressed concern over local flooding. Several property owners can attest that the stream on their property rarely, if ever, flooded out of its banks for several decades, but now that the watershed has been developed, flood waters frequently inundate their property.

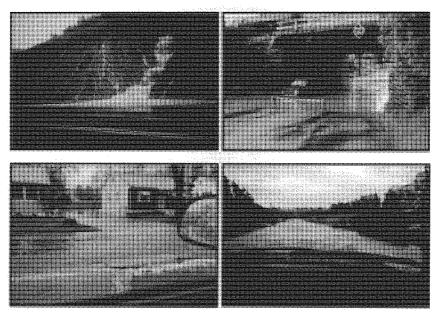


Figure 2. Various roadway and property flooding from absent or inadequate storm water management practices.

Erosion: Absent or inadequate storm water management has been documented across the U.S. to exacerbate stream instability, bank erosion, and channel enlargement downstream (e.g., Bledsoe and Watson, 2001; Booth, 1990; Hammer, 1972; Hawley and Bledsoe, 2013; Hawley et al., 2013a). This is apparent in Northern Kentucky based on several accounts offered by property owners that describe dramatic changes in stream morphology after a watershed has been developed. For example, one property owner noted drastic increases in stream width and depth following the construction of the four-lane AA Highway. These anecdotal observations are supported by SD1's extensive hydromodification monitoring program, which has documented that channel area, width, and depth of

streams draining developed watersheds are significantly larger than those draining undeveloped watersheds of similar size (Figure 3) (Hawley *et al.*, 2013a).

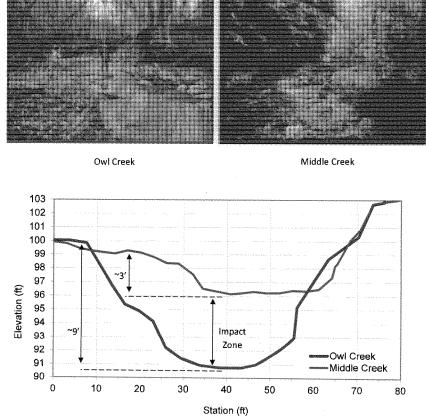


Figure 3. Photographs and cross sectional diagrams of Owl Creek (left-the enlarging stream mentioned above) and Middle Creek (right). Both streams drain approximately 3.5 square miles, but Owl Creek has nearly 10% impervious surface, as opposed to Middle Creek at 2%.

Impacts to Infrastructure: Impacts of unstable streams to adjacent infrastructure and property have been documented for over 30 years, if not longer (e.g., Richey, 1982). As unstable streams become wider and deeper (Figure 3), they often expose and damage infrastructure in the adjacent riparian zone, floodplain, and at stream crossings (Figure 4). An ongoing review of available figures from recent projects in the region estimate the following order of magnitude damages to infrastructure draining developed areas in Northern Kentucky (Hawley et al., 2013b):

- ~\$25,000 per square mile per year in estimated damages to state-funded roads,
- ~\$2,500 per square mile per year in estimated damages to sewers, and
- \bullet ~\$1,000 per square mile per year in estimated damages to gas and electric utilities.

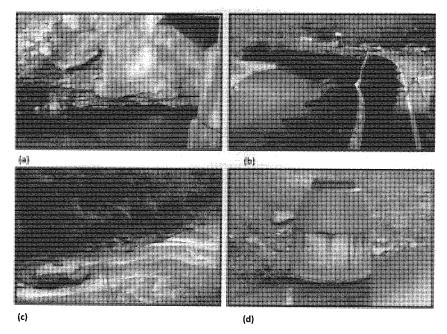


Figure 4. Various forms of infrastructure damage from excessive stream bank erosion and bed incision. Photo (a) stream incision endangers a bridge pier/abutment on a local road; (b) extreme bank failure, repair, and continued failure due to both excessive erosion and incision along a state road; (c) sanitary sewer line and manhole "bullet" is now in creek due to extreme bank erosion; (d) manhole structure exposure from extreme bank erosion.

Regulatory obligations associated with impaired waterways: When streams become impaired, the Clean Water Act requires that pollutant loads be assigned to bring the waterway back into compliance with water quality standards. This can obligate municipal separate storm sewer system (MS4) permitted dischargers, such as cities, counties and special utility districts, to invest in controls to reduce pollutant loads to the allowable levels. It is generally accepted that retrofitting and installing new controls in watersheds with existing problems is more expensive than implementing effective storm water management during initial development, primarily due to limited access and available space to install cost-effective controls in already developed watersheds.

One of the central components of effective storm water management is managing storm water from all substantial sources of runoff prior to discharging into waterways. Impervious areas have been globally documented as one of the most significant sources of excess runoff associated with both water quality and water quantity impacts in receiving streams (e.g., Walsh et al., 2005). Based on this overwhelming evidence, in areas undergoing new development, all new impervious areas should be managed in the most appropriate, cost effective ways to reduce impacts to receiving waters. In areas with existing development and degraded water quality, storm water retrofits and new controls may be implemented to cost effectively manage impervious surfaces in order to obtain reasonable and appropriate water quality goals.

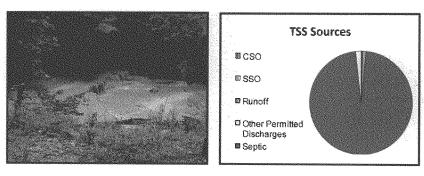
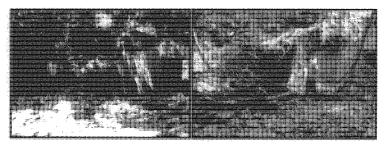


Figure 5. Photo of a tributary to Banklick Creek which is listed as impaired by the Kentucky Division of Water and a figure that displays the relative sources of total suspended solids (TSS) within the Banklick Watershed. When streams are listed as impaired, pollutant loadings are allocated to permitted entities by state regulatory agencies to achieve compliance with water quality standards.


Project coordination among agencies: One of the largest contributors of impervious area in the U.S. is transportation infrastructure. In Northern Kentucky, pavement (i.e., driveways, roads, highways, airport runways and parking lots) accounts for approximately 63% of the total impervious area, and state roads are one of the largest single-entity sources of this impervious area. State roads comprise approximately 24% of the paved surfaces in the three-county area and approximately 15% of all impervious surfaces in the three-county area. Given the contribution of state roadways to the total impervious area of Northern Kentucky, without effective storm water management, it is highly unlikely that even the best

storm water management practices applied to the remaining impervious areas would adequately protect the integrity of Northern Kentucky streams.

At times, Kentucky's state transportation agency has been a valued partner on storm water-related projects. On one project alone, a cooperative approach to storm water management allowed for the retrofitting of a detention facility in SD1's largest combined sewer overflow sewershed. In the same area, the state transportation agency allowed use of right of way for innovative storm water practices that reduced combined sewer overflows at lower costs than would have been possible without the use of the state's right of way (note: this project, Terraced Reforestation, recently received the American Council of Engineering Companies Honor Award for exceptional engineering achievement). SD1 has also begun cooperative planning associated with major highway expansions that might have otherwise increase combined sewer overflows with more highway runoff. These projects provide unique partnering opportunities for both agencies to reduce sewer overflows through coordination and costsharing so runoff from the highway projects may be addressed through a dedicated storm water system rather than the combined sewer system.

Unfortunately, there are numerous examples where a lack of storm water controls on state transportation infrastructure has caused SD1 to invest more of its resources to achieve water quality benefits than would have been necessary if the roadway infrastructure had adequate storm water controls. For example, on a recent sewer project in the Vernon Lane neighborhood, SD1 included a goal to reduce stream erosion and improve biotic integrity (Hawley et al., 2012). During construction efforts to reduce point source pollution from sanitary sewer overflows, it was logical to cost effectively attempt to address nonpoint source pollution and associated storm water issues at the same time. The state road in this catchment amounted to 11% of the impervious area but lacked any storm water treatment or detention; and therefore, SD1's investments had to overcompensate for the impervious area in the neighborhood, costing more money to achieve the desired objectives.

Moreover, SD1 has detailed inventories of how absent or inadequate storm water management directly impacts transportation infrastructure. For example, in one of the three counties in Northern Kentucky, impacts to state-funded roads in 2011 that were attributed to flooding and erosion were estimated at \$3.1 million (Hawley et al., 2013b). That is, in this one county, in one year alone, approximately \$3 million in new highways or scheduled maintenance could **not** be completed because this money needed to be spent on the repairs to address damages that were attributable in part to ineffective storm water management (Figure 6).

Pre-bank failure

Post-bank failure

Bank and roadway repair

Figure 6. Time series of bank failure and subsequent repair that damaged KY State Route 8; an engineer's estimate for this repair was approximately \$250,000.

Given the expense associated with these repairs, effective storm water management is clearly in the best interest of both State and Federal Transportation Departments. Effective storm water management is also in the best interest of SD1 customers because ineffective storm water management not only impacts roads and bridges, it also damages sewer, gas, electric, and other utility lines leading to higher user rates.

Regionally-calibrated Storm Water Management: SD1's experience shows that effective storm water management is not necessarily one size fits all. Although national standards can play an important role, SD1 encourages the promotion of regionally-calibrated approaches that are as protective of local streams but are more appropriate and feasible for the setting. For example, a 1-inch retention policy that may be relatively economical in soils that are conducive for infiltration could have unintended consequences in the clay soils of Northern Kentucky. With infiltration rates less than 0.01 inches per hour, the 1-inch retention policy (currently used in West Virginia and Tennessee) would result in

excessively large storm water management facilities that come at a high cost to developers and transportation agencies. This could have unintended consequences, because rather than constructing storm water management facilities, entities may elect to pay a fee into a mitigation bank. Such an approach would essentially ensure the degradation of the receiving stream reach, with the hope of implementing commensurate storm water controls (restoration or protection) on a nearby stream segment.

Alternatively, if such storm water controls were constructed in areas with poor infiltration capacities, the 1-inch policy could have undesirable effects in receiving streams by unnaturally decreasing rates of disturbance. Similar to a forest setting, natural rates of disturbance (i.e., stream bed erosion) are important for stream ecosystems just as natural frequencies of forest fires are important for maintaining healthy forests. SD1's extensive data collection and modeling efforts are consistent with international literature (e.g., Holomuzki and Biggs, 2000; Poff, 1992; Suren and Jowett, 2006; Townsend et al., 1997) that indicates managing storm water to match the natural disturbance regime is a key design goal to promoting ecological and geomorphic integrity.

In Northern Kentucky, SD1 has developed a methodology to determine watershed specific discharge rates (Hawley *et al.*, 2012) that do not exacerbate erosion for the majority of storm events but avoids the unnatural requirement of trying to infiltrate 1 inch of precipitation through clay soils. Such a regionally-calibrated approach is not only better for local stream integrity but also ensures that storm water management investments are not unnecessarily burdensome to land developers and/or transportation agencies.

Conclusions: In conclusion, the objective of this testimony is to document the direct link between improperly managed impervious surfaces and impaired waterways. Storm water runoff does not respect political or geographical boundaries, nor the agency responsible for the impervious surface. Impervious surfaces that are exempt from adequate storm water management, such as Federal/State roadways, comes at the expense of other entities, such as downstream property owners who lose land from accelerated stream erosion or regulated storm water utilities who might be burdened with future regulatory obligations associated with impaired/degraded waterways.

Inadequate storm water management from any impervious surface can exacerbate stream erosion that, in turn, impacts adjacent infrastructure. Consequently, the apparent savings to one agency's resources which avoids appropriate storm water management investments on a current project can negatively impact future resources of that agency, as well as neighboring agencies. Therefore, adequate storm water management of all impervious surfaces is not only in the best interest of storm water utilities, but also in the interest of Federal/State Transportation Departments for a more sustainable approach to managing transportation infrastructure. Ensuring that adequate storm water management is implemented on all substantial paved surfaces is certainly consistent with the goals of the Clean Water Act, but it goes beyond our nation's water quality. Adequate storm water management is in the best interest of anyone who pays a storm water bill, power bill, or gas tax; because the case is clear that ineffective storm water management causes and/or exacerbates impacts to those utilities that require repairs that are ultimately funded by rate payers.

References:

- Atlanta, 2001. Georgia stormwater management manual, Atlanta Regional Commission, Atlanta, GA.
- Bledsoe, B.P. and Watson, C.C., 2001. Effects of urbanization on channel instability. Journal of the American Water Resources Association, 37(2): 255-270.
- Booth, D.B., 1990. Stream-channel incision following drainage-basin urbanization. Water Resources Bulletin, 26(3): 407-417.
- Fitzpatrick, F.A., Peppler, M.C., 2010. Relation of Urbanization to Stream Habitat and Geomorphic Characteristics in Nine Metropolitan Areas of the United States. Scientific Investigations Report 2010-5056. U.S. Geological Survey, Reston, VA.
- Hammer, T.R., 1972. Stream channel enlargement due to urbanization. Water Resources Research, 8: 139-167.
- Harmon, W., R. Starr, M. Carter, K. Tweedy, M. Clemmons, K. Suggs, C. Miller. 2012. A Function-Based Framework for Stream Assessment and Restoration Projects. US Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds, Washington, DC EPA 843-K-12-006.
- Hawley, R.J. and B.P. Bledsoe. 2013. Channel enlargement in semi-arid suburbanizing watersheds: A Southern California case study. Journal of Hydrology, 496: 17-30.
- Hawley, R.J., Wooten, M.S., Vatter, B.C., Onderak, E., Lachniet, M.J., Schade, T., Grant, G., Groh, B., and J. DelVerne. 2012. Integrating stormwater controls designed for channel protection, water quality, and inflow/infiltration mitigation in two pilot watersheds to restore a more natural flow regime in urban streams. Watershed Science Bulletin. 3(1), 25-37.
- Hawley, R.J., MacMannis, K.R. and Wooten, M.S., 2013a. Bed coarsening, riffle shortening, and channel enlargement in urbanizing watersheds, northern Kentucky, U.S.A. Geomorphology, 201: 111-126.
- Hawley, R.J., MacMannis, K.R. and Wooten, M.S., 2013b. How Poor Stormwater Practices Are Shortening the Life of Our Nation's Infrastructure--Recalibrating Stormwater Management for Stream Channel Stability and Infrastructure Sustainability, World Environmental and Water Resources Congress. American Society of Civil Engineers, Environmental and Water Resources Institute, Cincinnati, OH, May 19-23.
- Holomuzki, J.R. and Biggs, B.J.F., 2000. Taxon-specific responses to high-flow disturbance in streams: implications for population persistence. Journal of the North American Benthological Society, 19(4): 670-679.
- KDOW, 2008. 2008 Integrated Report to Congress on Water Quality in Kentucky. Volume I. 305(b)

 Report. Kentucky Energy and Environment Cabinet, Department for Environmental Protection,
 Division of Water, Frankfort, KY.

- OEPA, 2010. Ohio 2010 Integrated Water Quality Monitoring and Assessment Report. State of Ohio, Environmental Protection Agency, Columbus, OH.
- Poff, N.L., 1992. Why disturbances can be predictable: a perspective on the definition of disturbance in streams. Journal of the North American Benthological Society 11, 86–92.
- Poff, N.L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., Sparks, R. E., Stromberg, J. C., 1997. The natural flow regime: A paradigm for conservation and restoration of river ecosystems. BioScience, 47: 769-784.
- Richey, J.S., 1982. Effects of urbanization on a lowland stream in urban Washington. Ph.D. Dissertation, University of Washington, Seattle, WA, 248 pp.
- Sauer, V.B., Thomas, W.O.J., Stricker, V.A. and Wilson, K.V., 1983. Flood characteristics of urban watersheds in the United States, U. S. Geological Survey.
- Simon, A., Klimetz, L., 2008. Relative magnitudes and sources of sediment in benchmark watersheds of the Conservation Effects Assessment Project. Journal of Soil and Water Conservation 63 (6), 504–522.
- Suren, A.M. and Jowett, I.G., 2006. Effects of floods versus low flows on invertebrates in a New Zealand gravel-bed river. Freshwater Biology, 51(12): 2207-2227.
- Townsend, C.R., Scarsbrook, M.R., Doledec, S., 1997. Quantifying disturbance in streams: alternative measures of disturbance in relation to macroinvertebrate species traits and species richness. Journal of the North American Benthological Society 16 (3), 531–544.
- Walsh, C.J., Roy, A.H., Feminella, J.W., Cottingham, P.D., Groffman, P.M., Morgan II, R.P., 2005. The urban stream syndrome: current knowledge and the search for a cure. Journal of the North American Benthologic Society 24 (3), 706–723.

June 11, 2014

Senate Committee on Environment and Public Works 410 Dirksen Senate Office Building Washington, DC 20510 Attn: Drew Kramer

Re: Senator Cardin's questions

Chairman Boxer and Ranking Member Vitter:

Per your request, attached are the responses to questions submitted by Senator Cardin to Sanitation District No.1 of Northern Kentucky (SD1) with regards to the Committee on Environment and Public Works hearing entitled "Solving the Problem of Polluted Transportation Infrastructure Stormwater Runoff" held on May 13, 2014.

SD1 thanks the Chairman, Ranking Member and the Committee Members for the invitation to participate in the hearing and provide this supplemental information to our testimony.

Respectfully submitted,

James P. Gibson, Jr.

James P. Gibson, Jr. Director of Integrated Watershed Management

Enclosure: 1

Environment and Public Works Committee Hearing May 13, 2014 Follow-Up Questions for Written Submission

Questions from: Senator Ben Cardin

Answers from: James P. Gibson, Jr., Director of Integrated Watershed Management, SD1

1) What would you recommend in terms of a national approach for more effective storm water management?

We would encourage regionally-calibrated approaches using local stream data. Storm water management is not "one-size fits all." Management targets that are needed to protect stream integrity vary across hydrogeomorphic settings, just as the types of management measures that are appropriate to meet those targets. For example, infiltration-type Best Management Practices (BMPs) would not necessarily be advisable without adequate geotechnical evaluations in areas prone to landslides. Furthermore, such strategies may be relatively ineffective in areas with poor infiltration rates of their native soils.

One broad storm water management goal that is in the best interest of both MS4s and DOTs is to manage storm water in a way that minimizes the risk of excess channel erosion. This is because excessively unstable streams tend to damage adjacent infrastructure such as roads and bridges, as well as cause water quality and habitat impacts. To manage storm water in a way that maintains or improves channel stability relative to pre-developed conditions and promotes long term stability, the cumulative erosive power of the post-developed flow regime must be equal to or less than that of the predeveloped flow regime. One common approach to achieve this goal is to design storm water controls for hydrograph matching such that the entire hydrograph for every storm is perfectly matched to the pre-developed hydrograph. To implement such a policy, a community could require duration controls in which models of long-term (e.g., 50 years) continuous rainfall simulations demonstrate that the cumulative durations of all flow magnitudes do not depart from the cumulative durations of the predeveloped scenario by an acceptable amount, such as 10%. This approach is impractical as it typically requires an excessive volume of necessary storage or the ability to infiltrate into the native soil. Providing large storage volumes can greatly increase construction costs, and the majority of Northern Kentucky's soils are not conducive to infiltrating storm water due to a high clay content. Therefore, the hydrograph matching approach has proven to be burdensome and costly in the Northern Kentucky region.

A more pragmatic way to design storm water controls, which is a less onerous alternative to hydrograph matching, is to focus only on the flows that actually erode the channel. That is, all streams have some capacity to resist erosion, and flows that do not exceed the force required to erode the bed or bank do not create channel instability. The threshold flow in which channel erosion begins has been referred to as the *critical flow* $\{Q_{critical}\}$ for a given stream. Because excess storm water volume that is released below $Q_{critical}$ does not create channel erosion, controls for those flows are unnecessary. Therefore, only the excess durations of flow magnitudes greater than $Q_{critical}$ matter because these flows transport the

Page 1 of 10

bed material and perform work on the channel boundary. The key to long-term channel stability is to manage storm water such that the long-term cumulative erosion done by all flows greater than $Q_{\rm critical}$ matches the cumulative erosion of the pre-developed setting. If this strategy is achieved on a watershed scale, it would increase the likelihood that no erosion occurs in the channel that would not have occurred under pre-developed conditions. As compared to more traditional solutions, this approach leads to less over-design of solutions, as less storage is needed to achieve the critical flow than matching hydrographs, lowering construction costs and maintenance time.

To achieve this goal of managing storm water towards the Q_{critical} value of a given stream, post-construction storm water controls in several communities now require long-term (e.g., 50 years) modeling of continuous rainfall simulations to demonstrate that:

- The cumulative durations of all flow magnitudes that have the potential to erode the receiving stream do not depart from the cumulative durations of the pre-developed scenario by more than 10% (e.g., San Diego, 2011), or
- The ratio of the cumulative erosion potential, also referred to as 'effective work' or cumulative sediment transport capacity, of the post-developed regime to that of the pre-developed regime does not exceed 1.0 (Santa Clara, 2004).

Sediment Transport Modeling (Continuous Simulation):

Because excess runoff volumes of larger storms can greatly exceed those of smaller storms, analyses show that the erosion potential approach (i.e., matching the long-term sediment transport) is more cost-effective than duration controls (matching the long-term cumulative flow durations) or hydrograph matching (e.g., Goodman, 2013). For example, matching the long-term sediment transport allows for over control of the small and intermediate flows to compensate for excess durations of larger storms such as the 10- or 50-year event. Such tradeoffs may result in the same amount of total erosion potential in the stream, but require somewhat smaller storage volumes for excess storm water runoff.

SD1 has implemented the sediment transport matching approach on several pilot projects such as the Pleasant Run inflow and infiltration project and the detention basin retrofit project being sponsored in part by the U.S. EPA Office of Research and Development. The approach has been vetted by the scientific peer-review process (see Hawley et al., 2012) and commended by the editor of the Watershed Science Bulletin as "an excellent case study... [of] a highly relevant topic facing jurisdictions." On new development, the approach ensures that storm water controls are optimized to match the cumulative sediment transport capacity of the pre-developed regime over long-term simulations (e.g., 50 years) of actual rainfall. In watersheds with existing development and channel instability, retrofitting and/or new controls should be evaluated to determine the most cost-effective and feasible alternatives to reduce the post-development sediment transport capacity toward that of the pre-developed condition. However, it is not recommended to attempt to match pre-developed conditions in these settings without regard for cost. For example, reducing the excess sediment transport capacity by ~90% for ~\$230,000 is much more cost-effective than reducing the excess sediment capacity by ~98% for ~\$2,000,000, and nearly achieves our goal of 100% reduction for the Pleasant Run pilot project (Hawley et al., 2012). Therefore, the reasonable decision was to achieve the 90% reduction for \$230,000 and save \$1,770,000 in rate payer resources for investments in cost-effective controls in other neighborhoods.

Q_{critical} Design:

For the Northern Kentucky setting, regionally-calibrated modeling by Sustainable Streams, Strand Associates, and others has determined that there are several *simplification steps* that can be taken to achieve the same goal of long-term sediment transport matching. First, *pseudo-continuous modeling* may take the place of continuous modeling because the large majority of rainfall events over a 50-year record will not exceed Q_{critical} and, consequently, not cause channel erosion. To match the long-term sediment transport capacity of the pre-developed regime, it is only necessary to model those events that exceed Q_{critical}, which will only require a relatively small subset of events from a 50-year record (e.g., the top 20 to 100 events over a 40 to 50 year rainfall record depending on the Q_{critical} threshold of the receiving stream).

Modeling has also demonstrated that a second simplification step may be taken <u>on development sites less than 100 acres</u>. The regional $\mathbf{Q}_{\text{critical}}$ memo (Sustainable Streams, 2012) has shown that by optimizing storm water controls to meet a simple design criterion, in addition to meeting the water quality and flood control criteria, they can achieve the same goal of matching the long-term sediment transport capacity that would be achieved using continuous simulation and sediment transport modeling. For development sites less than 100 acres, the simple design criterion is to control all storms up to and including the 2-year 24-hour event such that they are released at a flow magnitude that is less than the $\mathbf{Q}_{\text{critical}}$ of the receiving stream. SD1 and regional partners continue to monitor regional stream stability to document the efficacy of such simplified approaches to confirm that they achieve the desired results in the streams, and/or document a need to revisit and revise the approach(es). These simplification steps are summarized in Table 1 below.

Table 1. Storm Water Management for Stream Stability in Northern Kentucky: Sediment Transport (Continuous Simulation) vs. Q_{critical} Design

Storm Water Design Criteria	Developments < 100 acres ¹	Developments > 100 acres ¹ or Watershed-scale Master Planning		
Water Quality Volume	0.8 inches	0.8 inches		
Channel Protection (Hydromodification)	All storms up to and including the 2-year storm to be released below Q _{critical}	Continuous or pseudo-continuous long-term simulations ² of sediment transport capacity ³ of the post-developed regime not to exceed the pre-developed regime		
Flood Control	Post-developed peak flows not to exceed pre-developed peak flows for 2-, 10-, 25-, 50-, and 100-year design storms	Post-developed peak flows not to exceed pre-developed peak flows for 2-, 10-, 25-, 50-, and 100-year design storms		

¹ Sites draining to streams with more restrictive needs such as outstanding resource waters, impaired waters, or streams with more specific biogeochemical data may require alternative controls.

The simplification steps presented above may not be appropriate for areas outside Northern Kentucky, as documented in comparisons of data with California and Australia (Hawley and Vietz, In prep). For example, in sand-bed streams, which are common to areas such as Southern California, a hydrograph matching strategy may be more important to consider because $Q_{critical}$ is likely to be an impracticably small threshold such as less than ~1% of Q2. In contrast, channel protection controls may take a much different form or even become unnecessary in boulder-dominated streams where $Q_{critical}$ is likely to be relatively large (e.g., greater than ~100% of Q2). Furthermore, the costs and feasibility of management strategies required to meet such design targets would greatly vary by setting. For example, sand-bed streams are sensitive to erosion, but they are likely to be in relatively flat settings with soils that are conducive for infiltration. In contrast, steep boulder canyons could be challenging areas to treat volumes larger than those necessary for water quality control; however, it would be highly unlikely that the scale of storm water storage that is necessary to protect boulder-streams from excess erosion would be equivalent to the scale of the controls required to protect sand-bed streams. A one-size fits all

² 'Long term' defined as a representative period of continuous rainfall of 40 to 50 years from a Northern Kentucky gage. 'Pseudo-continuous' defined as selectively modeling all storms from a period of continuous rainfall that exceed or have the potential to exceed the Quincut for the downstream channel.

³ Sediment transport capacity to be modeled for the bed-material particle range that controls the overall stability of the channel using a method/equation that has been validated in the northern Kentucky setting. Alternative methods such as 'effective work' or 'erosion potential' may be employed in the place of sediment transport capacity, provided that the modeler demonstrates applicability of the method to the stream setting.

⁴ On new development, controls should match the pre-developed regime; however, on redevelopment projects or in watersheds with existing development that lack abundant opportunities for cost-effective controls, designs should be evaluated that cost-effectively improve the existing conditions to the maximum extent practicable but should not be taken to the extent of fully matching the pre-developed regime without regard for non-linear increases in costs.

approach could provide insufficient protection in the highly sensitive systems and result in costly and unnecessary storm water controls in more resilient systems.

Therefore, the best approach for storm water management is not a single approach, but rather, approaches that are calibrated to the local/regional setting using real data. As such, a national standard could make some broad recommendations/goals, but allow for, and indeed encourage, DOTs to develop regionally calibrated approaches based on distinct hydrogeomorphic settings. If the DOT elected not to develop a regional approach or did not have adequate data, their approach to effective storm water management should defer to a local/regional jurisdiction if that local jurisdiction had a more prescriptive approach that is calibrated to their region and is just as protective as the national rule.

2) What kind of threat does accelerated stream bank erosion pose to personal property and public safety?

It has been well documented that inadequate storm water management upstream exacerbates stream instability, bank erosion, and channel enlargement downstream (e.g., Bledsoe and Watson, 2001; Booth, 1990; Hammer, 1972). There are several examples of property damage in Northern Kentucky, best represented by one property owner's account of being able to jump across his stream when he was a kid and now that the watershed has been developed, the stream channel has become so wide and deep that it is no longer possible. This type of anecdotal observation is supported by SD1's extensive monitoring program that has documented that channel area, width, and depth of streams draining developed watersheds are significantly larger than those draining undeveloped watersheds of the same size (Hawley et al., 2013a).

Regarding public safety, unmanaged storm water runoff is hazardous in numerous ways. First, it makes stream flows more 'flashy' in that the water level rises and falls more rapidly than during predeveloped conditions. For example, a recent storm event in the head-waters of a local watershed (Dry Creek) caused the stream to rise over 2 feet and increase discharge over 3000% in just 30 minutes. This creates a danger to waders, boaters, or other recreational users in that they could quickly become swept away in a large flow with little advanced warning that an unsafe flow was on its way. Second, it increases the risk of stream instability and bank collapse, which can be detrimental to adjacent roadways. SD1 has numerous examples of roadways that have fallen into the adjacent stream. Fortunately, there were no known injuries in the roadway collapses to date; however, the damages to state roadways present other safety hazards such as excess traffic congestion and one-lane (multidirectional) highways during repairs. Third, unmanaged storm water runoff can exacerbate downstream flooding, causing bridges to overtop by storms that were designed to be passable, or causing expansion of the flood-prone area. As DOTs know, whenever flood waters inundate highways, it presents a major public safety threat as vehicles can become buoyant at unsuspectingly shallow water depths.

3) How is better onsite management of starmwater runoff saving your ratepayers on their service (utility) bills?

Inadequate storm water management from any paved surface can exacerbate stream erosion that, in turn, impacts adjacent public infrastructure. Furthermore, the erosive flows caused by inadequate

storm water management degrade the quality of receiving streams, causing storm water utilities (such as SD1) to invest substantial resources to address regulatory obligations regarding water quality. These impacts are costly, and therefore, utilities such as SD1 are increasing rates to pay for the issues. SD1 is currently in the process of expanding its inventory effort; however, it is estimated that approximately \$1 million per year is spent on sewer infrastructure repairs that are attributable to poor storm water management and/or stream erosion. Therefore, better storm water management by all contributors of storm water runoff, including DOTs, would be expected to reduce the impacts to our infrastructure, which ultimately saves rate-payer resources.

In addition, payed surfaces that are exempt from adequate storm water management for the apparent benefit of one entity, such as a DOT, is done at the expense of other entities, such as downstream property owners who lose land from excess stream erosion or regulated storm water utilities who might be burdened with future regulatory obligations associated with impaired waterways. Consequently, the apparent savings to a DOT's resources in avoiding appropriate storm water management investments on a current project are only deferred to a different entity. This transfer in responsibility can actually hinder a storm/sewer utility's future resources as funds are needed to repair damages caused by flooding and erosion that are attributable in part to the lack of adequate storm water management upstream. Therefore, adequate storm water management of all impervious surfaces is not only in the best interest of storm/sewer utilities, but also in the interest of DOTs because it is a more sustainable approach for their transportation infrastructure. Ensuring that adequate storm water management is implemented on all substantially paved surfaces is certainly consistent with the goals of the Clean Water Act, but it goes beyond our nation's water quality. Adequate storm water management is in the best interest of anyone who pays a sewer bill, power bill, or gas tax, because the case is clear that poor storm water management causes and/or exacerbates impacts to those utilities that require repairs that are ultimately funded by rate payers.

4) Can you please explain how SD1 has gone about measuring the volumes, flow rate and sources of stormwater flows in its service areas and how SD1 is using this information to implement effective stormwater abatement practices?

SD1 has studied the volumes and flow rates of storm water flows as well as the sources of such flows throughout our service area using our own monitoring program as well as sponsored support of 13 USGS stream discharge stations. Analysis of USGS gage data has documented the erosive nature of flows draining more developed watersheds and correlated the duration of erosive flows to channel instability (Sustainable Streams, 2013). This gage data provided key information for guiding the development of regionally calibrated storm water management recommendations that focus on channel stability. The analysis included a summary of peak and instantaneous flow records at eight USGS flow gages with records over the last ten years. The analysis also included a more detailed summary of gage records corresponding to hydrogeomorphic field surveys that are part of SD1's ongoing Hydromodification Monitoring Program. The results of the gage analysis supported the development of a regional $Q_{critical}$ value for storm water management. This study confirmed that flow durations above the $Q_{critical}$ value likely contribute to channel enlargement, as cross sectional enlargement was positively correlated to durations in flow above $Q_{critical}$. The gage analysis was completed to support SD1's regional $Q_{critical}$ memo

(Sustainable Streams, 2012), which illustrates how optimizing storm water controls to meet a simple design criterion (i.e., designing for all storms up to and including the 2-year storm to be released below $Q_{\rm critical}$), in addition to meeting the water quality and flood control criteria, can achieve channel protection goals in Northern Kentucky.

As discussed in the answer to Question 1, this data-driven approach enables SD1 to optimize storm water designs to reduce the risk of excess stream erosion through more cost-effective solutions. The approach generally results in SD1, private developers, and roadway projects to achieve our goals for water quality treatment, stream channel protection, and flood control using approximately the same or similarly sized footprint that would be required for conventional flood control design simply through better optimization of that facility. This not only saves SD1 rate payer money, but also saves costs for private developers and highway projects.

- 5) When stormwater from highways and other impervious surfaces is better managed on site and the flaws and volume your system receives is reduced, what effects do see an your repair, maintenance, replacement needs and costs to your system?
 - a. Would you say this is true for most storm sewer service (public utilities)?

Extrapolating from a case study in a Northern Kentucky watershed with a highly active channel, damage to sewers is estimated to cost ~\$2,500 per square mile per year. The damages in the case study were related to broken and/or exposed segments of trunk sewers in two locations. In addition to SD1's maintenance needs, gas and electric utilities within our service area have reported equivalent costs of ~\$1,000 per square mile per year due to main replacement as a result of bank erosion (Hawley et al., 2013b).

In addition to costs to pipelines, and as presented in the oral testimony, data from one Northern Kentucky county alone documented spending approximately \$3 million storm water-related repairs associated with state-funded roadways in 2011. This is equivalent to ~\$25,000 per square mile per year in estimated damages to state-funded roadways only. Local roadway repairs would be an additional cost (Hawley et al., 2013b), but all these costs could be decreased or eliminated with better management of storm water.

We would like to present an example of an asset that has been put at risk due to excess stream erosion our Dry Creek Wastewater Treatment Plant (WWTP). This is one of SD1's most important facilities, capable of treating over 40 million gallons per day of wastewater, and valued at over \$100 M.

The Dry Creek Watershed drains only 12 square miles but is one of the region's most unstable streams, with vertical banks in many locations that extend 10-20 feet tall. Duke Energy has replaced a gas line crossing that has become exposed by stream down cutting twice over the last few decades, suggesting a stream incision rate of approximately 1-2 feet per decade. Recent costs by Duke Energy and Greater Cincinnati Water Works to protect and/or replace imperiled or damaged infrastructure were estimated at approximately \$250,000 for each utility, while SD1 has spent over \$1 million to attempt to stabilize

the 600-foot stream segment adjacent to our WWTP in order to protect it from being undermined by stream bank failure and geotechnical mass wasting.

Our extensive regional data collection program has documented that Dry Creek is much larger and much more unstable than lesser developed watersheds of comparable sizes. This is almost certainly attributable, in part, to the fact that the watershed is approximately 30% impervious, with approximately 1/5 of the pavement being state roadways that have essentially no storm water detention. Every time it rains, excess runoff from state highways such as Interstates 71/75, and 275, is routed directly to Dry Creek, sending much more erosive flows by our WWTP than would occur if the highways had the types of detention facilities that we require of ourselves and private developers.

These types of effects such as excess erosion, stream down cutting and bank failure are exactly the types of responses that our storm water management program is intended to mitigate. Therefore, it is safe to conclude that if the highways had the types of storm water controls that we promote, the stream would not be as unstable as it has been during the last several decades, and SD1, Duke Energy, and Greater Cincinnati Water Works would not have needed to invest in the extent and frequency of repair and replacement activities that have been necessary under the present management program of highway runoff.

While not all streams will have a million dollar WWTP on its banks, it is reasonable to say that both public and private utilities will benefit from better management of impervious surfaces.

- 6) What kind of threat does accelerated stream bank erosion pose to personal property and public safety?
 See the response to Question 2 above.
- 7) How would better roadway designs that treat and detain starmwater reduce the burden on SD1's sewer system?

As made clear during the testimony by several witnesses, new highway construction activities should include regionally-appropriate storm water controls that cost-effectively mitigate the potential for excess erosion in receiving streams.

SD1 has recently been working with the state's transportation agency on implementing several pilot projects where we have retroactively installed storm water controls that are calibrated to reduce excess stream erosion and instability. We have another opportunity in one of our watersheds with a stream that is currently on the 303(d) List for Impaired Waters where we are working with multiple stakeholders and watershed groups to install and/or retrofit storm water controls that will be designed to reduce excess stream erosion, which is the dominant impairment in the stream. Kentucky's state transportation agency is on the steering committee of that watershed project and has been an active partner. A widening of a major highway presents an opportunity to implement controls that would be designed to mitigate the transportation agency's portion of the excess runoff that is contributing to the downstream impairment. We will continue to monitor the planning and success of these projects; however, removing a stream within our jurisdiction from the 303(d) list averts a major regulatory

responsibility and precludes the need for a State-developed TMDL, which can be much more costly to rate payers than locally-developed solutions. Therefore, having the state transportation agency as a partner in helping us protect our streams from being added to the 303(d) list and remove our impaired streams from the list is a tremendous opportunity in terms of the financial burdens that we currently face regarding our point-source loads and could face in the future related to our nonpoint source loads.

However, the state transportation agency is not required to participate in the pilot projects or other storm water control efforts, and SD1 rate payers cannot afford to foot the bill for the impacts that uncontrolled highway runoff causes nor be responsible for installing storm water controls that are necessary to mitigate highway runoff. If Congress decides not to require state highway projects to install appropriate controls using highway funding, and state highway departments do not otherwise choose to install storm water controls on their own, commensurate funding should be made available to state highway departments and/or regional MS4s to install effective controls. If Congress elected to provide funding to the local municipality/utility, as opposed to the state highway department, it may be necessary to take steps that ensure that highway departments adequately coordinate with local municipalities/utilities during the planning of new projects, as well as provide sufficient right of way access to install adequate storm water controls. Regardless of the path that is taken to ensure that adequate controls are installed on new highway projects, essentially all witnesses agreed that it costs much more to attempt to retroactively install controls after the highway is built as opposed to installing controls during the initial construction.

See the response to Question 5 for cost figures.

References

- Bledsoe, B.P. and Watson, C.C., 2001. Effects of urbanization on channel instability. Journal of the American Water Resources Association, 37(2): 255-270.
- Booth, D.B., 1990. Stream-channel incision following drainage-basin urbanization. Water Resources Bulletin, 26(3): 407-417.
- Goodman, J. 2013. Modeling applications to inform hydromodification management design decisions. Poster (ID: H21J-1187), AGU Fall Meeting, San Francisco, CA, December 9-13.
- Hammer, T.R., 1972. Stream channel enlargement due to urbanization. Water Resources Research, 8: 139-167.
- Hawley, R.J. Wooten, M. S., Vatter, B.C., Onderak, E., Lachniet, M.J., Schade, T., Grant, G., Groh, B., and DelVerne, J., 2012. Integrating storm water controls designed for channel protection, water quality, and inflow/infiltration mitigation in two pilot watersheds to restore a more natural flow regime in urban streams. Watershed Science Bulletin, 3{1}: 25-37.
- Hawley, R.J., MacMannis, K.R. and Wooten, M.S., 2013a. Bed coarsening, riffle shortening, and channel enlargement in urbanizing watersheds, northern Kentucky, U.S.A. Geomorphology, 201: 111-126.

- Hawley, R.J., MacMannis, K.R. and Wooten, M.S., 2013b. How Poor Stormwater Practices Are Shortening the Life of Our Nation's Infrastructure--Recalibrating Stormwater Management for Stream Channel Stability and Infrastructure Sustainability, World Environmental and Water Resources Congress. American Society of Civil Engineers, Environmental and Water Resources Institute, Cincinnati, OH, May 19-23.
- Hawley, R.J. and Vietz, G. In prep. Addressing the urban stream disturbance regime. Freshwater Science—Special Issue.
- San Diego, 2011. Hydromodification Management Plan, San Diego County, CA.
- Santa Clara, 2004. Hydromodification Management Plan Report, Santa Clara Valley Urban Runoff Pollution Prevention Program, Sunnyvale, CA.
- SD1, 2009. Standard Operating Procedures for Hydromodification Field Surveys. Revision No. 1, Sanitation District No. 1, Fort Wright, KY.
- Sustainable Streams, 2012. Development of a regionally-calibrated critical flow for storm water management, SD1 of Northern Kentucky.
- Sustainable Streams, 2013. Summary of Regional USGS Flow Gage Data in Support of Qcritical Development for Storm Water Management, SD1 of Northern Kentucky.

Senator CARDIN. Thank you for your testimony. Ms. Coble.

STATEMENT OF KIM COBLE, VICE PRESIDENT FOR ENVIRON-MENTAL PROTECTION AND RESTORATION, CHESAPEAKE BAY FOUNDATION

Ms. Coble. Good afternoon, Chairman Cardin, Ranking Member Vitter, Senator Merkley. My name is Kim Coble. I am the Vice President of Environmental Protection and Restoration for the Chesapeake Bay Foundation. On behalf of our Board of Trustees, our staff, and our over 200,000 members, I thank you for inviting me today.

For more than 40 years, CBF has been working to restore the Chesapeake Bay and its rivers and streams. The Chesapeake Bay is the largest estuary in the United States. It encompasses 64,000 square miles, similar to the size of England. It is home to about 17 million people and stretches through six States and the District of Columbia, all the way from Coopers town, N. Y. to Cape Henry, VA., from the Allegheny Mountains to the Atlantic Ocean, obviously having many, many miles of roadways and highways in it. At the outset, I would like to thank and acknowledge the com-

At the outset, I would like to thank and acknowledge the committee's longstanding work to protect the Chesapeake Bay. As you know, the Bay has suffered for decades from excess nitrogen, phosphorus, and sediment pollution. Because of your leadership, we are seeing the incredible progress in our fight to save the national treasure. However, much more needs to be done. Namely, we need to address the growing source of pollution to the Bay, which is

stormwater polluted runoff.

Runoff from developed land seriously impacts the rivers, streams, and the Chesapeake Bay. There are almost 4.9 million acres of developed land in the Chesapeake watershed, making up about 12 percent of the land that drains into the estuary. Stormwater runoff from that land causes 17 percent of the nitrogen pollution, 16 percent of the phosphorus pollution, and 25 percent of the sediment pollution to the whole overall Bay system; and in some States and rivers those numbers are much higher. For example, in Maryland, nearly one-third of the nitrogen, phosphorus, and sediment pollution going into the Bay comes from stormwater pollution.

Across the watershed, runoff causes harm to many, many rivers and streams. In both Pennsylvania and Maryland, nearly 2500 miles of rivers and streams are designated as impaired because of stormwater under the Federal Clean Water Act. How much of the runoff comes from highways? Based on statewide assessments, each year Federal aid roads and highways in the Chesapeake Bay States create nearly 21 million pounds of nitrogen pollution, more than 2 million pounds of phosphorus pollution, and almost 633,000

tons of sediment pollution.

How is this possible? Consider this. Just one inch of rain on one acre of hardened surfaces such as a highway produces 27,000 gallons of polluted runoff. For the Bay and the rivers and streams, this is devastating. But it does not have to be. There are modern ways to design stormwater management practices that can be used whenever new Federal highways are built or whenever old facilities are rehabilitated. For example, wetlands can be used to filter run-

offs; engineered roadside swales and bio retention areas can be installed; and, for more urban settings, special pavement or planters

and bum pouts have been very successful.

Investing in these kinds of solutions has also the potential to boost the local economy because it means local construction jobs for workers and engineers. A study by the Environmental Finance Center at the University of Maryland concluded that runoff pollution control projects bring a return to local economies of up to 1.7 times the investment. Each \$100 million invested in Lynchburg, Virginia, for example, could produce \$1.74 million for the local economy and pay the salaries of 1,440 local workers. In Anne Roundel County, Maryland, the same kind of investment would mean \$115 million for the local economy and support 780 local jobs.

Here in the Chesapeake watershed, States are committed to reducing the pollution that is harming the Bay and rivers and streams; however, polluted runoff is a significant and growing source of the pollution that impacts fish, humans, and property values in the Chesapeake Bay area. Today, highways produce sizable pollutant loads to our rivers and streams, but we can change this. We can design highways to use the existing landscape as much as possible to slow and infiltrate polluted water; we can put practices in place that mimic nature; and we can invest in local workers to install these practices so investments will stay in the local economies. The better we engineer our highway systems to manage our stormwater, the healthier our rivers, streams, Bay, and communities will be.

Thank you for the opportunity to be here today. [The prepared statement of Ms. Coble follows:]

Testimony of Kim Coble Vice President, Environmental Protection and Restoration, Chesapeake Bay Foundation

Before the Subcommittee on Water and Wildlife, Environment and Public Works Committee, **Unites States Senate** May 13, 2014

Solving the Problem of Polluted Transportation Infrastructure Stormwater Runoff

Good afternoon Chairman Cardin, Ranking Member Boozman, and members of the Subcommittee. My name is Kim Coble, Vice President of Environmental Protection and Restoration at the Chesapeake Bay Foundation ("CBF"). On behalf of CBF's Board of Trustees, staff and more than 200,000 members, thank you for inviting me to participate in today's hearing.

For more than 40 years, CBF has been working to restore the Chesapeake Bay and the rivers and streams that feed it. The Chesapeake Bay is the largest estuary in the United States. In fact, our 64,000 square mile watershed is similar in size to England and is home to over 17 million people in six states and the District of Columbia. From Cooperstown, New York to Cape Henry, Virginia, from the Allegheny Mountains to the Atlantic Ocean, millions more travel our roads to work in our region and to visit our beautiful streams, rivers and Bay.

At the outset, I would like to acknowledge the Committee's longstanding work to protect and restore the Chesapeake Bay. Because of your leadership, we are seeing incredible progress in our fight to Save the Bay. However, there is much work to be done - namely we must address the one growing source of pollution to the Bay: polluted stormwater runoff.

As you know, the Chesapeake Bay is a national treasure but has been suffering for decades from excess nitrogen, phosphorus and sediment pollution. Today, the states of Maryland, Virginia, Pennsylvania, Delaware, West Virginia, and New York, the District of Columbia, and the federal government are working together to reduce these pollutants to a healthy level. These reductions are making a difference in improved water quality and better habitat conditions. In turn, these improved conditions will lead to more fish and crabs and to an economic boost to our communities. There is evidence that the Bay's dead zone is shrinking, that the large underwater grass bed known as the Susquehanna Flats is growing, and many tributaries are returning to health.

According to scientists, we unfortunately are seeing one area where pollution is increasing: urban and suburban stormwater. This is largely due to population growth and related development activities such as road-building.2

¹ National Academy of Sciences, National Research Council, Urban Stormwater Management in the United States (2008), vii, available at http://www.epa.gov/npdes/pubs/nrc_stormwaterreport.pdf [hereinafter "Urban Stormwater"]. Indeed, according to that report, "Stormwater runoff from the built environment remains one of the great challenges of modern water pollution control, as this source of contamination is a principal contributor to water quality impairment of waterbodies nationwide." Urban Stormwater at vii.

² Chesapeake Bay Program, Bay Barometer 2012-2013: Health and Restoration in the Chesapeake Bay Watershed

^{(2013), 3, 4.}

In the Chesapeake Bay watershed, almost 4.9 million acres of land are developed, which is about 12 percent of the land that drains into the estuary. A little more than one quarter of this developed land -- or 1.3 million acres -- is covered in pavement, roofs, and other surfaces that rain cannot penetrate. Increasingly, spread-out development, known as urban sprawl, is the pattern of development found across our region, far exceeding the rate of growth of the human population in the Chesapeake watershed. In Maryland alone, for example, between 1973 and 2010, the population grew by 39 percent while the amount of developed land multiplied by 154%.³

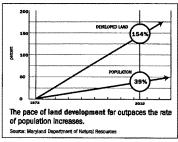


Figure 1: Population Growth vs. Developed Land in Maryland

Runoff from developed land seriously impacts our rivers, streams and the Bay. Currently, stormwater runoff accounts for 17 percent of the nitrogen pollution, 16 percent of the phosphorus pollution, and 25 percent of the sediment pollution in the overall Bay system, and in some states and rivers, those numbers are much higher.⁴ In Maryland, nearly one third of the nitrogen, phosphorus and sediment pollution it sends to the Bay comes from stormwater. ⁵ Across the watershed, runoff harms thousands of miles of rivers and streams. For example, by 2012, there were nearly 2,500 miles of rivers and streams in Pennsylvania, and more than 2,500 miles in Maryland that were legally designated as "impaired" by stormwater under the federal Clean Water Act. ⁶ In the last nationwide assessment, stormwater runoff was responsible for more

than 38,000 miles of impaired rivers and streams, almost a million acres of impaired lakes, and nearly 3,000 miles of impaired bays.⁷

In our watershed, how much of this runoff comes from roads and highways? Based on statewide estimates, federal aid roads and highways in the Chesapeake Bay states create nearly 21 million pounds/year of nitrogen pollution, more than 2 million pounds annually of phosphorus pollution, and almost 633,000 tons of sediment pollution.§ This calculation is based on the latest available figures from the Federal Highway Administration on the number of miles of federal aid highways in each state. We calculated their pollutant loads using average "edge of stream" pollutant loading rates for highways and urban sources derived both from the Maryland State Highway Administration and average values from the Virginia Assessment Scenario Tool, a Virginia-based model. The results can be found in Table 1 (attached).

³ Maryland Department of Natural Resources, "Fisheries Habitat and Ecosystem Program, Land Conservation is Fish Conservation," http://www.dnr.state.md.us/fisheries/fhep.

⁴ Chesapeake Bay Program, Chesapeake Bay Watershed Model Version 5.3.2 2012-2013 Progress Runs (March, 2014) [hereinafter "Progress Runs"].

U.S. Environmental Protection Agency, Chesapeake Bay Total Maximum Daily Load for Nitrogen, Phosphorus and Sediment (December 29, 2010), §4.3, at 4-5, 4-6 [hereinafter "Bay TMDL"].

⁶ Chesapeake Bay Foundation, *Polluted Runoff: How Investing in Runoff Pollution Control Systems Improves the Chesapeake Bay Region's Ecology, Economy, and Health* (January 2014), 7 [hereinafter "Polluted Runoff"].

⁷ Urban Stormwater, 25.

Note that the magnitude of "edge of stream" pollutant runoff is not the same as the magnitude of in-stream and Bay pollution. Attenuation occurs as pollutants enter waterways, and due to nutrient and other pollutant processing instream. These numbers do, however, provide a sense of the magnitude of the problem.

This runoff becomes dangerously polluted. In cities, rainwater or snowmelt flows through gardens and lawns and over hardened or "impervious" surfaces like rooftops, driveways, parking lots, and roads and highways. Along the way, it picks up nutrients such as phosphorus and nitrogen from nearby planted areas, as well as toxic metals such as copper and zinc, and pesticides and herbicides. From pavement, it picks up oil and toxic petroleum products (from motor vehicles and the pavement itself), as well as animal feces, and dirt or sediment.9 These hard surfaces prevent the water and pollutants from filtering slowly into the ground or being taken up by plants. Instead, it flows into rivers and streams. Just one inch of rain on one acre of hardened surface such as a highway produces 27,000 gallons of polluted runoff - as much as a swimming pool. 10

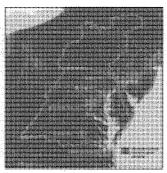
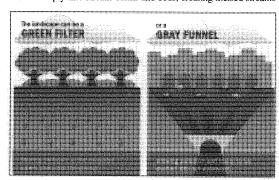



Figure 2: Pavement and other hardened surfaces in the bay watershed

For the Bay and its rivers and streams, the results are devastating. Like us, living creatures in rivers and streams must breathe. But the force and speed of water running off rooftops, parking lots and roads carves deeply into stream-banks and beds, creating incised streams with eroding banks. The sediment

then clouds the water, clogs fish gills, and covers stream bottoms, making it difficult or impossible for many species of macroinvertebrates, fish, and amphibians to survive. Phosphorus and nitrogen over-enrich water-bodies, leading to excessive algae blooms. When those algae die off, the aerobic bacteria that decay then draw out huge quantities of oxygen that will not be replaced until fall turnover of the water column. The results are low-oxygen/no-oxygen zones ("hypoxia/anoxia") where fish and other aquatic animals quite literally

cannot "breathe." In the Bay during the summer of 2013, 22% of the volume went "dead", seriously reducing habitat for both fish and crabs. In addition, the oxygen depletion killed benthic (bottom) communities of worms and small shellfish that form critical elements in the food webs.

There are direct impacts for humans as well, for example, our drinking water. Stormwater running off highways and other urban surfaces pollutes public drinking water supplies, since many of our rivers and streams are either directly used for this purpose (after treatment) or feed reservoirs. This pollution

⁹ U.S. Environmental Protection Agency, *Protecting Water Quality from Urban Runoff*, EPA 841-F-03-003 (2003), http://www.epa.gov/npdes/pubs/nps_urban-facts_tinal.pdf, last viewed March 28, 2014; Maryland Department of the Environment, Water Management Administration, "Maryland's National Pollutant Discharge Elimination System Municipal Stormwater Monitoring (1997), 10

System Municipal Stormwater Monitoring (1997), 10.

Description Water Education Foundation, "Aquapedia," http://www.aquapedia.com/?s=one+inch+of+rain&x=25&y=23, last viewed on March 28, 2014.

increases the cost of treatment and filtration. For example, in our area, "[t]he Washington Suburban Sanitary Commission is spending about \$28 million to extend drinking water intake pipes farther into the Potomac River to avoid sediment and other runoff pollution near shore." Another example is in our swimming areas. In many areas in our watershed, beaches are closed for at least 48 hours after it rains because bacteria in polluted runoff can cause illness in those who might come into contact with the water. 12 Fishing (especially for shellfish) is often restricted at such times.

Stormwater also causes local flooding and hurts the economy. This is a nationwide problem; in 2008, flooding was estimated to cause \$3 billion in property damages. One quarter of this loss - \$750 Million was due to uncontrolled urban and suburban runoff according to the Federal Emergency Management Agency (FEMA), 13

Today, our highways are a large source of polluted runoff. But they do not have to be. There are modern ways to design stormwater management practices, associated with highways, which significantly reduce polluted runoff. These practices can be used whenever new federal aid highways are constructed, and whenever older facilities are rehabilitated. To be cost-effective, such practices should be included in the design concepts of all roads from the beginning. Using state of the art engineering practices, designs should largely treat polluted runoff where it is captured. Designs must allow it to infiltrate into the ground while plants take up the pollutants. This is very simple. First, a road design must preserve and use the natural landscape as much as possible, or second, it must mimic the way nature itself handles runoff.

There are a wide variety of practices or techniques that can be used for such purposes, from using wetlands to help filter runoff, to creating engineered roadside swales and "bioretention" areas; in more

Figure 3: Examples of road-associated "green" stormwater management

urban settings, the use of special pavement, or planters and "bump-outs" that can capture, reduce the volume of, and treat polluted runoff, has been very successful.14 In some situations, trees and "rain-gardens" will work well, in others, older practices such as "dry ponds" can be retrofitted to hold water longer, promote infiltration through layers of sand and soil media, and allow plants to take up some of the

pollutants. Even structural solutions from the 1980's such as "wet ponds" can be modified to more effectively replicate natural hydrologic conditions. In any case, the main objective should be to transform the landscape as little as possible and maintain or restore the hydrology to that which was present prior to

¹¹ Polluted Runoff, 9.

¹² Urban Stormwater, 26.

¹³ James M. Wright, P.E., Federal Emergency Management Agency Training: Floodplain Management-Principles and Current Practices (2007-2008), Available online at:

http://training.fema.gov/EMIWeb/edu/docs/fmpcp/Chapter%202%20-

^{%20}Types%20of%20Floods%20adn%20Floodplains.pdf , 1-4, 2-14.

14 Federal Emergency Management Agency, SEA Street Publication, FEMA "Lessons Learned Information" Sharing" (LLIS.gov) www.llis.dhs.gov/content/2ndavenue-sea-street-seattle-washington; Horner, R., Lim, H.K., Burges, S., Hydrologic monitoring of the Seattle ultra-urban stormwater management projects (2002).

highway construction or modification. Doing so could help municipalities through which many of these roads run achieve their pollution reduction obligations.

Investing in these kinds of solutions also has the potential to boost the local economy because it means hiring local construction workers and engineers. A study by the Environmental Finance Center at the University of Maryland concluded that runoff pollution control projects bring a return to local economies of up to 1.7 times the investment.¹⁵ Each \$100 million invested in Lynchburg, Virginia, for example, could produce \$174 million for the local economy and pay the salaries of 1,440 local workers. In Anne Arundel County, Maryland, the same investment could mean \$115 million for the local economy and support 780 local jobs.¹⁶

Here in the Chesapeake Bay watershed, states are committed to reducing the pollution that is harming the Bay and its rivers and streams. However, polluted runoff is a significant and growing source of water pollution that impacts fish, humans, and property in the Chesapeake Bay watershed. Today, highways produce sizeable pollutant loads to our rivers and streams and can cause local flooding. But we can change this. We can design our highways to use the existing landscape as much as possible to slow and infiltrate polluted runoff. We can put practices in place that mimic nature. We can invest in local workers to install these practices so investments will stay in local economies. The better we engineer our highway system to manage our stormwater, the healthier our rivers, streams, Bay and communities will be.

Once again, thank you for the opportunity to be here today.

¹⁵ University of Maryland Environmental Finance Center, "Stormwater Financing Report to Baltimore, Maryland," December 2013, 29.

¹⁶ Ibid. Note: The difference in the economic benefits in the different local economies is largely due to how many workers would actually live in the jurisdiction where they were hired. For example, more laborers hired to build projects in Lynchburg would be expected to live within Lynchburg city limits whereas fewer laborers hired to build projects in Baltimore would be expected to live within Baltimore city limits.

Appendix

Table 1: Estimated Polluted Runaff from Federal Aid Highways, Chesapeake Bay Watershed States, 2011 (March 2013)*

Chesapeake Bay Foundation, April 2014

Sediment t/yr*****	9860	2914	50718	176401	181177	144639	67094	632803
Phosphorus lb/yr****	34560	10215	177773	618300	635040	491198	235170	2202256
7	324864	96021					2210598	20701198
Acres***	23040	6810			423360	327465	156780	1468170
Miles**	1536	454	7901	27480	28224	21831	10452	97878
States	Delaware	District of Columbia	Maryland	New York	Pennsylvania	Virginia	West Virginia	TOTAL

*Source: Derived from Federal Aid Highway Length - 2011, Miles by System March 2013, Table HM15,

Office of Highway Policy Information, Highway Statistics Series, FHWA. Polluted runoff estimates based on modeled "Edge of Stream" ("EOS") parameters below. EOS loading rates are higher than "delivered" loads.

**Note that entire state federal aid miles included; Chesapeake Bay watershed miles are less.

***6-lane highway approx. 18.5 ac/mi; 15 ac/mi used here.

****Nitrogen loading rate: 14.11b/ac/yr, derived by averaging EOS impervious surface loading rates from MD State Highway Admin rate with VAST (average 1.5. rate).

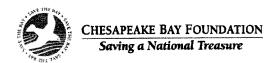
*****Phosphorus loading rate: 1.51b/ac/yr, derived by averaging EOS impervious surface loading rates from MD State Highway Admin rate with VAST (average 1.5. rate).
******Sediment loading rate: 855.91b/ac/yr, derived by averaging EOS impervious surface loading rates from MD State Highway Admin rate with VAST (average 1.5. rate).

One mile of federal aid highway, average runoff pollution rates (ChesBay watershec N: 212 lb/yr P: 23 lb/yr TSS: 6.42 tons/yr

Drew Kramer Committee on Environment and Public Works 410 Dirksen Senate Office Building Washington, D.C. 20510-6175

June 16th, 2014

Dear Mr. Kramer,


Please find our answers to Senator Cardin's follow-up questions from the May 13th hearing on "Solving the Problem of Polluted Transportation Infrastructure Stormwater Runoff." Thank you again for the opportunity to testify at this hearing.

1) How does the rapid rate in which stormwater flows from roads affect nearby streams and rivers?

Stormwater that runs off of smooth paved surfaces has little resistance, and thus gathers speed quickly. Also, paved surfaces usually do not allow any runoff to infiltrate the ground, so everything that falls on these surfaces runs off. The combination of high volume and high velocity of water has a tremendous erosive force. When the runoff gets to a local stream, the dynamics are such that the runoff scours out the stream bed at the outfall (the point where the runoff is directed into the stream) along with the stream walls. These erosive forces deepen and widen the stream channel, undercutting trees and brush, carrying away additional sediment, and destroying fish habitat.

2) When streambeds and stream banks are scoured by rushing stormwater, what direct water quality impairments occur in the Bay?

Some of the sediment, especially the fine sediment, does not settle out immediately downstream and can be carried in suspension a long distance. Sediment transport can be seen by aerial or satellite photo in many of our streams and rivers after a rain event, and some of this sediment makes its way to tidal waters and eventually to the Bay itself. Before the sediment settles in those waters, it clouds the water, preventing light penetration necessary for photosynthesis of underwater grasses. When the sediment finally settles it covers up plants and bottom-dwelling (benthic) organisms, as well as clogs fish gills. Sediment also carries phosphorus pollutants, which adhere to the small grains; over-enrichment by phosphorus and nitrogen is what leads to algal blooms, the consequent lack of oxygen as the algae die off, and causes dead zones in the Bay.

3) Is it correct to say that while highway stormwater may not contain a huge load of sediment and nutrients when it leaves the road surface, the flows churn up sediments and nutrients that would otherwise remain settled?

In some cases, yes. However, road surfaces collect pollutants such as nitrogen via deposition from the air, and Phosphorus and nitrogen run onto streets and highways and then into waterways from nearby planted areas. Highways also collect various toxins from transportation sources (petroleum by-products, engine fluids, particles from brake linings, etc.). Similarly, as noted above, the force and volume of the runoff from highway surfaces transports dirt and churns up sediments in the waterways it enters.

4) What are the benefits of detaining highway stormwater near the road facility in which it is generated from, and slowing the rate in which highway runoff is channeled and discharged into receiving waters?

Generally, the best and most efficient way to manage pollution is at its source, and this principle applies to highways as well. Retention and treatment of runoff at or near the highway allows water to infiltrate into the ground and pollutants to be taken up by plants. Infiltration of rain events helps to prevent runoff from gaining speed, additional volume, and additional pollutants, as well as having to be managed farther away, at or near receiving waters.

5) How much of the Highway runoff in the Chesapeake Bay watershed is being adequately treated?

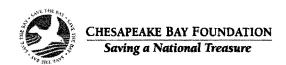
The adequacy of the treatment of highway runoff depends largely upon when the highway was built, as well as the standards used by the state at the time. Highway runoff has been "managed" by transportation departments for several decades in various ways. Previous management methods include channelizing runoff directly into nearby streams in the 1950's and 1960's, the usage of relatively ineffective "dry" ponds in the 1970's and 1980's, the usage of "wet" ponds in the 1980's and 1990's, and the usage of somewhat better systems early in the 21st century. Because varying methods of treatment were used depending on when the highway was built and by which state or agency, this question very difficult to answer.

6) What is the condition of tributaries in the parts of the watershed where improvements in stormwater management need to be made?

Unfortunately, many streams and rivers in all the Bay states currently are in only fair or poor condition; and, as urbanization proceeds even high quality streams will deteriorate. Stormwater

management standards and practices are improving across the Bay watershed, but improvements in the way highway runoff is managed and treated can greatly improve tributary water quality, as well as prevent deterioration in the future.

7) What kind of threat does accelerated stream bank erosion pose to personal property and public safety?


As previously mentioned, stream bank erosion occurs when the volume and velocity of polluted runoff cuts into stream banks and undercuts and topples what lies above – trees, pipes and highway infrastructure, homes, commercial buildings, and parking lots. This poses a significant threat not only to private property, public health and welfare, but also to public capital such as sewer systems and roads. Repairs to public systems can be extremely expensive, and the threat to lives and private property is quite real. The threat and cost of dealing with localized flooding from runoff is also significant.

8) Given the chemical constituents present in highway runoff, combined with the dangerously faster flows of water in streams that quickly receive highway runoff that are the result of highway runoff, is highway runoff preventing the achievement of the Clean Water Act's swimmable and fishable goals for all waters of the U.S.?

Polluted runoff from highways is certainly contributing to our nationwide failure to achieve the federal Clean Water Act's goals. It is an important component, along with air pollution, other point (e.g. wastewater treatment plant) and non-point (e.g. agricultural) water pollution. All these sources must be effectively managed for us to attain the objectives and promise of the Clean Water Act.

9) What are the benefits of mitigating or restoring to some degree the natural pervious landscapes that road hardscapes cover what water quality goals and infrastructure preservation goals are achieved?

The more we use nature, or mimic natural systems, to manage this source of pollution, the better off we will be. In nature, most rainwater and snowmelt percolates and filters through various surface layers of detritus into the soil. After nutrients are taken up and used by plants and micro-biota, the water then slowly makes its way into groundwater, seeps and streams. If a good proportion of the natural perviousness near infrastructure is not disrupted, it can still provide these functions; or, providing new pervious landscapes and treatment systems can often serve the same purposes. Such systems can be less expensive to build and maintain; and,

once in place, they filter pollution and help prevent the kinds of catastrophic collapses referred to above in Question 7.

Best Regards

Taylor Pool

Federal Affairs Coordinator Chesapeake Bay Foundation Senator CARDIN. Thank you very much. Mr. Medina.

STATEMENT OF DANIEL E. MEDINA, PHD, PE, D.WRE., CFM, TECHNICAL DIRECTOR—WATER, ATKINS

Mr. Medina. Thank you, Chairman Cardin and Ranking Member Vitter and Senator Merkley for inviting me here today. My name is Dan Medina. I am the National Technical Director for Water for Atkins. We are an international engineering firm. We specialize in all kinds of urban infrastructure. Highways are a significant source of revenue for us, as they are a source of employment for a large percent of our 2,700 employees based in the U.S.

I am also here on behalf of the Water Environment Federation, which is an industry association representing hundreds of clean water agencies across the Nation. In 2012, the Federation published this Design of Urban Stormwater Controls handbook, which is national handbook that establishes the design principles for stormwater controls in all urban areas, including highways. I had the privilege and the responsibility to be the editor of this publication here.

Let me start by saying that the U.S. Geological Survey places the most remote location in the lower 48 States deep into Yellowstone National Park. Yet, that location is only 22 miles away from the nearest road. That essentially highlights the omnipresence of our highway system; it takes us to our homes, it takes us to our jobs, but also to those awe-inspiring locations that should be preserved for future generations. Therefore, the highway system should lead the way literally into environmental stowardship.

the way, literally, into environmental stewardship.

We have heard the impacts of highway runoff, so I won't repeat them here. But one thing to emphasize is that there is no distinction between water quantity and water quality when it comes to highway runoff, or any kind of runoff, for that matter. They are all inextricably linked and they cause the same problems. We cannot separate them. It doesn't know where to go for quality or for quantity. Moreover, receiving streams that have to deal with these problems are the responsibility of municipalities that have to invest taxpayer dollars or ratepayer dollars in solving these problems. Therefore, highways are part of the problem and need to be part of the solution.

The good news is that American engineering has the expertise to mitigate these impacts. For 30 years we have had an approach known as green infrastructure for stormwater management that has been pioneered by Prince George's County here in Maryland. You probably heard about pervious pavement and bio retention facilities, stormwater wetlands. All these devices are designed to capture water and put it in the ground, where it belongs, as opposed to letting it go over impervious surfaces and into our streams.

Green infrastructure has been utilized in neighborhoods, in streets, in military facilities, but rarely is it utilized in highways. Other countries, like the UK, have mandatory regulations that force green infrastructure to be one of the options considered. In Australia, for example, green infrastructure is part of the considerations when building any major highway project. There is an example called EastLink near Melbourne. It is about 27 miles long and

includes about 17 interchanges and 88 bridges, hardly a country road, and uses a system of 70 wetlands to capture the water and

put it in the ground.

In the U.S. we have the leadership from several States, the Washington State DOT, Maryland Highway Administration, and, of course, you have heard the experience from our colleagues at the

Oregon DOT.

Better water management also makes for safer roads. An example here is something called permeable friction courses, which is essentially permeable pavement that is laid on top of regular pavement because it absorbs the water, it reduces the dangers from splash and spray and hydroplaning, but it also acts as a stormwater filter. Researchers from the University of Texas in Austin and North Carolina State University showed that permeable friction courses can reduce as much as 90 percent of the total sus-

pended solids in a highway.

The final point I would like to make is about economics. There is a perception that green highways are going to be delayed, they are going to cost more, and they are going to be more difficult to permit. The experience from the UK indicates that drainage systems constructed with green infrastructure in mind are 15 to 25 percent cheaper to construct, and also the maintenance cost is comparable, if not less, as those of conventional drainage systems. And then there is the issue of job creation. For planners, for engineers, for designers, for construction companies, for maintenance crews that specialize in green infrastructure could access the highway market.

In conclusion, American engineering has the expertise to improve how we handle runoff from highways today. Green infrastructure is a proven technology. It results in cleaner water, safer roads, fewer flood losses, more receiving infrastructure, including transportation infrastructure. It is an approach that will create jobs; it will not stall the installation of new highways or make it more costly. This highway reauthorization bill is an excellent opportunity to promote sustainability practices for our highway system.

In closing, on behalf of Atkins and the Water Environment Fed-

eration, I would like to thank you for having me here today.

[The prepared statement of Mr. Medina follows:]

Solving the Problem of Polluted Transportation Infrastructure
Stormwater Runoff

Water & Wildlife Subcommittee
Environment & Public Works Committee
U.S. Senate
May 13, 2014

Testimony of

Daniel E. Medina, PhD, PE, D.WRE, CFM National Technical Director - Water ATKINS

Editor, Manual of Practice on Design of Urban Stormwater Controls published by the Water Environment Federation and the American Society of Civil Engineers (2012)

Introduction

Chairman Cardin, Ranking Member Boozman, and distinguished members of the Subcommittee, thank you for the opportunity to testify today on stormwater issues related to our nation's highways and the need for expanded implementation of green infrastructure for stormwater management.

My name is Dan Medina and I am the National Technical Director for Water at Atkins. We are a global engineering firm serving the needs of our clients in the public and private sectors in all aspects of planning, designing, and enabling urban infrastructure in transportation, water, energy, and the environment. Our headquarters in the United States are located in Tampa, Florida and our 100 offices nationwide house our 2,700 employees in the US. I am here to provide the point of view of the private industry on the subject of this hearing. Highway design and services during construction are one of Atkins' major areas of expertise, constituting an important source of our revenue and engaging a large number of our staff.

Additionally, I am a long serving and active member of the Water Environment Federation (WEF), an industry association representing water agencies and utilities across the United States that deliver clean water to the public while protecting our water resources. In 2012, WEF and the American Society of Civil Engineers published the Manual of Practice for Design of Urban Stormwater Controls, a 750-page handbook on the practice of planning and engineering design of technologies to control runoff from a variety of urban settings, including highways. I had the privilege to serve as the editor for this Manual of Practice. I

am also a member of WEF's Stormwater Committee that focuses on fostering innovation and promoting sound policies for the cost-effective management of stormwater. Therefore, in addition to the private industry, I am also here on behalf of WEF as an association of water agencies charged with protection of water quality.

Overview of Stormwater Issues in Urban Infrastructure

According to the US Geological Survey, the most remote wilderness in the lower 48 states is located in Yellowstone National Park—only 22 miles from the nearest road, putting into perspective the omnipresence of our road system in the US. This feat of national infrastructure takes us to our homes and workplaces, and also to those awe-inspiring places in our country to be preserved for our future generations. Therefore, highways should lead the way, literally, in stewardship of the environment. Instead, historically, highway drainage systems have not been designed with sustainability in mind. In most instances, we pay insufficient attention to water quality, impacts on floodplains, water resource protection, and potential for public amenities and habitat enhancement. I hope to demonstrate here today that American engineering has the technology and know-how to improve stormwater management in our highway network in a cost-effective manner.

From my testimony today I would like the Subcommittee to take away four main points. First, highways exert a significant impact on streams and lakes that receive runoff. These bodies of water are under the jurisdiction of municipal agencies that are being forced to apply public funds to address the problems that arise from highway runoff. Second, American engineering has the expertise and technology to mitigate these impacts as new highways are constructed and aging ones are rebuilt. Third, better stormwater management on highways improves road safety. Finally, greener highways do not jeopardize road construction or stall economic growth; on the contrary, green technology for highway runoff management will fuel job creation at all levels in the planning, design, construction, and operation of our highway system.

First, let me provide a brief synopsis of the impacts of impervious surfaces on receiving waterbodies, which have been documented for decades. Road pavement and other impervious surfaces associated with vehicular traffic can contribute as much as 70% of the total impervious areas in an urban watershed (Wong et al., 2000). Under natural conditions, say, a forest, rain soaks into the soil, thus minimizing the volume of runoff that storms generate. Impervious surfaces impede this infiltration process and generate large volumes of runoff. Instead of arriving at streams as slow-moving groundwater seeping through the stream banks, runoff rushes over the pavement and through gutters and stormdrains that swiftly discharge to surface waters and carry sediment, motor oil, heavy metals, salt, pathogens, litter and other contaminants held in the pavement. Many states require that runoff be detained in basins that slowly discharge the water to a nearby stream. This approach can be effective but it

doesn't address the increased volume of runoff; therefore, the receiving watercourse is forced to convey more water. The stream adjusts to the new conditions by increasing the size of the channel, which erodes stream beds and banks, resulting in more sediment that the flow of the water must carry (WEF and ASCE, 2012). Moreover, accumulated on a watershed basis, more runoff leads to bigger floodplains and greater economic flood losses, including damages to transportation infrastructure. Uncontrolled runoff that leaves a highway almost always becomes a problem for the municipality that receives that water and has to spend taxpayers' funds in correcting the adverse effects.

Today's urban drainage systems respond to complex interactions of the urban landscape including buildings, roads, sewers, and receiving waterbodies. Highways are an important component. They are part of the problem and must be part of the solution.

As my second point to illustrate today, American engineers have the expertise and technology to mitigate these impacts. The conventional approach to road drainage has followed the principle of conveying water as quickly as possible away from the road to reduce the perceived risk of deterioration in strength of the subgrade. However, this fast-drainage approach contributes to the degradation of our waterways as I mentioned earlier. But it doesn't have to be like that. Our industry has a proven approach to mitigate these impacts known as green infrastructure (GI) for stormwater management. Over the past 30 years, from its inception in Prince George's County, Maryland, we have applied GI successfully to virtually every type of urban development from neighborhoods to ports to military bases, but rarely for highways. GI is a blend of planning and engineering measures to restore the balance and manage rain within the urban environment to minimize the impacts of development on the quality and quantity of runoff. while protecting the surrounding natural resources and enhancing their value to society. GI seeks to take advantage of vegetation and soil to put rain back in the ground where it can follow its natural pathways toward receiving watercourses. GI technologies currently in use in urban development include permeable pavement, vegetated swales, infiltration basins, and stormwater wetlands. In addition to local benefits, GI can be instrumental in reducing flood damages to the nation. A study that Atkins is conducting for the Environmental Protection Agency reveals that GI implementation at a watershed scale can reduce flood losses nationwide by as much as \$5 billion dollars between 2020 and 2040 (Atkins, 2014).

Vigorous research and lessons learned from three decades of GI implementation have taught us what we need to know about performance, cost, and operation and maintenance of these facilities. In addition, we know the experiences of other countries that have embraced the application of GI to highways. In the United Kingdom, the application of GI is mandatory through existing legislation, and nearly every highway project in Australia includes consideration of GI. A notable example is EastLink, a six-lane, 23-mile motorway near Melbourne featuring 17 interchanges, 4 miles of toll-free bypasses, 88 bridges, and twin

one-mile long, three-lane tunnels. The project's GI stormwater controls include 70 wetlands that treat road runoff and create habitat for wildlife. In the US a few state transportation agencies are leading the way notably Maryland, Washington, and Oregon, as exemplified by the experience that Oregon DOT shares with us at this hearing today.

My third observation for today is the link between smarter stormwater management and highway safety. Permeable friction courses (PFCs) are a type of pavement that has been used in the United States since the 1950s. This asphalt mix creates a pavement with a large fraction of air voids, which allows water to pass through it and increases friction needed for vehicle braking during storms. Because water soaks into the pavement, PFCs reduce the dangers of splash, spray, and hydroplaning. In addition, PFCs are generally quieter than conventional pavements. PFCs boast water quality benefits and thus are part of the GI toolbox for highways. Researchers at the University of Texas, Austin and North Carolina State University showed that concentrations of total suspended solids from PFCs are more than 90 percent lower than from conventional pavement. The researchers also observed lower pollutant concentrations for total amounts of phosphorus, copper, lead, and zinc (Eck et al., 2012). PFCs are not applicable in every road but where they are, the combination of improved safety and water quality benefits is a significant benefit of GI that is unique to highways.

My fourth and final comment relates to economic aspects associated with the application of GI to highways. Higher cost of "green" highways is often an argument cited against GI. Yet, experience in Scotland suggests that GI can reduce construction costs between 15 and 25 percent (WSP, 2008). Excessive and costly maintenance is another argument against GI deployment in highways. However, properly selected GI devices may be maintained easily as part of road maintenance programs and the cost is comparable to or lower than that associated with maintenance of conventional road drainage (CIRIA, 2003). A fair evaluation of GI projects needs to be based on a whole-cost analysis that considers capital expenditures and operation and maintenance. Moreover, there are other benefits of the GI approach that are more difficult to quantify but are no less real, for instance, better water quality, stream protection, ecosystem improvement, recreation, and aesthetics.

A common sense, tiered approach offers a cost-effective framework to improving our highways with GI. New highways can be designed and built with our current GI know-how; existing highways can be retrofitted as part of reconstruction or resurfacing efforts. In highways where GI is not feasible or cost-effective, allowance of GI projects outside of the right-of-way will offset the impacts.

GI application to highways also represents job creation for a variety of occupations including transportation planners experienced in sustainability, engineers with expertise in GI, contractors trained in installation of GI devices, and maintenance crews knowledgeable of the proper procedures applicable to

GI. These skills already exist in the industry, are constantly honed, and are waiting for the opportunity to expand to highways.

Conclusion

In conclusion, runoff from roads contributes to the problems that other urban development causes on our streams and lakes but the United States has the technology and expertise to improve this aspect of our highway system. GI is a proven approach that we can bring to bear on our highways to enable cleaner water, safer roads, and fewer economic losses due to flooding.

The highway reauthorization bill presents an excellent opportunity to promote sustainable practices in highway runoff management. These practices will not increase the cost of transportation projects or delay their implementation, and will lead to job creation and better and more durable infrastructure.

On behalf of Atkins and the Water Environment Federation, I thank Chairman Cardin, Ranking Member Boozman, and the Subcommittee for the opportunity to testify today. I welcome any questions you may have.

References

Atkins (2014). Flood loss avoidance benefits of green infrastructure for stormwater management. Report prepared for U.S. Environmental Protection Agency, Office of Water, Washington DC (under review).

Construction Industry Research and Information Association (CIRIA) (2003). CIRIA FR/CP/100 – Sustainable drainage systems, Hydraulic, Structural and Water quality advice. London.

Eck, B., Winston, R., Hunt, W., and Barrett, M. (2012). "Water Quality of Drainage from Permeable Friction Course." *Journal of Environmental Engineering*, 138(2), 174–181.

Wong, T., Breen, P., and Lloyd, S. (2000). Water Sensitive Road Design - Design Options for Improving Stormwater Quality of Road Runof. Cooperative Research Centre for Catchment Hydrology (CRCCH) Technical Report 00/01.

WSP (2008) SUDS for Roads, Edinburgh, Scotland

Water Environment Federation (WEF) and American Society of Civil Engineers (ASCE) (2012). Medina, D.E. and C.A. Pomeroy (eds.). *Design of Urban Stormwater Controls*. Manual of Practice No. 23. McGraw-Hill, New York, NY.

Follow-up Questions for Written Submission, from Senator Benjamin L. Cardin Environment and Public Works Committee Hearing

May 13, 2014

Follow-up Questions for Written Submission

Answers by
Daniel Medina, PhD, PE
National Technical Director for Water, Atkins

1) In your experience, will the incorporation of enhanced stormwater facilities into roadway designs ultimately cost less than restorative and replacement activities that ultimately become necessary from inadequately managed stormwater?

The oft quoted adage of an ounce of prevention is worth a pound of cure applies to stormwater as well as it does to one's own health. Roadway projects that discharge uncontrolled stormwater may cost less to construct but the expense to repair the damage caused to receiving water bodies may be much greater. Often, it will be taxpayers and ratepayers in the affected municipalities who will have to bear the outlay of repairing the damage. Moreover, transportation infrastructure downstream, such as bridges, may suffer the consequences also. Therefore, it is more cost-effective for our society to invest in designing and implementing stormwater controls than to have to undo the harm that would occur otherwise.

2) How does highway stormwater contribute to and cause streambed scour and what effects on water quality does this have?

The negative impacts of uncontrolled stormwater have been well documented over the past few decades. For a summary please see Chapter 2 of the Manual of Practice No. 23, *Design of Urban Stormwater Controls* published in 2012 by the Water Environment Federation and the American Society of Civil Engineers. Briefly, the increased volume of runoff is the cause of much of the negative impacts. Healthy streams exist in a balance of water, sediment, and vegetation that dictates the geometry of stream beds and banks and their alignment in the landscape. Impervious surfaces and compacted soils caused by urbanization increase the amount of runoff that reaches the streams, which disturbs this natural balance of the stream. In an attempt to restore the balance, the stream reacts to the additional runoff by scouring its bed and streambanks to increase the size of the channel and thus accommodate the additional water. The most visible result of this process is the formation of the deeply incised channel often found in urban environments. This erosion increases the sediment load to the stream, which affects water quality and aquatic health; for example, as the sediment settles on the bottom, it fills spaces between the river pebbles that are essential for fish habitat. Runoff also carries numerous pollutants that accumulate on impervious surfaces, for example fertilizers, pesticides, brake pad residue, motor oil, and litter.

Page 1 of 2

3) Does the incorporation of advanced onsite stormwater management facilities into highways create an undue financial burden on road builders?

Our knowledge of stormwater impacts has led to implementation of management measures and in most urban areas every type of urban development requires some kind of stormwater control nowadays. Of course these enhancements to the way we go about development represent additional costs; however, it is obvious that these costs have not hampered development, just like better building codes have not hindered construction. The value of our urban lands continues to increase and the economic prosperity that they generate more than compensates for the additional cost of deploying the infrastructure that we need. Highways are no exception to this pattern. It may cost more in capital expenditures to implement sound stormwater practices; however, this cost should not be considered and undue financial burden but part of the investment in society that highways embody. In this area, as in every other aspect of urban development, we need to adopt the principle of "do no harm" to gauge the need for these investments and the benefits that they bring to our communities.

EPW Committee, Introductory Statement of Ken Cuccinelli for May 13, 2014 Committee Hearing.

As this committee addresses runoff and pollution related to public infrastructure, I appreciate the chance to address two aspects of this issue: 1) EPA overreach, and 2) the devastating impacts of the EPA involving itself in local land use via storm water management.

I learned about both EPA's overreach and the consequences as Virginia's Attorney General in 2012.

In Northern Virginia, alongside the beltway (I-495) in Fairfax County, the EPA tried to use a TMDL to dramatically expand its jurisdictional reach by interpreting existing law in a way that treated rainwater like a pollutant under the Clean Water Act (CWA).

If it sounds strange to you that the EPA would treat rainwater as a pollutant under the CWA, it sounded strange to us too — and to the local government involved — Democrat-controlled Fairfax County, one of the most environmentally aggressive local governments in Virginia.

We quickly learned that the EPA's outrageous overreach was experimental in nature – we were one of only four instances in which EPA tried to use TMDLs in this manner in the whole country. And EPA made it clear that if they succeeded in Virginia, they were going to take it nationwide.

The cost to Virginia as a whole via our Virginia Department of Transportation (VDOT) was estimated to be approximately \$70 million and the financial impact to Fairfax County's taxpayers was approximately \$200 million – that's \$800 per family of four in Fairfax.

Mind you, all of this was with the knowledge that what EPA was attempting to mandate would not help the Accotink Creek! Fairfax County had already spent over \$100 million addressing the very same issues that EPA said it wanted to address via the TMDL, and Fairfax had further plans to spend more to continue to improve the Accotink Creek – without any mandates!

We were left with no choice but to sue the EPA to contest its incredible overreach in water regulation related to runoff from a federal highway.

The lawsuit was no partisan exercise, the 10-member Board of Supervisors of Fairfax County – seven democrats and three republicans – voted 9-1 to join VDOT in the lawsuit. This democrat-led local government was even willing to sue in July of 2012 – right in the heat of the President's re-election campaign in a swing state.

We won overwhelmingly. The federal court was aghast that the EPA would try to twist and stretch the CWA so badly. There is a warning here for this committee. I know the Administrator has made a number of "restrained" comments about what the regulation you are contemplating will or won't do. I'm here to tell you that they will take it to what you think is the limit and beyond — way, way beyond.

And they don't care about the costs or lost jobs. And I choose the phrase "they don't care" quite intentionally.

EPA knew that what they were trying to force Fairfax County and VDOT to do with the TMDL would not even achieve their own environmental goals. And even faced with the pleading of one of the most

aggressive local governments in Virginia when it comes to environmental stewardship, EPA would not give one inch – they were merciless.

Setting the approximately \$270 million in costs that would've been necessary to comply with EPA's illegal road-related TMDL, let me explain what compliance would likely have required in real-world terms.

Because EPA's complaint was with rainwater flowing off of the beltway, and because VDOT didn't own any property they could use to slow the flow of the rainwater, we would have had to condemn houses in some old middle-class neighborhoods along the beltway as well as some small businesses. After evicting the long-time residents, VDOT would have torn down their houses, and built retaining pools and planted grass to allow the water to soak into the ground instead of flowing into the Accotink.

As one citizen, I find EPA's willingness to destroy businesses and evict people from their homes for virtually no environmental benefit not just offensive, but scary. This is an agency that is out of control with its own power, and it concerns me that this committee is now considering expanding that power – power to displace families and destroy businesses.

Finally, as a practical matter, the authority this committee is contemplating granting to EPA would give EPA veto-power over an enormous number of local governments' land use decisions. And EPA's track record of simply not caring about the impact its decisions have on families, businesses and economic opportunity suggest this committee should be going in exactly the opposite direction regarding EPA power and authority.

1) As the Attorney General of Virginia, you were involved in and led the successful challenge against the Environmental Protection Agency's (EPA) costly and unnecessary total maximum daily load for Accotink Creek. In your written testimony, you observed that EPA's water flow regulations would have forced Virginia officials to condemn and destroy local neighborhoods and small businesses in order to construct federally-mandated stormwater infrastructure. During your experience in this case, did EPA officials ever express any interest or sympathy for the families and small business owners who could have lost their private property if EPA's regulatory effort had been successful?

Answer: During our extensive discussions with the EPA, despite the hardships that would have been imposed on families and businesses in the area, they showed no concern or mercy for those businesses or families.

2) You are likely aware that EPA's recent proposed "waters of the United States" would expand the agency's regulatory authority under the Clean Water Act. Of course, EPA contends that their proposal is merely a clarification of the law and that it will not have a substantial economic impact or significantly increase the number of water bodies subject to federal jurisdiction. Given your experience in the Accotink case, how do you think families, farmers and small businesses would fair in defending against attempts by EPA and their well-funded environmental allies to use the rule as a justification to assert regulatory control over private property? Is it fair to say that the cost of litigation and endless battles with EPA and its environmental allies can easily bankrupt a family, farmer or small business?

Answer: The EPA uses its heft to pressure families and businesses to bend to its will. That is the corporate culture of the EPA, and it will continue to be applied even more expansively if their preferred redefinition of the "waters of the United States" is adopted in statute.

The EPA relies on its ability to bankrupt families and businesses (including farmers) in its efforts to bend them to its will.

Senator CARDIN. Thank you very much. Mr. Cuccinelli.

STATEMENT OF HON. KEN CUCCINELLI, CUCCINELLI & ASSOCIATES

Mr. Cuccinelli. Senator Vitter, Senator Merkley, Chairman Cardin, thank you all for the opportunity to be here with you. As this committee addresses runoff and pollution related to public infrastructure, Mr. Chairman, I appreciated your cost effectiveness focus in your opening remarks, and I would appreciate the chance to address two aspects of this issue: one, EPA's overreach in this area and, two, the devastating impacts of the EPA involving itself in local land via stormwater management.

I learned about both EPA's overreach and the consequences as

Virginia's attorney general in 2012.

In Northern Virginia, just south of here, alongside the Beltway, I-495 in Fairfax County, the EPA tried to use a TMDL to dramatically expand its jurisdictional reach by interpreting existing law in a way that treated rainwater as if it were a pollutant under the Clean Water Act. It was very creative layering.

If it sounds strange to you that the EPA would treat rainwater as a pollutant under the Clean Water Act, it sounded strange to us too, and to the local government involved, which is a Democrat-controlled board of supervisors, Fairfax County, one of the most en-

vironmentally aggressive local governments in Virginia.

We quickly learned that the EPA's outrageous overreach was experimental in nature. We were one of only four instance sin which EPA tried to use TMDLs in this manner in the whole Country. And EPA made it clear that if they succeeded in Virginia, they were going to take it nationwide.

The cost to Virginia as a whole via our Virginia Department of Transportation was estimated to be approximately \$70 million in the instance of one creek, and the financial impact of Fairfax County's taxpayers was approximately \$200 million. That is \$800 per family of four in Fairfax County for one regulatory effort over one creek.

Mind you, all of this was with the knowledge that what EPA was attempting to mandate would not help the Accosting Creek. Fairfax County had already spent over \$100 million addressing the very same issues that EPA said it wanted to address via the TMDL, and Fairfax had further plans to spend more to continue to improve the Accosting Creek without any mandates.

We were left with no choice but to sue the EPA to contest its incredible overreach in water regulation related to runoff from a Fed-

eral highway.

The lawsuit was no partisan exercise, the 10-member board of supervisors of Fairfax County, seven Democrats and three Republicans, voted 9 to 1 to join VDOT in the lawsuit. This Democratled local government was even willing to sue in July 2012, right in the heat of the President's reelection campaign in a swing State.

We won overwhelmingly. The Federal court was aghast that the EPA would try to twist and stretch the Clean Water Act so badly. There is a warning here for this committee. I know the administrator has made a number of "restrained" comments about what

the regulation or some of the regulations you are contemplating will or won't do, and I am here to tell you that they will take it to what you think is the limit and beyond, way, way beyond.

And they don't care about the costs or the lost jobs. And I choose

the phase "they don't care" quite intentionally.

EPA knew that what they were trying to force Fairfax County and VDOT to do with the TMDL would not even achieve their own environmental goals. And even faced with the pleading of one of the most aggressive local governments in Virginia when it comes to environmental stewardship, EPA would not give one inch. They were merciless.

Setting the approximately \$270 million in costs that would have been necessary to comply with EPA's illegal road-related TMDL, let me explain what compliance would likely have required in realworld terms.

Because EPA's complaint was with rainwater flowing off of the Beltway, and because VDOT didn't own any property they could use to slow the flow of the rainwater, we would have had to condemn houses in some old middle-class neighborhoods along the Beltway, as long as some small businesses. After evicting the long-time residents, VDOT would have torn down their houses and built retaining pools and planted grass to allow the water to soak into the ground instead of flowing into the Accosting.

As one citizen, I find the EPA's willingness to destroy businesses and evict people from their homes for virtually no environmental benefit not just offensive, but scary. This is an agency that is out of control with its own power, and it concerns me that this committee is now considering expanding that power; power to displace

families and destroy businesses.

Finally, as a practical matter, the authority this committee is contemplating granting to EPA would give EPA veto power over an enormous number of local governments' land use decisions. And EPA's track record of simply not caring about the impact its decisions have on families, businesses, and economic opportunities suggests this committee should be going in exactly the opposite direction regarding EPA power and authority.

Thank you.

[The prepared statement of Mr. Cuccinelli follows:]

EPW Committee, Introductory Statement of Ken Cuccinelli for May 13, 2014 Committee Hearing.

As this committee addresses runoff and pollution related to public infrastructure, I appreciate the chance to address two aspects of this issue: 1) EPA overreach, and 2) the devastating impacts of the EPA involving itself in local land use via storm water management.

I learned about both EPA's overreach and the consequences as Virginia's Attorney General in 2012.

In Northern Virginia, alongside the beltway (I-495) in Fairfax County, the EPA tried to use a TMDL to dramatically expand its jurisdictional reach by interpreting existing law in a way that treated rainwater like a pollutant under the Clean Water Act (CWA).

If it sounds strange to you that the EPA would treat rainwater as a pollutant under the CWA, it sounded strange to us too — and to the local government involved — Democrat-controlled Fairfax County, one of the most environmentally aggressive local governments in Virginia.

We quickly learned that the EPA's outrageous overreach was experimental in nature — we were one of only four instances in which EPA tried to use TMDLs in this manner in the whole country. And EPA made it clear that if they succeeded in Virginia, they were going to take it nationwide.

The cost to Virginia as a whole via our Virginia Department of Transportation (VDOT) was estimated to be approximately \$70 million and the financial impact to Fairfax County's taxpayers was approximately \$200 million – that's \$800 per family of four in Fairfax.

Mind you, all of this was with the knowledge that what EPA was attempting to mandate would not help the Accotink Creek! Fairfax County had already spent over \$100 million addressing the very same issues that EPA said it wanted to address via the TMDL, and Fairfax had further plans to spend more to continue to improve the Accotink Creek — without any mandates!

We were left with no choice but to sue the EPA to contest its incredible overreach in water regulation related to runoff from a federal highway.

The lawsuit was no partisan exercise, the 10-member Board of Supervisors of Fairfax County – seven democrats and three republicans – voted 9-1 to join VDOT in the lawsuit. This democrat-led local government was even willing to sue in July of 2012 – right in the heat of the President's re-election campaign in a swing state.

We won overwhelmingly. The federal court was aghast that the EPA would try to twist and stretch the CWA so badly. There is a warning here for this committee. I know the Administrator has made a number of "restrained" comments about what the regulation you are contemplating will or won't do. I'm here to tell you that they will take it to what you think is the limit and beyond – way, way beyond.

And they don't care about the costs or lost jobs. And I choose the phrase "they don't care" quite intentionally.

EPA knew that what they were trying to force Fairfax County and VDOT to do with the TMDL would not even achieve their own environmental goals. And even faced with the pleading of one of the most

aggressive local governments in Virginia when it comes to environmental stewardship, EPA would not give one inch – they were merciless.

Setting the approximately \$270 million in costs that would've been necessary to comply with EPA's illegal road-related TMDL, let me explain what compliance would likely have required in real-world terms.

Because EPA's complaint was with rainwater flowing off of the beltway, and because VDOT didn't own any property they could use to slow the flow of the rainwater, we would have had to condemn houses in some old middle-class neighborhoods along the beltway as well as some small businesses. After evicting the long-time residents, VDOT would have torn down their houses, and built retaining pools and planted grass to allow the water to soak into the ground instead of flowing into the Accotink.

As one citizen, I find EPA's willingness to destroy businesses and evict people from their homes for virtually no environmental benefit not just offensive, but scary. This is an agency that is out of control with its own power, and it concerns me that this committee is now considering expanding that power – power to displace families and destroy businesses.

Finally, as a practical matter, the authority this committee is contemplating granting to EPA would give EPA veto-power over an enormous number of local governments' land use decisions. And EPA's track record of simply not caring about the impact its decisions have on families, businesses and economic opportunity suggest this committee should be going in exactly the opposite direction regarding EPA power and authority.

June 12, 2014

Hon. Barbara Boxer, Chairman Committee on Environment and Public Works United States Senate Washington DC 20510-6175 Hon. David Vitter, Ranking Member Committee on Environment and Public Works United States Senate Washington DC 20510-6175

Dear Chairman Boxer and Ranking Member Vitter:

Thank you for the opportunity to respond in writing to questions from the May 13 Subcommittee on Water and Wildlife Hearing entitled "Solving the Problem of Polluted Transportation Infrastructure Stormwater Runoff". The questions and responses are as follows:

Question from Subcommittee Chairman Ben Cardin:

1) Should state and local highway authorities be responsible for managing the polluted stormwater runoff that flows off of highway assets and into nearby waterways or into storm sewers that discharge into nearby waterways?

Response:

Generally, no. If States and local highway authorities had considerably more funds at their disposal to carry out their primary transportation mission and also manage highway runoff, this might be a reasonable proposal. However, the reality is that our roads are critically underfunded and this new responsibility cannot be absorbed by states and local governments without significantly more funding from the federal government. We currently have a four-million mile road system that is largely uncontrolled for runoff. It is neither fiscally prudent nor feasible for state and local highway authorities to manage the stormwater runoff on enough of their highway assets without undermining their primary purpose of providing safe, efficient transportation to the public. However, there are areas with particularly problematic runoff impacts in highly sensitive areas, such as the Chesapeake Bay watershed, that require pollution control plans at the watershed level. Our view is that, in most cases, managing pollutants at the watershed level is a much more cost-effective approach that will yield much better results for the environment than attempts to control runoff one road project at a time. It is for that reason that we oppose the proposal to require new federal design standards for every project that increases one acre or more of impervious surface or adds more than 10-percent impervious service to a road. This type of requirement on all federal-aid projects, regardless of its proximity to a watershed or its impact on public safety and mobility, would simply make many highway projects too costly to build and further slow an already lengthy and difficult federal project review process that successive Administrations have attempted to streamline.

However, we do agree that there are many places where highway runoff and other sources of pollution should be managed before entering waterways. For that reason, we support the appropriation of general funds by formula or grants to State environmental agencies for this purpose. These are the agencies that should have the most expertise in pollution control and watershed management.

Question from Committee Ranking Member David Vitter:

1) During this month's hearing, you discussed EPA and the Army Corps of Engineers' proposed "waters of the United States" rule and how the proposal would impede safety efforts undertaken by local and state transportation agencies. I understand that the proposal may render certain road and safety improvements practically impossible to achieve. Could you elabarate more in terms of the significance of this issue? Would you agree that the proposed rule represents a serious threat to the ability of local and state transportation agencies to ensure and improve the safety of road and highway users?

Response:

We believe the proposed rule will significantly increase the reach of the EPA and Army Corps of Engineers in asserting regulatory authority in more locations, even roadside ditches. The practical impact of this is that more road projects --whether they be on State, local or even private land - will require permits from the Army Corps of Engineers. When the Corps gets involved, highway planners and engineers are required to examine alternative locations and designs in order to minimize impacts. This process can be time consuming and expensive. If the Corps staff wishes to force an agency or landowner to relocate their road project and/or build expensive mitigation sites, the project can become prohibitively expensive. Road safety projects, such as the widening of dangerous two-lane rural roads or the construction of shoulders and safety grading, are among the types of projects that are threatened by such federal government overreach. We do not believe that Congress ever intended to permit the Clean Water Act to have as much jurisdiction as envisioned by the current EPA and Army Corps of Engineers draft regulations. Legislative proposals in the last several Congresses to expand federal authority over wetlands have all failed and it unconscionable that the Executive Branch would attempt to overrule the will of Congress through regulations alone. We would agree that the proposed rule represents a serious threat to the ability of local and state transportation agencies to ensure and improve the safety of road and highway users.

I greatly appreciate the opportunity to respond to these questions and to weigh in on behalf of the American Highway Users Alliance on this important issue.

Sincerely.

Gregory M. Cohen, P.E.

President & CEO

Senator CARDIN. Thank you very much. Mr. Cohen.

STATEMENT OF GREG COHEN, PRESIDENT & CEO, AMERICAN HIGHWAY USER ALLIANCE

Mr. COHEN. Mr. Chairman and members of the subcommittee, I appreciate this opportunity to present the views of the American Highways Users Alliance regarding transportation infrastructure runoff.

Before I begin my summary, I just want to say that we applaud the bipartisan leadership of this committee for introducing the highway title of MAP–21 reauthorization bill. I have testified many times on this need and we urge a full committee vote in support of the bill that was introduced on Monday, this Thursday at the markup.

From State to State, the availability of water restoration funds, the significance of the water resources involved, and the extent of water quality problems vary tremendously. The availability of Federal funds to address water quality, including pollutants from runoff, is critical. Incremental progress should be made in a manner that focuses on goals and outcomes, where States learn from one another, rather than an approach that mandates that every State do the exact same list of activities under very different circumstances.

Special care should also be made to understand that incremental progress in improving water quality should not come at the expense of other important needs, such as the economy and public safety.

So how do we address our water quality needs without unintended consequences, like exacerbating our highway funding challenges or slowing down transportation project approvals? Some approaches can be helpful, while others actually create more problems. Let me briefly discuss some possible approaches and why we

regard some favorably and others as problematic.

Option 1: Congress could authorize appropriations for a significant new program for funding to the States for mitigation and treatment of watersheds, with flexibility and technical assistance, and empower the States to consider innovative approaches. Separately, or as part of such a program, Congress can encourage closer coordination with the State Transportation Departments on issues related to transportation runoff. This approach provides a holistic method to address the challenges and would allow restoration management to consider all sources of watershed degradation, including transportation runoff. Aggressively funding this approach would address the problem without negative impacts to public safety, congestion relief, and other goals or the goals of MAP–21.

Option 2 would be to continue to allow project mitigation to be an eligible expense within the highway program. Currently, mitigation is eligible under the transportation alternatives and the traditional highway construction programs. In having provided this option, Congress was aware that outlays from the Highway Trust Fund for stormwater features would reduce some outlays for other worthy projects. Yet, it can help address community concerns about the environmental impact of transportation projects. As an exam-

ple, I worked on a project called the Inter county Connector in Maryland. That was a project that involved significant stormwater management and watershed restoration, to the extent that the watershed is reportedly in better condition after road construction than before the ICC was built. In other locations it may not be effective, desirable, or worthwhile to tie a highway project to a watershed restoration effort. Flexibility for the States is the key.

Option 3: Congress could create unfunded Federal mandates that require specific EPA-approved designs for certain types of highway improvements in order to address runoff. We oppose this approach. A design mandate would address runoff in a piecemeal, project-byproject manner, ignoring several issues. First, the current best practice is watershed-wide approach, rather than looking at the design of an individual highway project in isolated areas where the road is being improved. Second, this approach would potentially delay and complicate transportation project approvals, even making some safety improvements infeasible. Third, this approach may include requirements that are difficult or impossible to achieve in certain areas.

Before closing, let me mention that the EPA has recently released proposed Section 404 wetland permit regulations. The latest rulemaking is quite controversial among my members. I know that obtaining Federal approval for Section 404 permits can be a real challenge, in some cases triggering a full NEPA review in preparation of an EIS.

Here is just one example where we believe there is a problem: The EPA wants the authority to regulate the filling of manmade roadside ditches. The practical impact is that if a county government wants to add safety shoulders to a stretch of a dangerous two-lane rural road, even when there is no Federal funding involved, the county could then be required to avoid and minimize the impact to these manmade ditches. If that is not feasible, a permit has to be issued to fill the ditches and a mitigation plan is needed. Even if an avoidance minimization plan would stretch the resources of the county, it would not be able to proceed.

While waiting to get through the Federal bureaucracy, the safety of motorists on the road would be at risk. This is part of the reason why it takes so long to get projects done. Congress could serve people and the environment better by approaching watershed restoration and water quality improvements in a more rational, cost-effec-

tive, and holistic way.

In conclusion, among the various options to promote clean water, we recommend Congress provide a significant General Fund authorization for watershed restoration and continue to allow features that address that issue to be an eligible expense under the highway program. We ask Congress to fund transportation infrastructure and watershed restoration programs independently so that these worthy programs are not competing with each other for Federal funds. And we urge Congress not to take any action which would slow down or lead to the cancellation of needed highway projects because of expensive design mandates or redirection of highway funds.

Thank you for providing the Highway Users this opportunity.

[The prepared statement of Mr. Cohen follows:]

Testimony of Gregory M. Cohen
President and CEO
American Highway Users Alliance
Before the
Subcommittee on Water and Wildlife
Committee on Environment and Public Works
United States Senate
May 13, 2014

Chairman Cardin and Members of the Subcommittee, I appreciate this opportunity to present the views of the American Highway Users Alliance on issues regarding transportation infrastructure runoff.

About The American Highway Users Alliance

The Highway Users Alliance is an advocacy group representing hundreds of national and state non-profits and businesses of all sizes, including AAA clubs, bus and truck companies, motorcyclists and recreational vehicle users, and a diverse network of companies that require a safe, efficient, and reliable national system of highways. Our members represent millions of highway users across the country and we serve as the united voice for those who want better roads and "trustworthy" user-fee based trust funds.

For over 80 years, The Highway Users has been an advocate for strong federal leadership on American transportation infrastructure. We believe that the federal government has an essential responsibility for ensuring safe interstate commerce, making America more connected, and increasing mobility and opportunity for all citizens while contributing to economic growth. The Highway Users has been a stakeholder on nearly every federal highway and surface transportation bill, including the most recent MAP-21 law, which we endorsed and strongly supported despite concerns over the lack of sustainable long-term revenue. We are currently working with Congress to address those fiscal concerns while maintaining the key, historic policy reforms contained in MAP-21.

We are particularly pleased to be working with this Committee on the highway title of the reauthorization bill and applaud the bipartisan approach in both the Senate and House to address our nation's transportation infrastructure. We have testified many times over the last decade on highway needs. And now, we are very grateful for the opportunity to work with you on the related issue of mitigating watershed pollution caused, in part, by highway runoff.

Background

The built environment has had a significant impact on the pre-development hydrology of watersheds by changing the amount of water, location of entry points, and the quality of the water that enters our streams, rivers, bays, and oceans. Runoff from transportation infrastructure is one of the ways that urban and rural development has impacted water quality. The vast majority of runoff from roads, parking lots, private development, and agriculture is not controlled for pollution.

Clean water should be a concern for all Americans, including the vast majority who drive or ride on our streets and highways and rely on the shipment of goods over our roads. The American Highway Users Alliance strongly supports funding from the federal government and the efforts of the States to provide integrated assessments and water quality reporting and improvement plans for impaired and threatened waterways.

Some States, like the Chairman's home state which surrounds most of the Chesapeake Bay, have critical needs and more stringent water discharge requirements. Nearly the entire State of Maryland is heavily regulated under the National Pollutant Discharge Elimination System (NPDES) permit program in order to restore the health of the Bay. Substantial funding has been raised from general obligation bonds as well as traditional State and federal environmental program funds. As a result, Maryland has possibly the most comprehensive plans to control highway water runoff. Yet, even in a State like Maryland, with an extensive program, it is simply unaffordable to control the overwhelming majority of runoff. Even the runoff that is controlled does not eliminate every pollutant that exists or control for every other factor that impacts water quality. Yet for the vast majority of other States, a program like Maryland's is far beyond what they can afford or manage.

Clearly, this is a very difficult and expensive problem for Congress to "solve" and the focus therefore turns to ways to address the issue incrementally and as cost-effectively as possible. From State to State, the availability of funds, the significance of the water resources involved, and the extent of water quality problems vary tremendously. Certainly the availability of federal funds to address water quality, including pollutants from runoff, is critical.

Need for a Rational, Flexible, Cost-Effective Approach

With a problem as big as this, it is important that expectations are realistic about what can be done and how fast; incremental progress should be made in a manner that focuses on goals and outcomes, where States learn from one another and from the EPA, rather than an approach that mandates that every State do the exact same list of activities under the same circumstances. Room is needed to encourage innovation and flexible approaches from State-to-State, and a goal of getting the biggest bang for the buck. Special care should also be made to understand that incremental progress in improving water quality should not come at the expense of other important public needs, such as our economy, quality-of-life, and public safety.

Addressing Water Quality Without Further Straining Highway Programs

As every Committee member knows all too well, there is a crisis in highway funding and States are dealing with potentially massive cuts in their highway and transit programs this summer. Even if reauthorization passes and the Highway Trust Fund is saved, it will be a significant challenge to increase funding to levels that address transportation needs – a problem that will be exacerbated as those needs continue to increase as the system ages and mobility needs increase. In addition, an important goal of MAP-21, the Administration's GROW AMERICA proposal, and the EPW Committee bill is to reduce project delays and streamline project approvals. As a former Maryland State Highway Administration project engineer, I know all too well that it simply takes too long to get projects done, particularly when a myriad of federal and state government agencies are "cooperating" in the project planning process. When highways aren't improved in a timely manner, the safety of the motoring public is put at risk and the economy and productivity of the United States is weakened.

So, how do we address our water quality needs without the unintended consequences of exacerbating our highway funding challenges and slowing down project approvals?

Some approaches can be helpful, while others create more problems. Let me briefly discuss some possible approaches, and why we regard some favorably and others as problematic.

- (1) Congress could authorize appropriations for a significant new EPA program for funding to the States for mitigation and treatment of watersheds, with flexibility and technical assistance, and empower States to consider innovative approaches that achieve high returns on investment in their varying circumstances. Separately or as part of such a program, Congress can encourage closer coordination with State transportation departments, on issues related to transportation runoff. This approach, properly implemented, would allow a more holistic approach to addressing the problems and would allow the restoration funding and project management to be conducted by State environmental departments who would comprehensively consider all sources of runoff and watershed degradation, including transportation. Aggressively funding this approach would work the best to address the problem, without negative impacts to public safety, congestion relief, and other goals of MAP-21.
- (2) Continue to allow project mitigation to be an eligible programmatic expense within the highway program. Currently, mitigation is eligible under the transportation alternatives and traditional highway construction programs. In having provided this option, Congress was aware that outlays from the Highway Trust Fund for stormwater features would reduce some outlays for other worthy projects or project features. Yet for States that want the flexibility to utilize these funds for mitigation and restoration, it can help address community concerns about the environmental impact. As an example in the Chairman's home State, the Intercounty Connector (ICC) project involved significant storm water

management and watershed restoration, to the extent that the watershed is reportedly in better condition after road construction than before the ICC was built. This is an extraordinary example of what can be done when there is enough money available and the watershed is particularly sensitive and valuable. In other locations, it may not be effective, desirable, or worthwhile to tie a highway project to a watershed restoration effort. Flexibility for the States is the key. We do not oppose this flexible approach but we would not support a mandate that funds must be used for these purposes or a requirement that a specific percentage of highway funds be set aside by each State only for this purpose.

(3) Congress could create unfunded federal mandates that require specific designs for certain types of highway improvements in order to address runoff. We oppose this approach. It is not cost-effective and for many States it would be unaffordable, derailing important projects. A design mandate would address runoff in a piecemeal, project-by-project basis, ignoring several issues. First, the current best practice in controlling water pollution is a watershed-wide approach, where the engineering team looks at the most critical watersheds where the most good can be done, rather than looking at the design of individual highway projects in various isolated locations where roads are being improved. Second, this approach would delay and complicate project approvals, even making needed safety improvements infeasible. Third, this top-down "federal" approach may include design requirements that are difficult or impossible to achieve in certain areas. For example, it is practically impossible in many areas (and even if possible, prohibitively expensive) for improvements in urban areas to create "predevelopment hydrology" conditions or to replace an open-section of highway with a closed section without reducing the number of drainage points.

Draft "Section 404" Regulations

Before closing, let me mention that the EPA and the Corps of Engineers have recently released for comment proposed section 404 wetland permit regulations. The Highway Users will provide comments directly to EPA on those proposed regulations before the docket closes. However, since this issue relates to the hearing subject, I would like to briefly address those proposed regulations.

Section 404 of the Clean Water Act (33 USC 1344) affects the ability of both the government and private land owners to build projects on their land if there is a significant nexus between the water on the land and "Waters of the United States". I know from my past engineering experience that obtaining federal approval for Section 404 permits can be a real challenge, in some cases triggering a full NEPA review (preparation of an EIS). The U.S. Corps of Engineers and the EPA have faced two Supreme Court cases that forced them to scale back regulatory overreach but the new draft rulemaking attempts once again to make a federal issue over as many wet areas as possible, despite the clear legislative language that ties the regulatory authority to navigable waterways. The latest draft rulemaking is quite controversial among my members. Here is just one example where we believe there is a problem: The agencies still want to regulate the filling (even

in part) of many manmade roadside ditches. The practical impact is that if a county government wants to add safety shoulders to a stretch of dangerous two-lane rural road (even with no federal funding involved), the county could be required to avoid and minimize the impact to man-made ditches along the side of the road to the best of their ability. If that is not feasible and a permit is issued to fill the ditches, a mitigation plan would be needed, such as the construction of new roadside ditches. Even if hydrologic value is minimal and avoidance/minimization plan would stretch the resources of the county, it wouldn't be able to proceed without satisfying the Corps and EPA. While waiting to get through the federal bureaucracy, the safety of motorists on the road would be at risk. Although this example is hypothetical, problems like this are real and part of the reason it takes so long to get projects done when the federal government gets involved. Congress could serve people and the environment better by approaching watershed restoration and water quality improvements in more rational, cost-effective, and holistic ways.

Conclusion

Among the various options to promote clean water, watershed renewal and restoration, and the built environment, the American Highway Users Alliance urges Congress to provide a significant general fund authorization for watershed restoration efforts. Although transportation infrastructure runoff is a factor in water quality degradation, we believe that transportation funding programs should continue to not include any mandates or funding set asides as to runoff but continue to allow features that address that issue to be an eligible expense under the highway program. We believe that it would be more effective to address the runoff problem by funding transportation infrastructure and watershed restoration programs independently so that these two worthy programs are not competing with each other for federal funds. We also ask that Congress provide both monetary and technical assistance to the States, without the heavy-handed mandates that unintentionally stifle creative solutions and new innovations. We urge Congress not to take any action which would slow down or lead to the cancellation of needed highway projects because of expensive design mandates or re-direction of highway funds.

We can make significant progress toward both cleaner water resources and safe, efficient highway infrastructure. Each goal should be pursued independently and aggressively, in a rational, cost-effective manner that creates better outcomes for both the motoring public and the natural environment.

Thanks again for providing the Highway Users this opportunity to address these issues.

Senator CARDIN. And thank you for your testimony. Mr. Monette.

STATEMENT OF ANDRE MONETTE, ATTORNEY, BEST BEST & KRIEGER

Mr. Monette. Good afternoon, Chair Cardin and Senator Vitter. My name is Andre Monette and I am an attorney with the law firm of Best & Krieger. I represent public agencies, ranging from transportation districts to water districts, municipalities, and school districts on Clean Water Act issues throughout California.

But first let me thank the committee for having me here today. It is a great honor to provide testimony on this extremely impor-

tant issue.

I just have a few points to make.

The first one is that there is absolutely no question that stormwater runoff from transportation projects is a source of pollution in the Nation's waterways. Obviously, the pictures that were shown and the testimony from this panel demonstrate that, and it is common sense.

But what is more important and I think the question for this committee, for the Senate, is whether or not the States and the EPA have the tools that they need already to address that problem. And the answer to that question is yes, absolutely. The Clean Water Act and the NPDES program within the Clean Water Act give the States and gives the EPA the ability to regulate the full range of discharges from transportation infrastructure projects and other types of projects, and it gives the EPA and the States the flexibility to do that on a case-by-case, site-by-site, project-by-project basis, which is appropriate given stormwater and the nature of stormwater. Hydrologic conditions vary from site to site, and as a result of that the stormwater profile of a project is going to vary from site to site. So obviously the management practices that are implemented at a site to control stormwater need to match the hydrologic conditions of that area.

What is not helpful to stormwater control is one-size-fits-all, top-down, command and control regulation and infiltration and management strategies that are implemented and issued in Washington, and expected to be implemented across the Country. The hydrology of this Country is so varied it is silly to even mention. Projects in the Everglades are going to be very different from projects in the Mojave Desert or Oregon or Alaska, and it makes sense that dischargers and regulators retain the flexibility to implement the management practices they need on each project.

So the second point I wanted to make, and this brings me to that second point, is to the extent that there are waters or activities or discharges that are beyond the reach of the Federal Clean Water Act, the States retain the ability to regulate those activities and discharges, and many, many States have comprehensive, strong programs. Oregon is here today; they have an excellent program. California has an excellent program. The States retain that ability and they don't need the Federal Government and Federal agencies to come in and overreach their authority and manage stormwater because they think they can do a better job at it; and Mr. Cuccinelli's testimony is an excellent example of that.

So an example of that is that we are seeing now is the EPA's proposed rulemaking on waters of the United States. There is a very real danger for the proposed rule that was issued last month that waters of the United States and thereby the reach of the Clean Water Act is going to be extended well beyond what Congress intended and what the courts have interpreted the Clean Water Act

to mean, and I have two examples of that.

The first involves municipal stormwater systems. As you all know, municipal stormwater systems are primarily open channels and ditches; sometimes it is a canalized stream, a lot of times it is a ditch or a channel or a canal that has been constructed to convey flood waters away from houses and people. Under the proposed rule, many portions of stormwater systems that are internal to the system are going to be designated as waters of the United States, and what that means as a practical matter is that these waters are going to have to meet a fishable and swimmable standard under the Clean Water Act and that designation would prevent use of those waters for treatment controls and would force discharges that are internal to an MS-4 system to meet a fishable, swimmable standard. Obviously, that is not tenable for a discharger.

The other example where the proposed rule would potentially overreach is in the proposed definition of adjacent waters and neighboring waters. The proposed rule is going to designate waters that are within the floodplain of a traditional navigable water as a water of the United States. Floodplains can be hundreds of miles wide in some places, many miles wide at a minimum; and now isolated waters that were traditionally isolated under court decisions like the Solid Waste Agency of Northern Cook County, are going to be considered waters of the United States and subject to the

Clean Water Act.

I am just about out of time, so I thank you for the opportunity and I will conclude my testimony.

[The prepared statement of Mr. Monette follows:]

SENATE COMMITTEE ON ENVIRONMENT AND PUBLIC WORKS SUBCOMMITTEE ON WATER AND WILDLIFE HEARING

"SOLVING THE PROBLEM OF POLLUTED TRANSPORTATION INFRASTRUCTURE STORMWATER RUNOFF"

TUESDAY, MAY 13, 2014

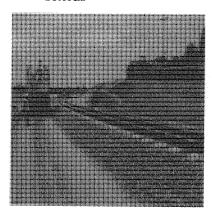
3:00 P.M.

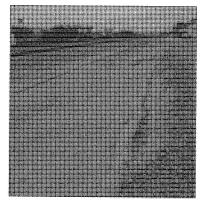
Dirksen 406

Written Testimony

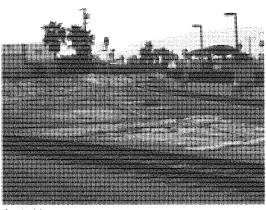
of

J.G. Andre Monette Attorney Best Best & Krieger LLP¹


¹ Full biography attached as Exhibit C.

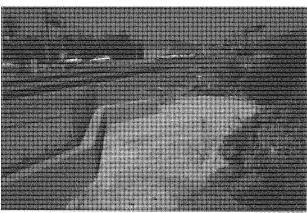

Effective water quality control is one of the great challenges facing environmental regulators and society at large. Discharges of pollutants in stormwater remain one of the largest sources of pollutants in many of the nation's waters. This is because it is a diffuse source that that requires non-traditional efforts to address. Unlike pollution from industry or sewage treatment facilities, i.e., point source pollution, which is caused by a discrete number of sources that are easily identified, stormwater pollution is caused by the daily activities of people everywhere.

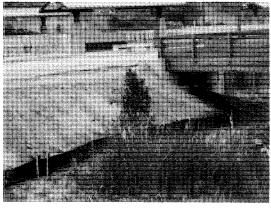
Stormwater is water from rain or melting snow that does not soak into the ground. When New development commonly increases the amount of impervious surfaces such as houses, buildings, roads and parking lots. Impervious surfaces prevent stormwater from soaking into the ground, and can allow stormwater runoff to mix with or pick up pollutnants before making its water to a Water of the United States. This occurs when stormwater runs off streets, lawns, farms, and construction and industrial sites if there are fertilizers, dirt, pesticides, oil and grease, or other pollutants in its path.


There is no question that stormwater runoff from urban areas and large transportation projects can cause pollutants to enter the Waters of the United States by contributing stormwater to those waters. It is important to note, however, that the tools needed to address these sources already exist in the Clean Water Act and its State law analogues. Federally mandated, "one size fits all" requirements, and expansions of Clean Water Act jurisdiction will actually hinder efforts to effectively address the problem.

1) STORMWATER RUNOFF FROM TRANSPORTATION INFRASTRUCTURE CAN CONTRIBUTE TO POLLUTION IN THE WATERS OF THE UNITED STATES

The Waters of the United States have multiple uses. (See New Orleans Gaslight Co. v. Drainage Comm'n, 197 U.S. 453, 460 (1905) ("The drainage of a city in the interest of the public health and welfare is one of the most important purposes for which the police power can be exercised").) There is constant tension between traditional uses of the nation's waters, and




the need to maintain physical, "chemical, and biological integrity" for recreation and other environmental uses. (33 U.S.C. §1251.) The main reason Congress enacted the Clean Water Act and its predecessor legislation was to help balance competing interests and environmental uses as a priority following decades of overuse and neglect. (Id.; see also NRDC v. Costle, 568 F.2d 1369, 1373-77 (D.C. Cir. 1977) (superceded by statute on other grounds) (discussing legislative history of

the Act).)

Construction of large transportation infrastructure projects can cause sediment and other discharges to surface streams. Intensive construction activities may result in severe localized impacts on water quality because of high unit loads of pollutants, primarily sediments. Construction sites can also generate other pollutants such as phosphorus and nitrogen from fertilizer, pesticides, petroleum products, construction chemicals and solid wastes. These materials can be toxic to aquatic organisms and degrade water for drinking and water-contact recreation. Sediment runoff rates from construction sites are typically 10 to 20 times that of agricultural lands, with runoff rates as high as 100 times that of agricultural lands, and typically 1,000 to 2,000 times that of forest lands. Even a small amount of construction may have a significant negative impact on water quality in localized areas. Over a short period of time, construction sites can contribute more sediment to streams than was previously deposited over several decades.

Likewise, operations can cause pollutant discharges to surface streams. Winters in the United States require effective and affordable means of de-icing roads. Most states and local government agencies use sodium chloride (road salt) for this purpose. Road salt is composed of sodium

and chloride.² It also includes other components like ferrocyanide, and impurities such as phosphorus and iron. The sodium, chloride, ferrocyanide and impurities are discharged in runoff from rain, melting snow and ice, as well as through splash and spray by vehicles and by wind.³ They end up in the soil, groundwater, stormdrains, and surface waters.⁴

Chloride (Cl-) is completely soluble and very mobile. It is toxic to aquatic life and impacts vegetation and

wildlife. There is no natural process by which chlorides are broken down, metabolized, taken up, or removed from the environment. Similarly, excess sodium in the environment can alter the soil chemistry by replacing and releasing nutrients into the groundwater and surface water changing soil structure and impacting the aquatic environment. Sodium chloride likewise accumulates in soils and groundwater and over time can severely impact the availability of farmland and groundwater for any number of uses.

Discharges from cars and other transportation methods similarly contribute pollutants to stormwater. In the early 1990s, cities south of San Francisco were having trouble meeting Clean Water Act requirements to reduce copper in urban run-off flowing into San Francisco Bay. Preliminary studies indicated that brake pads were a significant source of copper in that runoff. Tiny amounts of copper fall onto the streets and parking lots every time drivers step on their brakes. The Brake Pad Partnership, a cooperative effort among representatives of the auto industry, brake pad manufacturers, environmental groups, stormwater regulatory agencies and coastal cities, found that brakes account for anywhere from 35 to 60 percent of copper in California's urban watershed run-off. In some urban watersheds, this added copper may be

² New Hampshire Department of Environmental Health, Environmental, Health and Economic Impacts of Road Salt, 2014, available at https://des.nh.gov/organization/divisions/water/wmb/was/salt-reduction-initiative/impacts.htm

³ *Id*.

⁴ Id.

⁵ Id.

⁶ Id.

⁷ Copper Developemnt Association, Inc., Copper in Brakpads available a http://www.copper.org/environment/impact/copper-brake.html

⁸ *Id*.

enough to cause water concentrations to exceed the state's water quality standard for copper.

In response, the states of California and Washington passed legislation mandating a reduction in the amount of copper used in automotive brake pads. Whether this was the appropriate response remains an open question. What the states' actions demonstrate however is that under the Clean Water Act, states retain full authority to regulate water quality and can and do act when necessary to protect resources within their boundaries.

2) EXISTING STRUCTURE OF THE CLEAN WATER ACT GIVES EPA AND THE STATES AUTHORITY TO LIMIT POLLUTED DISCHARGES FROM TRANSPORTATION INFRASTRUCTURE

Although transportation infrastructure projects have the potential to cause pollution, the EPA and the States have adequate authority under current laws to prevent impacts to the Waters of the United States. The structure of the Clean Water Act is complex but by design, it allows the states and EPA to adopt site specific requirements to regulate the discharge of pollutants from each source so that regulations are tailored to the discharge and implemented in an effective, cost efficient manner. Where regulations impose one size fits all requirements, the risk of wasted resources and limited returns goes up.

Cooperative Federalism

An inherent part of the structure of the Clean Water Act is federalism—Congress' express desire to allow states to continue to regulate water quality in unique ways under state law as long as certain baseline federal requirements are satisfied. At the time of adoption of the Clean Water Act, Congress stated that it "is the policy of the Congress to recognize, preserve, and protect the primary responsibilities and rights of States to prevent, reduce, and eliminate pollution, . . . " (33 U.S.C. § 1251(b).) Consistent with this desire to leave wide latitude for states to innovate under state law, Congress clarified that nothing in the Clean Water Act precludes or denies a state the right to regulate under state law in ways that are more stringent than the federal requirements. (33 U.S.C. § 1370.)

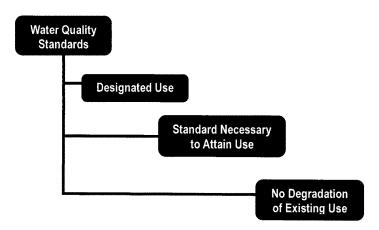
Moreover, to further protect state authority over water quality issues, the Clean Water Act allows states to elect to implement a state program "in lieu of the Federal program under State law or under an interstate compact." (40 C.F.R § 123.22.) Specifically, the Clean Water Act provides that "the Governor of each State desiring to administer its own permit program for discharges into navigable waters within its jurisdiction may submit to the Administrator a full and complete description of the program it proposes to establish and administer under State law or under an interstate compact." (33 U.S.C. § 1342(b).)

A state's assumption of the NPDES program is voluntary. (See, e.g., 64 Fed.Reg. 68722, 68743.) If a state does not elect to implement a state program, EPA administers its federal program in the state. (33 U.S.C. § 1342(a)(1).) Once approved by EPA as an authorized state, the federal program is suspended; and the state program is operated in lieu of the federal one. (33 U.S.C. § 1342(c); 40 C.F.R. §§ 123.22, 123.61(c).)

⁹ *Id*.

Navigable Waters and Waters of the United States

The basis for the Clean Water Act (33 U.S.C. § 1251 et seq.) is the regulation and in some cases prohibition of discharges into the Navigable Waters. Section 301(a) of the Clean Water Act states: "the discharge of any pollutant by any person shall be unlawful." This is a mandate full of defined terms. The Clean Water Act defines the "discharge of a pollutant" to mean, among other things, "any addition of any pollutant to navigable waters from any point source." (33 U.S.C. § 1362(12)." Again, more internal references and definitions. "Pollutant," "Navigable Waters" and "Point Source" are all defined terms.


The Act defines the Navigable Waters as "the waters of the United States, including the territorial seas." (33 U.S.C. §1362(7).) Congress did not define that term. Because the prohibitions and other regulatory controls in the Clean Water Act extend to the Navigable Waters, and thus the Waters of the United States, what constitutes a Water of the United States controls whether a particular water body will be subject to the Clean Water Act. As described more fully below, the Courts, EPA and the Army Corps of Engineers continue to struggle with what constitutes a Water of the United States. An expansive definition of the term means more waters are subject to federal regulation under the Clean Water Act. Unfortunately that can mean hamstringing efforts to restore and maintain the "chemical, physical and biological integrity of Nation's waters." (33 U.S.C. §1251(a).)

Water Quality Standards

The Clean Water Act provides several mechanisms for restoring and maintaining the quality of the Nation's waters. One such mechanism is the requirement that states identify "designated uses" for each body of water within their borders, as well as "water quality criteria" sufficient to support those uses. (33 U.S.C. § 1313(c)(2)(A).)

These criteria, known as Water Quality Standards, consist of the "designated uses of the navigable waters involved and the water quality criteria for such waters based upon such uses." (33 U.S.C. §1313(c)(2)(A).) Generally, "uses" are the types of activities for which the water can be used (e.g., recreation, aquatic life protection) and "criteria" (or the State equivalent term, "objectives") are the numeric or narrative water quality levels necessary to support the water's designated uses. Numeric criteria are expressed as specific concentrations of individual pollutants. Narrative criteria (e.g., no toxics in toxic\ amounts) are the catch-all of water quality regulation, expressed as narrative statements describing desired, but numerically undefined, water quality goals.

The Clean Water Act makes the States primarily responsible for the adoption of Water Quality Standards (the "uses" and the "criteria") and requires that water quality criteria be adopted in accordance with federal and state laws. (33 U.S.C. §1313; see also California Water Code §13241 (requiring the State to adopt water quality "objectives," the State equivalent of "criteria" to protect beneficial uses).) This requirement ensures that the States engage in the analytical processes mandated by State law so that the criteria adopted by the States are tailored to each State's own particular geographic and climatic conditions and legal requirements.

Section 303(c)(1) of the Clean Water Act requires States to review and, as appropriate, modify and adopt new standards at least every three years. (33 U.S.C. §1313(c)(1) (CWA §303(c)(1)).) Section 303 then requires States to submit state-adopted Water Quality Standards to the EPA for approval. (33 U.S.C. §1313(c)(2)(A).) A state-adopted standard only becomes the applicable Water Quality Standard after it is approved by the EPA. (33 U.S.C. §1313(c)(3).) In all cases, the states must adopt standards that include full body contact recreation and fishing as designated uses, or demonstrate through the Use Attainability Analysis process that such uses are not possible. (See 33 U.S.C. §81251(a); 1313(c).)

National Pollutant Discharge Elimination System (NPDES)

The key development of the 1972 amendments to the Clean Water Act was the creation of the National Pollutant Discharge Elimination System (NPDES) program. Dischargers were given certainty that compliance with their NPDES permit's discharge limitations and management practices would be compliance with the Act. (33 U.S.C. §§1311(a); 1342.) Likewise, Congress ensured that dischargers would be held individually accountable for their contribution to pollutant levels in the Waters of the United States and that individual requirements could be tailored to local conditions and the specifics of the discharge.

Under this system, regulators could manage discharges to the Waters of the United States through the permitting process and remove the uncertainty and inefficiency of regulating pollution control through nuisance claims and other common law doctrines. Regulators could also advance environmental gains by implementing an iterative approach under which each NPDES permitting cycle would focus on controls and limitations best suited to the discharge at issue. (64 Fed. Reg. 68,722, 68,731 ["At this time, EPA determines that water quality-based controls, implemented through the iterative processes described today are appropriate for the control of such pollutants and will result in reasonable further progress towards attainment of water quality standards"].)

Basic Requirement

As described above, Section 301(a) of the Clean Water Act provides that "the discharge of any pollutant by any person shall be unlawful." (33 U.S.C. §1311(a).) The prohibition means that "any addition of any pollutant to navigable waters from any point source" is prohibited unless in compliance with the Act. (33 U.S.C. §§1311(a); 1362(12).)

Under the NPDES program, the EPA and authorized states ¹⁰ may issue a permit for the "discharge of any pollutant." (33 U.S.C. § 1342(a).) A discharge or addition of pollutants is lawful if it is authorized by an NPDES permit. (33 U.S.C. §§1311(a), 1342(k).) NPDES permits require discharges to comply with "effluent limitations" and require "controls to reduce the discharge of pollutants to the maximum extent practicable, including management practices, control techniques and system, design and engineering methods." 33 U.S.C. §§ 1311(e), 1342(a)(1), (p)(3)(B)(ii), (iii); see also Pronsolino v. Nastri, 291 F.3d 1123, 1126-1129 (9th Cir. 2002).

In this manner, Section 301 prohibits an unauthorized discharge of a pollutant, and Section 402 authorizes such a discharge as long as it is in compliance with an NPDES permit. Permit requirements are either: 1) discharge limitations or 2) management practices and control techniques designed to reduce pollutant levels in discharges exiting the point source. The latter category includes monitoring and reporting requirements. 33 U.S.C. § 1318.

Just as there are limits to the reach of the Clean Water Act, there are limits to what can be imposed in an NPDES permit. "Pollutant," "Navigable Waters" and "Point Source" are all defined terms. Even with statutorily provided definitions, regulatory agencies, including the EPA have sought to expand regulation beyond the authority provided by Congress. The most recent example involves EPA's attend to regulate the discharge of stormwater as a surrogate for pollutants. In Virginia Department of Transportation v. EPA (2013) U.S. Dist. Lexis 981, 43 ELR. 20002 (E.D. Va.), the EPA established a total maximum daily load (TMDL) limiting the flow of stormwater into Accotink creek. The purpose of the TMDL was to regulate the amount of sediment discharged into the creek, based on EPA's belief that the sediment was the primary cause of its impairment. The parties to the case agreed that sediment is a "pollutant" under the CWA, and that stormwater is not. EPA, however, claimed that the storm water flow rate was a "surrogate" for sediment thereby justifying the stormwater flow TMDL.

The Court found that EPA had no authority to regulate the flow of storm water into the creek, holding finding the Clean Water Act did not authorize it to do so. According to the District Court:

The language of § 1313(d)(1)(C) is clear. EPA is authorized to set TMDLs to regulate pollutants, and pollutants are carefully defined. Stormwater runoff is not a pollutant, so EPA is not authorized to regulate it via TMDL. Claiming that the stormwater

¹⁰ All states except Idaho, Massachusetts, New Hampshire, and New Mexico have EPA-approved NPDES programs.
State Program Status, ENVIRONMENTAL PROTECTION AGENCY, http://cfpub.epa.gov/npdes/statestats.cfm (last visited Aug. 15, 2012).

maximum load is a surrogate for sediment, which is a pollutant and therefore regulatable, does not bring stormwater within the ambit of EPA's TMDL authority. Whatever reason EPA has for thinking that a stormwater flow rate TMDL is a better way of limiting sediment load than a sediment load TMDL, EPA cannot be allowed to exceed its limited statutory authority.

(Virginia Department of Transportation v. EPA (2013) U.S. Dist. Lexis 981, *14-15, (E.D. Va.).)

The court was clear that no matter the intentions of EPA, regulation of "Pollutants" under the Clean Water Act does not allow for the regulation of stormwater as stormwater:

EPA would like to create the impression that Congress has given it loose rein to determine exactly what it could and could not regulate. On page 16 of its opposition to this motion, EPA points out that "Congress authorized EPA to determine which pollutants were suitable for TMDL calculation and measurement." (Internal quotes removed). While this may be true, EPA glosses over the fact that 33 U.S.C. § 1314(a)(2)(D) only gives EPA the power to regulate pollutants as that term is defined--by Congress--elsewhere in the statute. And, as discussed above, sediment is a pollutant for these purposes, but stormwater is not.

(Id., at 10.)

State Implementation

The Court's decision in the *Virginia Department of Transportation* case is entirely consistent with the state's role under the Clean Water Act: there are limits to federal authority but states retain the ability to go further. Pursuant to the Act, States are authorized to issue NPDES permits in lieu of the EPA if the state adopts an NPDES program that meets federal standards and is approved by the EPA. (33 U.S.C. § 1342(b); *National Association of Home Builders v. Defenders of Wildlife*, 551 U.S. 644, 650 (2007).) To date, 46 states have been authorized to administer their own NPDES programs.¹¹ Thus, the states rather than the EPA primarily administer the NPDES nationwide.

The Clean Water Act recognizes the states' "primary responsibilities and rights" to "plan" the development of "land and water resources," (33 U.S.C. § 1251(b)) and specifically limits the federal government's intrusion into the states' traditional authority to regulate land use and water use. The CWA provides that the statute does not impair or affect "any right or jurisdiction of the States with respect to the waters . . . of such States," (id. at § 1370), and does not supersede, abrogate, or impair "the authority of each State to allocate quantities of water

¹¹ All states except Idaho, Massachusetts, New Hampshire, and New Mexico have EPA-approved NPDES programs. State Program Status, ENVIRONMENTAL PROTECTION AGENCY, http://cfpub.epa.gov/npdes/statestats.cfm (last visited Aug. 15, 2012).

within its jurisdiction," or "supersede or abrogate rights to quantities of water which have been established by any State," (Id. at § 1251(g).)

Thus, the Clean Water Act effectuates a partnership between the federal government and the states in controlling water pollution, and recognizes the states' primary responsibilities for achieving that goal and for regulating land and water use. Regardless of the extent to which MS4s are subject to regulation under the CWA, MS4s are subject to significant regulation under state and local laws.

Stormwater Compliance Standards

The 1987 amendments to the Clean Water Act expanded the NPDES program to explicitly include stormwater discharges. The amendments created two different standards for discharges of industrial and municipal discharges of stormwater (municipal separate storm sewer system "MS4"). (33 U.S.C. § 1342(p).) Permits for industrial stormwater discharges must meet all applicable provisions of sections 402 and 301 of the Clean Water Act (*Id.* at § 1342(p)(3)(A).) Permits for MS4 discharges must implement "controls to reduce the discharge of pollutants to the maximum extent practicable, including management practices, control techniques and system, design and engineering methods, and such other provisions as the Administrator or the State determines appropriate for the control of such pollutants." (*Id.* at § 1342(p)(3)(B)(iii) [emphasis added].)

Thus, while the 1987 Act provides that industrial stormwater dischargers "shall meet all applicable requirements" of sections 301 and 402—which as noted above collectively prohibit the "discharge of a pollutant" except as authorized by an NPDES permit—the 1987 Act does not provide that MS4 stormwater dischargers must meet the same requirements. Instead, it provides that MS4s must establish "controls," including "management practices" and other "techniques" and "methods," to "reduce" the discharge of pollutants "to the maximum extent practicable."

As opposed to industrial discharges, Congress required only that MS4s meet statutorily defined best management practices in discharging stormwater pollutants rather than the numeric limits that industrial discharges can be required to attain. Congress thereby made clear that MS4 discharges are not subject to the same statutory prohibitions that apply to industrial stormwater discharges and other NPDES-regulated discharges. The maximum extent practicable (MEP) standard adopted instead creates a management practice regulatory scheme that can be implemented on a system or site specific basis.

The precise definition of MEP remains controversial, but there is no argument that it requires application of Best Management Practices (BMPs) that are effective in reducing or eliminating the discharge of pollutants to the waters of the United States. MEP emphasizes pollutant reduction and source control BMPs to prevent pollutants from entering storm water runoff. MEP may require treatment of the storm water runoff if it contains pollutants. BMP development is a dynamic process, and the menu of BMPs may require changes over time as experience is gained and/or the state of the science and art progresses. MEP is the cumulative effect of implementing, evaluating, and making corresponding changes to a variety of technically appropriate and economically feasible BMPs, ensuring that the most appropriate controls are implemented in the most effective manner.

EPA is a source of guidance on the suite of practices that can be implemented

Though subject to a lower compliance standards, MS4s are still subject to regulation under the NPDES. The EPA has described several best management practices that MS4s should utilize in "reduc[ing]" discharges of polluted stormwater "to the maximum extent practicable." These management practices provide the basis for conditions in NPDES permits for MS4 stormwater discharges. The EPA described several such management practices in adopting regulations to implement the 1987 Act. (National Pollutant Discharge Elimination System Permit Application Regulations for Storm Water Discharges, 55 Fed. Reg. 47,990, 48,052 (Nov. 16, 1990) (hereinafter "55 Fed. Reg.").)

These management practices include, for example, measures to reduce pollutants in runoff from commercial and residential areas, (id. at 48,054); measures to prevent illicit discharges (i.e., non-stormwater discharges entering the MS4s), (id. at 48,055); measures to reduce discharges from municipal landfills and other areas, (id. at 48,056); measures to reduce runoff from construction sites, (id. at 48,058); and measures to assess the controls. (id.) EPA continue to play an important role in recommending suites of BMPs that could be used at various sites.

Discharges from transportation infrastructure are best regulated on a case-by-case basis

One of the most important aspects of the NPDES program is the flexibility it gave dischargers and regulators to develop and implement BMPs on a site specific basis. No two discharges are alike and the NPDES program allows permits to be tailored to get the maximum benefit on a specific site. In the MS4 setting, a local government typically selects the controls and practices that best serve the needs of the local community, taking into account such factors as the local infrastructure, the frequency of flooding, and the pollutants in the stormwater, among other factors. The flexibility necessarily extends to the construction and operation of large scale transportation infrastructure projects.

These local government practices are highly effective in reducing pollutants in stormwater. The EPA recognized this, and the varied nation of stormwater discharges when

adopting regulations implementing the 1987 Act, stating:

When enacting this provision [section 402(p)], Congress was aware of the difficulties in regulating discharges from municipal separate storm sewers solely through traditional end-of-pipe treatment and intended for EPA and NPDES States to develop permit requirements that were much broader in nature than requirements which are traditionally found in NPDES permits for industrial process discharges or POTWs. The legislative history indicates, municipal storm sewer system "permits will not necessarily be like industrial discharge permits. Often, an endofthe-pipe treatment technology is not appropriate for this type of discharge." [Vol. 132, Cong.Rec. S16425 (daily ed. Oct. 16, 1986)].

A shift towards comprehensive storm water quality management programs to reduce the discharge of pollutants from municipal separate storm sewer systems is appropriate for a number of reasons. First, discharges from municipal storm sewers are highly intermittent, and are usually characterized by very high flows occurring over relatively short time intervals Second, the nature and extent of pollutants in discharges from municipal systems will depend on the activities occurring on the lands which contribute runoff to the system. Municipal separate storm sewers tend to discharge runoff drained from lands used for a wide variety of activities. Given the material management problems associated with end-of-pipe controls, management programs that are directed at pollutant sources are often more practical than relying solely on end-of-pipe controls.

55 Fed. Reg. at 48,037-38.

In adopting its stormwater regulations, the EPA recognized that stormwater discharges cause many water quality impacts that are beyond the control of MS4 operators, stating:

The water quality impacts of discharges from municipal separate storm sewer systems depend on a wide range of factors including: the magnitude and duration of rainfall events, the time period between events, soil conditions, the fraction of the land that is impervious to rainfall, land use activities, the presence of illicit connections, and the ratio of the storm water discharges to receiving water flow.

55 Fed. Reg. at 48,038.

All of these factors, vary from state to state and project to project. For that reason, it is imperative that individual project sites retain the flexibility to implement BMPs as necessary to

contain and prevent pollutant discharges from that site. This means that Congress should avoid mandating specific management practices for application on a national level. What may work very well in Florida will not work in Alaska. Forcing projects to adopt these standards will cause unnecessary cost and may not benefit the environment.

3) STATES IMPLEMENT THE CLEAN WATER ACT UNDER STATE LAW

The Clean Water Act does not delegate federal authority to the States

As EPA regulations explain, a state's "assumption of the NPDES program is voluntary, consistent with the principles of federalism." (64 Fed.Regs. 68722, 68743 (emphasis added).) Where states "do not have NPDES authority, they are not required to implement the storm water discharge control program" (*Id.* (emphasis added).) In that situation, EPA implements the federal program directly under federal law. (33 U.S.C. § 1342(a)(1).

It is settled law that NPDES permits issued by an authorized state are state permits issued under state law, not federal law. (Shell Oil Company v. Train (9th Cir. 1978) 585 F.2d 408, 410-412.) It is also settled law that state NPDES programs function "in lieu of" the federal program and that an authorized NPDES state is not delegated any federal authority. (State of California v. U.S. Department of Navy (9th Cir. 1988) 845 F.2d 222, 225-226.)

Congress has stressed the state nature of an authorized state's NPDES program, noting that "such a State program is one which is established under State law and which functions in lieu of the Federal program. It is not a delegation of Federal authority. This is a point which has been widely misunderstood with regard to the permit program under section 402 of the Act. That section . . . provides for State programs which function in lieu of the Federal program and does not involve a delegation of Federal authority." (H.R. Conf. Rep. No. 95-830, 95th Conf., 1st Sess., p. 104.)

That authorized states implement their NPDES programs under state law in lieu of the federal program is illustrated in several cases in which permittees sought to sue EPA directly under federal law for permits issued by authorized states. For example, in *Shell Oil Company v. Train, supra*, 585 F.2d 408, the Ninth Circuit held that Shell could not challenge in federal court the San Francisco Regional Board's decision to deny a variance request in connection with an NPDES permit for an industrial complex. Shell alleged that the Regional Board's decision was a federal action because its decision was influenced by EPA. The Court rejected this contention, noting that "once the state has secured approval of its own permit program, its actions in permit matters are those of the state itself, subject to the Administrator's veto." (*Id.* at 412.) Many other cases have reached similar conclusions. (*See, e.g., District of Columbia v. Schramm* (D.C. Cir. 1980) 631 F.2d 854, 861; *American Paper Institute, Inc. v. U.S. E.P.A* (7th Cir. 1989) 882 F.2d 287, 288.)

Courts have also held that the approval of a state program does not convert the state program into a federal program enforceable in federal court against federal entities. In State of California v. United States Department of the Navy, supra, 845 F.2d 222, the Ninth Circuit Court of Appeals rejected the State of California's claim that the civil enforcement provisions of the State's NPDES program arose under federal law, and thus allowed the State to sue the Navy to

recover civil penalties under the Clean Water Act.

The Ninth Circuit noted that the "legislative history clearly states that the state permit programs are 'not a delegation of Federal authority' but instead are state programs which 'function in lieu of the Federal program," (Id. At 225.) California's own interpretation of its NPDES program and the Clean Water Act requirements did not, therefore, convert its state program into a federal law that would allow it to sue the Navy to recover civil penalties otherwise authorized by the State's NPDES program. The Ninth Circuit reasoned that "California's position would essentially nullify § 313(a)'s express limitation of civil penalties against federal agencies to those arising under federal law." (Id.) Because California's enforcement program did not independently arise under federal law, California could not convert its State program into federal law.

States have the ability to go further than what the Clean Water Act requires or allows

As stated above, the Clean Water Act is built on the concept of cooperative federalism. (See Shell Oil Company v. Train (9th Cir. 1978) 585 F.2d 408, 409-410.) The Act clearly allows states to voluntarily operate a state water quality program in lieu of the federal one. (33 U.S.C. §§ 1342(b); 40 C.F.R. §§ 123.22, 123.61(c).) While the in lieu program must implement minimum federal requirements states are free to specify other requirements not mandated by the federal program, including ones that are more stringent than the federal requirements. (33 U.S.C. § 1370.)

In adopting the Clean Water Act, Congress expressly preserved the right of any state to adopt or enforce provisions addressing any "standard or limitation respecting discharges of pollutants" or any requirement "respecting control or abatement of pollutants," so long as such provisions are not less stringent than federal law. (33 U.S.C. § 1370; see also 40 C.F.R. § 123.1(i).) As Justice Stevens wrote in PUD No. 1 of Jefferson County v. Washington Dept. of Ecology (1994) 511 U.S. 700, 723 (Stevens, J. concurring), "Not a single sentence, phrase, or word in the Clean Water Act purports to place any constraints on a State's power to regulate the quality of its own waters more stringently than federal law might require."

The United States Supreme Court has held that the "Clean Water Act anticipates a partnership between the States and the Federal Government, animated by a shared objective . . . " (Arkansas v. Oklahoma, 503 U.S. 91, 101 (1992).) In adopting the CWA, Congress stated that "it is the policy of the Congress to recognize, preserve, and protect the primary responsibilities and rights of States to prevent, reduce, and elimination pollution" 33 U.S.C. § 1251(b).

Of course, EPA may itself at times interpret the Act in ways that exceed the federal authority provided to it by Congress. In such cases, EPA's decisions are reviewable in federal court. For example, as noted above, the United States District Court for the Eastern District of Virginia recently issued a decision holding that EPA exceeded its authority under the Act when it issued a TMDL based on the "flow" of storm water into Accotink Creek, rather than regulating the amount of sediment added to the Creek. (Virginia Department of Transportation v. United States Environmental Protection Agency (E.D. Virginia 2013) 2013 U.S. Dist. LEXIS 981.) (See Exhibit "A" hereto.)

The court concluded that U.S. EPA did not have authority to regulate the "flow" of storm water because storm water was not a "pollutant" as defined in the Act. In reaching this conclusion, the court rejected U.S. EPA's contention that Congress has given EPA "loose rein to determinate exactly what it could and could not regulate." As this case illustrates, there are limits to federal authority under the Clean Water Act.

4) IF ADOPTED, EPA'S PROPOSED RULE DEFINING WATERS OF THE UNITED STATES WILL GREATLY EXPAND THE JURISDICTIONAL REACH OF THE CLEAN WATER ACT

Definition of Waters of the United States

The Clean Water Act defines the term "Navigable Waters" as "the Waters of the United States." How the Waters of the United States are defined is key to whether a particular water is subject to the Clean Water Act because, by its terms, the restrictions imposed by the Act apply only to "Waters of the United States." With some limitation, the EPA traditionally treated virtually any water body as a navigable water subject to the Clean Water Act. In 2001, the Supreme issued a decision in Solid Waste Agency of Northern Cook County (SWANCC) v. U.S. Army Corps of Engineers, 531 U.S. 159 (2001) ("SWANCC") holding that certain isolated ponds were not protected by the Clean Water Act. The Supreme Court suggested that use of the term "Navigable Waters" in the Act indicated an intent to restrict application of the Act to traditionally navigable waters.

The Supreme Court followed the SWANCC decision with its decision in *Rapanos v. United States* (2006) 547 U.S. 715 ("Rapanos"). The *Rapanos* decision involved wetlands near to tributaries of traditionally navigable waters. In a concurring opinion, Justice Anthony Kennedy laid out the "significant nexus" test whereby a water is "Navigable" within the meaning of the Act if it has a "significant nexus" to traditional navigable waters. This of course is a case-by-case determination. In response to the *Rapanos* decision, the EPA and Army Corps of Engineers issued a joint guidance document on how to implement the "significant nexus" test. Under this guidance document, the following waters and wetland are subject to the Clean Water Act:

- 1. All waters which are currently used, or were used in the past, or may be susceptible to use in interstate or foreign commerce,
- 2. All waters which are subject to the ebb and flow of the tide;
- 3. All waters, including interstate wetlands, that cross state lines;
- All other waters, the use, degradation or destruction of which could affect interstate or foreign commerce;
- 5. Tributaries of waters identified in any of the above;
- 6. Wetlands adjacent to waters identified in any of the above.

Areas of expanded regulation

EPA is currently in the process of adopting a new definition of Waters of the United States. The Proposed Rule, published in the Federal Register on April 21, 2014, will greatly expand the reach of the Clean Water Act.

Specifically, the Proposed Rule would exclude from the definition of "waters of the United States" two types of ditches that might otherwise be evaluated as tributaries: Ditches that are excavated wholly in uplands, drain only uplands, and have less than perennial flow; and ditches that do not contribute flow, either directly or through another water, to a traditional navigable or interstate water or water that is tributary or adjacent to a traditional navigable or interstate water. The Proposed Rule would therefore include the following waters within the definition of Waters of the United States:

- Natural streams that have been altered (e.g., channelized, straightened or relocated);
- ditches that have been excavated in "waters of the United States," including jurisdictional wetlands;
- 3. ditches that have perennial flow; and
- 4. ditches that connect two or more "waters of the United States."

These definitions will include large portions of municipal separate storm sewer systems (MS4s) and agricultural drains. MS4s are an amalgamation of open channels and ditches that convey surface flows away from city streets and private properties. They frequently have perennial flows of urban runoff and by design convey that water to traditional navigable waters. The channels that convey these flows are internal to the MS4. The Proposed Rule unabashedly seeks to bring portions of the MS4 and other manmade water bodies or conveyances within the definition of Waters of the United States:

This proposal expressly states that a tributary, including wetlands, can be a natural, man-altered, or man-made water body and includes waters such as rivers, streams, lakes, impoundments, canals, and ditches that meet the definition of tributary and are not excluded from the definition of "waters of the United States"

(79 FR 22206, April 21, 2014.)

Thus for the first time, the EPA is proposing to regulate waters that are internal to the MS4 treatment system as well as other man-made waters such as agricultural drains and irrigations ditches with mixed return flows as Waters of the United States.

Another area of significant expansion is waters within the floodplain of traditional navigable waters and waters that are otherwise tributary or adjacent to traditional navigable waters. The EPA's preamble to the Proposed Rule provides:

The proposed rule proposes to change "adjacent wetlands" to "adjacent waters" so that water bodies such as ponds and oxbow lakes, as well as wetlands, adjacent to jurisdictional waters are "waters of the United States" by rule. Second, the proposed rule adds a definition of the term "neighboring," a term which appears in the existing definition of "adjacent." The agencies propose a definition for "neighboring" to identify those adjacent waters that the agencies concluded have a significant nexus to (a)(1) through (a)(3) waters. To bring greater clarity to the meaning of "neighboring," the proposed rule adds scientifically-based definitions for the terms "riparian area" and "floodplain" to define the lateral reach of the term "neighboring." Under the proposed rule, all waters, including wetlands, adjacent to a water identified in paragraphs (a)(1) through (5); would be "waters of the United States." The term adjacent means bordering, contiguous or neighboring. Waters, including wetlands, separated from other waters of the United States by man-made dikes or barriers, natural river berms, beach dunes and the like are "adjacent waters." The term neighboring, for purposes of the term "adjacent," includes waters located within the riparian area or floodplain of a water identified in paragraphs (a)(1) through (5), or waters with a shallow subsurface hydrologic connection or confined surface hydrologic connection to such a jurisdictional water.

(79 FR 22207, April 21, 2014 [emphasis added].)

The Proposed Rule would therefore significantly expand the geographical reach of Waters of the United States to include waters in the floodplain of a traditional navigable water. Floodplains can be many miles wide and only be touched during the 100 year storm event. Additionally, because of the prime soils that often exist in these areas, they support agricultural activities. An expansion of the Clean Water Act's jurisdiction will hinder existing and future activities in these areas.

The Proposed Rule exceeds EPA's authority under the Clean Water Act

Under the Supreme Court's decision in Chevron U.S.A., Inc. v. Natural Res. Def. Council, Inc., 467 U.S. 837 (1984), an agency's interpretation of a statute that it is responsible for administering is entitled to deference, if the statute is "silent or ambiguous" and the agency's interpretation is "permissible." Chevron U.S.A., Inc. v. Natural Res. Def. Council, Inc., 467 U.S. 837, 842-844 (1984); see Mayo Foundation v. United States, 131 S.Ct. 704, 711 (2011); Babbitt v. Sweet Home Chapter, 515 U.S. 687, 703 (1995); Arkansas v. Oklahoma, 503 U.S. 91, 105 (1992). An agency gets no deference if its rule, regulation or policy violates the plain language of the statute it is implementing. "EPA may not regulate something over which it has no statutorily granted power" (Virginia Department of Transportation v. EPA (2013) U.S. Dist. Lexis 981, *9, (E.D. Va.).)

Often EPA treats statutory silence as ambiguity and a license to regulate. However, "[t]he question is whether the statute grants the agency the authority it is claiming, not whether the statute explicitly withholds that authority." (Virginia Department of Transportation v. EPA (2013) U.S. Dist. Lexis 981, *9, (E.D. Va.).) Many of the proposed requirements in EPA's Proposed Rule violate the plain text of the Clean Water Act and the Court decisions implementing the Act.

SWANCC

In Solid Waste Agency of Northern Cook County v. U.S. Army Corps of Engineers ("SWANCC"), 531 U.S. 159 (2001), the Supreme Court declined to grant Chevron deference to a regulation adopted by the U.S. Army Corps of Engineers under the Clean Water Act, which authorized the Corps to regulate "isolated" waters, i.e., waters not physically connected to navigable waters. The CWA authorizes the Corps to regulate "navigable waters," which are defined as "the waters of the United States." (33 U.S.C. §§ 1344(a), 1362(7).) The Court stated that the phrase "the waters of the United States" is not ambiguous and does not include "isolated" waters. The Court also stated that—even if the phrase were ambiguous—there would be no basis for applying Chevron in upholding the Corps' regulation. (SWANCC, 531 U.S. at 172-173.) The Court stated that the states have traditionally and historically regulated non-navigable waters, and thus the Corps' claimed authority to regulate "isolated" waters would result in a "significant impingement of the States' traditional and primary power over land and water use," id. at 161, 174, thus allowing "federal encroachment upon a traditional state power," id. at 173.

The Court stated that Congress would not have invoked the "outer limits" of its constitutional power without a "clear expression" of its intent. (*Id.* at 172.) Invoking its "prudential desire not to needlessly reach constitutional issues," (*id.* at 172.), the Court concluded that the CWA does not authorize the Corps to regulate "nonnavigable, isolated, intrastate waters." (*Id.* at 166.) The Court overturned the Seventh Circuit decision below, which had relied on *Chevron* in upholding the Corps' regulation. (*SWANCC*, 191 F.3d 845, 853 (7th Cir. 1999), rev'd 531 U.S. 159, 174 (2001).) Thus, the Court declined to grant *Chevron* deference to a federal regulation that expanded federal authority to regulate subjects traditionally regulated by state and local governments, and instead applied long-standing principles of federalism in construing the Clean Water Act.

The same principles are at issue with EPA's Proposed Rule. As described above, the Proposed Rule will extend the reach of the Clean Water Act to man-made structures, internal workings of the MS4, and isolated waters that may be in the floodplain of a traditional Navigable Water. This is a stretch beyond the scope of the Clean Water Act and under the Proposed Rule, the waters at issue in the SWANCC decision would be Waters of the United States.

Rapanos

In Rapanos v. United States, 547 U.S. 715 (2006), the Supreme Court again declined to grant Chevron deference to a regulation adopted by the U.S. Army Corps of Engineers under the Clean Water Act, which interpreted the statutory phrase "the waters of the United States" as including virtually all wetlands in the nation. The Court's plurality opinion stated that the Corps'

"expansive" interpretation of the phrase was foreclosed by its "natural definition," (*Rapanos*, 547 U.S. at 731) and that "[e]ven if the phrase 'the waters of the United States' were ambiguous ..., our own canons of construction would establish that the Corps' interpretation of the statute is impermissible." (*Id.* at 737.)

Citing the Court's decision in SWANCC, the plurality opinion stated that "the Government's expansive interpretation would 'result in a significant impingement of the States' traditional and primary authority over land and water use," and that "[w]e would ordinarily expect a 'clear and manifest' statement from Congress to authorize an unprecedented intrusion into traditional state authority." (Id. at 738 (citations and internal quotation marks omitted).)

Again, the same principles are at issue with EPA's Proposed Rule. As described above, the Proposed Rule will extend the reach of the Clean Water Act to man-made structures, internal workings of the MS4, and isolated waters that may be in the floodplain of a traditional Navigable Water. This is a stretch beyond the scope of the Clean Water Act and under the Proposed Rule, the waters at issue in the *Rapanos* decision would be Waters of the United States. EPA lacks the authority to issue regulations that directly contradict the Supreme Court.

Clean Water Act section 402(p)

In addition to violating Supreme Court precedent on the extent of the Clean Water Act's jurisdiction, the Proposed Rule would violate the plain text of the Act by reading out the requirements of Section 402(p). Section 402(p)(3)(b) of the Clean Water Act entitled "Municipal Discharge" provides:

Permits for discharges from municipal storm sewers -

- (i) may be issued on a system- or jurisdictional- wide basis;
- shall include a requirement to effectively prohibit non-stormwater discharges into the storm sewers; and
- (iii) shall require controls to reduce the discharge of pollutants to the maximum extent practicable, including management practices, control techniques and system, design and engineering methods, and such other provisions as the Administrator or the State determines appropriate for the control of such pollutants.

(33 U.S.C. § 1342(p)(3)(B) [emphasis added].)

The plain language of the CWA requires MS4 Permits to "require controls to reduce the discharge of pollutants to the maximum extent practicable." (*Id.*) The Act applies the MEP standard to the "discharge of pollutants" from the MS4. Discharges *into* the MS4 are subject to a different standard. Section 402(p) requires NPDES permits for MS4s "shall include a requirement to effectively prohibit non-stormwater discharges into the storm sewer" (33 USC § 1342(p)(3)(B)(ii).) "Effectively prohibit" is not the same as prohibit or eliminate, nor is the same as MEP.

The Proposed Rule would convert portions of the MS4 into a Water of the United States. It would thereby remove the requirement that discharges into the MS4 must be effectively prohibited and replace it with an MEP or other standard designed to attain fishable swimmable uses within the MS4. This is a direct contradiction of the plain text of the Clean Water Act and EPA lacks the authority to adopt a rule that would include this requirement.

5) THE PROPOSED RULE WILL PREVENT PROJECTS THAT WOULD BENEFIT WATER QUALITY

The Proposed Rule will unquestionably expand the reach of the Clean Water Act by expanding the number of waters that are classified as Waters of the United States. While many would applaud this action on the part of EPA, it will hinder the progress made to date under the Clean Water Act. In the first instance this is because when the federal government expands its regulatory control to greatest extent possible and in a way that is wholly unsupported by the plain text of the Clean Water Act it undermines its own legitimacy and the desire of regulated parties to cooperate with the regulatory process. The Clean Water Act relies heavily on voluntary compliance. Without it, the Army Corps of Engineers and the EPA will have great difficulty implementing the Act. They simply lack the enforcement resources to be in all places at all times.

Perhaps more importantly, the Proposed Rule will hinder many projects that would benefit the environment. This is because the EPA and many States will not allow "treatment" to be a designated use of the purposes of Water Quality Standards. What that means is that the states and EPA will not allow Waters of the United States to be converted into treatment systems where the basic fishable swimmable standards are not attained. EPA and the states will not approve projects such as treatment wetlands within the Waters of the United States.

If the Proposed Rule converts existing portions of MS4 or other manmade drains into Waters of the United States these portions of the MS4 will no longer be available for implementation of management practices or treatment controls that will benefit downstream traditional navigable waters. In so doing, the Proposed Rule will force dischargers who operate MS4s or other nonjurisdicitonal conveyances to attain Water Quality Standards within their operating systems. Such compliance is in many cases infeasible and will force dischargers into non-compliance. Moreover dischargers will not be able use treatment controls within the system, and will have far fewer tools to implement clean water goals. That was not the intent of the Clean Water Act.

CONCLUSION

For the foregoing reasons we respectfully request that the Committee refrain from adopting legislation that would impose blanket prohibitions on transportation projects. We further request that the Committee review EPA's Proposed Rule and request changes that would prevent the significant expansion of regulation contemplated by the current draft.

EXHIBIT A

VIRGINIA DEPARTMENT OF TRANSPORTATION V. EPA

VIRGINIA DEPARTMENT OF TRANSPORTATION, ET AL, Plaintiffs, -v-UNITED STATES ENVIRONMENTAL PROTECTION AGENCY, ET AL, Defendants.

Civil Action No. 1:12-CV-775

UNITED STATES DISTRICT COURT FOR THE EASTERN DISTRICT OF VIRGINIA, ALEXANDRIA DIVISION

2013 U.S. Dist. LEXIS 981; 43 ELR 20002

January 3, 2013, Decided January 3, 2013, Filed

COUNSEL: [*1] For Virginia Department of Transportation, Plaintiff: Earle Duncan Getchell, Jr., Kenneth Thomas Cuccinelli, II, LEAD ATTORNEYS, Office of the Attorney General (Richmond), Richmond, VA

For Board of Supervisors, Fairfax County, Virginia, Plaintiff: Christopher Donald Pomeroy, AquaLaw PLC, Richmond, VA.

For United States Environmental Protection Agency, Lisa P. Jackson, Administrator, United States Environmental Protection Agency Region III, Shawn M. Garvin, Regional Administrator, Defendants: Dennis Carl Barghaan, Jr., LEAD ATTORNEY, United States Attorney's Office, Alexandria, VA.

For National Association of Clean Water Agencies, National Association of Flood and Stormwater Management Agencies, American Public Works Association, Movants: Kevin McArdle Blair, Rebecca Anne Worthington, LEAD ATTORNEYS, Squire Sanders LLP (DC), Washington, DC.

For Virginia Manufacturers Association, Amicus: Andrea West Wortzel, LEAD ATTORNEY, Hunton & Williams LLP, Richmond, VA.

For NAIOP Northern Virginia, the Commercial Real Estate Development Association, National Association of Home Builders, Northern Virginia Association Of Realtors, Intervenor Plaintiffs: John David Wilburn, LEAD ATTORNEY, McGuireWoods [*2] LLP, McLean, VA; Stephen Phillip Mulligan, McGuireWoods LLP (McLean), McLean, VA.

For United States Environmental Protection Agency, Lisa P. Jackson, United States Environmental Protection Agency Region III, Shawn M. Garvin, Intervenor Defendants: Dennis Carl Barghaan, Jr., LEAD ATTORNEY, United States Attorney's Office, Alexandria, VA.

JUDGES: Liam O'Grady, United States District Judge.

OPINION BY: Liam O'Grady

OPINION

Memorandum Opinion

Before the Court is the Plaintiffs' motion for judgment on the pleadings under Federal Rule of Civil Procedure 12(c). The Defendants opposed the motion, and the Plaintiffs replied. The Court heard oral arguments

on December 14, 2012 and now issues this memorandum opinion and accompanying order granting the Plaintiffs' motion

Background

The Clean Water Act, 33 U.S.C. § 1251 et seq., establishes the basic structure for regulating discharge of pollutants into the waters of the United States, and provides certain mechanisms to improve and maintain the quality of surface waters.

One such mechanism is the requirement that states identify "designated uses" for each body of water within their borders, as well as "water quality criteria" sufficient to support those uses. 33 U.S.C. § 1313(c)(2)(A). [*3] The Environmental Protection Agency ("EPA") evaluates the uses and criteria developed by the states, and either approves them or else proposes and promulgates its own set of standards. § 1313(c)(3).

Once the standards are in place, each state is required to maintain a list--also subject to approval or modification by EPA--of its waterbodies that are "impaired" because they do not meet their respective water quality criteria. 33 U.S.C. § 1313(d)(1)(A). For each waterbody on the impaired list, the state is required to establish a set of total maximum daily loads ("TMDLs") sufficient to bring the body back into compliance with its water quality criteria. § 1313(d)(1)(C). Each TMDL establishes the maximum amount of a pollutant that may be added to the waterbody daily from all sources (runoff, point sources, etc.). EPA is required to publish a list of pollutants suitable for maximum daily load measurement, § 1314(a)(2)(D), and it has determined that all pollutants are suitable for TMDLs, see Total Maximum Daily Loads Under Clean Water Act, 43 Fed. Reg. 60,662. Therefore, any pollutant that falls within the relatively broad definition of "pollutant" set forth in § 1362(6) may be regulated via [*4] TMDL. EPA can approve or modify as it sees fit TMDLs proposed by the states. § 1313(d)(2).

Here the state in question is Virginia, and the waterbody is a 25-mile long tributary of the Potomac River, located in Fairfax County, called Accotink Creek. The creek has been the subject of litigation in the past that is not relevant to this matter except the result: EPA was required to set TMDLs for Accotink Creek once Virginia failed to do so by a certain date. Specifically, the creek had been identified as having "benthic

impairments," which is to say the community of organisms that live on or near the bottom of the creek were not as numerous or healthy as they should be. EPA was to set appropriate TMDLs to improve the health of the benthic community in Accotink Creek.

On April 18, 2011, EPA established a TMDL for Accotink Creek which limited the flow rate of stormwater into Accotink Creek to 681.8 ft³/acre-day. The TMDL was designed to regulate the amount of sediment in the Accotink, because EPA believed sediment was a primary cause of the benthic impairment. Both parties agree that sediment is a pollutant, and that stormwater is not. EPA refers to stormwater flow rate as a "surrogate" for [*5] sediment.

The Plaintiffs are now challenging the TMDL on multiple grounds, but presently before the Court is a single issue: Does the Clean Water Act authorize the EPA to regulate the level of a pollutant in Accotink Creek by establishing a TMDL for the flow of a nonpollutant into the creek?

Analysis

I. Standard of Review

Count I of the complaint, at issue here, is brought under the Administrative Procedures Act. See Comp. ¶ 169. The APA "confines judicial review of executive branch decisions to the administrative record of proceedings before the pertinent agency." Shipbuilders Council of Am. V. U.S. Dept. of Homeland Sec., 770 F. Supp. 2d 793, 802 (E.D. Va. 2011). As such, the district court "sits as an appellate tribunal," and APA claims can be resolved equally well in the context of Rule 12 or Rule 56. Univ. Med. Ctr. Of S. Nev. V. Shalala, 173 F.3d 438, 441 n. 3, 335 U.S. App. D.C. 322 (D.C. Cir. 1999).

Because Count I presents a question of statutory interpretation, the Court reviews EPA's decision using the two-step analysis set forth in *Chevron, U.S.A., Inc. v. NRDC, Inc.*, 467 U.S. 837, 104 S. Ct. 2778, 81 L. Ed. 2d 694 (1984). For a given question of statutory interpretation, the first step under *Chevron* is to determine whether Congress [*6] addressed the "precise question at issue." 467 U.S. at 842. "If the intent of Congress is clear, that is the end of the matter . . . " Id If the Court cannot find that Congress has squarely addressed the question, the Court must move to Chevron's second step. In the second step of statutory

construction under *Chevron*, the Court must determine whether the agency's interpretation of the statute is "permissible." *Id.* at 843. The agency's construction is permissible if it is reasonable, but it need not be what the Court considers the *best or most reasonable* construction. *See id.* at 845. The Court is not to simply impose its own construction on the statute, but instead it gives deference to any reasonable statutory construction by the agency. *Id.* at 843.

II. Chevron Step One

Whether statutory ambiguity exists so that the issue cannot be settled at Chevron's first step is for the Court to decide, and the Court "owe[s] the agency no deference on the existence of ambiguity." Am. Bar Ass'n v. FTC, 430 F.3d 457, 468, 368 U.S. App. D.C. 368 (D.C. Cir. 2005). The Court begins the inquiry by "employing traditional tools of statutory construction." Chevron, 467 U.S. at 843 n.9. As always, the analysis begins with the text [*7] of the statute. Nat'l Elec. Mfrs. Ass'n v. U.S. Dept't of Energy, 654 F.3d 496, 504 (4th Cir. 2011).

The text of the statute that requires states to establish their own TMDLs, 33 U.S.C. § 1313(d)(1)(C), is:

Each State shall establish for the waters identified in paragraph (1)(A) of this subsection, and in accordance with the priority ranking, the total maximum daily load, for those pollutants which the Administrator identifies under section 1314(a)(2) of this title as suitable for such calculation. Such load shall be established at a level necessary to implement the applicable water quality standards with seasonal variations and a margin of safety which takes into account any lack of knowledge concerning the relationship between effluent limitations and water quality. (emphasis added)

The next subsection, § 1313(d)(2), grants EPA the authority to set TMDLs when the state has not done so adequately. "Pollutant" is a statutorily defined term. 33 U.S.C. § 1362(6).

The Court sees no ambiguity in the wording of this statute. EPA is charged with establishing TMDLs for the appropriate pollutants; that does not give them authority to regulate nonpollutants. The parties agree that sediment is a [*8] pollutant under 33 U.S.C. § 1362(6), and stormwater is not. Then how does EPA claim jurisdiction over setting TMDLs for stormwater?

EPA frames the stormwater TMDL as a surrogate. EPA's research apparently indicates that the "[sediment] load in Accotink Creek is a function of the amount of stormwater runoff generated within the watershed." Def. Opp. at 8. And EPA believes that framing the TMDL in terms of stormwater flow rate is superior to simply expressing it in terms of maximum sediment load.

The DC Circuit has considered and rejected a similar attempt by EPA to take liberties with the way Congress intended it to express its TMDLs. In Friends of the Earth, Inc. v. Env. Protection Agency, EPA had promulgated TMDLs for the Anacostia River that expressed the maximum load of certain pollutants in terms of annual and seasonal amounts. 446 F.3d 140, 143, 371 U.S. App. D.C. 1 (D.C. Cir. 2006). The court found that expressing a TMDL in terms of annual or seasonal maximums was not allowed, because the statute granted authority only for daily loads. Id. at 148. The court reached its conclusion even though EPA apparently made a strong argument that expressing TMDLs in terms of annual or seasonal loads was an effective [*9] and reasonable approach. See id. Presumably a daily load could have been derived by simply dividing the annual load by 365, yet the court still required expression in the terms dictated by Congress.

Here too, EPA hopes to express a TMDL in terms other than those contemplated by the statute, arguing that such an expression is the most effective method. But, as Friends of the Earth illustrates, EPA may not regulate something over which it has no statutorily granted power-annual loads or nonpollutants-as a proxy for something over which it is granted power-daily loads or pollutants.

EPA's argument that its surrogate approach should be allowed because the statute does not specifically forbid it fails. EPA is not explicitly forbidden from establishing total maximum annual loads any more than they are explicitly barred from establishing TMDLs for nonpollutants. The question is whether the statute grants the agency the authority it is claiming, not whether the statute explicitly withholds that authority. And in this case, as in Friends of the Earth, the statute simply does not grant EPA the authority it claims.

The dicta in Weyerhaeuser Co. v. Costle is not as helpful to EPA's case as it would [*10] like. 590 F.2d 1011, 1022 n.6, 191 U.S. App. D.C. 309 (D.C. Cir. 1978). It is true that the court said in a footnote "[i]t is well recognized that EPA can use pollution parameters that are not harmful in themselves, but act as indicators of harm." Id. But in that case, the non-harmful pollution parameters the EPA sought to regulate were components of the effluent commonly discharged from paper mills, id. at 1022, making them effluents themselves. And power to regulate effluents is expressly granted to the EPA in the relevant statutory section. See 33 U.S.C. § 1314(b).

EPA would like to create the impression that Congress has given it loose rein to determine exactly what it could and could not regulate. On page 16 of its opposition to this motion, EPA points out that "Congress authorized EPA to determine which pollutants were suitable for TMDL calculation and measurement." (Internal quotes removed). While this may be true, EPA glosses over the fact that 33 U.S.C. § 1314(a)(2)(D) only gives EPA the power to regulate pollutants as that term is defined--by Congress--elsewhere in the statute. And, as discussed above, sediment is a pollutant for these purposes, but stormwater is not.

In a similar vein, EPA regulations [*11] which imply that the agency has discretion to set the TMDL as it sees fit do not bear on the question now before the Court. EPA has promulgated a regulation allowing TMDLs to be "expressed in terms of either mass per time, toxicity, or other appropriate measure," 40 C.F.R. § 130.2(i), and another that allows TMDLs to be expressed as a "property of pollution," 50 Fed. Reg. 1774, 1776 (Jan. 11, 1985). But, EPA citing these regulations to demonstrate that the surrogate TMDL approach is permissible is mere bootstrapping. To the extent the regulations allow EPA to set TMDLs for nonpollutants, they exceed the statutory authority of EPA.

The plain language of the statute trumps all, but legislative history also supports Plaintiffs' argument. Congress's intent to limit EPA's discretion in this context is evidenced by the committee record cited by Plaintiffs, which has also been used by the Ninth Circuit, in which Senator Randolph, Chairman of the Senate committee that amended the act in 1972, explained, "We [*12] have written into law precise standards and definite guidelines on how the environment should be protected. We have done more than just provide broad directives [for]

administrators to follow." Pl. Mot. 7, citing Nw. Envtl. Def. Ctr. v. Brown, 640 F.3d 1063, 1072 (9th Cir. 2011). Congress created a statutory scheme that included a precise definition of the word "pollutant," and then gave EPA authority to set TMDLs for those pollutants. Senator Randolph's comments strongly imply that Congress did not intend anything more or less than what is written in the statute.

The Court considers the language of 33 U.S.C. § 1313(d)(1)(C) to be unambiguous. Congress has spoken directly on the question at issue, and its answer is that EPA's authority does not extend to establishing TMDLs for nonpollutants as surrogates for pollutants. The legislative history of the CWA is consistent with this reading. Therefore, this Court finds EPA's interpretation of § 1313 and the related provisions to be impermissibly broad based on analysis under the first step of *Chevron* analysis.

III. Chevron Step Two

Because the Court considers Congress's intent to be clear and unambiguously expressed by the language of the [*13] statute, it need not move to the second step of Chevron analysis. But the Court notes that there is substantial reason to believe EPA's motives go beyond "permissible gap-filling."

Page 9 of EPA's opposition says, "stormwater flow rates as a surrogate would more effectively address the process by which sediment impairs aquatic life in Accontink Creek." If the sediment levels in Accotink Creek have become dangerously high, what better way to address the problem than by limiting the amount of sediment permitted in the creek? If sediment level is truly "a function of the amount of stormwater runoff, as EPA claims, then the TMDL could just as easily be expressed in terms of sediment load.

In [*14] fact, the Board of Supervisors of Fairfax County argued at the December 14th hearing (without objection from EPA) that EPA has approved 3,700 TMDLs for sediment nationwide, and in Virginia has addressed 111 benthic impairments with TMDLs. None of them regulated the flow rate of stormwater. By comparison, EPA has tried out its novel approach of regulating sediment via flow in only four instances nationwide, and all four attempts were challenged in court. One has settled, the other three are still pending.

The Court suspects that the decision to regulate stormwater flow as a surrogate for sediment load would not constitute a permissible construction of § 1313(d)(1)(C), even given the deference due at Chevron's second step. This is especially likely because EPA is attempting to increase the extent of its own authority via flow TMDLs, which courts must examine carefully. See Brown & Williamson Tobacco Corp. v. Food & Drug Admin., 153 F.3d 155, 161-62 (4th Cir. 1998). EPA's attempt to set TMDLs for nonpollutants probably goes beyond "permissible gap-filling" and is instead an impermissible construction of the statute.

Conclusion

The language of § 1313(d)(1)(C) is clear. EPA is authorized to [*15] set TMDLs to regulate pollutants, and pollutants are carefully defined. Stormwater runoff is not a pollutant, so EPA is not authorized to regulate it via TMDL. Claiming that the stormwater maximum load is a

surrogate for sediment, which is a pollutant and therefore regulable, does not bring stormwater within the ambit of EPA's TMDL authority. Whatever reason EPA has for thinking that a stormwater flow rate TMDL is a better way of limiting sediment load than a sediment load TMDL, EPA cannot be allowed to exceed its clearly limited statutory authority. For these reasons, the Plaintiffs' motion for Rule 12(c) judgment on the pleadings on Count I of their complaint is granted.

January 3, 2013

Alexandria, Virginia

/s/ Liam O'Grady

Liam O'Grady

United States District Judge

EXHIBIT B

EPA PROPOSED RULE ON WATERS OF THE UNITED STATES

FEDERAL REGISTER

Vol. 79

Monday,

No. 76

April 21, 2014

Part II

Department of Defense

Department of the Army, Corps of Engineers 33 CFR Part 328

Environmental Protection Agency

40 CFR Parts 110, 112, 116, et al. Definition of "Waters of the United States" Under the Clean Water Act; Proposed Rule

DEPARTMENT OF DEFENSE

Department of the Army, Corps of Engineers

33 CFR Part 328

ENVIRONMENTAL PROTECTION AGENCY

40 CFR Parts 110, 112, 116, 117, 122, 230, 232, 300, 302, and 401

[EPA-HQ-OW-2011-0880; FRL-9901-47-OW]

RIN 2040-AF30

Definition of "Waters of the United States" Under the Clean Water Act

AGENCY: U.S. Army Corps of Engineers, Department of the Army, Department of Defense: and Environmental Protection Agency (EPA).

ACTION: Proposed rule.

SUMMARY: The Environmental Protection Agency (EPA) and the U.S. Army Corps of Engineers (Corps) are publishing for public comment a proposed rule defining the scope of waters protected under the Clean Water Act (CWA), in light of the U.S. Supreme Court cases in U.S. v. Riverside Bayview, Rapanas v. United States, and Solid Waste Agency of Northern Cook County v. U.S. Army Corps of Engineers (SWANCC), and Rapanos v. United States (Rapanos). This proposal would enhance protection for the nation's public health and aquatic resources, and increase CWA program predictability and consistency by increasing clarity as to the scope of "waters of the United States" protected under the Act.

DATES: Submit comments on or before July 21, 2014.

ADDRESSES: Submit your comments, identified by Docket ID No. EPA-HQ-OW-2011-0880 by one of the following methods:

- Federal eRulemaking Portal: http://www.regulations.gov. Follow the instructions for submitting comments.
- Email: ow-docket@epa.gov. Include EPA-HQ-OW-2011-0880 in the subject line of the message.
 Mail: Send the original and three
- Mail: Send the original and three copies of your comments to: Water Docket, Environmental Protection Agency, Mail Code 2822T, 1200
 Pennsylvania Avenue NW., Washington DC 20460, Attention: Docket ID No. EPA—HO—CW—2011—880
- Pennsylvania Avenue NW., Washington DC 20460, Attention: Docket ID No. EPA-HQ-OW-2011-0880.

 Hand Delivery/Caurier: Deliver your comments to EPA Docket Center, EPA West, Room 3334, 1301
 Constitution Avenue NW., Washington, DC 20460, Attention Docket ID No.

EPA-HQ-OW-2011-0880. Such deliveries are accepted only during the Docket's normal hours of operation, which are 8:30 a.m. to 4:30 p.m., Monday through Friday, excluding legal holidays. Special arrangements should be made for deliveries of boxed information. The telephone number for the Nutrue Taylor 10 and 10

information. In the telephone number for the Water Docket is 202–566–2426. Instructions: Direct your comments to Docket ID No. EPA-HQ-OW-2011–0880. EPA's policy is that all comments received will be included in the public docket without change and may be made available on-line at http://www.regulations.gov, including any personal information provided, unless the comment includes information claimed to be Confidential Business Information (CBI) or other information claimed to be Confidential Business Information (CBI) or other information whose disclosure is restricted by statute. Do not submit information that you consider to be CBI, or otherwise protected, through http://www.regulations.gov or email. The http://www.regulations.gov or email. The http://www.regulations.gov or email. The http://www.regulations.gov your dentity or contact information unless you provide it in the body of your comment. If you send an email directly to EPA without going through http://www.regulations.gov, your email address will be automatically captured and included as part of the comment that is placed in the public docket and made available on the Internet. If you submit an electronic comment, EPA recommends that you include your name and other contact information in the body of your comment and with any disk or CD-ROM you submit. If EPA cannot read your comment and with any disk or CD-ROM you submit. If EPA cannot read your comment and with any disk or CD-ROM you submit. If EPA cannot read your comment and with any disk or CD-ROM you submit. If EPA cannot read your comment and with any disk or CD-ROM you submit. If EPA cannot read your comment and with any disk or CD-ROM you submit. If EPA cannot read your comment and with any disk or CD-ROM you submit. If EPA cannot read your comment and with any disk or CD-ROM you submit. If EPA cannot read your comment and with any disk or CD-ROM you submit. If EPA cannot read your comment and with any disk or CD-ROM you submit. If EPA cannot read your comment due to technical difficulties and

about EPA's public docket, visit the BPA Docket Center homepage at http://www.epa.gov/epahome/dockets.htm. Docket: All documents in the docket are listed in the http://www.regulations.gov index. Some information, however, is not publicly available, e.g., CBI or other information whose disclosure is restricted by statute. Certain other material, such as copyrighted material, is publicly available olock materials are available electronically at http://www.regulations.gov or in hard copy at the Water Docket, EPA Docket Center, EPA West, Room 3334, 1301 Constitution Avenue NW., Washington, DC. The Public Reading Room is open

from 8:30 a.m. to 4:30 p.m., Monday through Friday, excluding legal bolidays. The telephone number for the Public Reading Room is 202–566–1744, and the telephone number for the Water Docket is 202–566–2426.

FOR FURTHER INFORMATION CONTACT: Ms. Donna Downing, Office of Water (4502–70). Environmental Protection Agency. 1200 Pennsylvania Avenue NW., Washington, DC 20460; telephone number 202–566–2428; email address: CWAwaters@epa.gov. Ms. Stacey Jensen, Regulatory Community of Practice (CECW-CO-R), U.S. Army Corps of Engineers, 441 G Street NW., Washington, DC 20314; telephone number 202–761–5856; email address: USACE CWA Rule@wsace.army.mil.

SUPPLEMENTARY INFORMATION: The SWANCC and Rapanos decisions resulted in the agencies evaluating the jurisdiction of waters on a case-specific basis far more frequently than is best for clear and efficient implementation of the CWA. This approach results in confusion and uncertainty to the regulated public and results in significant resources being allocated to these determinations by Federal and State regulators. The agencies are proposing this rule to fully carry out heir responsibilities under the Clean Water Act. The agencies are proposing this rule to fully carry out whether individual water bodies are jurisdictional and discharges are subject to permitting, and whether individual water bodies are not jurisdictional and discharges are not jurisdictional

whether individual water bodies are jurisdictional and discharges are subject to permitting, and whether individual water bodies are not jurisdictional and discharges are not subject to permitting. Developing a final rule to provide the intended level of certainty and predictability, and minimizing the number of case-specific determinations, will require significant public involvement and engagement. Such involvement and engagement will allow the agencies to make categorical determinations of jurisdiction, in a manner that is consistent with the scientific body of information before the agencies—particularly on the category of waters known as "Other under."

agencies—particularly on the category of waters known as "other waters." The agencies propose to define "waters of the United States" in section (a) of the proposed rule for all sections of the CWA to mean: Traditional navigable waters; interstate waters, including interstate wetlands; the territorial seas; impoundments of traditional navigable waters, interstate waters, including interstate waters, including interstate waters, including interstate waters, as defined, of such waters; tributaries, as defined, of traditional navigable waters, interstate waters, in the territorial seas; interstate waters, in the traditional navigable waters, including waters and the territorial seas; interstate waters, in the territorial seas; in the season waters, in the season

^{1 &}quot;Interstate waters" in this preamble refers to all interstate waters including interstate wetlands.

and adjacent waters, including adjacent wetlands. Waters in these categories would be jurisdictional "waters of the United States" by rule—no additional analysis would be required. The agencies emphasize that the categorical finding of jurisdiction for tributaries and adjacent waters was not based on the mere connection of a water body to downstream waters, but rather a determination that the nexus, alone or in combination with similarly situated waters in the region, is significant based on data science the CWA and caselaw

waters in the region, is significant based on data, science, the CWA, and caselaw. In addition, the agencies propose that "other waters" (those not fitting in any of the above categories) could be determined to be "waters of the United States" through a case-specific showing that, either alone or in combination with similarly situated "other waters" in the region, they have a "significant nexus" to a traditional navigable water, interstate water, or the territorial seas. The rule would also offer a definition of significant nexus and explain how similarly situated "other waters" in the region should be identified.

The agencies acknowledge that there

The agencies acknowledge that there may be more than one way to determine which waters are jurisdictional as "other waters." To best meet their goals and responsibilities, the agencies request comment on alternate approaches to determining whether "other waters" are similarly situated and have a "significant nexus" to a traditional navigable water, interstate water, or the territorial seas. In the discussion of "other waters" later in the preamble, the agencies seek comment on these other approaches and whether they could better meet the goals of greater predictability and consistency through increased clarity, while simultaneously fulfilling the agencies' responsibility to the CWA's objectives and policies to protect water quality, public health, and the environment. Commenters will specifically be asked to comment on whether and how these alternate approaches may be more consistent with the goal of clarity, and the CWA, the best available science, and the caselaw.

the caselaw. In particular, the agencies are interested in comments, scientific and technical data, caselaw, and other information that would further clarify which "other waters" should be considered similarly situated for purposes of a case-specific significant nexus determination. The agencies seek comment on a number of alternative approaches. These alternatives include potentially determining waters in identified ecological regions (ecoregions) or hydrologic-landscape regions are similarly situated for

purposes of evaluating a significant nexus, as well as the basis for determining which ecoregions or hydrologic-landscape regions should be so identified. The agencies also solicit comment on whether the legal, technical and scientific record would support determining limited specific subcategories of waters are similarly situated, or as having a significant nexus sufficient to establish jurisdiction. But as the agencies are seeking

just as the agencies are seeking comment on a variety of approaches, or combination of approaches, as to which waters are jurisdictional, the agencies also request comment on determining which waters should be determined non-jurisdictional. The agencies seek comment on how inconclusiveness of the science relates to the use of case-specific determinations. As the science develops, the agencies could determine that additional categories of "other waters" are similarly situated and have a significant nexns and are jurisdictional by rule, or that as a class they do not have such a significant nexns and might not be jurisdictional.

The agencies pose the questions because of the strong intent to provide as much certainty to the regulated public and the regulators as to which waters are and are not subject to CWA jurisdiction. These comments on alternate approaches will inform the agencies in addition to the comments on the case-specific determination proposed in the rule.

The agencies' decision on how best to

The agencies' decision on how best to address jurisdiction over "other waters" in the final rule will be informed by the final version of the EPA's Office of Research and Development synthesis of published peer-reviewed scientific literature discussing the nature of connectivity and effects of streams and wetlands on downstream waters (U.S. Environmental Protection Agency, Connectivity of Streams and Wetlands to Downstream Waters: A Review and Synthesis of the Scientific Evidence, (Washington, DC: U.S. Environmental Protection Agency, 2013) ("Report") and other available scientific information

information. The agencies also propose to exclude specified waters from the definition of "waters of the United States" in section (b) of the proposed rule. The agencies propose no change to the exclusion for waste treatment systems designed consistent with the requirements of the CWA, no change to the exclusion for prior converted cropland, 2 and no

change to the regulatory status of water transfers. The agencies propose, for the first time, to exclude by regulation certain waters and features over which the agencies have as a policy matter generally not asserted CWA jurisdiction. Codifying these longstanding practices supports the agencies goals of providing greater clarity, certainty, and predictability for the regulated public and the regulators. Waters and features that are determined to be excluded under section (b) of the proposed rule will not be jurisdictional under any of the categories in the proposed rule under section (a). There is no recapture provision for these excluded waters in the proposal.

In light of the Supreme Court decisions in SWANCC and Rapanos, the

In light of the Supreme Court decisions in SWANCC and Rapanos, the scope of regulatory jurisdiction in this proposed rule is narrower than that under the existing regulations. See 40 CFR 122.2 (defining "waters of the United States").

CFR 122.2 (defining "waters of the United States").

The rule does not affect longstanding permitting exemptions in the CWA for farming, sliviculture, ranching and other specified activities. Where waters would be determined jurisdictional under the proposed rule, applicable exemptions in the CWA would continue to preclude application of CWA permitting requirements.

requirements.
Finally, the agencies retain the existing regulatory definitions for the terms "adjacent" and "wetlands." The agencies propose for the first time to define the terms "neighboring," "riparian area," "floodplain," "tributary," and "significant nexus." This proposal does not affect Congressional policy to preserve the primary removabilities and rights of

This proposal does not affect Congressional policy to preserve the primary responsibilities and rights of states to prevent, reduce, and eliminate pollution, to plan the development and use of land and water resources, and to consult with the Administrator with respect to the exercise of the Administrator's authority under the CWA. CWA section 101(b).

consult with the Administrator with respect to the exercise of the Administrator's authority under the CWA. CWA section 101(b).

This proposal also does not affect Congressional policy not to supersede, abrogate or otherwise impair the authority of each State to allocate quantities of water within its jurisdiction and neither does it affect the policy of Congress that nothing in the CWA shall be construed to supersede or abrogate rights to quantities of water which have heen established by any state. CWA section 101(e).

101(g).

This proposal requests public comment on issues associated with the

² The term "waters of the United States" does not include prior converted cropland, which is currently defined by the U.S. Department of Agriculture (USDA) for purposes of the Agriculture

Act of 2014 at 7 CFR 122.2. EPA and the Corps use the USDA definition of prior converted cropland for purposes of determining jurisdiction under the CWA.

agencies' proposed regulatory definition of "waters of the United States." Because the agencies do not address the exclusions from the definition of "waters of the United States" for waste treatment systems and prior converted cropland or the existing definition of "wetlands" in this proposed rule the agencies do not seek comment on these existing regulatory provisions. This notice also solicits information and data from the general public, the scientific community, and tribal, state and local resource agencies on the aquatic resource, implementation, and economic implications of a definition of "waters of the United States" as described in the proposal. The goal of the agencies is to ensure the regulatory definition is consistent with the CWA as interpreted by the Supreme Court, and as supported by science, and to and as supported by science, and to provide maximum clarity to the public, as the agencies work to fulfill the CWA's objectives and policy to protect water quality, public health, and the

Table of Contents

- I. General Information
 A. How can I get copies of this document and related information?
 B. Under what legal authority is this proposed rule issued?
 II. Background

- proposed rule issued?

 I. Background
 A. Executive Summary
 Definition of Waters of the United States
 C. Background on Scientific Review and
 Significant Nexus Analysis
 J. Scientific Synthesis
 L. Scientific Synthesis
 L. Summary of Significant Nexus
 Conclusions
 III. Proposed Definition of Waters of the
 United States
 A. Summary of Proposed Rule
 B. Traditional Navigable Waters
 C. Interstate Waters
 D. Territorial Seas

- D. Territorial Seas
- E. Impoundments F. Tributaries
- G. Adjacent Waters H. Other Waters
- I. Waters That Are Not Waters of the United States

- 1. Waters 1 hat Are Not Waters of the United States
 1V. Related Acts of Congress, Executive Orders, and Agency Initiatives
 A. Executive Order 12866: Regulatory Planning and Review
 B. Paperwork Reduction Act
 C. Regulatory Flexibility Act
 D. Unfunded Mandates Reform Act
 E. Executive Order 13132: Federalism
 F. Executive Order 13137: Consultation and Coordination With Indian Tribal
 Governments
 G. Executive Order 13045: Protection of Children From Environmental Health and Safety Risks
- and Safety Risks H. Executive Order 13211: Actions
- Concerning Regulations That Significantly Affect Energy Supply, Distribution, or Use

- I. National Technology Transfer and
- Advancement Act J. Executive Order 12898: Federal Actions To Address Environmental Justice in Minority Populations and Low-Income

Populations K. Environmental Documentation Appendix A. Scientific Evidence Appendix B. Legal Analysis

I. General Information

- A. How can I get copies of this document and related information?
- 1. Docket. EPA and the Corps of Docket. EPA and the Corps of Engineers have established an official public docket for this action under Docket Id. No. EPA-HQ-OW-2011-0880. The official public docket consists of the document specifically referenced in this action, any public comments received, and other information related to this action. Although a part of the received, and other mormanon related to this action. Although a part of the official docket, the public docket does not include Confidential Business Information (CBI) or other information whose disclosure is restricted by statute. The official public docket is the collection of materials that is available for public viewing at the OW Docket. collection of materials that is available for public viewing at the OW Docket, EPA West, Room 3334, 1301
 Constitution Ave. NW., Washington, DC 20004. This Docket Facility is open from 8:30 a.m. to 4:30 p.m., Monday through Friday, excluding legal holidays. The OW Docket telephone number is 202–566, 2429. A researable for will be 566-2426. A reasonable fee will be charged for copies.
- 2. Electronic Access. You may access this Federal Register document electronically through the EPA Internet under the "Federal Register" listings at http://www.regulations.gov. An electronic version of the public docket is available through EPA's electronic public docket and comment system, EPA Dockets. You may use EPA Dockets EPA Dockets. You may use EPA Dockets at http://www.regulations.gov to view public comments, access the index listing of the contents of the official public docket, and to access those documents in the public docket that are available electronically. For additional information about EPA's public docket, visit the EPA Docket Center bomepage at http://www.epa.gov/epahome/ at http://www.epa.gov/epahome/ dockets.htm. Although not all docket materials may be available electronically, you may still access any of the publicly available docket materials through the Docket Facility identified earlier.

B. Under what legal authority is this proposed rule issued?

The authority for this proposed rule is the Federal Water Pollution Control Act, 33 U.S.C. 1251, et seq.

II. Background

A. Executive Summary

The U.S. Environmental Protection Agency (EPA) and the U.S. Army Corps of Engineers (Corps) publish for public comment a proposed rule defining the scope of waters protected under the Clean Water Act (CWA), in light of the U.S. Supreme Court cases in U.S. v. U.S. Supreme Court cases in U.S. v. Riverside Bayview Homes, Solid Waste Agency of Northern Cook County v. U.S. Army Corps of Engineers (SWANCC), and Rapanos). The purposes of the proposed rule are to ensure protection of our nation's aquatic resources and make the process of identifying "waters of the United States" less complicated and more efficient. The rule achieves these goals by increasing CWA program transparency, predictability, and consistency. This rule will result in more effective and efficient CWA permit evaluations with increased certainty and more effective and efficient CWA permit evaluations with increased certainty and less litigation. This rule provides increased clarity regarding the CWA regulatory definition of "waters of the United States" and associated definitions and concepts.

EPA's Office of Research and Development prepared a draft peer-reviewed synthesis of published peer-reviewed synthesis of published peer-proviewed scientific literature diversing

reviewed scientific literature discussing the nature of connectivity and effects of streams and wetlands on downstream waters (U.S. Environmental Protection Agency, Connectivity of Streams and Wetlands to Downstream Waters: A Review and Synthesis of the Scientific Evidence, (Washington, DC: U.S. Environmental Protection Agency, 2013)) ("Report"). The Report is under review by EPA's Science Advisory Board, and the rule will not be finalized Board, and the rule will not be final Report until that review and the final Report are complete. This proposal is also supported by a body of peer-reviewed scientific literature on the connectivity of tributaries, wetlands, adjacent open waters, and other open waters to downstream waters and the invector downstream waters and the important effects of these connections on the chemical, physical, and hiological integrity of those downstream waters. Appendix A of this preamble

summarizes currently available scientific literature and the Report that are part of the administrative record for are part of the administrative record for this proposal and explains how this scientific information supports the proposed rule. Additional data and information likely will become available during the rulemaking process, including that provided during the public comment process, and by additional research, studies, and investigations that take place before the rulemaking process is concluded. The

agencies are specifically requesting information that would inform the decision on how best to address "other waters." At the conclusion of the rulemaking process, the agencies will review the entirety of the completed administrative record and determine at that time what, if any, adjustments are appropriate for the final rule.

"Waters of the United States," which include wellands rives these address the second include the second s

"Waters of the United States," which include wetlands, rivers, streams, lakes, ponds and the territorial seas, provide many functions and services critical for our nation's economic and environmental health.3 In addition to providing habitat, rivers, lakes, ponds and wetlands cleanse our drinking water, ameliorate storm surges, provide invaluable storage capacity for some flood waters, and enhance our quality of life by providing myriad recreational opportunities, as well as important water supply and power generation benefits. A desire to protect these vital resources led Congress to pass the CWA in 1972 in order to restore and maintain the chemical, physical, and biological integrity of our nation's waters while recognizing, preserving, and protecting the primary responsibilities and rights of states to prevent, reduce, and eliminate pollution within their borders. Decades of experience implementing the CWA's programs and existing science provide strong support for the regulatory and policy underpinnings of the proposed rule. The proposed rule was developed with an enhanced understanding of the importance of all aspects of tributary, wetland, and lake and pond systems and the ecological

Interest and the ecological functions and services they provide. The proposed rule will reduce documentation requirements and the time currently required for making jurisdictional determinations. It will provide needed clarity for regulators, stakeholders and the regulated public for identifying waters as "waters of the United States," and reduce time and resource demanding case-specific analyses prior to determining jurisdiction and any need for permit or efforcement actions.

enforcement actions.
The modern Clean Water Act was
established by the Federal Water
Pollution Control Act Amendments of
1972, which was substantially amended
in 1977 and 1987. (The 1972
amendments were to the Federal Water

Pollution Control Act originally enacted in 1948.] As stated in section 101(a), the objective of the CWA is to restore and maintain the chemical, physical, and biological integrity of the Nation's waters. Prior to the CWA, the Rivers and Harbors Appropriations Act of 1899 protected navigation and protected some waters from discharges of pollution.

The 1899 Act continues in force and

The 1899 Act continues in force and applies primarily to the "navigable waters of the United States." The 1948 Federal Water Pollution Control Act called for programs eliminating or reducing the pollution of interstate waters and tributaries thereof, and improving the sanitary condition of surface and underground waters. The jurisdictional scope of the CWA is "navigable waters," defined in section 502(7) of the statute as "waters of the United States, including the territorial seas." Both the legislative history and the caselaw confirm that "waters of the United States" in the CWA are not limited to the traditional navigable waters. It is the CWA definition that is the subject of this proposed rule.

the subject of this proposed rule.

The term "navigable waters" is used in a number of provisions of the CWA, including the section 402 National Pollutant Discharge Elimination System (NPDES) permit program, the section 404 permit program, the section 311 oil spill prevention and response program, the water quality standards and total maximum daily load programs under section 303, and the section 401 state water quality certification process. However, white there is only one CWA definition of "waters of the United States," there may be other statutory factors that define the reach of a particular CWA program or provision. 5

The CWA leaves it to EPA and the Corps to define the term "waters of the United States." Existing regulations (last codified in 1986) define "waters of the United States" as traditional navigable waters, interstate waters, all other waters that could affect interstate or foreign commerce, impoundments of waters of the United States, tributaries, the territorial seas, and adjacent wetlands, 33 CFR 328.3: 40 CFR 122.2.

the territorial seas, and adjacent wetlands. 33 CFR 328.3; 40 CFR 122.2. The U.S. Supreme Court addressed the scope of "waters of the United States" protected by the CWA in United States v. Riverside Baywiew Homes, 474 U.S. 121 (1985), which involved wetlands adjacent to a traditional navigable water in Michigau. In a unanimous opinion, the Court deferred to the Corps judgment that adjacent wetlands are "inseparably bound up" with the waters to which they are adjacent, and upheld the inclusion of adjacent wetlands in the regulatory definition of "waters of the United States." The Court observed that the broad ohjective of the CWA to restore the integrity of the nation's waters "incorporated a broad, systemic view of the goal of maintaining and improving water quality. . . Protection of aquatic ecosystems, Congress recognized, demanded broad federal authority to control pollution, for "(water moves in hydrologic cycles and it is essential that discharge of pollutants be controlled at the source.' In keeping with these views, Congress chose to define the waters covered by the Act broadly." Id. at 133 (citing Senate Renort 92–414).

covered by the Act broadly." Id. at 133 (citing Senate Report 92—414). The issue of CWA regulatory jurisdiction over "waters of the United States" was addressed again by the Supreme Court in Solid Waste Agency of Northern Cook County. U.S. Army Corps of Engineers, 531 U.S. 159 (2001). In SWANCC, the Court (in a 5—4 opinion) held that the use of "isolated" nonnavigable intrastate ponds by migratory birds was not by itself a sufficient basis for the exercise of Federal regulatory authority under the

¹ The agencies use the term "water" and "waters" in the proposed rule in categorical reference to rivers, streams, ditches, wetlands, ponds, lakes, playss, and other types of natural or man-made aquatic systems. The agencies use the terms "waters" and "water budies" interchangeably in this preamble. The terms do not refer solely to the water contained in these aquatic systems, but to the system as a whole including associated chemical, physical, and biological features.

particular CWA program or provision.⁵

While section 311 uses the phrese "navigable waters of the United States." FPA has interpreted it to have the same breadth as the phrase "navigable waters" used elsewhere in section 311, and in other sectious of the CWA. See United States v. Texns Fipe Line Co., 611 F.2d 343, 347 (10th Cit. 1979); United States v. Ashland Oil & Tronsp. Ca., 504 F.2d 1317, 1324–25 (6th Cit. 1974), In 2002, EPA revised its regulatory definition of "waters of the United States" in 40 CFR part 112 to ensure that the actual lauguage of the rule was consistent with the regulatory language of other CWA programs. Oil Follution & Response; Non-Transportation-Related Onshore & Offshore Facilities, 67 FR 47042, July 17, 2002. A district court wacated the rule for failure to comply with the Administrative Procedure Act, and reinstated the prior regulatory language. American Petroloum Ins. v. Johnson, 541 F. Supp., 2 165 (D. DC 2008). However, EPA interprets "navigable waters of the United States" in CWA section 311(b), in the pre-2002 regulations, and in the 2002 rule to have the same meaning as "navigable waters" in CWA section 502(7).

For example, the CWA section 402 (33 U.S.C. 3 For example, the CWA section 402 (33 U.S.C. 3 For example, the CWA section 402 (33 U.S.C.)

CWA section 502(7).

§ For example, the CWA section 402 (33 U.S.C. § 1342) program regulates discharges of pollutants from "point sources" to "waters of the United States," whether these pollutants reach jurisdictional waters directly or indirectly. The

CWA. The Court noted that in the Riverside case it had "found that Congress" concern for the protection of water quality and aquatic ecosystems indicated its intent to regulate wetlands

indicated its intent to regulate wetlands 'inseparably bound up with the "waters" of the United States' " and that "[i]t was the significant nexus between the wetlands and 'navigable waters' that informed our reading of the CWA" in that case. Id. at 167.

Five years after SWANCC, the Court again addressed the CWA term "waters of the United States" in Rapanos v. United States, 547 U.S. 715 (2006). Rapanos involved two consolidated cases in which the CWA had heen applied to wetlands adjacent to applied to wetlands adjacent to nonnavigable tributaries of traditional navigable waters. All Members of the Court agreed that the term "waters of the United States" encompasses some waters that are not navigable in the traditional sense. A four-Justice traditional sense. A four-Justice plurality in Rapanos interpreted the term "waters of the United States" as covering "relatively permanent, standing or continuously flowing hodies of water. . ." id. at 739, that are connected to traditional navigable waters, id. at 742, as well as wetlands with a continuous surface connection to such relatively neuronant water hodies. such relatively permanent water bodies, id. The Rapanos plurality noted that its reference to "relatively permanent" waters did "not necessarily exclude streams, rivers, or lakes that might dry up in extraordinary circumstances, such as drought," or "seasonal rivers, which contain continuous flow during some

as urought, or seasonal rivers, which contain continuous flow during some months of the year but no flow during dry months. . . "Id. at 732 n.5 (emphasis in original). Justice Kennedy's concurring opinion took a different approach than the planality's. Justice Kennedy concluded that the term "waters of the United States" encompasses wetlands that "possess a significant nexus' to waters that are or were navigable in fact or that could reasonably be so made." Id. at 759 (Kennedy, J., concurring in the judgment) (quoting SWANCC, 531 U.S. at 167). He stated that wetlands possess the requisite significant nexus if the wetlands, "either alone or in combination with similarly situated fwetllands in the region, significantly affect the chemical, physical, and twetilands in the region, significantly affect the chemical, physical, and biological integrity of other covered waters more readily understood as 'navigable.' '547 U.S. at 780. Kennedy's opinion notes that such a relationship with navigable waters must be more than "expeditive or implemental," I.J. at 1975. than "speculative or insubstantial." Id. Because Instice Kennedy identified "significant nexus" as the touchstone for CWA jurisdiction, the agencies determined that it is reasonable and

appropriate to apply the "significant nexus" standard for CWA jurisdiction that Justice Kennedy's opinion applied to adjacent wetlands to other categories of water bodies as well (such as to tributaries of traditional navigable

tributaries of traditional navigable waters or interstate waters, and to "other waters" lot determine whether they are subject to CWA jurisdiction, either by rule or on a case-specific basis. The four dissenting Justices in Rapanos would have affirmed the court of appeals' application of the pertinent regulatory provisions, concluding that the term "waters of the United States" encompasses, inter alia, all tributaries and wetlands that satisfy either the plurality's standard or that of Justice Kennedy. Id. at 810 & n.14 (Stevens, I. Kennedy. Id. at 810 & n.14 (Stevens, J., dissenting). Neither the plurality nor the Kennedy opinion invalidated any of the

Kennedy opinion invalidated any of the regulatory provisions defining "waters of the United States."

The proposed rule would revise the existing definition of "waters of the United States" consistent with the science and the above Supreme Court cases. The proposed rule retains much of the structure of the agencies' longstanding definition of "waters of the United States," and many of the existing provisions of that definition where revisions are not required in light of revisions are not required in light of Supreme Court decisions or other bases for revision. As a result of the Supreme Court decisions in SWANCC and Rapanos, the scope of regulatory jurisdiction of the CWA in this

jurisdiction of the CWA in this proposed rule is narrower than that under the existing regulations. The most substantial change is the proposed deletion of the existing regulatory provision that defines "waters of the "United States" as all other waters such as intrastate lakes. other waters such as intrastate takes, rivers, streams (including intermittent streams), mudflats, sandflats, wetlands, sloughs, prairie potholes, wet meadows, playa lakes, or natural ponds, the use, degradation or destruction of which degradation of destruction of which could affect interstate or foreign commerce including any such waters: Which are or could be used by interstate or foreign travelers for recreational or other purposes; from which fish or shellfish are or could be taken and sold in interstate or foreign commerce; or in interstate or foreign commerce; or which are used or could be used for industrial purposes by industries in interstate commerce. 33 CFR 328.3(a)(3); 40 CFR 122.2 Under the proposed rule, these "other waters" (those which do not fit within the proposed categories of waters jurisdictional by rule) would only be jurisdictional upon a case-specific determination that they have a significant news as defined by the significant nexus as defined by the proposed rule. Waters in a watershed in which there is no connection to a

traditional navigable water, interstate water or the territorial seas would not be "waters of the United States." In addition, the proposed rule would for the first time explicitly exclude some features and waters over which the agencies have not generally asserted jurisdiction and in so doing would eliminate the authority of the agencies eminate the authority of the agencies to determine in case specific circumstances that some such waters are jurisdictional "waters of the United

The agencies propose a rule that is clear and understandable and that protects the nation's waters, consistent with the law and currently available scientific and technical expertise. Continuity with the existing regulations, where possible, will reduce confusion and will reduce transaction costs for the regulated community and the agencies. To that same end, the agencies also propose, where consistent with the law and their scientific and technical and their scientific and technical expertise, categories of waters that are and are not jurisdictional, as well as categories of waters and wetlands that require a case-specific significant nexus evaluation to determine whether they are "waters of the United States" and protected by the CMA. Finally, the protected by the CWA. Finally, the agencies propose definitions for some of the terms used in the proposed regulation.

This preamble also preseuts several alternative options for determining the jurisdictional status of certain "other purisdictional status of certain "other waters" that would rely less, or not at all, on case-specific significant nexus evaluations. The agencies may adopt one or a combination of these options for the final rule, after considering public comment and the evolving countries it is the purisdiction. scientific literature on connectivity of waters. This preamble also seeks comment on a number of other ways that the agencies might provide even greater clarity, certainty, and predictability in determining which "other waters" are and are not subject to CWA jurisdiction. The agencies to UM jurisdiction. The agencies evaluated extensive peer reviewed science in making their determination in the proposed rule. However, the agencies also seek additional information that would enhance the predictability and accuracy of its jurisdictional determinations. The agencies request the type of information on the evolving scientific literature on connectivity of waters that could allow the agencies to rely less on case-specific significant nexns evaluations.

Under the proposed first section of the regulation, section (a), the agencies propose to define the "waters of the United States" for all sections

- (including sections 301, 311, 401, 402, 404) of the CWA to mean:
 All waters which are currently used, were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters which are subject to the ebb and flow of the
- All interstate waters, including
- All interstate waters, including interstate wetlands;
 The territorial seas;
 All impoundments of a traditional navigable water, interstate water, the territorial seas or a tributary;
 • All tributaries of a traditional
- All thousands of a traditional navigable water, interstate water, the territorial seas or impoundment;
 All waters, including wetlands,
- adjacent to a traditional navigable water, interstate water, the territorial seas, impoundment or tributary; and

 On a case-specific basis, other
- waters, including wetlands, provided that those waters alone, or in combination with other similarly situated waters, including wetlands, located in the same region, have a significant nexus to a traditional navigable water, interstate water or the territorial seas.

As discussed in further detail helow. the rule would not change the following provisions of the existing rule (although some provisions have been renumbered): Traditional navigable waters; interstate waters; the territorial waters; interstate waters; the territorial seas; and impoundments of "waters of the United States." In paragraph (a)(5) of the proposed rule, the agencies propose that all tributaries as defined in the proposed rule are "waters of the United States." While tributaries are "waters of States." While tributaries are "waters of the United States" under the existing regulation, the rule would for the first time include a regulatory definition of

'trihutary."

With this proposed rule, the agencies conclude, based on existing science and the law, that a significant nexus exists hetween tributaries (as defined in the proposed rule) and the traditional navigable waters, interstate waters, and the territorial seas into which they flow and between adjacent water bodies (as defined in the proposed rule) and traditional navigable waters, interstate waters, and the territorial seas, respectively. Consequently, this rule establishes as "waters of the United States," all trihutaries (as defined in the proposal), of the traditional navigable waters, interstate waters, and the territorial seas, as well as all adjacent waters (including wetlands). This will eliminate the need to make a casespecific significant nexus determination for trihutaries or for their adjacent waters because it has been determined that as a category, these waters have a

significant nexus and thus are "waters

of the United States."

In paragraph (a)(6) of the proposed rule, the rule would clarify that adjacent waters, rather than simply adjacent wetlands, are "waters of the United wetlands, are "waters of the United States." The rule would further clarify the meaning of "adjacent" by defining one of its elements, "neighboring." The related terms of "riparian area" and "floodplain" are also defined in the proposed rule.

The rule states that on a case-specific basic "other waters" that have a

basis "other waters" that have a significant nexus to a traditional navigable water, interstate water or the territorial seas are "waters of the United States." Unlike the categories of waters in paragraphs (a)(1) through (6), which would be jurisdictional by definition, these "other waters" would not be these "other waters" would not be "waters of the United States" by definition; rather, these "other waters" would only be jurisdictional provided that they have been determined on a case-specific hasis to have a significant nexus to a paragraph (a)(1) through (a)(3) water. Therefore, the rule also includes a definition of "significant" includes a definition of "significant nexus."

'Significant nexus'' is not itself a scientific term. The relationship that waters can have to each other and connections downstream that affect the chemical, physical, or hiological integrity of traditional navigable waters, interstate waters, or the territorial seas is not an all or nothing situation. The existence of a connection, a nexus, does not by itself establish that it is a "significant nexus." There is a gradient in the relation of waters to each other, and this is documented in the Report. The agencies propose a case-specific analysis in establishing jurisdiction over these "other waters" as consistent with the current science, the CWA, and the caselaw. A case-specific analysis allows for a determination of jurisdiction at the point on the gradient in the relationship point on the gradient in the relationship that constitutes a "significant nexus." In the proposed regulation the rule defines the following terms: adjacent, neighboring, riparian area, floodplain, tributary, wetlands, and significant nexus. However, the agencies also recognize that relying on a case-specific analysis provides less certainty to the analysis provides less certainty to the regulated public on the jurisdictional status of other waters and is considering

other approaches, as discussed later in this preamble. The proposed section (b) excludes specified waters and features from the specimen waters and neatures room the definition of "waters of the United States." Waters and features that are determined to be excluded under section (b) of the proposed rule will not be jurisdictional under any of the categories in the proposed rule under section (a), even if they would otherwise satisfy the regulatory definition. Those waters and features that would not be 'waters of the United States'' are:

- Waste treatment systems, including treatment ponds or lagoons, designed to meet the requirements of the Clean Water Act.
- Prior converted cropland. Prior converted cropiand.
 Notwithstanding the determination of an area's status as prior converted cropland by any other Federal agency, for the purposes of the Clean Water Act the final authority regarding Clean Water Act jurisdiction remains with
- Ditches that are excavated wholly in uplands, drain only uplands, and
- Ditches that do not contribute flow, either directly or through another water. to a traditional navigable water, to a traditional navigatic water, interstate water, the territorial seas or an impoundment of a jurisdictional water.

 • The following features:

 Artificially irrigated areas that would revert to upland should
- application of irrigation water to that area cease;
 artificial lakes or ponds created by
- excavating and/or diking dry land and used exclusively for such purposes as stock watering, irrigation, settling
- basins, or rice growing;
 artificial reflecting pools or
 swimming pools created by excavating
- and/or diking dry land;
 small ornamental waters created by excavating and/or diking dry land for primarily aesthetic reasons; water-filled depressions created
- incidental to construction activity:
- o groundwater, including groundwater drained through subsurface drainage systems; and gnllies and rills and non-wetland

swales.

The rule does not affect longstanding exemptions in the CWA for farming. silviculture, ranching and other activities, does not change regulatory exclusions for waste treatment systems and prior converted cropland, and does and prior converted cropland, and does not change the regulatory status of water transfers. Where waters would be determined jurisdictional under the proposed rule, applicable exemptions of the CWA would continue to preclude application of CWA permitting requirements. For example, if "other waters" are aggregated as similarly situated in the region and determined to be invisidiciously any exempt activities. he jurisdictional, any exempt activities that include a discharge to those waters that include a discharge to dross. Additional remain outside the regulatory requirements of the CWA. Exempted discharges are established under CWA sections 402, 502, and 404 and include:

Agricultural stormwater discharges; return flows from irrigated agriculture; normal farming, silvicultural, and ranching activities; upland soil and water conservation practices; construction or maintenance of farm or stock ponds or irrigation ditches; maintenance of drainage ditches; and construction or maintenance of farm, forest and temporary mining roads.

forest, and temporary mining roads.

To provide additional clarity to farmers, the agencies are today also issuing an interpretive rule clarifying the applicability of the permitting exemption provided under section 404(fl(1)(A) of the CWA to discharges of dredged or fill material associated with certain agricultural conservation practices based on the Natural Resources Conservation Service conservation practice standards and that are designed and implemented to protect and enhance water quality. This interpretive rule was developed in coordination with the U.S. Department of Agriculture, was signed by EPA and the Army, and became effective immediately. The agencies recognize, however, the value of receiving public comment on the interpretive rule and are publishing it by separate notice in the Federal Register. The public is encouraged to provide their comments on the interpretive rule to the docket on the interpretive rule, Docket Id. No. EPA-HQ-OW-2013-0820, and not to this docket. The interpretive rule and the request for comments can be found at http://www.regulations.gov via Docket Id. No. EPA-HQ-OW-2013-0820.

Documentation requirements and the time it takes to make approved jurisdictional determinations by decreasing the number of jurisdictional determinations by decreasing the number of jurisdictional determinations that require case-specific significant nexus analysis evaluations. It will improve clarity for regulators, stakeholders and the regulated public by defining certain categories of waters as "waters of the United States" that previously required case-specific analyses prior to establishing CWA jurisdiction through the approved jurisdictional determination procedures. A comprehensive review of a growing body of scientific literature, as well as the agencies' growing body of scientific and technical knowledge and field expertise, led the agencies to conclude that it is reasonable to establish certain categories of waters that are jurisdictional by rule as they have a significant nexns to an (a)(1) through (a)(3) water, specifically tributaries to traditional navigable waters, interstate

waters, or the territorial seas, and their adjacent waters and wetlands. Case-specific jurisdictional determinations would still be required for the "other waters" category in paragraph (a)(7) of the proposed rule. Under the alternate approaches affecting "other waters" described later in the preamble, the agencies request comment on the case-specific analysis.

agencies request comment on the casespecific analysis.

A review of the scientific literature,
including the Report of the peerreviewed science, shows that tributaries
and adjacent waters play an important
role in maintaining the chemical,
physical, and biological integrity of
traditional navigable waters, interstate
waters, and the territorial seas—and of
other jurisdictional waters—because of
their hydrological and ecological
connections to and interactions with
those waters. Therefore, it is appropriate
to protect all tributaries and adjacent
waters, because the tributaries, adjacent
waters, because the tributaries, adjacent
waters, and the downstream traditional
navigable waters, interstate waters, and
the territorial seas function as an
integrated system. Water flows through
tributaries to downstream traditional
navigable waters, interstate waters, and
the territorial seas, and that water
carries pollutants that affect the
chemical, physical, and biological
integrity of the (a)(1) through [a](3)
waters, including water quality,
fisheries, recreation, and other
ecological services.

Institutes, retreating, and other cological services. In discussing the significant nexus standard, lustice Kennedy stated: "The required nexus must be assessed in terms of the statute's goals and purposes. Congress enacted the [CWA] to 'restore and maintain the chemical, physical, and biological integrity of the Nation's waters. . . '" 547 U.S. at 779. To protect the integrity of the waters subject to the CWA, the significant nexus standard must be implemented in a manner that restores and maintains any of these three attributes of traditional navigable waters, interstate waters, or the territorial seas. Waters adjacent to tributaries also provide ecological functions that, in conjunction with the functions provided by the tributaries they are adjacent to, have a significant influence on the chemical, physical, and biological integrity of downstream traditional navigable waters, interstate waters, and the territorial seas.

territorial seas.
Examples of the important functions provided by adjacent waters are the sequestering or transformation of pollutants to reduce inputs to tributaries and subsequently to downstream [a][1] through [a][3] waters, water storage, and sediment trapping. Thus, in some instances, the significance of adjacent

waters is to prevent or delay a hydrological connection with downstream waters and store water and/ or pollutants. Given the large scale systematic interactions that occur, and the substantial effects that result, among tributaries, adjacent waters, and the downstream traditional navigable waters, interstate waters, or the territorial seas, a significant nexus exists that warrants making those categories of waters jurisdictional by rule.

waters jurisdictional by rule.
States and tribes play a vital role in the implementation and enforcement of the CWA. Section 101(b) of the CWA states that it is Congressional policy to preserve the primary responsibilities and rights of states to prevent, reduce, and eliminate pollution, to plan the development and use of land and water resources, and to consult with the Administrator with respect to the exercise of the Administrator's authority under the CWA.

Of particular importance, states and tribes may be authorized by the EPA to administer the permitting programs of sections 402 and 404. Forty-six states and the Virgin Islands are authorized to administer the NPDES program under section 402, while two states administer the section 404 program. Additional CWA programs that utilize the definition of "waters of the United States" and are of importance to the states and tribes include the section 311 oil spill prevention and response program, the water quality standards and total maximum daily load programs under section 303, and the section 401 state water quality certification process. States and tribes, consistent with the

States and tribes, consistent with the CWA, retain full authority to implement their own programs to more broadly or more fully protect the waters in their state. Under section 510 of the Act, unless expressly stated in the CWA, nothing in the Act precludes or denies the right of any state or trihe to establish more protective standards or limits than the Federal CWA. Many states and tribes, for example, protect groundwater, and some others protect wetlands that are vital to their environment and economy but which are outside the regulatory jurisdiction of the CWA. Nothing in this proposed rule would limit or impede any existing or future state or tribal efforts to further protect their waters. In fact, providing greater clarity regarding what waters are subject to CWA jurisdiction will reduce the need for permitting authorities, including the states and tribes that have authorized section 402 and 404 CWA permitting programs, to make jurisdictional determinations on a case-specific basis, leaving them with more resources to protect their waters.

This proposal also recognizes the unique role of states related to water quantity and as stated in the CWA. The proposal does not affect Congressional policy not to supersede, abrogate or otherwise impair the authority of each state to allocate quantities of water within its jurisdiction and neither does it affect the policy of Congress that nothing in the CWA shall be construed to supersede or abrogate rights to quantities of water which have been established by any state. CWA section 1016.

otherwise of yay, state. CWA section 101[g]. While a principal goal of this rulemaking is to improve clarity for determining jurisdiction under the CWA in light of the two most recent Supreme Court cases with the dual benefits of improving certainty and greator efficiency for determining whether waters are covered, there are other tools and approaches underway to increase efficiency as well. For example, to improve efficiencies, the EPA and the Corps are working in partnership with states to develop new tools and resources that have the potential to improve precision of desk based jurisdictional determinations at lower cost and improved speed than the existing primarily field-based approaches. In the normal course of making jurisdictional determinations, information derived from field observation is not always required in cases where a "desktop" analysis furnishes sufficient information to make the requisite findings. However, for more complex or difficult jurisdictional determinations, it may be helpful to supplement such information with field

supplement such information with field observation.

EPA and the Corps are very interested in identifying other emerging technologies or approaches that would save time and money and improve efficiency for regulators and the regulated community in determining which waters are subject to CWA jurisdiction. The agencies specifically invite comment on this tonic.

which waters are subject to CWA jurisdiction. The agencies specifically invite comment on this topic.

The proposed rule will benefit the nation by helping to protect the services and functions these important water bodies provide consistent with the overarching objective of the CWA.

B. The Clean Water Act and Regulatory Definition of "Waters of the United States"

The Federal Water Pollution Control Act Amendments, now known as the Clean Water Act, were enacted in 1972. The objective of the CWA is to restore and maintain the chemical, physical, and biological integrity of the Nation's waters. CWA section 101(a). Its specific provisions were designed to improve

the protection of the nation's waters provided under earlier statutous schemes such as certain sections of the Rivers and Harbors Appropriations Act of 1899 ("RHA") (33 U.S.C. 03, 407, 411) and the Federal Water Pollution Control Act of 1948 (62 Stat. 1155) and its subsequent amendments through 1970. The jurisdictional scope of the CWA is "navigable waters." defined in the statute as "waters of the United States, including the territorial seas." CWA section 502(7). The CWA leaves it to the agencies to define the term "waters of the United States," Existing agency regulations define "waters of the United States." Existing agency regulations define "waters of the United States, at raditional navigable waters, interstate waters, all other waters that could affect interstate or foreign commerce, impoundments of waters of the United States, tributaries, the territorial seas, and adjacent wetlands. 33 CFR 328.3; 40 CFR 230.3(s). Counterpart and substantively similar regulatory definitions appear at 40 CFR 110.1, 112.2, 116.3, 117.1, 122.2, 232.2, 300.5, part 300 App. E, 302.3 and 401.11.

401.11.

The current regulatory definition of "waters of the United States" provides two specific exclusions from "waters of the United States." Waste treatment systems designed to meet the requirements of the CWh and prior converted cropland are not "waters of the United States." under the agencies' current regulations. Under the regulations for prior converted cropland, notwithstanding the determination of an area's status as prior converted cropland by any other Federal agency, for the purposes of the Clean Water Act, the final authority regarding Clean Water Act jurisdiction remains with EPA. 33 CFR 328.3(a)(8).

- C. Background on Scientific Review and Significant Nexus Analysis
- 1. Scientific Synthesis

EPA's Office of Research and Development prepared a draft peerreviewed synthesis of published peerreviewed scientific literature discussing the nature of connectivity and effects of
streams and wetlands on downstream
waters (U.S. Environmental Protection
Agency, Connectivity of Streams and
Wetlands to Downstream Waters: A
Review and Synthesis of the Scientific
Evidence, (Washington, DC: U.S.
Environmental Protection Agency,
2013), (the "Report")). The draft Report
provides a review and synthesis of the
scientific information pertaining to
chemical, physical, and biological
connections from streams, wetlands,
and open waters such as oxbow lakes,
to downstream larger water bodies such

as rivers, lakes, and estuaries in watersheds across the United States and the strength of those connections. While the scientific literature does not use the term "significant nexus," there is a substantial body of scientific literature on the chemical, physical, and biological connections between tributaries and adjacent waters and "other waters" and the downstream larger waters, and on the strength and

Tother waters and the downstream larger waters, and on the strength and the effect of these connections. Connectivity is a foundational concept in hydrology and freshwater ecology. Connectivity is the degree to which components of a system are joined, or connecticed, by various transport mechanisms and is determined by the characteristics of both the physical landscape and the biota of the specific system. The structure and function of downstream waters are highly dependent on the constituent materials contributed by and transported through waters located elsewhere in the watershed. Connectivity for purposes of interpreting the scope of "waters of the United States" under the CWA serves to demonstrate the "nexus" between upstream water hodies and the downstream traditional navigable water, interstate water, or the territorial sea. Based on the literature, the Office of Research and Development was able to assess the types of connections between the tributaries and adjacent waters and the chemical, physical, and biological integrity of downstream traditional navigable waters, interstate waters, and the territorial seas.

However, as Justice Kennedy found in Hapanos, a mere hydrologic connection may not suffice in all cases to establish CWA jurisdiction and there needs to be "some measure of the significance of the connection for downstream water quality." 547 U.S. at 784-785 ("mere hydrologic connection should not suffice in all cases; the connection may he too insubstantial for the hydrologic linkage to establish the required nexus with navigable waters as traditionally understood"). The literature does not use the term "significant" but does provide information on the strength of the effects on the chemical, pbysical, and biological functioning of the downstream water bodies from the connections among tributaries and adjacent waters and "other waters" and

downstream water bodies from the connections among tributaries and adjacent waters and "other waters" and those downstream waters.

While "strength" of connections to and offects on the integrity of downstream waters and the "significance" of the nexus to the integrity of downstream waters are clearly related inquiries, "significant" is not a scientific term but rather a

determination of the agencies in light of the law and science. The relative strength of downstream effects informs the agencies' conclusions about the significance of those effects for purposes of interpreting the CWA. The data and conclusions in the Report concerning the strength of the relevant connections and effects of certain types of waters on downstream waters provide a foundation for the agencies' determinations that certain waters have effects on the chemical, physical, and biological integrity of traditional navigable waters, interstate waters, or the territorial seas that are "significant nexus. As clarified in the proposed definition of "significant nexus" and consistent with Justice Kennedy's guidance, for an effect to be significant it must be more than speculative or insubstantial.

than speculative or insubstantial.

The Office of Research and
Development's review and synthesis of
more than a thousand publications from
peer-reviewed scientific literature
focuses on evidence of those
connections from various categories of
waters, evaluated singly or in aggregate,
which affect downstream waters and the
strongth of that effect. Much of the
scientific literature relied on does not
use the terms traditional navigable
waters, interstate waters, or the
territorial seas. However, evidence of
strong chemical, physical, and
biological connections to larger rivers,
estuaries and lakes applies to that subset
of rivers, estuaries and lakes that are
traditional navigable waters, interstate
waters, or the territorial seas. The
objectives of the Report are (1) to
provide a context for considering the
evidence of connections between
downstream waters and their tributary
waters, and (2) to summarize current
understanding about these connections,
the factors that influence them, and the
mechanisms by which the connections
affect the function or condition of
downstream waters. The connections
and mechanisms discussed in the
Report include transport of physical
materials and chemicals such as water,
wood, sediment, nutrients, pesticides,
and mercury; functions that adjacent
waters perform, such as storing and
cleansing water: movement of organisms
or their seeds and eggs; and hydrologic
and biogeochemical interactions
occurring in and among surface and
groundwater flows, including hyporheic
zones and alluvial aquifers.

groundwater involves, including hypornetic zones and alluvial aquifers. The Report concludes that the scientific literature clearly demonstrates that streams, regardless of their size or how frequently they flow, strongly influence how downstream waters function. Streams supply most of the water in rivers, transport sediment and organic matter, provide habitat for many species, and take up or change nutrients that could otherwise impair downstream waters. The Report also concludes that wetlands and open waters in floodplains of streams and rivers and in riparian areas (transition areas between terrestrial and aquatic ecosystems) have a strong influence on downstream waters. Such waters act as the most effective buffer to protect downstream waters from nonpoint source pollution (such as nitrogen and phosphorus), provide hahitat for breeding fish and aquatic insects that also live in streams, and retain floodwaters, sediment, nutrients, and contaminants that could otherwise negatively impact the condition or function of downstream waters

containmants fact count of merwise negatively impact the condition or function of downstream waters. Regarding wetlands and open waters located outside of floodplains and riparian areas, the Report finds that they provide many benefits to rivers, lakes, and other downstream waters. If the wetland or open water has a surface or shallow subsurface water connection to the river network, it affects the condition of downstream waters. Where the wetland or open water is not connected to the river network through surface or shallow subsurface water, the type and degree of connectivity varies geographically, topographically, and ecologically, such that the significance of the connection is difficult to generalize across the entire group of waters.

Lastly, the Report concludes that to understand the health, behavior, and sustainability of downstream waters, the effects of small water bodies in a segregate. The contribution of material by, or an important water-retention function of, a particular stream, other open water, or wetland might he small, but the aggregate contribution by an entire class of streams, other open waters, and wetlands (e.g., all ephemeral streams in the river network) can be substantial.

In the proposed rule, the agencies

interpreted the scope of "waters of the United States" in the CWA based on the information and conclusions in the Report, other relevant scientific literature, the agencies' technical expertise, and the objectives and requirements of the Clean Water Act. In light of this information, the agencies made judgments about the nexus between the relevant waters and the significance of that nexus and concluded that tributaries and adjacent waters, each as defined by the proposed rule, have a significant nexus such that

they are appropriately jurisdictional by

The Report is currently undergoing peer review by EPA's Scientific.
Advisory Board (SAB) and is available at http://yosemite.epa.gov/sob/
watershed%20Connectivity%20Report?
OpenDocument. A previous version of the Report dated October 11, 2011 underwent an independent peer review organized by the Eastern Research Group, Inc. (ERG). The purpose of the ERG-organized peer review was to determine whether the review and interpretation of the scientific literature was complete and correct, and if the conclusions in the Report were supported by the evidence. ERG was responsible for identifying and selecting the expert reviewers, managing the review, organizing and facilitating a one-day peer review meeting, and preparing the peer review summary report. ERG provided the reviewers with a letter of instruction and the technical charge, which asked for their comments on the various aspects of the draft report.

report.

Tegorit.

ERG convened the one-day meeting on January 31, 2012, in Washington, DC. The meeting was closed to the public and considered an internal EPA deliberative process. Observers from EPA and the Corps attended to listen to the discussions. At the close of the meeting, the reviewers developed some brief highlights of their discussions, which were provided with written postmeeting comments from individual reviewers in a report from ERG titled "Peer Review Meeting of EPA's Draft Report: Connectivity of Streams and Wetlands to Downstream Waters—A Review and Synthesis of the Scientific Evidence, Post-Meeting Comments," dated February 16, 2012. The Office of Research and Development rovised its Report in response to the peer review comments and submitted the Report to the SAB for peer review and a public process. This peer review report is available in the docket for the proposed rule.

available in the docket of the property rule.

The agencies have identified key aspects of the Report throughout this preamble and in Appendix A. The Report summarizes and assesses much of the currently available scientific literature that is part of the administrative record for this proposal, and informs the agencies during this rulemaking. Additional data and information will become available during the rulemaking process, including that provided during the public comment process, and by additional research, studies, and investigations that take place before the

rulemaking process is concluded. The agencies have relied on the best available scientific data and information—peer-reviewed literature—and would find, to the extent possible, additional peer-reviewed literature to be the most useful submissions. At the conclusion of the rulemaking process, the agencies will review the entirety of the completed administrative record, including the final Report reflecting SAB review, and make any adjustments to the final rule that are appropriate based on this record. As noted below, the agencies particularly intend to review the rule provisions related to "other waters" in light of this record, and are soliciting comment on several alternative approaches to applying the science and the law for determining whether "other waters" are similarly situated and have a "significant nexus" to a traditional navigable water, interstate water, or the territorial seas.

2. Summary of Significant Nexus Conclusions

As the agencies developed this proposed definition of "waters of the United States," the agencies carefully considered available scientific literature and propose a rule consistent with their conclusions that a particular category of waters either alone or in combination with similarly situated waters in the region, significantly affects the chemical, physical, or biological integrity of traditional navigable waters, interstate waters, or the territorial seas.

integrate waters, or the territorial seas. As discussed in this preamble and Appendix A, Iributaries as proposed to be defined perform the requisite functions for them to be considered "waters of the United States" by rule. Tributary streams exert a strong influence on the character and functioning of downstream traditional navigable waters, interstate waters, and the territorial seas, either individually or cumulatively. All tributary streams, including perennial, internitent, and ephemeral streams, are physically and chemically connected to downstream traditional navigable waters, interstate waters, and the territorial seas via channels and associated alluvial deposits where water and other materials are concentrated, mixed, transformed, and transported. Headwater streams (which can be ephemeral, intermitten to perennial), in particular, supply most of the water to downstream traditional navigable waters, interstate waters, and the territorial seas and are the most abundant stream-type in most river networks. In addition to water, tributary streams supply sediment, wood, organic matter, nutrients, chemical

contaminants, and many of the organisms found in downstream traditional navigable waters, interstate waters, and the territorial seas. Tributary streams are biologically connected to downstream traditional navigable waters, interstate waters, and the territorial seas by dispersal and migration of aquatic and semi-aquatic organisms, including fish, amphibians, plants, and invertebrates, that use both upstream and downstream habitats during one or more stages of their life cycles, or provide food resources to downstream communities. Chemical, physical, and biological connections between tributary streams and downstream traditional navigable waters, interstate waters, and the territorial seas interact via processes such as nutrient spiraling, in which tributary stream communities assimilate and chemically transform large quantities of nitrogen that would otherwise increase nutrient loading downstream.

As discussed in this preamble and Appendix A, adjacent waters, as defined in this proposal, perform the requisite functions for them to be considered "waters of the United States" by rule. Adjacent waters are either directly chemically, physically, or biologically connected with traditional navigable waters, interstate waters, and the territorial seas they are adjacent to, or they are connected to such waters through tributaries. These chemical, physical, and biological connections affect the integrity of downstream traditional navigable waters, interstate waters, and the territorial seas through the export of channel-forming sediment and woody debris, storage of local groundwater sources of baseflow for downstream waters and their tributaries, and transport of organic matter. Wetlands and open waters located in riparian and floodplain areas remove and transform nutrients such as nitrogen and phosphorus. They provide nursery habitat for fish, and colonization opportunities for stream invertebrates. Adjacent waters, including those located in riparian and floodplain areas, serve an important role in the integrity of traditional navigable waters, interstate waters, and the territorial seas because they also act as sinks for water, sediment, nutrients, and contaminants that could otherwise negatively impact traditional navigable waters, interstate waters, and the territorial seas.

Finally, some non-adjacent waters may have, in certain circumstances, a significant nexus to traditional navigable waters, interstate waters, and the territorial seas, but at this time the agencies are not proposing that a

category of such "other waters" is jurisdictional by rule. These "other waters" may provide numerous functions of potential benefit to traditional navigable waters, interstate waters, and the territorial seas, including storage of floodwater; retention of nutrients, metals, and pesticides; and ro-charge of groundwater sources of river baseflow. The functions of these "other waters" may affect downstream traditional navigable waters, interstate waters, and the territorial seas, depending on the characteristics of the connection to the river network. For "other waters," connectivity varies within a watershed and over time, making it difficult to generalize about their connections to, or isolation from, traditional navigable waters, interstate waters, and the territorial seas. These "other waters" would be evaluated on a case-specific basis under the proposed rule

basis under the proposed rule.

Under the existing regulations, "other waters" (such as intrastate rivers, lakes and wetlands that are not otherwise jurisdictional under other sections of the rule) could be determined to be jurisdictional if the use, degradation or destruction of the water could affect interstate or foreign commerce. Jurisdictional decisions for these waters are being made on a case-specific basis. As a practical matter in the past, the agencies generally relied on the presence of migratory birds to indicate an effect on interstate commerce. In 2001, the Supreme Court in SWANCC rejected the use of migratory hirds as a sole basis to establish jurisdiction over such "isolated" intrastate nonnavigable waters.

The proposed rule provides that

The proposed rule provides that "other waters" can be jurisdictional where there is a case-specific showing of a significant nexus to traditional navigable waters, interstate waters, or the territorial seas. "Significant nexus" is uot itself a scientific term. The science of connections and effects on the chemical, physical, or biological integrity of traditional navigable waters, interstate waters, or the territorial seas informs an analysis of the facts and circumstances of the waters being considered under a "significant nexus" analysis.

Scientific literature establishes that

Scientific literature establishes that other waters" can have a relationship to each other and connections downstream that affect the chemical, physical, or biological integrity of traditional navigable waters, interstate waters, or the territorial seas. This relationship is not an all or nothing situation. The existence of a connection, a nexus, does not by itself establish that it is a "significant nexus." There is a

gradient in the relation of waters to each other, and this is documented in the Report. The agencies propose a case-specific analysis in establishing jurisdiction over these "other waters" consistent with the current science, the CWA, and the caselaw. A case-specific analysis allows for a determination of jurisdiction at the point on the gradient

in the relationship that constitutes a "significant nexus."
The support for a determination that the nexus is significant will be based on a record that documents the scientific basis for concluding which functions are provided by the waters and why their effects on a traditional navigable water, interstate water, or the territorial water, interstate water, or the territorial seas are significant, including that they are more than speculative or insubstantial. The agencies considered insubstantial. The agencies considered multiple options for determining how best to balance the science and the policy options available to address "other waters." Those options ranged from establishing jurisdiction over all "other waters" with a nexus to traditionally navigable waters, interstate waters, or the territorial seas, with the agencies determining categorically the agencies determining categorically the nexus to be significant, to declining to assert jurisdiction over any "other

The agencies did not adopt the all in or the all out approach to "other waters." Based on the information currently available in the scientific iterature, applicable caselaw, and the agencies' policy judgment about how best to provide clarity and certainty to the public regarding the jurisdictional status of "other waters" the agencies

status of "other waters" the agencies today propose the case-specific significant nexus analysis presented in this rule and explained in the preamble. In addition to the proposed "other waters" approach in this rule, the agencies are requesting comment on a range of alternate approaches to inform their docision on how best to address "other waters." The agencies will consider the full administrative record, includine comments requested and consider the full administrative record including comments requested and received, and the final Report, as revised in response to the SAB review. when developing the final rule, and may adopt one of the alternative approaches or combination of approaches and the

proposal.

The agencies solicit comment on identifying subcategories of "other waters" that have a significant nexus to waters, and the territorial seas and could be jurisdictional by rule, and subcategories of "other waters" where a significant nexus or its absence could not be determined as a class and could not be determined as a class and cool be subject to a case-specific analysis

under the rule. The Report indicates that there is evidence of very strong connections in some subcategories that are not included as jurisdictional by are not included as jurisdictional by rule. The agencies solicit comment on making such subcategories of waters with very strong connections jurisdictional by rule as well as on making subcategories of waters that do not have such connections subject to a case-specific analysis or categorically non-jurisdictional under the rule. Such comment should explain with comment should explain with supporting documentation why a particular subcategory of "other waters" might or might not have a significant nexus to traditional navigable waters, interstate waters, or the territorial seas. The agencies do not propose absolute

standards such as flow rates, surface standards such as flow rates, surface acres, or a minimum number of functions for "other waters" to establish a significant nexus. A determination of the relationship of "other waters" to traditional navigable waters, interstate waters, and the territorial seas, and consequently the significance to these waters, requires sufficient flexibility to account for the variability of conditions account for the variability of conditions across the country and the varied functions that different waters provide. The case-specific analysis called for in the proposed rule recognizes geographic and hydrologic variability in determining whether an "other water" or group of "other waters" possesses a "significant nexus" with traditional navigable waters, interstate waters, or the territorial seas

III. Proposed Definition of "Waters of the United States

A. Summary of Proposed Rule

This proposed rule retains much of the structure of the agencies' longstanding definition of "waters of the United States," and many of the existing provisions of that definition where revisions are not warranted. The agencies' goal is to promulgate a rule that is clear and understandable and protects the nation's waters, supported by science and consistent with the law. Continuity with the existing regulations where possible, will minimize confusion and will reduce transaction costs for the regulated community and the agencies. To that same end, the agencies also propose, where supported by scientific literature and consistent with the law, bright line categories of waters that are and are not jurisdictional. Waters in the "other jurisacicional, waters in the "other waters" category are not a per se jurisdictional category. While the agencies considered multiple options for addressing jurisdiction over "othe waters," the agencies concluded that

they could not determine that all "other they could not determine that all waters" were jurisdictional, or that all "other waters" were not jurisdictional. Therefore, the proposed rule requires a case-specific significant nexus evaluation to determine if such "other waters" are subject to CWA jurisdiction and the agencies are requesting comment on several alternate approaches, including approaches that would not include case-specific analysis, to inform the final rule. Finally, the agencies are for the first time proposing definitions for some of the terms used in the proposed regulation. Under section (a) the agencies

propose to define the "waters of the United States" for all sections of the

CWA to mean:

- All waters which are currently used, were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters which are subject to the ebb and flow of the
- tide;
 All interstate waters, including
- All interstate waters, moreonic interstate wetlands;
 The territorial seas;
 All impoundments of a traditional navigable water, interstate water, the territorial seas or a tributary;
 All tributaries of a traditional
- navigable water, interstate water, the
- All waters, including wetlands, adjacent to a traditional navigable water, interstate water, the territorial seas.
- interstate water, the territorial seas, impoundment or tributary; and On a case-specific basis, other waters, including wetlands, provided that those waters alone, or in combination with other similarly situated waters, including wetlands, located in the serve spring. located in the same region, have a significant nexus to a traditional navigable water, interstate water or the territorial seas.

 As discussed in further detail below.

As discussed in further detail below, the agencies do not propose to change the following provisions (although some provisions have been renumbered): Traditional navigable waters ((a)(1), see Section III.B of this preamble); interstate waters ((a)(2), see Section III.C of this preamble); the territorial seas ((a)(3), see Section III.D of this preamble); and impoundments of "waters of the United States" ((a)(4), see Section III.E of this preamble). In paragraph (a)(5), the agencies are proposing that tributaries to waters identified in paragraphs (a)(1) through (a)(4) are "waters of the United through (a)(4) are "waters of the United States." While tributaries are "waters of the United States" under the existing regulation, the agencies propose for the first time a regulatory definition of "tributary" and propose that only those waters that meet the definition and flow

directly or indirectly to an (a)(1) through orrectly or indirectly to an (a)(1) inroug (a)(3) water are "waters of the United States" (see Section III.F of this preamble). In paragraph (a)(6), the agencies propose that adjacent waters, rather than simply adjacent wetlands, are "waters of the United States." The agencies also propose for the first time to define a seriest of diagraphy. to define an aspect of adjacency—
"neighboring"—and related terms (see "neighboring"—and related terms (see Section III.G of this preamble). Finally, the agencies propose to define "waters of the United States" to include on a case-specific basis, other waters, including wetlands, provided that those waters alone, or in combination with other similarly situated waters, including wetlands, located in the same region, have a significant nexus to a water identified in paragraphs (a)(1) through (3). Unlike the per se jurisdictional categories in paragraphs (a)(1) through (6) of this section, such "other waters" are not per se jurisdictional under (a)(7); rather, these "other waters" are only jurisdictional provided that they have a significant nexus to (a)(1) through (a)(3) waters. Therefore, the agencies are providing a definition of "significant nexus" (see Section III.H of this preamble). The second section of the proposed

regulation, section (b), excludes specified waters from the definition of "waters of the United States." Those waters and features would not be 'waters of the United States" even if they would otherwise be included within the categories in (a)(1) through (a)(7) above. They are:

- Waste treatment systems, including waste treatment systems, including treatment ponds or lagoons, designed to meet the requirements of the Glean Water Act.
- Prior converted cropland.
 Notwithstanding the determination of an area's status as prior converted cropland by any other Federal agency, for the purposes of the Clean Water Act the final authority regarding Clean Water Act jurisdiction remains with EPA
- Ditches that are excavated wholly in uplands, drain only uplands, and have less than peronnial flow.
- Ditches that do not contribute flow, either directly or through another water, to a traditional navigable water, interstate water, the territorial seas or a jurisdictional impoundment.

 • The following features:
- artificially irrigated areas that would revert to upland should application of irrigation water to that area cease:
- area cease,

 artificial lakes or ponds created by excavating and/or diking dry land and used exclusively for such purposes as

stock watering, irrigation, settling

- stock watering, irrigation, settling basins, or rice growing;

 artificial reflecting pools or swimming pools created by excavating and/or diking dry land:

 small ornamental waters created by excavating and/or diking dry land for primarily aesthetic reasons;

 water-filled depressions created incidental to construction activity;

 groundwater, including groundwater drained through subsurface drainage systems; and

- subsurface drainage systems; and
 gullies and rills and non-wetland
 swales.
 The agencies do not propose any

The agencies do not propose any changes to the existing exclusions for waste treatment systems designed consistent with the requirements of the CWA and for prior converted cropland. The CWA and current regulations from permitting for discharges associated with specific activities. The rule does not affect that the convertions from the convertion from the convertion from the convertion of the convertion from the convertion of the convertion from the convertion from the convertion of the convertion from the convertion with specific activities. The rule does not affect any of the exemptions from CWA section 404 permitting requirements provided by CWA section 404(f), including those for normal farming, silviculture, and ranching activities. CWA section 404(f): 40 CFR 232.3; 33 CFR 323.4. The rule also does not affect either the existing statutors. not affect either the existing statutory and regulatory exemptions from NPDES permitting requirements, such as for agricultural stormwater discharges and return flows from irrigated agriculture, or the status of water transfers. CWA section 402(l)(1); CWA section 402(l)(2); CWA section 502(14); 40 CFR 122.3(f); 40 CFR 122.2. The agencies propose for the first time to exclude by rule in section (b) certain waters and features over which the agencies have as a policy matter generally not asserted jurisdiction (see Section III.I of this

preamble). preamble).
Finally, in section (c) of the proposed rule the agencies define a number of terms, of which "adjacent" and "wetlands" are unchanged from existing definitions The term adjacent means hordering, contignous or neighboring. Waters, including wetlands, separated from other waters of the United States by man-made dikes or barriers, natural river berms, beach dunes and the like are "adjacent waters." The term neighboring, for purposes of the term "adjacent" in this section, includes waters located within the riparian area or floodplain of a water identified in paragraphs (a)(1) through (5) of this section, or waters with a shallow subsurface hydrologic connection or confined surface hydrologic connection to such a jurisdictional water. The term riparian area means an area bordering a water where surface or subsurface hydrology directly influence the

ecological processes and plant and animal community structure in that area. Riparian areas are transitional areas between equatic and terrestrial ecosystems that influence the exchange of energy and materials between those ecosystems. The term floodplain means an area bordering inland or coastal waters that was formed by sediment deposition from such water under present climatic conditions and is inundated during periods of moderate to high water flows

The term tributary means a water physically characterized by the presence of a bed and banks and ordinary high water mark, as defined at 33 CFR 328.3(e), which contributes flow, either directly or through another water, to a water identified in paragraphs (a)(1) through (4). In addition, wetlands, lakes, through (4). In addition, wetlands, lakes, and ponds are tributaries (even if they lack a bed and banks or ordinary high water mark) if they contribute flow, either directly or through another water to a water identified in paragraphs (a)(1) through (3). A water that otherwise qualifies as a tributary under this definition does not lose its status as a tributary if, for any length, there are one or more man-made breaks (such as bridges, culverts, pipes, or dams), or one or more natural breaks (such as wetlands at the head of or along the run of a stream, debris piles, boulder fields, or a stream that flows underground) so long as a bed and banks and an ordinary high water mark can be identified upstream of the break. A tributary. upstream of the break. A tributary, including wetlands, can be a natural, man-altered, or man-made water and includes waters such as rivers, streams, lakes, ponds, impoundments, canals, and ditches not excluded in paragraphs (b)(3) or (4).

The term wetlands means those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, hogs and similar areas.

The term significant nexus means that

a water, including wetlands, either alone or in combination with other similarly situated waters in the region (i.e., the watershed that drains to the nearest water identified in paragraphs (a)(1) through (3)),6 significantly affects

⁶ The terms "in the region" and "watershed" are used interchangeably in this document. The segencies have interpreted "in the region" to mean the watershed that drains to the nearest water identified in paragraphs (all) through (a)(3), which we refer to as the single point of entry watershed.

the chemical, physical, or biological integrity of a water identified in paragraphs (a)(1) through (3). For an effect to be significant, it must be more than speculative or insubstantial. Other waters, including wetlands, are similarly situated when they perform similar functions and are located sufficiently close together or sufficiently close to a "water of the United States" so that they can be evaluated as a single landscape unit with regard to their effect on the chemical, physical, or biological integrity of a water identified in paragraphs (a)(1) through (3).

B. Traditional Navigable Waters

EPA and the Corps' existing regulations include within the definition of "waters of the United States" all waters that are currently used, or were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters which are subject to the ebb and flow of the tide. See, e.g., 33 CFR 328.3(a)(1); 40 CFR 230.3(s)(1); 40 CFR 122.2 ("waters of the U.S."). This section of the regulation encompasses those waters that are often referred to as "traditional navigable waters." The agencies do not propose to make any changes to this section of the regulation. See, Appendix B, Legal Analysis.

B, Legal Analysis.
For purposes of CWA jurisdiction, waters will be considered traditional navigable waters, and thus (a)(1) waters under the proposed rule, if:

- under the proposed rule, if:

 They are subject to section 9 or 10 of the Rivers and Harbors

 Appropriations Act of 1800.
- Appropriations Act of 1899;
 A Federal court has determined that the water body is navigable-in-fact under Federal law;
 They are waters currently being
- They are waters currently being used for commercial navigation, including commercial waterborne recreation (for example, boat rentals, guided fishing trips, or water ski tournaments);
 They have historically been used
- They have historically been used for commercial navigation, including commercial waterborne recreation; or
 They are susceptible to being used in the future for commercial navigation,
- in the future for commercial navigation, including commercial waterborne recreation. Susceptibility for future use may be determined by examining a number of factors, including the physical characteristics and the capacity of the water to be used in commercial navigation, including commercial recreational navigation (for example, size, depth, and flow velocity), and the likelihood of future commercial navigation, including commercial waterborne recreation. While a traditional navigable water need not be capable of supporting navigation at all

times, the frequency, volume, and duration of flow are relevant considerations for determining if a water body has the physical characteristics suitable for navigation. A likelihood of future commercial navigation, including commercial waterhorne recreation, can be demonstrated by current boating or canoe trips for recreation or other purposes. A determination that a water is susceptible to future commercial navigation, including commercial waterborne recreation, must be supported by evidence.

is susceptible to nuture commercial navigation, including commercial waterborne recreation, must be supported by evidence.

This proposal does not affect the scope of waters subject to state assumption of the section 404 regulatory program under section 404(g). The SCOPE of waters that are subject to state and tribal permitting is a separate inquiry and must be based on the statutory language in CWA section 404. States administer approved CWA section 404 programs for "waters of the United States" within the state, except those waters remaining under Corps jurisdiction pursuant to CWA section 404(g)(1) as identified in a Memorandum of Agreement 7 between the state and the Corps. 40 CFR 233.71(d)(2). Clarification of waters that are subject to assumption by states or tribes or retention by the Corps could be made through a separate process under section 404(g).

C. Interstate Waters

The existing EPA and Corps regulations define "waters of the United States" to include interstate waters, including interstate wetlands and the agencies' proposal today does not change that provision of the regulations. Interstate waters would continue to be "waters of the United States" even if they are not navigable for purposes of Federal regulation under (a)(1) and do not connect to such waters. Moreover, because interstate waters are "waters of the United States" note the CWA, the agencies are proposing to continue to include as jurisdictional tributaries to interstate waters, waters adjacent to tributaries of interstate waters, and "other waters" that have a significant nexus to interstate waters. As discussed in more detail in

As discussed in more detail in Appendix B to this preamble, the language of the CWA indicates that Congress intended the term "navigable waters" to include interstate waters without imposing a requirement that they be traditional navigable waters themselves or be connected to traditional navigable waters. The precursor statutes to the CWA always subjected interstate waters and their tributaries to Federal jurisdiction. The text of the CWA, specifically CWA section 303 that establishes ongoing requirements for interstate waters, in conjunction with the definition of navigable waters, provides clear indication of Congress' intent to protect interstate waters that were previously subject to Federal regulation. Other provisions of the statute provide additional textual evidence of the scope of the primary jurisdictional term of the CWA.

While congressional intent is clear, the agencies also have a longstanding regulatory interpretation that interstate waters fall within the scope of CWA jurisdiction. The agencies interpretation was promulgated contemporaneously with the passage of the CWA and is consistent with the statutory and legislative history of the CWA. Furthermore, the Supreme Court has never addressed the CWA's coverage of interstate waters, and it is not reasonable to read its decisions in SWANCC and Rapanos to question the jurisdictional status of interstate waters or to impose additional jurisdictional requirements on interstate waters.

It is reasonable to assert jurisdiction over tributaries, adjacent wetlands and "other waters" that have a significant nexus to interstate waters consistent with the framework established by Justice Kennedy in Rapanos for establishing jurisdiction over waters with a significant nexus to traditional navigable waters. Justice Kennedy's standard seeks to ensure that waters Congress intended to subject to Federal congress intended of support to recurse jurisdiction are indeed protected, both hy recognizing that waters and wetlands with a significant nexus to traditional navigable waters and interstate waters have important beneficial effects on those waters, and hy recognizing that polluting or destroying waters with a significant nexus can harm downstream jurisdictional waters. As Congress intended to protect interstate waters, the agencies propose to also protect interstate waters by defining "waters of the United States" to include tributaries to interstate waters, waters adjacent to interstate waters, waters adjacent to tributaries of interstate waters, and 'other waters" that have a significant nexus to interstate waters. For additional discussion of the agencies' interpretation of the CWA with respect

⁷ Link to Michigan's and New Jersey's Memorandum of Agreement with the Army Corps of Engineers identifying which waters of the US remain under the Corps' jurisdiction, http://water. epa.gov/type/wetlands/initiative_index.cfm.

to interstate waters, see Appendix B to this preamble.

D. Territorial Seas

The CWA and its existing regulations The CWA and its existing regulations include "the territorial seas" as a "water of the United States." The agencies propose to make no changes to that provision of the regulation other than to move the provision to earlier in the regulation. The CWA defines "navigable waters" to include the territorial seas at section 502(7). The CWA goes on to define the "territorial seas" as "the belt of the seas measured from the line of ordinary low water along that portion of the coast which is in direct contact with the open sea and the line marking the seaward limit of inland waters, and extending seaward a distance of three miles." The territorial seas establish the seaward limit of "waters of the United States," As the territorial seas are also clearly protected by the CWA (they are also traditional navigable waters), it is reasonable to use for protecting the territorial seas Justice Kennedy's significant nexus framework that protects traditional navigable waters. The proposed rule reflects that.

E. Impoundments

The agencies do not propose to make any substantive changes to the existing regulatory language with respect to impoundments of waters otherwise defined as 'waters of the United States' under this definition. The changes proposed are clarifying.

Impoundments are jurisdictional

hecause as a legal matter an impoundment of a "water of the United States" remains a "water of the United States" and because scientific literature demonstrates that impoundments continue to significantly affect the chemical, physical, or biological integrity of downstream waters traditional navigable waters, interstate waters, or the territorial seas. The Supreme Court has confirmed that damming or impounding a "water of the United States" does not make the water non-jurisdictional. See S. D. Warren Co. v. Maine Bd. of Envil. Prot., 547 U.S. 370, 379 n.5 (2006) ("[N]or can we agree that one gan densitionalize national 370, 379 n.5 (2006) ["[N]or can we agree that one can denationalize national waters by exerting private control over them."]. Similarly, when presented with a tributary to the Snake River which flows only about two months per year because of an infinite dismarks. because of an irrigation diversion structure installed upstream, the Ninth Circuit has opined "it is doubtful that a mere man-made diversion would have turned what was part of the waters of the United States into something else and, thus, eliminated it from national concern." U.S. v. Moses, 496 F.3d 984

(9th Cir. 2007), cert. denied, 554 U.S (9in Cir. 2007), cert. denied, 554 U.S. 918 (2008). As a matter of policy and law, impoundments do not de-federalize a water, even where there is no longer flow below the impoundment. Where flow continues below the impoundment, it is straightforward to analyze the stream network, above and helow the impoundment, for connection to downstream traditional navigable waters, interstate waters, or the territorial seas.

The agencies also note that an impoundment of a water that is not a "water of the United States" can hecome jurisdictional if, for example, the impounded waters become navigable-infact and covered under paragraph (a)(1) of the rule.

The existing agency regulations provide that impoundments of "waters of the United States" remain "waters of the United States" and the agencies do not propose any substantive revisions to that component of the regulation. In addition, tributaries to an impoundment of a "water of the United States" are "waters of the United States" under this proposed rule. As a matter of law and science, an impoundment does not cut off a connection between upstream tributaries and a downstream (a)(1) through (a)(3) water, so tributaries above the impoundment are still considered tributary to a downstream (a)(1) through (a)(3) water even where the flow of water is impeded due to the impoundment. Scientific literature, as well as the agencies' scientific and knowledge confirm that impoundments have chemical, physical, and biological effects on downstream waters (see Appendix A, Scientific Evidence). Appendix A discusses the conclusion

that it is reasonable to maintain jurisdiction over impoundments of "waters of the United States" not only as a legal matter, but because impoundments do not sever the effects the impounded "waters of the United States" have on the chemical, physical, or biological integrity of (a)(1) through (a)(3) waters.

F. Tributaries

Under this proposal, the agencies provide a definition of "tributary" supported by the scientific literature. The agencies also propose that all waters that meet the proposed definition of tributary are "waters of the United States" by rule, unless excluded under section (b), because tributaries and the ecological functions they provide, alone or in combination with other tributaries in the watershed, significantly affect the chemical, physical, and biological

integrity of traditional navigable waters,

integrate waters, and the territorial seas With today's proposed regulation, the agencies confirm that these tributary waters have a significant nexus to a traditional navigable water, interstate water, or territorial sea such that they are "waters of the United States" without the need for a separate, case-specific significant nexus analysis. In specific significant nexus analysis. In practice, under this proposal any water that meets the definition of tributary (and is not excluded under section (h) of the proposed rule) is a "water of the United States," and the agencies would only need to determine that a water meets the definition of "tributary," See Appendix A, Scientific Evidence (Part I, Discussion of Major Conclusions 2.A; Part II, 3); and Appendix B, Legal Analysis. Analysis.

narysis. Tributaries have a significant impact Tributaries have a significant impact on the chemical, physical, and biological integrity of waters into which they eventually flow—including traditional navigable waters, interstate waters, and the territorial seas—and they have a significant nexus and thus are jurisdictional as a category. The great majority of tributaries are headwater streams, and whether they are perennial, intermittent, or ephemeral, they play an important role ephemeral, they play an important role in the transport of water, sediments, organic matter, nutrients, and organisms downstream environments. Tributaries serve to store water, thereby Indulators serve to store water, thereby reducing flooding, provide biogeochemical functions that help maintain water quality, trap and transport sediments, transport, store and modify pollutants, provide habitat for plants and animals, and sustain the biological reductivities. hiological productivity of downstream rivers, lakes and estuaries.

1. What is a "tributary" for purposes of the proposed regulation?

The proposed rule defines "trihutary" as a water physically characterized by the presence of a bed and banks and ordinary high water mark, as defined at 33 CFR 328.3(e), which contributes flow, either directly or through another water, to a water identified in paragraphs (a)(1) through (4). In addition, wetlands, lakes, and ponds are tributaries (even if they lack a bed and banks or ordinary high water mark) if they contribute flow, either directly or they contribute ilow, either directly or through another water to a water identified in paragraphs (a)(1) through (3). A water that otherwise qualifies as a tributary under this definition does not lose its status as a tributary if, for any length, there are one or more manmade breaks (such as bridges, culverts, pipes, or dams), or one or more natural breaks (such as wetlands at the head of

or along the run of a stream, dehris piles, boulder fields, or a stream that flows underground) so long as a bed and banks and an ordinary high water mark can be identified upstream of the break. A tributary, including wetlands, can be a natural, man-altered, or man-made water and includes waters such as rivers, streams, lakes, ponds, impoundments, canals, and ditches not excluded in paragraph (b)(3) or (4).

excluded in paragraph (0)(3) of (4). While the agencies have not defined tributary in any previous regulation, this proposed definition is consistent with long-standing practice and historical implementation of CWA programs. It important to note that today's proposed definition also is based on best available primary of the interest that CMA.

science and the intent of the CWA.

To meet this definition, a water need not contribute flow directly to an (a)(1) through (a)(4) water. As the definition makes clear, the water may contribute flow directly or may contribute flow to another water or waters which eventually flow into an (a)(1) through (a)(4) water. Essentially, the water must be part of a tributary system that drains to an (a)(1) through (a)(4) water. Under the proposed definition, to be a "tributary," in addition to requiring that awater carefully 10 to a traditional or a trade from the control of the control o a water contribute flow to a traditional navigable water, interstate water or the territorial sea, the water must also have a bed and banks and ordinary high water mark (except where a wetland is water mark (except where a wetlan a tributary), hecanse these features a tributary, because these leatures generally are physical indicators of flow. The agencies identified these tributary characteristics as indicative that the water is the type of hydrologic feature protected under the CWA because, for example, of a tributary's ability to transport pollutants to downstream traditional navigable waters, interstate waters, and the territorial seas, and thereby have a significant effect on the chemical, physical, or biological integrity of a water identified in paragraphs (a)(1) through (a)(4).

The flow in the tributary may be ephemeral, intermittent or perennial, but the tributary must drain, or be part of a network of tributaries that drain, into an (a)(1) through (a)(4) water under today's proposed rule. When considering whether the tributary being evaluated eventually flows to an (a)(1) through (a)(4) water, the tributary connection may be traced using direct observation or U.S. Geological Survey maps, aerial photography or other reliable remote sensing information, or other appropriate information. A bed and banks and ordinary high water mark (OHWM) generally are physical indicators of water flow. These physical indicators can be created by ephemeral,

intermittent, and perennial flows.

The agencies' proposed definition of "tributary" includes waters such as rivers, streams, lakes, impoundments, wetlands, canals, and ditches not directly or through other tributaries, convey water to traditional navigable waters, interstate waters, or the territorial seas. A trihutary is a longitudinal surface feature that results from directional surface water movement and sediment dynamics demonstrated by the presence of hed and banks, hottom and lateral boundaries, or other indicators of OHWM. The movement of water through a tributary can transport pollutants to downstream (a)(1) through (a)(4) waters, as either chemicals dissolved or suspended in the water column or adsorbed to sediment

column or adsorbed to sediment particles.

The existing Corps regulations define OHWM as the line on the shore established by the fluctuations of water and indicated by physical characteristics such as a clear, natural line impressed on the banks, shelving, changes in the character of soil, destruction of terraterial presentation the destruction of terrestrial vegetation, the presence of litter and debris, or other appropriate means that consider the characteristics of the surrounding areas. characteristics of the surrounding areas 33 CFR 328.3(e). That definition is not changed by today's proposed rule. In many tributaries, the bed is that part of the channel below the OHWM, and the banks often extend above the OHWM. Indicators of an OHWM may vary from region to region across the country.

region to region across the country. Under the proposed definition of tributary, the upper limit of a tributary is established where the channel begins Note that wetlands can be providing flow into a tributary at the upper limit of the channel and these would also be jurisdictional. The OHWM generally defines the lateral limits of a water, and tis absence generally determines whether a tributary's channel or bed and banks has ended such that the upper limit of the jurisdictional tributary is identified. However, a natural or manmade break in bed and banks or OHWM does not constitute the upper limit of a tributary where bed and banks or OHWM can be found farther upstream, as discussed below.

In many tributaries, there are often

natural or man-made breaks in the presence of a hed and banks or ordinary high water mark while hydrologic connectivity remains. For example, in some regions of the country where there is a very low gradient, the banks of a trihutary may be very low or may even disappear at times. Also, in many

intermittent and ephemeral tributaries including dry-land systems in the arid and semi-arid west, OHWM indicators can be discontinuous within an individual tributary due to the variability in hydrologic and climatic influences. The agencies proposed definition of "tributary" addresses these circumstances and states that waters that meet the definition of tributary remain tributaries even if such hreaks occur. A water that otherwise qualifies as a tributary under the proposed definition does not lose its status as a tributary if, for any length, there are one or more man-made breaks (such as bridges, culverts, pipes, or dams), or one or more natural breaks (such as debris piles, boulder fields, or a stream pies, boulder leads, or a street, or a stree generally demonstrates that the tributary

continues upstream of the break. Waters that meet the definition of tributary under the proposed rule are jurisdictional even if there is an

jurisdictional even if there is an impoundment at some point along the connection from the tributary to the (a)(1) through (a)(3) water. Longstanding agency practice has identified tributaries as including "natural, man-altered, and manmade tributaries provide many of the same functions, especially as conduits for the movement of water and pollutants to other tributaries or directly to traditional navigable waters, to traditional navigable waters, interstate waters, or the territorial seas The discharge of a pollutant into a tributary generally has the same effect downstream whether the tributary waterway is natural or manmade (see further discussion below and Appendix A). Given the extensive human A). Given the extensive human modification of watercourses and hydrologic systems throughout the country, it is often difficult to distinguish between natural watercourses and watercourses that are wholly or partly manmade or man-altered. For example, tributaries that have been chaunelized in concrete or otherwise, by any hope hymes eleved. otherwise have been human-altered may still meet the definition of tributaries under the agencies' proposed regulation so long as they still contribute flow to an (a)(1) through (a)(4) water. The agencies' proposed definition of tributary provides a non-exclusive list of the types of waters, natural, man-altered and man-made, that may be trihutaries: Wetlands, rivers, streams, lakes, ponds, impoundments, canals, and ditches not excluded in

paragraph (b)(3) or (4) of the proposed

rule.
Under the agencies' proposal, when a tributary flows through a wetland into another tributary (e.g., a run-of-stream wetland), losing its OHWM through the wetland), losing its OHWM through the wetland, it remains a tributary, and the wetland itself is considered a tributary. Wetlands may contribute flow to a stream or river through channelized flow or diffuse flow, and sometimes both. Wetlauds may also serve as water sources at the upper limit of headwater streams where the channel begins. In light of this potential, by his presental. light of their potential to be important contributors of flow to tributaries to traditional navigable waters, luterstate waters, or the territorial seas, the agencies propose a definition of trihutary which includes such wetlands. In other instances, wetlands may serve as the connection between a tributary as the connection between a tributary and another tributary or even a traditional navigable water, interstate water, or the territorial seas. For wetland tributaries, water may flow through hraided channels that also include wetlands or through a run-of-stream wetland that does not have a h stream wetland that does not have a bed and banks and OHWM.

stream wettand that does not have a bed and banks and OHWM. It is the agencies' intent that the definitions in this proposed rule provide as much clarity and regulatory certainty as possible. While it is important to include wetlands that councet upstream and downstream portions of a tributary as jurisdictional waters because they have a significant nexus to downstream [a](1) through [a](4) waters, the agencies recognize that it may add an element of uncertainty to the definition of tributary to include features as tributaries which do not have a bed and bank and OHVM. An alternate approach would be to clarify that wetlands that connect tributary segments are adjacent wetlands, and as segments are adjacent wetlands, and as such are jurisdictional waters of the United States under (a)(6). In this approach, a tributary would be defined as having a bed and bank and OHWM, and the upper limit of the tributary would be defined by the point where these features cease to be identifiable (Note that natural or manmade breaks would still not sever jurisdiction if a tributary segment with a bed and bank and OHWM could be identified upstream of the break.) Wetlands would not be considered tributaries, but would remain jurisdictional as adjacent waters. remain jurisdictional as adjacent waters Wetlands that contribute flow, for example at the upper reaches of the tributary system, would be considered adjacent waters. The agencies request comment on this alternate approach, as well as any other suggestions. commenters may have on how to clarify the definition of tributaries and provide

a clear explanation of their lateral and

a clear explanation of their lateral and upstream extent.

Tidal ditches subject to the ebb and flow of the tide are not evaluated as tributaries, but are jurisdictional under paragraph (a)(1) of the proposed

paragraph (a)(1) of the proposed regulation as they are under the current regulation.

The agencies are proposing to clearly exclude from the definition of "waters of the United States" two types of ditches that might otherwise be evaluated as tributaries: Ditches that are excavated wholly in uplands, drain only uplands, and have less than perennial flow; and ditches that do not contribute flow, either directly or through another water, to a water identified in water, to a water tremmen in paragraphs (a)(1) through (4). The proposed rule for the first time excludes certain ditches by rule rather than simply through preamble and guidance. Even before the decisions in SWANCC and Rapanos, the agencies excluded certain ditches from jurisdiction certain ditches from jurisdiction because they either are not part of the tributary system or because they are excavated wholly in uplands, drain only uplands, and are dry for much of the year, i.e. upland ditches. The agencies are proposing to continue this exclusion and, to provide improved consistency and clarity, further define flow and clarity, further define flow characteristics of upland ditches that are and are not jurisdictional. The proposed rule would exclude from jurisdiction upland ditches with less than perennial flow. The scientific concept of perennial flow is a widely accepted and well understood hydrologic characteristic of tributaries. Perennial flow means that tributaries. Perennial flow means that water is present in a tributary year round when rainfall is normal or above normal. Identifying upland ditches with perennial flow is straightforward and will provide for consistent, predictable, and technically accurate determinations at any time of year. The appreciaand technically accurate determinations at any time of year. The agencies specifically seek comment on the appropriate flow regime for a ditch excavated wholly in uplands and draining only uplands to be included in the exclusion of paragraph (b)(3). In particular, the agencies seek comment on whether the flow regime in such ditches should be less than intermittent flow or whether the flow regime in such ditches should be less than intermittent flow or whether the flow regime in such ditches should be less than perspirit ditches should be less than perennial

flow as proposed.
Only those ditches not excluded by the proposed regulation and that meet the proposed definition of tributary are "waters of the United States," Ditches that are excluded from the definition of "waters of the United States" under (b)(3) and (b)(4) cannot be recaptured and considered jurisdictional under any of the jurisdictional categories in section (a) of the proposed rule, such as a ditch

that crosses a state line. This is true for all other features excluded under section (b) as well. Ditches not excluded under paragraphs (b)(3) and (4) of the proposed regulation meet the definition of fributary where they have a bed and banks and ordinary bigh water mark and they contribute flow directly or indirectly through another water to (a)(1) through (a)(4) waters, Such jurisdictional ditches may include, but are not limited to, the following:

Natural streams that have been

- altered (e.g., channelized, straightened or relocated);
 ditches that have been excavated in "waters of the United States," including iurisdictional wetlands:
- ditches that have perennial flow; and

and
ditches that connect two or more
"waters of the United States."
In an effort to distinguish ditches that
are not "waters of the United States"
from those that are "waters of the
United States." the proposal states that
ditches with less than perennial flow
that are excavated in uplands, rather
than in wetlands or other types of
waters, for their entire length are not
tributaries and are not "waters of the
United States" under the proposed rule.
Ditches that are perennial generally
have water present year round when have water present year round when nave water present year round when rainfall is normal or above normal. Under this exclusion, water that only stands or pools in a ditch is not considered perennial flow and, therefore, any such upland ditch would not be subject to regulation. In addition, ditches that do not contribute flow to the tributary system of a traditional the tributary system of a traditional navigable water, interstate water or the territorial seas are not "waters of the United States," even if the ditch has

United States," even if the ditch has perennial flow.

Historical evidence, such as photographs, prior delineations, or topographic maps, may he used to determine whether a water body was excavated wholly in uplands and drains only uplands, and has less than perennial flow. Site characteristics may also be present to inform the determination of whether the water body is a ditch, such as shape, sinuosity, flow indications, etc., as sinuosity, flow indications, etc., as ditches are often created in a linear fashion with little sinuosity and may not connect to another "water of the United States." Ditches created by altering natural waters would be considered "waters of the United States," so long as they contribute flow to another jurisdictional water. Ditches may have been created for a number of purposes, snch as irrigation, water nanagement or treatment, and roadside drains. In order to be excluded.

however, the ditch must be excavated wholly in uplands, drain only uplands, and have less than perennial flow. Ditches that do not contribute flow, either directly or through another water, to a water identified in paragraphs (a)(1) through (4) are not "waters of the United States."

2. What is not a tributary for purposes of this proposal?

Waters that do not contribute flow, either directly or through another water, to a water identified in paragraphs [a](1) through (4) of the proposed regulation are not considered jurisdictional as tributaries under the CWA. However, even if such waters are not "tibutaries," they may be jurisdictional under other paragraphs of the proposed rule. Note that waters specifically listed under the proposed section (b), including ditches as defined in paragraphs (b)(3) and (b)(4), would not be considered "waters of the United States" in any case. In addition, ephemeral features located on agricultural lands that do not possess a bed and bank are not tributaries. The defined hed and bank no longer exists due to past normal farming practices such as plouing or discing (see section 404(f)(1)(A))," and these farming practices often pre-date the CWA. Such farm field features are not tributaries even though they may contribute flow during some rain events or snowmelt.

Section J below discusses in more detail the agencies' proposed rule excluding specific waters and features from the definition of "waters of the United States." Of importance with respect to tributaries is the exclusion of gullies, rills, non-wetland swales, and certain ditches. These features are not considered tributaries under this proposed rule, even though rills and gullies and non-wetland swales (as described in Section J), may contribute flow to a tributary in systems with steep

side slopes.

Non-jurisdictional geographic features (e.g., non-wetland swales, ephemeral upland ditches) may still serve as a confined surface hydrologic connection between an adjacent wetland or water and a traditional navigable water, interstate water or the territorial sea, provided there is an actual exchange of water between those waters, and the water is not lost to deep groundwater through infiltration (i.e., transmission losses). In addition, these geographic features may function as "point sonrces," such that discharges of

pollutants to waters through these features could be subject to other CWA authorities (e.g., CWA section 402 and its implementing regulations). The agencies request comment on all

The agencies request comment on all aspects of the proposed definition of tributaries and in particular on whether and how this definition can be revised to provide increased clarity as to the distinction between jurisdictional tributaries, as defined, and non-intributaries, as defined, and non-intributaries, as desired, and so unlies, rills and non-wetland swales. The agencies seek comments on how to provide greater regulatory certainty as to which specific aquatic features are jurisdictional tributaries, and which are not. Commenters should explain how any suggestions are consistent with the Clean Water Act, applicable caselaw, and the scientific literature regarding connectivity of aquatic features.

3. Why do the agencies conclude all tributaries are "waters of the United States"?

Assertion of jurisdiction over tributaries as defined in this proposed trule is appropriate under Rapanos both as a legal matter and as a scientific matter based on available science and the agencies' professional judgment and field expertise. The agencies conclude based on their scientific and technical expertise that tributaries, as defined in the proposed rule, in a watershed are similarly situated and have a significant nexus alone or in combination with other tributaries because they significantly affect the chemical, physical, or biological integrity of traditional navigable waters, interstate waters, or the territorial seas.

a. Legal Basis for Defining All Tributaries as "Waters of the United States"

In Rapanos, both the plurality opinion and Justice Kennedy's opinion discussed the Court's prior opinion in Riverside Bayview to begin their analysis of the scope of the CWA.
Justice Scalia stated, "In Riverside Bayview, we stated that the phrase l'waters of the United States"] in the Act referred primarily to 'rivers, streams, and other hydrographic features more conventionally identifiable as "waters" than the wetlands adjacent to such features. 474 U.S., at 131 (emphasis added)." Rapanos, 547 U.S. at 734.
Justice Kennedy began, "As the plurality points out, and as Riverside Bayview holds, in enacting the Clean. Water Act Congress intended to regulate at least some waters that are not navigable in the traditional sense. Ante at 12: Riverside Bayview, 474 U.S., at 133; see also SWANCC, supra, at 167."

Id at 780. This conclusion is supported hy "the evident breadth of congressional concern for protection of water quality and aquatic ecosystems." Riverside Boyview, supra, at 133; see also Mihwaukee v. Illinois, 451 U.S. 304, 318 (1981) (describing the Act as "an allencompassing program of water pollution regulation"). In Rappanos, Justice Kennedy established a standard for determining whether wetlands should he considered to possess the requisite nexus in the context of assessing whether wetlands, either alone or in combination with similarly situated [wetl] and in the region, significantly affect the chemical, physical, and hiological integrity of other covered waters more readily understood as 'navigable.'" 547 U.S. at 780. While Justice Kennedy focused on adjacent wetlands in light of the facts of the cases before him, it is reasonable to utilize the same standard for tributaries. As discussed in this preamble, based on a detailed examination of the scientific literature, the agencies conclude that tributaries as they propose to define them perform the requisite functions identified by Justice Kennedy for them to be considered, as a category, to he "waters of the United States." Assertion of jurisdiction over tributaries with a bed and hanks and OHWM is also consistent with Rapanos because five Justices did not reject the current regulations that assert jurisdiction over roon-navigable tributaries of traditional navigable waters and interstate waters. The agencies analyzed the Report and other scientific literature to determine

The agencies analyzed the Report and other scientific literature to determine whether tributaries to traditional navigable waters, interstate waters, or the territorial soas have a significant nexus to constitute "waters of the United States" under the Act such that it is reasonable to assert CWA jurisdiction over all such tributaries as a category by rule. The agencies' analysis of the available scientific literature, including the Report, demonstrates through an ecological rationale that tributaries draining to a traditional navigable water, interstate water, or the territorial seas have a significant nexus to such waters a significant nexus to such waters that would impair their chemical, physical, or biological integrity.

would impair their chemical, physical, or biological integrity.

One of the primary purposes and functions of the CWA is to prevent the discbarge of petroleum wastes and other chemical wastes, binlogical and medical wastes, sediments, nutrients and all other forms of pollutants into the "waters of the United States," because such pollutants endanger the nation's

^{*}A discharge of dredged or fill material into an existing tributary which converts a "water of the U.S." into a non-jurisdictional water requires authorization under section 404 of the CWA.

public health, drinking water supplies, shellfish, fin fish, recreation areas, etc. Because the entire tributary system of the traditional navigable, interstate waters or the territorial seas is interconnected, pollutants that are dumped into any part of the tributary system eventually are washed downstream to traditional navigable waters, interstate waters, or the territorial seas where those pollutants endanger public health and the

environment.

The CWA regulates and controls pollution at its source, in part because most pollutiant at its source in part because most pollutiants do not remain at the site of the discharge, but instead flow and are washed downstream through the tributary system to endanger drinking water supplies, fisheries, and recreation areas. These fundamental facts about the movement of pollutants and the interconnected nature of the tributary system demonstrate why all tributaries of traditional navigable waters, interstate waters, and the territorial seas, alone or in combination with other tributaries in a watershed have a significant nexus with those downstream waters. The significant nexus relating to pollution transport (or prevention of such transport) from all tributaries of traditional navigable waters, interstate waters, and the territorial seas to their downstream waters in and of itself justifies the assertion of CWA jurisdiction over all tributaries by rule.

b. The Agencies Conclude That Tributaries, as Defined in the Proposed Rule, Have a Significant Nexus

The finding of significant nexus is based on the chemical, physical, and biological interrelationship between a water, the tributary network, and traditional navigable waters, interstate waters, and the territorial seas. Based on their scientific and technical expertise, the agencies conclude that tributaries, as defined in today's proposed rnle, have a significant nexus and are appropriately identified as jurisdictional by rule. Rapanos, 547 U.S. at 781–82 (J. Kennedy). (For more discussion, see Appendix A).

(1) Tributaries Significantly Affect the Physical Integrity of (a)(1) Through (a)(3) Waters

Physical connections between tribularies and traditional navigable waters, interstate waters, and the territorial seas result from the hydrologic transport of numerous materials, including water, sediment and organic matter (e.g., leaves, wood) from tributaries to downstream waters. This transport affects the physical

characteristics of downstream waters. Tributaries, even when seasonally dry, are the dominant source of water in most rivers, rather than direct precipitation or groundwater input to main stem river segments.

most rivers, rather than direct precipitation or groundwater input to main stem river segments. One of the primary functions of tributaries is transporting sediment to downstream waters. Tributaries, particularly headwaters, shape and maintain river channels by accumulating and gradually or episodically releasing sediment and large woody debris into river channels. Sediment transport is also provided by ephemeral streams. Effects of the releases of sediment and large woody debris are especially evident at tributary-river confluences, where discontinuities in flow regime and temperature demonstrate physical alteration of river structure and function

by headwater streams.

Tributaries have vitally important effects on the physical integrity of (a)(1) through (a)(3) waters, contributing not only the majority of the flow in these waters but affecting the structure of the waters. These effects occur even when the tributaries flow infrequently (such as ephemeral tributaries) and even when the tributaries are significant distances from the (a)(1) through (a)(3) water (such as some headwater tributaries). Tributaries provide flow to downstream rivers necessary to support navigation. The agencies conclude that the tributaries alone or together with other tributaries in a watershed have a significant effect on the physical integrity of downstream waters.

(2) Tributaries Significantly Affect the Chemical Integrity of (a)(1) Through (a)(3) Waters

Trihutaries also influence the chemical composition of downstream waters, through the transport and removal of chemical elements and compounds, such as nutrients, ions, dissolved and particulate organic matter, pollutants, and contaminants. Ecosystem processes in tributaries transform, remove, and transport these substances to downstream waters. In turn, these chemical compounds can influence water quality, sediment deposition, nutrient availability, and biotic fuuctions in rivers. Because water flow is the primary mechanism by which chemical substances are transported downstream, chemical effects are closely related to hydrological connectivity. Long-distance movement of contaminants provides another line of evidence for chemical connectivity between tributaries and traditional navigable waters, interstate waters, and the

territorial seas and significantly affects these waters.

Within tributaries, there are processes

Within tributaries, there are processes that occur that transform and export nutrients and carbon to downstream waters, serving important source functions that influence the chemical integrity of downstream waters. Organic carbon, in both dissolved and particulate forms, exported from tributaries is consumed by downstream organisms. The organic carbon that is exported downstream thus supports biological activity (including metabolism) throughout the river network.

network.

Tributaries have important effects on the chemical integrity of (a)(1) through (a)(3) waters, acting as both sinks and sources of chemical substances. They provide sink functions by trapping chemicals through absorption to sediments in the stream substrate (e.g., phosphorous adsorption to clay particles). They provide source functions by transporting chemicals to downstream (a)(1) through (a)(3) waters as chemicals dissolved in the waters or as chemicals attached to suspended sediments. Thus the tributaries of a watershed, alone or in combination, significantly affect the chemical integrity of downstream waters.

(3) Tributaries Significantly Affect the Biological Integrity of (a)(1) Through (a)(3) Waters

Tributaries, including intermittent and ephemeral streams, are critical in the life cycles of many organisms capable of moving throughout river networks. In fact, many organisms, such as anadromous salmon, have complex life cycles which involve migration through the river network, from headwaters to downstream rivers and oceans and back, over the course of their lives. Anadromous fish spend the majority of their life cycles in saltwater, but migrate upstream to inland freshwater systems in order to spawn and reproduce. More generally, in addition to providing critical habitat for complex life cycle completion, tributaries provide refuge from predators and adverse physical conditions in rivers, and they are reservoirs of genetic- and species-level diversity. These connections between tributaries and [a](1) through [a](3) waters significantly influence the biologic integrity of these waters.

Tributaries have important effects on the biological integrity of (a)(1) through (a)(3) waters, contributing materials to downstream food networks and supporting populations for aquatic species, including economically important species such as salmon, etc., and other essential habitat needs for species that utilize both tributaries and downstream (a)(1) through (a)(3) waters. These effects occur even when the tributaries flow infrequently (such as ephemeral tributaries) and even when the tributaries are large distances from the (a)(1) through (a)(3) water (such as some headwater tributaries). When all the tributaries in a watershed are considered together, these effects are

(4) Small, Intermittent, and Ephemeral Tributaries Significantly Affect the Chemical, Physical, and Biological Integrity of (a)(1) Through (a)(3) Waters

As discussed above, the agencies conclude that tributaries, including headwaters, intermittent, and ephe streams, and especially when all tributaries in a watershed are considered in combination, have a significant nexus to traditional navigable waters, interstate waters, or the territorial seas based on their contribution to the chemical, physical, and biological integrity of (a)(1) through (a)(3) waters. Tributaries, including headwater streams, within a watershed headwater streams, within a watershed draining to a traditional navigable water, interstate water, or the territorial seas collectively shape the chemical, physical, and biological integrity of (a)[1] through (a)[3] waters.

Tributaries that are small, flow infrequently, or are a substantial distance from the nearest (a)[1] through (a)[3] water committed.

(a)(3) water (e.g., headwater perennial, intermittent, and ephemeral tributaries) are essential components of the tributary network and have important effects on the chemical, physical, and biological integrity of (a)(1) through (a)(3) waters, contributing many of the same functions downstream as larger streams. When their functional contributions to the chemical, physical, and biological conditions of downstream waters are considered at a watershed scale, the scientific evidence supports a legal determination that they meet the "significant nexus" standard articulated by Justice Kennedy in Rapanos.

(5) Tributary Lakes, Ponds, and Wetlands Significantly Affect the Chemical, Physical, and Biologica Integrity of (a)(1) Through (a)(3) Waters

Although the above discussion refers primarily to stream tributaries, lake pond and wetland tributaries also have the same or similar connections and functions that significantly affect (a)(1) through (a)(3) waters. Lakes and ponds that contribute surface water to downstream (a)(1) through (a)(3) waters satisfy the agencies' definition of

tributary. They may be at the tributary. They may be at the beadwaters of the tributary network (e.g., a lake with no stream inlets that has an outlet to the tributary network) or located outside of the headwaters, or farther downstream from the headwaters, (e.g., a lake with both a stream inlet and a stream outlet to the tributary network). Similarly, welland tributaries are wetlands that are located within the stream channel itself or that form the start of the stream channel, such as

start of the stream channel, such as channel-origin wellands that are part of the headwaters of the tributary network. As noted above, while these wetlands may function as part of the "tributary network," the agencies are seeking comment on whether it would provide greater regulatory clarity to exclude such wetlands from the definition of "tributary" because they generally lack a defined bed, bank and OHWM. These features are well understood by the a defined bed, bank and OHWM. These features are well understood by the public and agency field staff and have traditionally been the defining characteristics of tributaries. Rather, wetlands in headwaters or connecting tributaries would remain jurisdictional as adjacent waters under the definition as adjacent waters under the definition of "adjacent" and its supporting terms (e.g., neighboring, floodplain, and riparian area) in this proposal. Tributary lakes and ponds serve many

important functions that affect the chemical, physical, and biological conditions downstream. Lakes can store floodwaters, sediment, and nutrients, as these materials have the opportunity to settle out, at least temporarily, as water moves through the lake downstream. Lakes, as with other tributaries, can also contribute flow, nutrients, sediment, and other materials downstream.

(6) Man-Made or Man-Altered Tributaries Significantly Affect the Chemical, Physical, and Biological Integrity of (a)(1) Through (a)(3) Waters

This proposal expressly states that a tributary, including wetlands, can be a natural, man-altered, or man-nade water body and includes waters such as rivers, streams, lakes, impoundments, canals, and ditches that meet the canias, and discuss that meet the definition of tributary and are not excluded from the definition of "wate of the United States" by paragraphs (b)(3) and (b)(4) of the proposed rule. The agencies' proposed rule clarifies that man-made and man-altered tributaries are "waters of the United States" because necessive above the States" because necessive and according States" because man-made and man-altered tributaries perform many of the same functions as natural tributaries especially the conveyance of water that carries nutrients, pollutants, and other substances to traditional navigable waters, interstate waters, or the territorial seas. Man-made and man-

altered tributaries also provide corridors for movement of organisms between headwaters and traditional navigable waters, interstate waters, or the territorial seas. The significant nexus between a tributary and a traditional navigable water, interstate water, or the territorial seas is not broken where the tributary flows through a culvert or other structure. The scientific literature recognizes that features that convey water, whether they are natural, man-made, or man-altered, provide the connectivity between streams and

connectivity between streams and downstream rivers.

Tributary ditches and other manmade or man-altered waters, if they meet the definition of "trihutary," have a significant nexus to (a)(1) through (a)(3) waters due to their effects on the chemical, physical, or biological integrity of those downstream waters. integrity of those downstream waters. As described above, tributaries of all flow regimes have a significant nexus to downstream (a)(1) through (a)(3) waters. Due to the often straightened and channelized nature of ditches, these tributaries or nickly more users. tributaries quickly move water downstream to (a)(1) through (a)(3) waters. Ditches and canals, like other tributaries, export sediment, nutrients, and other materials downstream. Due to their often channelized nature, ditches are very effective at transporting water and these materials, including nitrogen, downstream. It is the agencies' position that ditches that meet the definition of tributary (which does not include ditches excluded under paragraphs (b)(3) and (b)(4)) provide the same chemical, physical, and biological functions as other water bodies defined as tributaries under the proposed rule.

G. Adjacent Waters

G. Adjacent Waters

The agencies propose to revise the existing jurisdictional category of "adjacent wetlands," which currently limits consideration to only wetlands, to include "adjacent waters." The proposed "adjacent waters." tategory would replace "adjacent wetlands" and would include wetlands and other waterbodies that meet the proposed definition of adjacent, including "neighboring." To be jurisdictional, it would be necessary to determine that a wetland or other waterbody meets the definition of "adjacent" water under proposed paragraph (a)(6). Adjacent deminition of adjacent water under proposed paragraph (a)(6). Adjacent waters are integrally linked to the chemical, physical, or hiological functions of the (a)(1) through (a)(5) waterbodies to which they are adjacent. Waters adjacent to (a)(1) through (a)(3) waters have a significant nexus to those (a)(1) through (a)(3) waters. Waters adjacent to impoundments, (a)(4) and tributaries, (a)(5), are integrally linked to

the chemical, physical, or biological functions of the impoundments or tributaries and, through those waters, are integrally linked to the chemical, physical or biological functions of traditional navigable waters, interstate waters or the territorial seas. As such, where waterbodies are adjacent to (a)(4) or (a)(5) waters, they also have a significant nexus to (a)(1) through (a)(3) waters. See Appendix A, Scientific Evidence (Part I, Discussion of Major Conclusions 2.B–C; Part II, ii) and Appendix B, Legal Analysis.

The proposed rule proposes to change "adjacent wetlands" to "adjacent waters" so that water bodies such as ponds and oxbow lakes, as well as wetlands, adjacent to jurisdictional waters are "waters of the United States" waters are waters of the United States by rule. Second, the proposed rule adds a definition of the term "neighboring," a term which appears in the existing definition of "adjacent." The agencies propose a definition for "neighboring" to identify those adjacent waters that the agencies concluded have a significant nexus to (a)(1) through (a)(3) waters. To bring greater clarity to the meaning of "neighboring," the proposed rule adds scientifically-based definitions for the terms "riparian area" and "floodplain" to define the lateral reach of the term to define the lateral reach of the term "neighhoring." Under the proposed rule, all waters, including wetlands, adjacent to a water identified in paragraphs (a/1) through (5); would be "waters of the United States." The term adjacent means bordering, contiguous or neighboring. Waters, including wetlands, separated from other waters of the United States by man-made dikes or barriers, natural river berms, beach barriers, natural river berms, beach dunes and the like are "adjacent waters." The term neighboring, for purposes of the term "adjacent," includes waters located within the riparian area or floodplain of a water identified in paragraphs (a)(1) through (5), or waters with a shallow subsurface (o), o waters with a standow substitute hydrologic connection or confined surface hydrologic connection to such a jurisdictional water. The term riparian area means an area bordering a water where surface or subsurface hydrology directly influence the ecological processes and plant and animal community structure in that area. Riparian areas are transitional areas between aquatic and terrestrial ecosystems that influence the exchange of energy and materials between those ecosystems. Finally, the term floodplain means an area bordering inland or coastal waters that was formed by sediment deposition from such water under present climatic conditions and is

inundated during periods of moderate to high water flow:

What are "adjacent waters" under the proposed rule?

"Adjacent waters" are wetlands, ponds, lakes and similar water bodies that provide similar functions which have a significant nexus to traditional navigable waters, interstate waters, and the territorial seas. These include waters and wellands that are adjacent to traditional navigable waters, interstate waters, and the territorial seas as well as waters and wetlands adjacent to other jurisdictional waters such as tributaries and impoundments. The inclusion of adjacent waters in this category is adjacent waters in this category is supported by the Report, the collective body of scientific literature, the agencies' growing body of scientific and technical knowledge and practical expertise addressing the connectivity and ecological interactions of these waters on (a)(1) through (a)(3) waters, and by the determination wads in this and by the determination made in this rulemaking that all adjacent waters in a watershed have a significant nexus with their traditional navigable waters

their traditional naviganie waters, interstate waters or the territorial seas. Under the existing rule, only wetlands adjacent to "waters of the United States" are defined as "waters of the United States." As noted in San Prancisco Baykeeper v. Cargill Salt, 481 F.3d 700 (9th Cir. 2007), this provision of the agencies' regulations only defines. F.3d 700 (9th Cir. 2007), this provision of the agencies' regulations only defines adjacent wetlands, not adjacent ponds, as "waters of the United States." Prior to SWANCC, adjacent non-wetland waters were often jurisdictional under the "other waters," or "(a)(3)" provision of the existing regulations which the agencies are proposing to eliminate. Waters, including wetlands, that meet the proposed definition of adjacency, including the new proposed definition of neighboring, have a significant nexus to (a)(1) through (a)(3) waters, and this proposed rule would include all adjacent waters, including wetlands, as "waters of the United States" by rule. The existing definition of "adjacent" would be generally retained under

The existing desiration of "adjacent" would be generally retained under today's proposal, with a clarification with respect to an existing provision addressing wetlands adjacent to other wetlands. The proposed rule states that the term adjacent means bordering, continuous or neighboring. contiguous or neighboring. Waters, including wetlands, separated from other waters of the United States by man-made dikes or barriers, natural river berms, beach dunes and the like are "adjacent waters." Within the definition of "adjacent," the terms bordering and contiguous are well understood, and for continuity and clarity the agencies would continue to

interpret and implement those terms consistent with existing policy and

consistent with existing policy and practice.

The proposed rule also contains for the first time a definition of the term "neighboring." The term "neighboring" has generally been interpreted broadly in practice. The agencies provide a regulatory definition of "neighboring" that cantures those maters that in regulatory definition of "neighboring" that captures those waters that in practice the agencies have identified as having a significant effect on the chemical, physical, and biological integrity of traditional navigable waters, interstate waters, or the territorial seas. "Neighboring" is defined as including waters located within the riparian area or Bondplain of a water identified in or floodplain of a water identified in paragraphs (a)(1) through (5), or waters with a confined surface or shallow subsurface hydrologic connection to such a jurisdictional water. The terms "riparian area" and "floodplain" are also defined to further

"floodplain" are also defined to further clarify how the agencies interpret the term "neighboring." Those new terms are found at paragraphs (c)(1) through (c)(4) of the proposed rule. The agencies emphasize that these terms help to identify waters, including wetlands, that may be "adjacent" and would, therefore, be "waters of the United States" under this response with the states." this proposed rule. Absolutely no uplands located in "riparian areas" and "floodplains" can ever be "waters of the United States" subject to jurisdiction of

United States' subject to jurisdiction of the CWA.

Most waters, including wetlands, that are neighboring to a water body are found within its riparian zone or floodplain. However, there are some neighboring waters that might be located outside of the riparian zone or floodplain; such as waterbade. floodplain, such as wetlands immediately next to a highly incised and manipulated stream that no longer has a riparian area or a floodplain.
Waters, including wetlands, determined to have a shallow subsurface hydrologic connection or confined surface hydrologic connection to an (a)(1) nyurotogic connection to an [a][1] through (a][5] water would also be "waters of the United States" by rule as adjacent waters falling within the definition of "neighboring." In circumstances where a particular

water body is outside of the floodplain and riparian area of a tributary, but is connected by a shallow subsurface hydrologic connection or confined surface hydrologic connection or confined surface hydrologic connection with such tributary, the agencies will also assess the distance between the water body and tributary in determining whether or not the water bedy whether or not the water body is adjacent. "Adjacent" as defined in the agencies' regulations has always included an element of reasonable proximity. See Riverside Bayview, 474 at

133-34 ("Following the lead of the Environmental Protection Agency, see 38 FR 10834 (1973), the Corps has determined that wetlands adjacent to navigable waters do as a general matter play a key role in protecting and play a key role in protecting and enhancing water quality: . . . For this reason, the landward limit of Federal purisdiction under Section 404 must include wetlands that are in reasonable proximity to other waters of the United States, as these wetlands are part of this aquatic system: "quoting 42 FR 37128, July 19, 1977). Therefore, the July 19, 1977]. Therefore, the determination of whether a particular water meets the definition of "neighboring" because the water is connected by a shallow subsurface or confined surface hydrologic connection is made in the context of the terms "neighboring" and "adjacent" as used in the regulation. The element of reasonable proximity is informed by the scientific literature, supplemented by agency practice, which leads to a recognition of the role of hydrologic connections in supporting a significant chemical, physical, and biological relationship between water bodies, but this relationship can be

bodies, but this relationship can be reduced as the distance between water bodies increases. The agencies recognize that in specific circumstances, the

that in specific circumstances, the distance between water bodies may be sufficiently far that even the presence of a hydrologic connection may not support an adjacency determination. While the agencies' best professional judgment has always been a factor in determining whether a particular wetland is "adjacent" under the existing definition, the agencies recognize that this may result in some uncertainty as to whether a particular water connected through confined surface or shallow subsurface hydrology is an "adjacent" subsurface hydrology is an "adjacent" water. The agencies therefore request comment on whether there are other reasonable options for providing clarity for jurisdiction over waters with these

types of connections.
Options could include asserting jurisdiction over all waters connected through a shallow subsurface hydrologic connection or confined surface hydrologic connection regardless of distance, asserting jurisdiction over adjacent waters only if they are located in the floodplain or riparian zone of a jurisdictional water; considering only confined surface connections but not shallow subsurface connections for purposes of determining adjacency; or establishing specific geographic limits for using shallow subsurface or confined surface hydrological connections as a basis for determining adjacency, including, for example, distance limitations based on ratios compared to shallow subsurface connections for

the bank-to-bank width of the water to which the water is adjacent. The agencies note that under the proposed rule any waters not fitting within (a)(1) through (a)(6) categories would instead

he treated as "other waters." Both confined surface and shallow subsurface connections are forms of direct hydrologic connections between adjacent waters and (a)(1) through (a)(5) waters. For purposes of this rule, confined surface connections consist of permanent, intermittent or ephemeral permanent, intermittent or ephemeral surface connections through directional flowpaths, such as (but not limited to) swales, gullies, rills, and ditches. In some cases, these connections will be a result of "fill and spill" hydrology. A directional flowpath is a path where water flows repeatedly from the wetland or open water to the nearby "water of the linited States" that there explains. the United States" that at times contains the United States" that at times contains water originating in the adjacent wetland or open water as opposed to just directly from precipitation. For the purposes of this rule, "fill and spill" describes situations where wetlands or open waters fill to capacity during intense precipitation events or

wetlands or open waters fill to capacity during intense precipitation events or high cumulative precipitation over time and then spill to the downstream jurisdictional water. Report at 5–62 (citing T.C. Winter and D.O., Rosenberry, 'Hydrology of Prairie Pothole Wetlands during Drought and Deluge: A 17-year Study of the Cottonwood Lake Wetland Complex in North Dakota in the Parenactive of Longer Team Measured Complex in North Dakota in the Perspective of Longer Term Measured and Proxy Hydrological Records," Climatic Change 40:189–209 (1998); S.G. Leibowitz, and K.C. Vining, "Temporal connectivity in a prairie "Temporal connectivity in a prairie pothole complex," Wetlands 23:13–25 (2003)). Water connected through such flows originates from the adjace tiows originates from the adjacent wetland or open water, travels to the downstream jurisdictional water, and is connected to those downstream waters by swales or other directional flowpaths on the surface. Surface hydrologic connections via physical features or discrete features described above allow for confined direct hydrologic flows. or confined, direct hydrologic flows between an adjacent water and the (a)(1) through (a)(5) water that it neighbors. A shallow subsurface hydrologic connection is lateral water flow through

a shallow subsurface layer, such as can be found, for example, in steeply sloping forested areas with shallow soils, or in soils with a restrictive laver that impedes the vertical flow of water, or in karst systems, especially karst pans. K.J. Devito, et al., "Groundwater-Patis. R.J. Devitte, et al., Groundwater-Scurface Water Interactions in Headwater Forested Wetlands of the Canadian Shield," Journal of Hydrology 181:127– 47 (1996); M.A. O'Driscoll, and R.R. Parizek, "The Hydrologic Catchment

Area of a Chain of Karst Wetlands in Central Pennsylvania, USA," Wetlands 23:171–79 (2003); B.J. Cook, and F.R. Hauer, "Effects of Hydrologic Connectivity on Water Chemistry, Soils, and Vegetation Structure and Function in an Intermontane Depressional Wetland Landscape," Wetlands 27:719-

38 (2007).

A shallow substrface connection also A station substitute connection also exists, for example, when the adjacent water and neighboring [a](1) through [a](5) water are in contact with the same shallow aquifer. Shallow subsurface connections may be found both within the ordinary root zone and below the ordinary root zone (below 12 inches), where other watland delineation factors. where other wetland delineation factors may not be present. A combination of physical factors may reflect the presence of a shallow subsurface connection, including (but not limited to) stream hydrograph (for example, when the hydrograph indicates an increase in flow in an area where no tributaries are entering the stream), soil surveys (for example, exhibiting indicators of high example, examine indicators of ingli-transmissivity over an impermeable layer), and information indicating the water table in the stream is lower than in the shallow subsurface. Shallow subsurface connections are

distinct from deeper groundwater connections, which do not satisfy the requirement for adjacency, in that the former exhibit a direct connection to the water found on the surface in wetlands and open waters. Water does not have to be continuously present in the confined surface or shallow subsurface confined surface or shallow subsurface hydrologic connection and the flow between the adjacent water and the jurisdictional water may move in one or hoth directions. While they may provide the connection establishing jurisdiction, these shallow subsurface flows are not "waters of the United States." For waters outside of the riparian area or floodplain, confined surface hydrologic connections (as described above) are the only types of surface hydrologic connections that satisfy the requirements for adjacency. Waters

requirements for adjacency. Waters outside of the riparian area or floodplain that lack a shallow subsurface

that lack a shallow subsurface hydrologic connection or a confined surface hydrologic connection would be analyzed as "other waters" under paragraph (a)(7) of the proposed rule. Application of the terms "riparian area," "floodplain," and "hydrologic connection" would he based in part on best professional judgment and experience applied to the definitions contained in this rule. The new definitions of riparian area and definitions of riparian area and floodplain are designed to provide greater consistency, clarity, and certainty in determining the

circumstances under which a particular water meets the definition of the term adjacent. The addition of these two terms to the definition of "neighboring" is based on the scientific literature and agencies' knowledge of and expertise on river systems, which shows that water bodies such as wetlands, ponds, and oxbow lakes located within the riparian oxlow lakes rotated within the ipartial areas and floodplains of (a)(1) through (a)(5) waters generally have substantial hydrologic and ecologic connections with the waters that they neighbor. These proposed definitions are adapted from scientific definitions using the concents that the water tolerant and

the concepts that are most relevant and useful in the context of the CWA. Use of the floodplain in characterizing the term "neighboring" is intended to provide greater clarity and predictability in the determination of when waters are adjacent. The scientific literature clearly adjacent. The scientific literature clearl demonstrates the enhanced hydrologic connectivity that is present between a tributary and waters within the floodplain of that tributary. There is, however, variability in the size of the floodplain, which is dependent on factors such as the flooding frequency being considered, size of the tributary, and to correctly. As a general matter, and the correctly as a general matter. and topography. As a general matter, large trihutaries in low gradient topography will generally have large floodplains (e.g., the lower Mississippi Delta) whereas small headwater stream located in steep gradients will have the smallest floodplains. It may thus be appropriate for the agencies to consider a floodplain associated with a lower frequency flood when determining adjacency for a smaller stream, and to adjacency for a smaller stream, and to consider a floodplain associated with a higher frequency flood when determining adjacency for a larger stream. When determining whether a water is located in a floodplain, the agencies will use best professional judgment to determine which flood interval to use (for example, 10 to 20 year flood interval zone). The agencie year nood interval zone). The agencies request comment on whether the rule text should provide greater specificity with regard to how the agencies will determine if a water is located in the

floodplain of a jurisdictional water.

As noted above, the agencies retain the general existing definition of adjacency and have never interpreted the term to include wetlands that are a great distance from a jurisdictional water. The agencies intend to similarly interpret the new definition of "neighboring." This new definition is designed to provide greater clarity by designed to provine greater claimy uy identifying specific areas and characteristics for jurisdictional adjacent waters, but the agencies request comment for additional clarification. Commenters should support where possible from scientific literature any suggestions for additional clarification

suggestions for additional clarification of current explicit limits on adjacency, such as a specific distance or a specific floodplain interval.

The agencies seek comment on specific options for establishing additional precision in the definition of "neighboring" through: explicit language in the definition that waters connected by shallow subsurface hydrologic or confined surface hydrologic connections to an (a)(1) through (a)(5) water must be through (a)(5) water must be geographically proximate to the adjacent water; circumstances under which waters outside the floodplain or riparian zone are inrisdictional if they are reasonably proximate; support for or against placing geographic limits on what waters outside the floodplain or riparian zone are invital to the company. through (a)(5) water must be what waters outside the modupath or riparian zone are jurisdictional; determining that only waters within the floodplain, only waters within the riparian area, or only waters within the floodplain and riparian area (but not waters outside these areas with a shallow subsurface or confined surface hydrologic connection) are adjacent: hydrologic connection) are adjacent; identification of particular floodplain intervals within which waters would be considered adjacent; and any other

considered adjacent; and any other scientifically valid criteria, guidelines or parameters that would increase clarity with respect to neighboring waters. Finally, the agencies are also proposing to delete the parenthetical from the existing "adjacent wetlands" regulatory provision The phrase "other than waters that are themselves wetlands" was intended to preclude wetlands" was intended to preclude asserting CWA jurisdiction over wetlands that were simply adjacent to another wetland (such as an "isolated" wetland, as opposed to a wetland adjacent to a tributary). However, in practice some wetlands that were indeed adjacent to a tributary were found to not meet the definition of found to not meet the definition of "adjacent" simply because another adjacent wetland was located hetween the adjacent wetland and the tributary. With this proposed change, the agencies intend to ensure that all waters that meet the proposed definition of "adjacent" are "waters of the United States," regardless of whether or not another adjacent water in the states."

another adjacent water is located between those waters and the tributary. If, for example, one wetland is in the riparian area of a "tributary" as defined in today's proposed rule, and a different wetland is in the floodplain of that tributary, both wetlands would meet the definition of "adjacent" and be "waters of the United States," even if the riparian wetland is located hetween the floodplain wetland and the tributary. Waters located near an adjacent water

but which are not themselves (independently) adjacent to an (a)(1) through (a)(5) water would, under the proposed rule, not be regulated under proposed rule, not be regulated and (a)(6). However, waters, including wetlands, that are adjacent to a wetland that meets the definition of a tributary would be considered adjacent waters.

- 2. Why do the agencies conclude that adjacent waters are United States?"
- a. Legal Basis for Defining All Adjacent Waters as ''Waters of the United States''

For those wetlands adjacent to traditional navigable waters, Justice Kennedy stated in Rapanos that the agencies' existing regulation "rests npon a reasonable inference of ecologic interconnection, and the assertion of jurisdiction for those wetlands is sustainable under the Act by showing adjacency alone." 547 U.S. at 780. For all other Addacent waters including all other adjacent waters, including adjacent wetlands, Justice Kennedy has provided a framework for establishing categories of waters which are per se "waters of the United States." First, he provided that wetlands are jurisdictional if they "either alone or in combination with similarly situated [wet]lands in the region, significantly affect the chemical, physical, and anext me chemical, physical, and biological integrity of other covered waters more readily understood as 'navigable.'" 547 U.S. at 780. While the issue was not hefore the Supreme Court, it is reasonable to also assess whether non-wetland waters have a significant norms as lustice Kanaedy's original. nexns, as justice Kennedy's opinion makes clear that a significant nexus is the touchstone for CWA jurisdiction. Justice Kennedy also stated that the agencies could through regulation or adjudication identify categories of waters that "are likely, in the majority of cases, to perform important functions

of cases, to perform important functions for an aquatic system incorporating navigable waters." 547 U.S. at 780–81. Adjacent waters as defined in today's proposed rule, alone or in combination with other adjacent waters in a watershed that drain to a traditional navigable water, interstate water or the territorial seas, significantly affect the chemical, physical, or biological integrity of those waters. Waters that are adjacent to (a)(1) through (a)(5) waters, including wetlands, oxbow lakes and adjacent ponds, are integral parts of stream networks because of their ecological functions and how they interact with each other, and with downstream traditional navigable waters, interstate waters, or the waters, interstate waters, or the territorial seas. In other words, trihutaries and their adjacent waters, and the traditional navigable waters

interstate waters, and territorial seas to interstate waters, and territorial seas to which those waters flow, are an integrated ecological system, and discharges of pollutants, including discharges of dredged or fill material, into these components of that ecological system, must be regulated under the CWA to restore and maintain the charging layers of the property of the components of the com

chemical, physical, and biological integrity of these waters.

The agencies' proposed rule is consistent with the statute, the Supreme Court's decisions, the best available science, and scientific and technical expertise. See both Appendices A and B.

b. Adjacent Waters Under This Proposed Rule Have a Significant Nexus to (a)(1) Through (a)(3) Waters

to (a)(1) Inrough (a)(3) waters.

The agencies' proposal to determine "adjacent waters" to be jurisdictional by rule is supported by the substantial chemical, physical, and biological relationship between adjacent waters, alone or in combination with similarly situated waters, and (a)(1) through [a)(5) waters. Adjacent wetlands and other adjacent water such as pende and adjacent waters such as ponds and oxbow lakes perform important functions for the nearby streams and lakes, and these functions are significant for the chemical, physical, and biological integrity of adjacent and

downstream waters. See Appendix A.
One reason why the agencies propose
in this rulemaking that all adjacent
waters have a significant nexns with
their traditional navigable waters,
interstate waters, or the territorial seas is closely related to a primary reason (explained ahove) why all tributaries of navigable and interstate waters have a significant nexus with those waters That is, all adjacent waters should he jurisdictional by rnle because the discharge of many pollutants (such as nutrients, petroleum wastes and other toxic pollutants) into adjacent waters often flow into and thereby pollute the

traditional navigable waters, interstate waters, and the territorial seas. Based on science and agency expertise, the agencies conclude that adjacent waters, as defined in the proposed rule, "are likely, in the majority of cases, to perform important functions for an aquatic system incorporating navigable waters."
Rapanos, 547 U.S. at 781–82. The
agencies identified the characteristics of adjacent waters that as a class have significant nexns to (a)(1) through (a)(3) waters: They are waters that are bordering to or are contiguous with
(a)(1) through (a)(5) waters, including
wetlands; they are waters that lie within the riparian area or floodplain of (a)(1) through (a)(5) waters; or they are waters

that have a shallow subsurface or confined surface hydrologic connection with (a)(1) through (a)(5) waters. These characteristics ensure that the adjacent waters are part of "an aquatic system incorporating navigable waters," 547 U.S. at 781–82; and that they perform important functions to maintain the integrity of (a)(1) through (a)(3) waters.

In showing chemical, physical, and biological connections between adjacent

biological connections between adjacen waters and other jurisdictional waters, adjacent waters, including wetlands, may be separated by land or other features not regulated under the CWA, but those intervening uplands do not eliminate or impade the functional interactions between (a)(1) through interactions between (a)(1) through (a)(5) waters and the waters, including wetlands, that are adjacent to them. For instance, two waters may be separated by upland but be connected through surface or shallow subsurface connections with water and chemicals readily exchanging between them Similarly, uplands separating two waters may not act as a barrier to species that rely on and that regularly move between the two waters Therefore, the proposed rule reflects an understanding that adjacent waters understanding that adjacent waters affect the chemical, physical, and biological integrity of waters to which they are adjacent and to (a)(1) through (a)(3) waters even where the two waters may be separated by features that are not jurisdictional, such as uplands, berms, roads, levees, and similar features. The presence of these features does not extinguish understands in the second of the seatures does not extinguish unskildition. does not extingnish jurisdiction, a conclusion contained in the agencie existing regulation at 33 CFR 328.3(c).

(1) Riparian and Floodplain Waters Significantly Affect the Chemical, Physical, and Biological Integrity of (a)(1) Through (a)(3) Waters

Riparian and floodplain waters including wetlands, that are adjacent to (a)(1) through (a)(3) waters play an integral role in maintaining the chemical, physical, and hiological integrity of those waters. In addition, riparian and floodplain waters, including wetlands, that are adjacent to (a)(4) and (a)(5) waters provide an important role in maintaining the chemical, physical, and biological integrity of traditional navigable waters, interstate waters, and the territorial seas Among the ways in which riparian and Thomborg the ways in which ripartan and Boodplain waters, including wetlands, that are adjacent to (a)(4) and (a)(5) waters significantly affect the chemical, physical, or biological integrity of traditional navigable waters, interstate waters, and the territorial seas is by significantly affecting the chemical,

physical, and hiological integrity of the (a)(4) and (a)(5) waters to which they are adjacent, and those waters in turn significantly affect the chemical, significantly attect the chemical, physical, or biological integrity of traditional navigable waters, interstate waters, and the territorial seas.
(2) Waters, Including Wetlands, Determined To Have a Confined Surface

or a Shallow Subsurface Hydrologic

or a Shallow Subsurface Hydrologic Connection Significantly Affect the Chemical, Physical, and Biological Integrity of (a)(1) Through (a)(3) Waters. The proposed rule includes as adjacent those waters that are "neighboring" because they possess a shallow subsurface or confined surface hydrologic connection to a jurisdictional water, and therefore can exchance water, along with chemicals exchange water, along with chemicals and organisms within that water, with an (a)(1) through (a)(5) water, and an (a)(1) through (a)(5) water, and subsequently have a significant effect, particularly in combination with other adjacent waters in the watershed, on the chemical, physical, or biological integrity of a downstream traditional navigable water, interstate water, and the territorial seas. Confined surface connections that

Contined surface connections that provide a discrete pathway for water to be exchanged between the potentially adjacent wetland or water and an (a)(1) through (a)(5) water present the clearest evidence of a hydrologic connection. Shallow subsurface connections are also relevant, yet are more difficult to identify and document. Evidence shows the treatment in subsular and board. that waters, including wetlands, located outside of the riparian area or floodplain, but which still have a shallow subsurface or confined surface sharow substrace or commed surface hydrologic connection to an (a)(1) through (a)(5) water, will have a significant nexus to downstream (a)(1) significant leaves to downstream (a)(1) through (a)(3) waters. Note that nothing under the proposed rule would canse the shallow subsurface connections

themselves to become jurisdictional.
Examples of confined surface water hydrologic connections that demonstrate adjacency are swales, gullies, and rills. The frequency, duration, and volume of flow associated with these confined surface connections can vary greatly depending largely on factors such as precipitation, snowmelt landforms, soil types, and water table elevation. It is the presence of this hydrologic connection which provides the opportunity for neighboring waters to influence the chamical physical and the connection which provides the control of the chamical should be such as the chamical should be suc to influence the chemical, physical, or biological integrity of (a)(1) through (a)(5) waters.
In circumstances where a particular

water is outside of the floodplain and riparian area of a jurisdictional water, a connection can be established by confined surface or shallow subsurface

hydrology that makes the water neighboring, and thus adjacent. The scientific literature recognizes the role of hydrologic connections in supporting a substantial chemical, physical, or biological relationship between water bodies, but this relationship can be reduced as the distance between water bodies increases because of various factors, such as soil characteristics, geology, climate, precipitation patterns, etc. The distance between water bodies may be sufficiently great that even the presence of an apparent hydrologic connection may not support an adjacency determination. The greater adjacency utermination. The greater the distance, the less likelihood that there is an actual shallow subsurface or confined surface hydrologic connection, because of the greater potential for the water to infiltrate the soil to deeper groundwater, or for transmission losses in any gully or swale (for example) that may appear to be hydrologic connections. Within a watershed, wetlands and open waters that are closer to tributaries will have a higher prohability of being hydrologically connected and of being determined adjacent than more distant waters, assuming that conditions governing type and quantity of flows (e.g., slope, soil, and aquifer permeability) are similar. Report at 5–2. A determination of adjacency based on shallow subsurface or confined surface hydrologic connection outside the riparian area or floodplain requires clear documentation.

H. "Other Waters"

H. "Other Waters"

The "other waters" paragraph of the proposed rule is at (a)(7). To he clear, these "other waters" are not jurisdictional as a single category; rather, as the proposed rule language states, "other waters" are jurisdictional provided that they are found, on a case-specific basis, to have a significant nexus to an (a)(1) through (a)(3) water. Thus, the introductory phrase "on a case-specific basis" is designed to signal clearly that this provision of the definition of "waters of the United States" does not mean "other waters" States" does not mean "other waters are "waters of the United States" by definition in the same way as those defined as jurisdictional in proposed

defined as jurisdictional in proposed paragraphs (a)(1) through (a)(5). "Other waters" will be evaluated either individually, or as a group of waters where they are determined to be similarly situated in the region. Waters are similarly situated where they perform similar functions and are located sufficiently close together or when they are sufficiently close to a jurisdictional water. How these "other waters" are aggregated for a casewaters" are aggregated for a case-

specific significant nexus analysis depends on the functions they perform and their spatial arrangement within the "region" or watershed. For other waters that perform similar functions, their landscape position within the watershed (i.e., the "region") relative to each other or to a jurisdictional water is generally the determinative factor for aggregating waters in a significant nexus analysis, which will focus on the degree to which the functions provided by those "other waters" affect the chemical, physical, or biological integrity of (a)(1) through (a)(3) waters and whether such effects are significant. See Appendix A, Scientific Evidence (Part I, Discussion of Major Conclusions 2.C; Part II, iii) and Appendix B, Legal Analysis.

Analysis.
Significant nexus is proposed to be defined to mean that a water, including wetlands, either alone or in combination with other similarly sitnated waters in the region (i.e., the watershed that drains to the nearest water identified in drains to the nearest water identified in paragraphs (al(1) through (a)(3) of this section), significantly affects the chemical, physical, or biological integrity of a water identified in paragraphs (a)(1) through (a)(3) of this section. For an effect to be significant, it must be more than speculative or insubstantial. Other waters, including wetlands are similarly situated when insubstantial. Other waters, including wetlands, are similarly situated when they perform similar functions and are located sufficiently close together or sufficiently close to a "water of the United States" so that they can be evaluated as a single landscape unit with regard to their effect on the chamical physical or biological

with regard to their effect on the chemical, physical, or biological integrity of a water identified in paragraphs (a)(1) through (a)(3). Other waters with a significant nexus can be found to be jurisdictional on a case-specific basis where these waters do not fit within the definition of another of the proposed categories of "waters of the United States" under paragraphs (a)(1) through (a)(5) and a second paragraphs (a)(1) through (a)(6) and are not excluded from the definition of "waters of the United States" under

proposed section (b).
A significant nexus analysis may be based on a particular water alone or based on the effect that the water has in combination with other similarly situated waters in the region. Where effects will be analyzed in combination. the agencies will aggregate those effects. The agencies propose to interpret the "region" within which similarly situated waters would be aggregated as the watershed that drains to the nearest traditional navigable water, interstate

water, or the territorial seas. For purposes of analyzing whether an "other water" has a significant nexus,

the agencies are proposing that "other waters" are similarly situated if they perform similar functions and they are either (1) located sufficiently close together so that they can be evaluated as together so that they can be evaluated as a single landscape unit with regard to their effect on the chemical, physical, or biological integrity of a water identified in paragraphs (a](1) through (a](3), or (2) located sufficiently close to a "water of the United States" for such an evaluation of their effect. These criteria

are explained in a subsequent section.

Consistent with Justice Kennedy's Consistent with Justice Kennedy's opinion in Rapanos, the agencies propose today and are soliciting comment on establishing a case-specific analysis of whether "other waters," including wetlands, that do not meet the criteria for any of the proposed jurisdictional categories in [a](1) through [a](6) and are not proposed to through (a)(6) and are not proposed to be excluded by rule under section (b), are susceptible to a case-specific analysis of whether they alone, or in analysis of whether they alone, or in combination with other similarly sitnated waters, have a significant nexus to a traditional navigable water, an interstate water, or the territorial seas, and therefore are "waters of

Significant Nexus Analysis for "Other Waters"

a. "Other Waters"

"Other waters" are those waters, including wetlands, that are subject to a case-specific significant nexus determination, and do not meet the criteria of any of the categories of waters in (a)(1) through (a)(6), and also are not one of the waters and features excluded from the definition of "waters of the from the definition of "waters of the United States" in section (b). In the existing regulation, there is a non-exclusive list of the types of "other waters" which may be found to be "waters of the United States." The agencies do not propose to repromulgate this list of "other waters" because it is unnecessary and has led to confusion where it has been incorrectly read as an exclusive list. read as an exclusive list,

read as an excusive list.

Of additional concern was that the
existing descriptive list of types of
"other waters" includes some waters
that would be jurisdictional under one
of the proposed categories of "waters of
the United States" that would be jurisdictional by rule, such as trihntary streams. The agencies want to avoid questions of whether an intermittent stream that meets the definition of tributary also needs a separate significant nexus analysis. Under the proposed rule, that tributary stream does not require the significant nexus analysis. Removing the list of water

types does not imply that any of the waters listed in the existing regulation are never jurisdictional under the proposed rule. When one of the waters on the current enumerated list does not fall under a proposed category for jurisdiction (for example, adjacent waters under (a)(6) or tributaries under waters under (a)(5) or troutaries u (a)(5)), those waters would be jurisdictional if found to have a significant nexus under proposed paragraph (a)(7) on a case-specific basis.

b. Significant Nexus

The agencies recognize that Supreme Court decisions in SWANCC and Rapanos placed limits on the scope of "other waters" that may be determined to be jurisdictional. Therefore, the agencies' proposal today provides that waters not determined to be jurisdictional as a category are jurisdictional only if they are jurisdictional only if they are determined on a case-specific basis to have a significant nexus to a traditional navigable water, an interstate water, or the territorial seas. The agencies also request comment and information below on how the science could support other approaches that could provide greater resulterry certainty regardine the approaches that could provide greater regulatory certainty regarding the jurisdictional status of "other waters", including expanding the list of waters jurisdictional by rule, expanding the list of waters not jurisdictional by rule, and narrowing the "other waters" subject to a case-specific analysis, including eliminating the case-specific analysis where the science does not support it. The agencies will review the The agencies will review the administrative record, including comments received, the scientific literature, and the final Report, in

literature, and the final Report, in determining how to address "other waters" in the final rule.

Justice Kennedy explained the SWANCC decision in his concurring opinion in Rapanos: "In Solid Waste Agency of Northern Cook Cty. v. Army Corps of Engineers, 531 U.S. 159 (2001) (SWANCC), the Court held, under the circumstances presented them that (SWANCC), the Court held, under the circumstances presented there, that to constitute 'navigable waters' under the Act, a water or wetland must possess a 'significant nexus' to waters that are or were navigable in fact or that could reasonably be so made." 547 U.S. at 759. The agencies interpret the significant nexus standard to apply to the "other waters" portion of the existing regulation since the Court in SWANCC was considering the validity of the regulation since the Court in SWANCC was considering the validity of the Corps' assertion of jurisdiction over ponds and mudflats under (a)(3) of the Corps' regulations (33 CFR 328.3). To comport with the SWANCC and Rapanos decisions, the agencies propose to delete the requirement that

an "other water" be one the use degradation or destruction of which could affect interstate or foreign commerce and to replace it with the requirement that the "other water" meet Justice Kennedy's significant nexus standard. The current regulations asser jurisdiction more broadly than what is proposed today. With this proposed regulation, the agencies would limit jurisdiction over "other waters" to only those that are determined on a case-

those that are determined on a case-specific basis to have a significant nexus to an (a)(1) through (a)(3) water. For purposes of assessing whether a particular water is a "water of the United States" because it, alone or in combination with other similarly situated waters, has a significant nexus to an (a)(1) through (a)(3) water the to an (a)(1) through (a)(3) water, the agencies are proposing to define "significant nexus" plus each of the key elements used in the definition of 'significant nexus.

i. In the Region

The agencies propose to interpret the phrase "in the region" to mean the watershed that drains to the nearest traditional navigable water, interstate water, or the territorial seas through a water, or the territorial seas through a single point of entry. That concept is reflected in the definition of "significant nexus" at (c)[7). Since Justice Kennedy did not define the "region," the agencies determined that because the movement of water from watershed drainage basins to river networks and lakes shapes the development and function of these development and function of these systems in a way that is critical to their long term health, the watershed is a reasonable and technically appropriate extent on which to identify waters that together may have an effect on the chemical, physical, or biological integrity of a particular (a)(1), through (a)(3) water. See Appendix A, Scientific Evidence (Part I, Background; Part II, 4, iii, A).

iii, A).

The agencies choose to use the single The agencies choose to use the single point of entry watershed as the appropriate scale for the region. A single point of entry watershed is the drainage basin within whose boundaries all precipitation ultimately flows to the nearest single traditional navigable water, interstate water, or the territorial sea. There will likely be other traditional navigable waters, interstate waters, and ultimately the territorial seas further downstream from the "uearest" such water, and these further downstream waters would likely have larger watersheds, but the agencies determined that a reasonable interpretation of "in the region" is the watershed that drains to the nearest (i.e. first downstream) such water. Any nexus between other waters and an

(a)(1) through (a)(3) water will be strongest with this nearest such water, and its drainage area is likely to be of a size commonly understood as a "region."

region.

The agencies generally use available mapping tools that are based on the National Hydrography Dataset (NHD) to demarcate boundaries of the single point of entry watershed. This point of the strategies identifies a group of entry approach identifies a group of waters that flow to a single location and represents the scientifically appropriate sized area for conducting a significant nexus evaluation in most cases. In the arid West, the agencies recognize there may be situations where the single point of entry watershed is very large, and it may be resource intensive to demarcate watershed boundaries and all relevant waters in the watershed. Under those circumstances, for practical administrative purposes the agencies could use the NHD mapping tool to demarcate catchments surrounding the water to be evaluated that, in combination, are roughly the size of the typical nearby 10-digit hydrologic unit code (HUC-10) watershed. This combination of catchments would be combination of catchments would be used for conducting a significant nexus evaluation. Such an approach can help resolve some practical concerns about using available mapping tools on very large single point of entry watersheds in the arid West.

The watershed includes all lands, streams, wetlands, lakes, and other waters within its boundaries. Only waters within the watershed that meet standards set ont in (a)(1) through (a)(7) of the proposed rule would be considered "waters of the United States." In light of the scientific literature, the longstanding approach of the agencies to implementation of the CWA, and the statutory goals underpinning Justice Kennedy's significant nexus framework, the watershed draining to the nearest (a)(1) through (a)(3) water is the appropriate "region" for a significant nexus "region" analysis.

ii. Similarly Situated

Justice Kennedy provided guidance to the agencies that establishing a significant nexus requires examining whether a water "alone or in combination with similarly situated [wet]lands in the region, significantly affect[s] the chemical, physical, and anecus the chemical, physical, and hiological integrity of other covered waters more readily understood as 'navigable.'' 547 U.S. at 780. The proposed rule adopts the concept of the ''alone or in combination with similarly situated waters'' test.

The proposed regulation in the definition of "significant nexus" at (c)(7) clarifies that other waters, including wellands, are similarly situated when they perform similar functions and are located sufficiently close to gother or sufficiently close to a water of the United States' so that they can be evaluated as a single landscape unit with regard to their effect on the chemical, physical, or biological integrity of a water identified in paragraphs (a)(1) through (a)(3) This combination of functionality and proximity to each other or to a "water of the United States" meets the standard provided by Justice Kennedy. Examining both functionality and proximity also limits the "other waters" that can be aggregated for purposes of determining uirrisdiction in the "other waters" that can be aggregated for purposes of determining intrisdiction.

paragraphs (a)(1) (Inrough (a)(3) Inis combination of functionality and proximity to each other or to a "water of the United States" meets the standard provided by Justice Kennedy. Examining both functionality and proximity also limits the "other waters" that can be aggregated for purposes of determining jurisdiction.

It is appropriate to analyze the chemical, physical, or biological effects "other waters" perform individually or together with all similarly situated "other waters" in the region under Justice Kennedy's standard. Today, the agencies are proposing to identify factors to apply in the determination of when "other waters" should be considered either individually or as a single landscape unit for purposes of a significant nexus analysis. The agencies propose that "similarly situated" requires an evaluation of either a single water or group of waters (i.e., a single landscape unit) in the region that can reasonably be expected to function together in their effect on the chemical, physical, or biological integrity of downstream traditional navigable waters, interstate waters, or the territorial seas.

physical, or biological integrity of downstream traditional navigable waters, interstate waters, or the territorial seas. In addition, the agencies propose that "other waters" located close to a jurisdictional water are more likely to influence such waters and therefore, to affect the integrity of downstream (a)(1) through (a)(3) waters. These "other waters," which do not meet the proposed definition of adjacent waters, may be assessed together when determining on a case-specific basis whether a significant nexus exists, because of their similar functions and similar location in the landscape.

Similarly situated waters may be identified as sufficiently close together

Similarly situated waters may be identified as sufficiently close together for purposes of this paragraph of the proposed regulation when they are within a contiguous area of land with relatively homogeneous soils, vegetation and landform (e.g., plain, mountain, valley, etc.). As a general matter, it would be inappropriate, for example, to consider "other waters" as "similarly situated" if these "other waters" are located in different landforms, have different levation profiles, or have

different soil and vegetation characteristics, unless the "other waters" perform similar functions and are located sufficiently close to a "water of the United States" to allow them to consistently and collectively function together to affect an (a)(1) through (a)(3) water. In determining whether other waters are sufficiently close to each other or to a water of the United States, the agencies would also consider hydrologic connectivity to each other or a jurisdictional water.

nyuriogic connectivity to each other or a jurisdictional water. In determining whether groups of other waters perform "similar functions" the agencies would also consider functions such as habitat, water storage, sediment retention, and pollution sequestration. These and other relevant considerations would be used by the agencies to document the hydrologic, geomorphic and ecological characteristics and circumstances of the waters. Examples include: documentation of chemical, physical, and biological interactions of the similarly situated "other waters;" aerial photography; topographical or terrain maps and information; other available geographic information systems (GIS) data: National Wetlands Inventory Maps; and state and local information. The evaluation would use any available site information and pertinent field observations where available, relevant scientific studies or data, or other relevant jurisdictional determinations.

scientific studies or data, or other relevant jurisdictional determinations that have been completed in the region. Under the proposed rule, the agencies would assess the combined effects of similarly situated "other waters" in the region on the chemical, physical, or biological integrity of (a/11) through (a/13) waters in conducting a significant nexus analysis. The factors identified above would be used by the agencies in determining "other waters" in the region that are similarly situated and should, therefore, be considered together in conducting a significant nexus analysis. The agencies recognize that consideration of these factors will often limit aggregation of "other waters" for purposes of assessing significant nexus or will require that "other waters" be considered individually with no aggregation.

iii. Significant Nexus

The agencies propose to define the term "significant nexus" consistent with language in SWANCC and Rapanos. The proposed definition recognizes that not all waters have this requisite connection to traditional navigable waters, interstate waters, or the territorial seas sufficient to be determined jurisdictional. Justice Kennedy was clear that waters with a significant

nexus must significantly affect the chemical, physical, or biological integrity of a downstream navigable water and that the requisite nexus must be more than "speculative or insubstantial," Rapanos, at 780, and the agencies propose to define significant rows in precisal these terms.

insubstantial," Raganas, at 780, and the agencies propose to define significant nexus in precisely those terms. It is important to note that in Rapanas, Justice Kennedy did not conclude that the wetlands adjacent to tributaries in the cases before the Court were not "waters of the United States." Rather, Justice Kennedy concluded that the proper inquiry to determine their jurisdictional status—whether or not the wetlands had a "significant nexus"— had not been made by the Corps or the courts below. Justice Kennedy stated that in hoth the consolidated cases before the Court the record contained the types of evidence relevant to the determination of a significant nexus according to the principles he identified. Justice Kennedy stated "(mluch the same evidence should permit the establishment of a significant nexus with navigable-in-fact waters, particularly if supplemented by further evidence about the significance of the tributaries to which the wetlands are connected." Id. Thus, Justice Kennedy concluded that "the end result in these cases and many others to be considered by the Corps may be the same as that suggested by the dissent, namely, that the Corps' assertion of jurisdiction is valid." See Appendix B, Legal Analysis.

The agencies will determine whether the water they are evaluating in

The agencies will determine whether the water they are evaluating, in combination with other similarly situated waters in the region, has a significant nexus to the nearest traditional navigable water, interstate water or the territorial seas. Functions of waters that might demonstrate a significant nexus include sediment trapping, nutrient recycling, pollutant trapping, nutrient recycling, pollutant trapping and filtering, retention or attenuation of flood waters, runoff storage, export of organic matter, export of food resources, and provision of aquatic habitat. A hydrologic connection is not necessary to establish a significant nexus, because, as Justice Kennedy stated, in some cases the lack of a hydrologic connection would be a sign of the water's function in relationship to the traditional navigable water, interstate water or the territorial seas. These functional relationships include retention of flood waters or pollutants that would otherwise flow downstream to the traditional navigable water, interstate water or the territorial seas. See 547 U.S. at 775 (citations continued) (U. Kennedy) ("it may be the absence of an interchange of waters prior to the dredge and fill activity that

makes protection of the wetlands critical to the statutory scheme"). For example, a report that reviewed the results of multiple scientific studies concluded that depressional wetlands lacking a surface outlet functioned together to significantly reduce or attenuate flooding. Report at 5–26 (citing A. Bullock and M. Acreman, The Role of Wetlands in the Hydrological Cycle," Hydrology and Earth System Sciences 7:358–389

(2003)).
When evaluating an "other water" individually or cumulatively for the presence of a significant nexus to an (a)(1) through (a)(3) water, there are a variety of factors that can be considered that will influence the chemical, physical, or biological connections the "other water" has with the downstream (a)(1) through (a)(3) water. The likelihood of a significant connection is greater with increasing size and decreasing distance from the identified (a)(1) through (a)(3) water, as well as with increased density of the "other waters" for "other waters" that can be considered in combination with

similarly situated waters.
Evidence of chemical connectivity
and the effect on waters can be found by
identifying: Whether the properties of the water in question are similar or dissimilar to an identified (a)(1) through (a)(3) water; signs of retention, release, or transformation of nutrients or pollntants; and the effect of landscape poliniants; and the effect of landscape position on the strength of the connection in the nearest "water of the United States," and through it to an (a)(1) through (a)(3) water. In addition, relevant factors influencing chemical connectivity include hydrologic connectivity (see physical factors connectivity (see physical factors

connectivity (see physical factors, below), surrounding land use and land cover, the landscape setting, and deposition of chemical constituents (e.g. acidic deposition).

Evidence of physical connectivity and the effect on (a)(1) through (a)(3) waters can he found hy identifying evidence of physical connections, such as flood water or sediment retention (flood water or sediment retention (flood water or sediment retention (flood prevention). Presence of indicators of hydrologic connections between the other water and jurisdictional water are also indictors of a physical connection. Factors influencing physical connectivity include rain intensity, duration of rain events or wet season, ourauon of rain events or west season, soil permeability, and distance of hydrologic connection between the "other water" and the (a)(1) through (a)(3) water, depth from surface to water table, and any preferential flowpaths. Evidence of biological connectivity and the effect on waters can be found by identifying resident ventions resident sequences.

identifying: resident aquatic or semi-

aquatic species present in the "other water" and the tributary system (e.g., amphibians, aquatic and semi-aquatic reptiles, aquatic birds); whether those species show life-cycle dependency on the identified aquatic resources (foraging, feeding, nesting, breeding, spawning, use as a nursery area, etc.); and whether there is reason to expect presence or dispersal around the "other water," and if so whether such dispersal extends to the tributary system or beyond or from the tributary system to the "other water." Factors influencing biological connectivity include species' life history traits, species' behavioral life history traits, species' behavioral traits, dispersal range, population size, timing of dispersal, distance between "other water" and an (a)(1) through (a)(3) water, the presence of habitat corridors or harriers, and the number, area, and spatial distribution of habitats. Non-aquatic species or species such as non-resident migratory birds that are not demonstrating a life cycle dependency on the identified aquatic resources are not evidence of biological connectivity

for purposes of this rule.
When making a jurisdictional
determination for an "other water," the
administrative record will include available information supporting the determination. In addition to location and other descriptive information regarding the water at issue, the record will include a clear explanation of the rationale for the jurisdictional conclusion and a description of the information used to determine whether the "other water" has a significant nexus. Information relevant to a finding that an "other water" alone or in combination with similarly situated "other waters" in the region can come from many sources. Such information need not always be specific to the water whose jurisdictional status is being evaluated. Regional and national studies of the same type of water or similarly situated waters can help to inform a significant nexus analysis as Inne as significant nexus analysis as lnng as significant nexts analysis as ring as they are applicable to the water being evaluated. Information derived from field observation is not required in cases where a "desktop" analysis can provide sufficient information to make the requisite findings. However, for more complex or difficult jurisdictional determinations, it may be helpful to supplement such information with field

supplement such information with field observation.

The agencies solicit comment regarding this approach to "other waters," recognizing that a case-specific analysis of significant nexus is resource-intensive for the regulating agencies and the regulated community alike. In addition, the agencies solicit comment on additional scientific research and

data that might further inform decisions about "other waters." In particular the agencies solicit information about whether current scientific research and data regarding particular types of waters are sufficient to support the inclusion of subcategories of types of "other waters," either alone or in combination with similarly situated waters, that can appropriately be identified as always lacking or always having a significant nexus.

iv. Additional Request for Public Comment on "Other Waters"

As stated above, significant goals of the agencies in developing this the agencies in developing this proposed rule are to provide greater clarity, certainty, and predictability to the public as to what waters are and are not subject to the jurisdiction of the CWA. The agencies will achieve these goals consistent with the CWA, as interpreted by the Supreme Court, and as supported by the hest available science. The agencies also will fulfill their responsibility to the CWA's nbjectives and policies to protect water nbjectives and policies to protect water quality, public health, and the environment. The agencies acknowledge that there

may he more than one way to determine may he more than one way to determine which waters are jurisdictional as "other waters." This proposal is for a case-specific analysis of whether "other waters," including wetlands, alone, or in combination with other similarly situated waters located in the same region, have a significant nexus to a traditional navierable water interstate. traditional navigable water, interstate water, or the territorial seas. The agencies make this proposal based on an analysis of the current state of the science available to them. In this science available to them. In this proposal, the agencies continue to solicit additional science (peer-reviewed whenever possible) that could lead to greater clarity, certainty, and predictability of which waters are and are not within the jurisdiction of the CWA.

To best meet their goals and responsibilities, the goals and the second of the country of the countr

To best meet their goals and responsibilities, the agencies solicit comment and information on the state of the science, and its relation to the CWA and the caselaw, to determine if there are opportunities to provide greater clarity, certainty, and predictability for establishing jurisdiction over "other waters." This includes the possibility of determining that additional waters should be jurisdictional by rule such as in that additional waters should be jurisdictional by rule such as in paragraphs (a)(1) through (a)(6), and the possibility that additional waters should be excluded from jurisdiction by rule such as in section (b). The agencies' desirien as bourhead to a such as in section (b). decision on how hest to address jurisdiction over "other waters" in the

final rule will be informed by the final

trial rule will be informed by the final version of the Report and other available scientific information.

The agencies request public comment on whether these alternative approaches present options for determining the jurisdictional status of "other waters" that could rely less, or not at all, on case-specific analysis of whether waters are similarly situated for conducting a significant nexus analysis, Possible alternative options to the case-specific determination in the "other waters" proposal are described below. The agencies might adopt any combination of today's "other waters" proposal and the alternative options for the final rule, after considering public comment and the evolving scientific literature on connectivity of waters.

The agencies solicit comment on how

the agencies propose to find "other waters" to be similarly situated in this proposed rule, whether other methods of identifying similarly situated "other waters" would be reasonable, and waters would be reasonable, and whether no "other waters" should be determined to be similarly situated. In each instance, the comments should address how the actions of the agencies would be consistent with the science, including any science not currently before the agencies, the CWA, and the caselaw.

The agencies considered multiple approaches and options for how best to address whether "other waters" were jurisdictional under the CWA. In jurisdictional under the CWA. In addition to the case-specific analysis in the proposal, the agencies seek comment on the following alternatives: 1. Determine by rule that "other waters" are similarly situated in certain

areas of the country.

The case-specific analysis in the proposed rule approaches the question of what "other waters" are similarly situated for purposes of aggregation in the same manner throughout the U.S. The agencies could determine by rule that "other waters" are similarly situated in only certain areas of the country, and not in other areas. Under this option, the agencies would identify ecological regions (ecoregions) which contain "other waters" that are contain "other waters" that are "similarly situated" as provided in the proposed rule. Where waters are determined to be similarly situated, those waters are aggregated for evaluation of whether they have a significant nexus to a traditional navigable water, interstate water, or the territorial seas. The agencies expect that determining all "other waters" within an ecoregion to be similarly situated would resolt in these "other waters" heing determined to have a significant nexus and being found jurisdictional

Waters not located in these identified ecoregions or other specified areas would be determined to not be similarly situated and their effects would not be aggregated for purposes of a significant nexus determination. The result of not finding waters to be similarly situated would most likely be a finding of no significant nexus and no jurisdiction. significant news and no jurisdiction. The agencies particularly seek comment on whether the science supports differing approaches with respect to which "other waters" are similarly situated in certain areas of the U.S based

on distinguishing factors in those areas.

The agencies also request comment on factors that could lead "other waters" to be aggregated in some areas hut analyzed individually in other areas for purposes of informing a case-specific significant nexus analysis. The agencies request comment on whether some resource types are more or less likely to be similarly situated than others, and if there are ways to identify regions within which aggregation of "other waters" would be routinely applied rather than a case-specific determination. The agencies also request comment about whether "other waters" that are not found in identifiable mapped regions should he analyzed individually on a case-specific basis for a significant nexus, aggregated in some other way for a significant nexus analysis, or categorically excluded from jurisdiction.

An ecoregion is an area within the United States that includes generally similar ecosystems and that has similar types, qualities, and quantities of environmental resources. (J.M. Omernik, "Perspectives on the Nature and Definition of Ecological Regions," Definition of Ecological Regions,"
Environmental Management
34(Supplement 1):S27-S38 (2004)).
Ecoregions cover relatively large areas ef
land or water, and contain
characteristic, geographically distinct
assemblages of natural communities and
species. The biodiversity of flora, fauna
and ecosystems that characterize an
ecoregion tends to be distinct from that ecoregion tends to be distinct from that

of other ecoregions. (Id.)
Level III ecoregions are the second
most detailed level of ecoregions
nationally, with 105 Level III ecoregions in the conterminous United States, and have been refined over the years in several state-level projects conducted in collaboration with the EPA and other Federal and State agencies. U.S. Environmental Protection Agency, "Level III Ecoregions of the Continental United States," map scale 1:7,500,000 [Corvallis, OR: U.S. EPA—National Health and Environmental Effects Research Laboratory, 2013), available at http://www.epa.gov/wed/pages/ ecoregions/level_iii_iv.htm. For this

reason, the agencies consider Level III ecoregions to be the most appropriate level for analysis. The "other waters" in these ecoregions are within a contiguous area of land with relatively homogeneous soils, vegetation and landform (e.g., plain, mountain, valley, etc.), and generally provide similar functions to the downstream traditional navigable waters, interstate waters, or the territorial seas. A possible list of Level III ecoregions where waters are similarly situated and aggregation could be used include:

- 1. Coast Range
- 6. Central California Foothills and Coastal Mountains
- 7. Central California Valley 8. Southern California Mountains
- 9. Eastern Cascades Slopes and Foothills
- 10. Columbia Plateau 27. Central Great Plains
- 34. Western Gulf Coastal Plain

- 42. Northwestern Glaciated Plains 44. Nebraska Sand Hills 46. Northern Glaciated Plains
- 47. Western Corn Belt Plains
- 48. Lake Agassiz Plain 50. Northern Lakes and Forests
- 51. North Central Hardwood Forests
- 59. Northeastern Coastal Zone 63. Middle Atlantic Coastal Plain
- 65. Southeastern Plains
- 75. Southern Coastal Plain
- 78. Klamath Monntains/California High North Coast Range
- 81. Sonoran Basin and Range
- 83. Eastern Great Lakes Lowlands 84. Atlantic Coastal Pine Barrens
- 85. Southern California/Northern Baja Coast

See Map A in docket

The agencies would consider the "other waters" in a single point of entry watershed in these identified ecoregions as similarly situated for purposes of aggregation for a significant nexus aggregation for a significant nexus analysis. The agencies expect that this approach would lead to all similarly situated other waters within single point of entry watersheds within an ecoregion being found invisiditional three coregion being found jurisdictional through case specific analysis of significant nexus. Alternately, the agencies could determine that the similarly situated waters within each ecoregion have a significant nexus and are jurisdictional

significant nexus and are jurisdictional by rule and therefore do not require a case-specific significant nexus analysis. The agencies request comment on the list of ecoregions above and whether this list is appropriate, and whether there are other ecoregions or distinct areas that should be included or excluded from this list. This list does not include regions in Alaska or Hawaii and the agencies request comment on

appropriate regions to use to analyze other waters" in those states. Th agencies also request comment on whether using Level III ecoregions is appropriate or whether a finer gradation of ecoregions would be more

of ecoregions would be more appropriate.

The factors the agencies used in developing the list above are:
a. Density of "other waters," such that there can be periodic surface hydrologic connections among the waters, for example in West Coast vernal pools.
h. Soil permeability and surface or shallow subsurface flow such that the "other waters," can be considered.

'other waters' can be considered hydrologically connected, such as many Texas coastal prairie wetlands. c. Water chemistry which indicates

that the "other waters" are part of the same system and influenced by the

same processes.
d. Physical capacity of "other waters" to provide flood and sediment retention: this is a case where several small wetlands together may have a different effect than a single large wetland providing the same function, for example prairie potholes in the Missouri Coteau.

e. Co-location of waters to each other

e. Co-location of waters to each other or similarly to the tributary system such that their cumulative and additive effects on pollutant removal through parallel, serial, or sequential processing are apparent, such as the role of pocosins in maintaining water quality in estharies

estuaries.
f. "Other waters" that are sufficiently t. Other waters' that are sufficiently near each other or the tributary system and thus function as an integrated habitat that can support the life cycle of a species or more broadly provide habitat to a large number of a single process.

The agencies request comment on the factors above and whether this list of factors is appropriate, and whether there are other factors that should be included or excluded from this list. Comments should address the science that supports each comment.
In addition to ecoregions, another

In addition to ecoregions, anomer method of mapping boundaries where waters could be considered to be similarly situated for a significant nexus analysis would be to rely on hydrologiclandscape regions. Hydrologic-landscape regions are groups of watersheds that are clustered together on the basis of similarities in land-surface form, geologic texture, and climate characteristics. (D.M. Wolock, et Chimate characteristics (U.M. Wolock, al. "Delineation and Evaluation of Hydrologic-Landscape Regions in the United States Using Geographic Information System Tools and Multivariate Statistical Analyses," Environmental Management

34(Supplement 1):S71-S88 (2004)). Hydrologic-landscape regions are based on a concept that reflects fundamental hydrologic processes that are expected to affect water quality and other environmental characteristics.

environmental characteristics.
The agencies seek comment on the technical hases for using eccregions and hydrologic-landscape regions under this option. Commenters may also address whether some other method or combination of methods (certain eccregions and hydrologic-landscape regions for example) of manning regions, for example) of mapping geographic houndaries is better supported by the science. Comments should also address whether and how this option is consistent with the

science and the caselaw.

If the agencies choose to determine by rule that "other waters" in certain eccregions or other geographic boundaries are similarly situated, the agencies could also determine that waters not located in identified eccregions or otherwise specifically identified areas are not similarly situated for purposes of establishing a significant nexus and jurisdiction. The agencies also request comment on whether "other waters" that are not found in identifiable mapped ecoregions or other areas should be analyzed individually on a case-specific basis for determining a significant nexus, and on whether or not case-specific analysis of whether there are similarly situated

whether or not case-specific analysis of whether there are similarly situated "other waters" in the area is advisable.

2. Determine by rule that certain additional subcategories of waters would be jurisdictional rather than addressed with a case-specific analysis, and that other subcategories of waters would be non-jurisdictional.

The agencies could choose to determine that there is science available to determine by rule that certain additional subcategories of "other waters" are similarly situated and have a significant nexus and are jurisdictional by rule rather than addressed with a case-specific significant nexus analysis under paragraph (a)(7). Such an approach wonld lead to certain subcategories of "other waters" being determined jurisdictional in the same way that waters under paragraphs (a)(1) through (a)(6) are jurisdictional without a case-specific significant nexus analysis. specific significant nexus analysis.
Under this option the agencies could determine that waters such as prairie ecific significant nexus analysis determine that waters such as pratrie potholes. Carolina and Delmarva bays, pocosins, Texas coastal prairie wetlands, western vernal pools, and perhaps other categories of waters, either alone or in combination with other waters of the same type in a single point of entry watershed, have a

significant nexus and are jurisdictional by rule. See Appendix A, Part II, iii.C(1). These waters would not require a case-specific significant nexus analysis to determine unicalities.

determine jurisdiction.

In addition, the agencies could determine that other subcategories of waters are not jurisdictional and lack a significant nexts to an (a)(1) through (a)(3) water. Under this option the agencies could conclude that "other waters" such as playa lakes in the G waters" such as playa lakes in the Great Plains, even in combination with other

Plains, even in combination with other playa lakes in a single point of entry watershed, lack a significant nexus and therefore are not jurisdictional. See Appendix A, Part II, iii.C(1).
Under this approach, where a playa lake, or other excluded category of water, would be within a category established by paragraphs (a)(1) through (a)(6) of the proposed with (a). established by paragraphs (a)(1) through (a)(6) of the proposed rule (e.g., the playa is an interstate water or the playa is adjacent to an (a)(1) through (a)(5) water), the playas would be jurisdictional. (See R.W. Tiner, "Geographically Isolated Wetlands of the United States," Wetlands 23(3):494–516 (2003); M.G. Forbes, et al., "Wittiant Transformation and Retortion Nutrient Transformation and Retention hy Coastal Prairie Wetlands, Upper Gulf Coast, Texas," Wetlands 32(4): 705–715 (2012)).
The agencies seek comment on how

they should categorize the remaining "other waters." The agencies seek comment on whether these remaining "other waters" should be non-jurisdictional because they would lack a significant nexus to a traditional navigable water, interstate water, or the territorial seas. There is suhstantial value to the regulated public and all other

regulated putties and all other stakeholders in providing increased certainty regarding which "other waters" are jurisdictional and which are not. By expanding the categories of waters determined jurisdictional and expanding the categories of waters not categorized as jurisdictional, the agencies can better address the clarity, certainty, and predictability goals of this rule. However, the agencies acknowledge that the science may not be sufficient today to conclusively determine whether all categories of other waters significantly affect the chemical, physical and biological integrity of (a)(1) through (a)(3) waters. Integrity of (a)[1] through (a)[3] waters. The agencies seek comment on the science used in support of the proposed rule, plus any additional science they should consider when determining jurisdiction. The agencies also seek comment on how inconclusiveness of the science relates to the use of case-specific determinations. As the science develops, the agencies could determine

that additional categories of "other waters" are similarly situated and have a significant nexus and are jurisdictional by rule, or that as a class they do not have such a significant nexus and might not be jurisdictional.

If waters are categorized as nonjurisdictional because of a lack of science available today, the agencies request comment on how to best accommodate evolving science in the future that could indicate a significant nexus for these "other waters." Specifically, the agencies request comment as to whether this should be done through subsequent rulemaking, or through some other approach, such as through a process established in this rulemaking.

rulemaking.

The agencies also seek comment on how the science supports retaining the case-specific determination for the remaining 'other waters' that are neither specifically included nor excluded from jurisdiction. Retaining the case-specific analysis for these other waters would not enhance clarity of jurisdiction for these other waters, but it would retain the ability for a jurisdictional determination consistent with the objective of the CWA to restore and maintain the chemical, physical, and biological integrity of the nation's waters. In the alternative, the agencies seek comment on whether it would be appropriate to categorize remaining "other waters" as not jurisdictional. The agencies specifically seek comment on how these "other waters" should be considered.

3. Additional "other waters" approaches.
The agencies request comment on

additional "other waters" approaches considered, but not proposed by the

agencies.

The agencies could determine that no "other waters" are similarly situated, and all significant nexus analyses would he made on a case-specific basis for each individual "other water." The agencies expect that this likely would result in few if any other waters being found jurisdictional. The agencies recognize that if they determine there are no similarly situated "other waters." there are issues about consistency with existing scientific information and studies regarding the functional relationship of "other waters" of the same type, and their contribution to the chemical, physical, or hiological integrity of streams, rivers, lakes, and similar waters. There are also questions of how finding no "other waters" to be similarly situated reconciles with the portion of Justice Kennedy's opinion discussing "similarly situated" waters in the region that "significantly affect"

the chemical, physical, or biological integrity of waters more traditionally understood as navigable. While the agencies do not propose to determine that no "other waters" are similarly situated and aggregated, the agencies specifically seek comment on whether and how choosing to find no "other waters" similarly situated would be consistent with the science, the CWA, and the caselaw.

The agencies also considered and seek comment on all "other waters" in a single point of entry watershed being evaluated as a single landscape unit with regard to their effect on traditional navigable waters, interstate waters, and the territorial seas.

The agencies seek comment that would inform a decision that these "other waters" in a single point of entry watershed perform similar functions and are located sufficiently close together or to a paragraph (a)(1) through (a)(5) water so that they can be aggregated and evaluated as a single landscape unit with regard to their effects on the nearest (a)(1) through (a)(3) water. Generally, the agencies anticipate that if the other waters in a single point of entry watershed are aggregated as a single unit, these waters would he determined to have

The agencies recognize that if they choose to aggregate all other waters in a single point of entry watershed, there likely is insufficient existing scientific information to support the determination that all "other waters" in watersheds across the nation are similarly situated as provided in this rule and described in the caselaw. There are also questions of how determining "other waters" in a single point of entry watershed to be similarly situated entry watershed to be similarly situated entry watershed to be similarly situated entry watershed to be similarly situated. Waters in the region that "significantly affect" the ebemical, physical, or biological integrity of waters more traditionally understood as navigable. While the agencies do not propose to determine that "other waters" in a single point of entry watershed are similarly situated and aggregated, the agencies seek comment on whether and how choosing to find such "other waters" similarly situated would be consistent with the science, the CWA. and the caselaw.

The agencies' determination will be informed by the final version of the Report and other available scientific information.

I. Waters That Are Not "Waters of the United States"

The agencies' longstanding regulations exclude waste treatment systems designed to meet the requirements of the CWA and prior converted cropland from the definition of "waters of the United States." The agencies propose no changes to these exclusions and therefore they would continue as a part of this rulemaking. The agencies also propose to codify for the first time longstanding practices that have generally considered certain features and types of waters not to be "waters of the United States." Codifying these longstanding practices supports the agencies' goals of providing greater clarity, certainty, and predictability for the regulated public and the regulators. Under today's proposal, the waters identified in section (b) as excluded would not be "waters of the United States." even if they would otherwise fall within one of the categories in (a)(1). The agencies propose ministerial

The agencies propose ministerial actions with respect to the placement of the two existing exemptions for waste treatment systems and prior converted cropland. They will be in proposed new section (b). For the waste treatment systems exclusion, the agencies propose to delete a cross-reference in the current language to an EPA regulation that is no longer in the Code of Pederal Regulations. The parenthetical to be deleted states: "(other than cooling ponds as defined in 40 CFR 423.11(m) which also meet the criteria of this definition)." The agencies do not consider this deletion to be a substantive change to the waste treatment systems exclusion or how it is applied. In fact, the agencies do not propose to make conforming changes to ensure that each of the existing definitions of the "waters of the United States" for the various CWA programs have the exact same language with respect to the waste treatment system exclusion. The regulations implementing the various CWA programs were promulgated and amended at different times and therefore there are some differences in language. For example, compare EPA's regulations for the 404 program, 40 CFR 12.2 with the Corps' regulations for the 404 program, 33 CFR 328.3. The agencies do not propose to address the substance of the waste treatment system exclusion and thus will leave each regulation as is with the exception of deleting the cross-

In addition, this regulation does not address or change in any way the many

statutory exemptions from CWA permitting requirements. The proposed rule does not affect any of the exemptions provided by CWA section 404(f), including those for normal farming, silviculture, and ranching activities. CWA section 404(f); 40 CFR 232.3; 33 CFR 323.4. The proposed rule also does not address or change the statutory and regulatory exemptions from NPDES permitting requirements such as those for agricultural such as those for agricultural stormwater discharges, return flows from irrigated agriculture, or the status of water transfers. CWA section 402(l)(1 (exempting discharges composed entirely of return flows from irrigated agriculture from section 402 permit requirements); CWA section 502(14)(excluding agricultural 502(14)(excluding agricultural stormwater discharges and return flows from irrigated agriculture from the term point source.); 40 CFR 122.3(f) (excluding return flows from irrigated agriculture from the NPDES program); 40 CFR 122.2 (excluding return flows from irrigated agriculture or agricultural storm water runoff from the term point

Finally, in new paragraphs (b)(3) through (5), the agencies propose, for the first time by rule, to exclude some waters and features that the agencies waters and features that the agencies have by longstanding practice generally considered not to be "waters of the United States." Specifically, the agencies propose that the following are not "waters of the United States" notwithstanding whether they would otherwise be jurisdictional under section (a): section (a):

- · Ditches that are excavated wholly in nplands, drain only uplands, and have less than perennial flow.
- Ditches that do not contribute flow, either directly or through another water, to a traditional navigable water, interstate water, the territorial seas or impoundment.
- The following features
- Artificially irrigated areas that would revert to upland should application of irrigation water to that area cease;
- Artificial lakes or ponds created by excavating and/or diking dry land and used exclusively for such purposes as stock watering, irrigation, settling basins, or rice growing;
- Artificial reflecting pools or swimming pools created by excavating and/or diking dry land;
- Small ornamental waters created by excavating and/or diking dry land for primarily aesthetic reasons:
- Water-filled depressions created incidental to construction activity;

Groundwater, including groundwater drained through subsurface drainage systems; and
 Gullies and rills and non-wetland

swales. Most of these features and waters Most of these features and waters have been identified by the agencies as generally not "waters of the United States" in previous preambles or guidance documents. The agencies' have always preserved the authority to determine in a particular case that any of these waters are a "water of the United States." One of the agencies' acals in this proposed pile is to increase goals in this proposed rule is to increase clarity and certainty about the scope of "waters of the United States." To that end, the agencies propose not simply that these features and waters are "generally" not "waters of the United States," but that they are expressly not 'waters of the United States'' by rule. The agencies would not retain the authority to determine that any of these waters was a "water of the United States" hecause it would otherwise he jurisdictional under section (a). For example, the agencies could not find that a water had a significant nexus and

that a water had a significant nexus and was an "other waters" under paragraph (a)(7), or that it was an interstate water under paragraph (a)(2). These waters would not be jurisdictional by rule. In determining that these features and waters are not "waters of the United States," the agencies are by the decisions of the Supreme Court. In Biverside Bayview, the Supreme Court deferred to the agencies' regulations and noted the difficulty of drawing lines identifying where waters end. The plurality opinion in Rapanos also noted that there were certain features that were not primarily the focus of the CWA. See 547 U.S. at 734. In this section of the proposed rule, the

CWA. See 547 U.S. at 734. In this section of the proposed rule, the agencies are drawing lines and concluding that certain waters and features are not subject to the jurisdiction of the Clean Water Act. A similar list of waters and features rough the comparison of the United States' was provided by the Corps in a 1986 preamble to the existing rule defining "waters of the United States' (51 FR 41206, 41217, November 13, 1986) and by the EPA in a 1988 preamble (53 FR 20764, June 6, 1988). In today's proposed rule, the agencies have clarified and added to the list in order to provide a full description of the order to provide a full description of the waters that will not be "waters of the United States" by rule. The agencies have never interpreted "waters of the United States" to include groundwater and the proposed rule explicitly excludes groundwater, including groundwater drained through subsurface drainage systems

In clarifying the list of waters not subject to CWA jurisdiction, the agencies did not include "puddles" from the lists of waters generally not considered jurisdictional in previous considered jurisquictonal in previous preambles or guidance documents. This is not because puddles are considered jurisdictional, it is because "puddles" is not a sufficiently precise hydrologic term or a hydrologic feature capable of being easily understood. Because of the lack of common understanding and precision inherent in the term. sack or cominion understanding and precision inherent in the term "puddles," the agencies determined that adding puddles would be contrary to the agencies' stated goals of increased clarity, predictability, and certainty. In addition, one commonly understood meaning for the term "puddle" is a relatively small temporary nool of relatively small, temporary pool of water that forms on pavement or uplands immediately after a rainstorm, snow melt, or similar event. Such a show mert, or similar event, such a puddle cannot reasonably be considered a water body or aquatic feature at all, because usually it exists for only a brief period of time before the water in the puddle evaporates or sinks into the ground. Puddles of this sort obviously are not, and have never been thought to he, waters of the United States snbject to CWA jurisdiction. Listing puddles also could have created the misapprehension that anything larger

also could have created the misapprehension that anything larger than a puddle was jurisdictional. That is not the agencies intent.

Gullies are relatively deep channels that are ordinarily formed on valley sides and floors where no channel previously existed. They are commonly found in areas with low-density vegetative cover or with soils that are highly erodible. See, e.g., N.C. Brady and R.R. Weil. The Nature and Properties of Soils, 13th Edition (Upper Saddle River, NJ: Prentice Hall, 2002). Rills are formed by overland water flows eroding the soil surface during rain storms. See, e.g., L.B. Leopold, A View of the River (Cambridge: Harvard University Press, 1994). Rills are less permanent on the landscape than streams and typically lack an OHWM, whereas gullies are younger than streams in geologic age and also typically lack an OHWM; time has shaped streams into geographic features distinct from gullies and rills. See, e.g., American Society of Civil Engineers, Task Committee on Hydrology American Society of Civil Engineers, Task Committee on Hydrology Handbook, Hydrology Handbook (ASCE

Handhook, Hydrology Handbook (ASCE Publications, 1996).

The two main processes that result in the formation of gullies are downcutting and headcutting, which are forms of longitudinal (incising) erosion. These actions ordinarily result in erosional cuts that are often deeper than they are wide, with very steep hanks, often small

beds, and typically only carry water during precipitation events. The principal erosional processes that modify streams are also downcutting and headcutting. In streams, however, lateral erosion is also very important. The result is that streams, except on steep slopes or where soils are highly erodihle, are characterized by the presence of bed and hanks and an OHWM as compared to typical erosional features that are more deeply incised. It should be noted that some ephemeral streams are called "gullies" or the like when they are not "gullies" in the technical sense; such streams where they are tributaries under the proposed definition would be considered "waters of the United States," regardless of the name they are given locally. The agencies request comment on how they could provide greater clarity on how to distinguish between erosional features such as gullies, which are excluded from jurisdiction, and ephemeral tributaries, which are categorically jurisdictional.

Non-wetland natural and man-made swales would not he "waters of the United States" under this proposal. In certain circumstances, however, swales include areas that meet the regulatory definition of "wetlands." Swales generally are considered wetlands when they meet the applicable criteria in the Corps of Engineers Wetland Delineation Manual and the appropriate regional supplement to that Wetland Delineation Manual. Wetland swales would be evaluated as adjacent waters under proposed (a)(6) or as "other waters" under proposed (a)(6) or as "other waters" under proposed definition of adjacent. Swales are distinct from streams in that they are non-channelized, shallow trough-like depressions that carry water mainly during rainstorms or snowmelt. Report at A-19. Swales typically lack the OHHM that is characteristic of jurisdictional streams. The agencies request comment on how they could provide greater clarity on how to distinguish swales, which are excluded from jurisdictional.

Finally, under paragraphs (b)(3) and (b)(4), the agencies propose to clearly exempt from the definition of "waters of the United States" two types of ditches: (1) Ditches that are excavated wholly in uplands, drain only uplands, and have less than perennial flow, and (2) ditches that do not contribute flow, either directly or through another water, to a water identified in paragraphs (a)(1) through (4).

The agencies have long distinguished between ditches that are "waters of the United States" and ditches that are not "waters of the United States." In a 1986 Corps preamble and a 1986 EPA preamble, the agencies each stated that they generally do not consider non-tidal drainage and irrigation ditches excavated on dry land to be "waters of the United States." 51 FR 41217. November 13, 1996, 55 FR 20764, June 6, 1988. More recently, the agencies have stated that they generally would not assert jurisdiction over "Ditches (including roadside ditches) excavated wholly in and draining only uplands and that do not carry a relatively permanent flow of water." "Clean Water Act Jurisdiction Following the Supreme Court's Decision in Raponos v. United States and Carabell v. United States" (Dec. 2, 2008) at 1, 12 (2008 Rapanos guidance).

guidance).

The agencies recognize that there have been inconsistencies in practice implementing agency policy with respect to ditches and this proposed rule is designed to improve clarity, predictability, and consistency. With this proposal, the agencies would no longer rely on "generally not" jurisdictional hut would clearly establish that specific types of ditches are not "waters of the United States" by rule. Other ditches not excluded under paragraphs (b)(3) or (b)(4), if they meet the new proposed definition of "tributary" would continue to be "waters of the United States," as they have been under the longstanding implementation of the statute and regulations by the agencies.

regulations by the agencies.

The first type of ditch that is excluded needs to meet all three criteria: (1) It is excavated wholly in uplands; (2) it drains only uplands, and (3) it has less than perennial flow. Ditches that are excavated wholly in uplands means ditches that at no point along their length are excavated in a jurisdictional wetland (or other water). Members of the public should consider whether a wetland is jurisdictional before constructing a ditch that would drain the wetland and connect either directly or through (a)(3) water. The ditch must also contain less than perennial flow to be excluded under this proposed provision. Perennial flow ineans that the flow in the ditch occurs year-round under normal circumstances; therefore, excluded ditches must be dug only in uplands, drain only uplands, and have ephemeral or intermittent flow. As noted above, the 2008 Rapanos guidance stated that the agencies generally would not assert jurisdiction over "ditches (including roadside

ditches) excavated wholly in and draining only uplands and that do not carry a relatively permanent flow of water. The agencies recognize that the term "relatively permanent" does not align with more commonly understood technical descriptions of flow regime. The agencies therefore believe it is appropriate to clarify the extent of this exclusion using the flow regime terms that are familiar to the public and agency field personnel. The agencies request comment on this formulation of the ditch exclusion. The agencies specifically seek comment on the appropriate flow regime for a ditch excavated wholly in uplands and draining only uplands to be covered by the exclusion in paragraph (b)(3). In particular, the agencies seek comment on whether the flow regime in such ditches should be less than intermittent flow or whether the flow regime in such ditches should be less than perennial

Inches should be less than perennal flow as proposed.

The other type of ditch that would not be a "water of the United States" is a ditch that does not contribute flow, either directly or through another water, to a water identified in pragraphs (a)(1) through (4). Essentially, ditches that do not contribute flow to the tributary system of a traditional navigable water, interstate water or territorial sea would not be "waters of the United States."

It is important to note, however, that

It is important to note, however, that even when not jurisdictional waters, these non-wetland swales, gullies, rills and specific types of ditches may still be a surface hydrologic connection for purposes of the proposed definition of adjacent under paragraph (a)(6) or for purposes of a significant nexus analysis under paragraph (a)(7). For example, a wetland may be a "water of the United States," meeting the proposed definition of "neighboring" because it is connected to such a tributary by a non-jurisdictional ditch that does not meet the definition of a "tributary." In addition, these geographic features may function as "point sources" under CWA section 502(14)), such that discharges of pollutants to waters through these features would be subject to other CWA regulations (e.g., CWA section 402).

IV. Related Acts of Congress, Executive Orders, and Agency Initiatives

A. Executive Order 12866: Regulatory Planning and Review and Executive Order 13563: Improving Regulation and Regulatory Review

Under Executive Order 12866 (58 FR 51735, October 4, 1993), this action is a "significant regulatory action." Accordingly, the EPA and the Corps submitted this action to the Office of Management and Budget (OMB) for review under Executive Orders 12866 and 13563 (76 FR 3821, January 21, 2011) and any changes made in response to OMB recommendations have been documented in the docket for this action.

In addition, the EPA and the Corps of Engineers prepared an analysis of the potential costs and benefits associated with this action. This analysis is contained in "Economic Analysis of Proposed Revised Definition of Waters of the United States." A copy of the analysis is available in the docket for this action.

B. Paperwork Reduction Act

This action does not impose any information collection burden under the provisions of the Paperwork Reduction Act, 44 U.S.C. 3501 et seq. Burden is defined at 5 CFR 1320.3(b). An Agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB control number. The OMB control numbers for EPA's CWA section 402 program may be found at 40 CFR 9.1. (OMB Control No. 2024-09.04 EPA ICR NO. 0229.19). For the CWA section 404 regulatory program, the current OMB approval number for information requirements is maintained by the Corps of Engineers (OMB approval number 0710-0003). However, there are no new approval or application processes required as a result of this rulemaking that necessitate a new Information Collection Request (ICR).

C. Regulatory Flexibility Act

The Regulatory Flexibility Act (RFA) generally requires an agency to prepare a regulatory flexibility analysis of any rule subject to notice-and-comment rulemaking requirements under the Administrative Procedure Act or any other statute unless the agency certifies that the rule will not have a significant economic impact on a substantial number of small entities. Small entities include small businesses, small organizations, and small governmental jurisdictions.

For purposes of assessing the impacts of this final action on small entities, "small entity" is defined as: (1) A small business that is a small industrial entity as defined in the U.S. Small Business Administration's size standards (see 13 CFR 121.201); (2) a small governmental jurisdiction that is a government of a city, county, town, school district, or special district with a population of less than 50,000; or (3) a small organization that is any not-for-profit enterprise that

is interpetitionally to wheel and oberated and is not dominant in its field.

After considering the economic impacts of this proposed rule on small entities, I certify that this proposed rule will not have a significant economic impact on a substantial number of small patients.

impact on a substantial number of small entities. See, e.g., Cement Kiln Recycling Coalition v. EPA, 255 F.3d 855 (D.C. Cir. 2001); Michigan v. EPA, 213 F.3d 663 (D.C. Cir. 2000); Am. Trucking Ass'n v. EPA, 175 F.3d 1027 (D.C. Cir. 1999); Mid-Tex Elec. Co-op, Inc. v. FERC, 773 F.2d 327 (D.C. Cir. 1985). Under the RFA, the impact of concern is any significant adverse economic

F.2d 327 (D.C. Gr. 1985).
Under the RFA, the impact of concern is any significant adverse economic impact on small entities, because the primary purpose of the initial regulatory flexibility analysis is to identify and address regulatory alternatives "which minimize any significant economic impact of the rule on small entities." 5 U.S.C. 603. The scope of regulatory jurisdiction in this proposed rule is narrower than that under the existing regulations. See 40 CFR 122.2 (defining "waters of the United States"). Because fewer waters will be subject to the CWA under the proposed rule than are subject to regulation under the existing regulations, this action will not affect small entities to a greater degree than the existing regulations. As a consequence, this action if promulgated will not have a significant adverse economic impact on a substantial number of small entities, and therefore no regulatory flexibility analysis is

The proposed rule contemplated here is not designed to "subject" any entities of any size to any specific regulatory burden. Rather, it is designed to clarify the statutory scope of "the waters of the United States, including the territorial seas" (33 U.S.C. 1362(7)), consistent with Supreme Court precedent. This question of CWA jurisdiction will be informed by the tools of statutory construction and the geographical and hydrological factors identified in Rapanos v. United States, 547 U.S. 715 (2006), which are not factors readily informed by the REA

informed by the RFA.

Nevertheless, the scope of the term "waters of the United States" is a question that has continued to generate substantial interest, particularly within the small business community, because permits must be obtained for many discharges of pollutants into those waters. In light of this interest, the EPA and the Corps determined to seek early and wide input from representatives of small entities while formulating a proposed definition of this term that reflects the intent of Congress consistent with the mandate of the Supreme Court's decisions. Such outreach,

although voluntary, is also consistent with the President's January 18, 2011 Memorandum on Regulatory Flexibility, Small Business, and Job Creation, which emphasizes the important role small businesses play in the American economy. This process has enabled the agencies to hear directly from these representatives, at a very preliminary stage, ahout how they should approach this complex question of statutory interpretation, together with related issues that such representatives of small entities may identify for possible consideration in separate proceedings. The agencies have also propared a report summarizing their small entity outreach to date, the results of this outreach, and how these results of this proposed rule. This report is available in the docket for this proposed rule (cite).

D. Unfunded Mandates Reform Act

This proposed rule contains no Federal mandates (under the regulatory provisions of Title II of the Unfunded Mandates Reform Act of 1995 (UMRA), 2 U.S.C. 1531–1538 for state, local, or tribal governments or the private sector. This proposed rule does not directly regulate or affect any entity and, therefore, is not subject to the requirements of sections 202 and 205 of UMRA.

The agencies determined that this proposed rule contains no regulatory requirements that might significantly or uniquely affect small governments. Moreover, the proposed definition of 'waters of the United States' applies broadly to CWA programs and the subsequently affected entities, which are not uniquely applicable to small governments. Thus, this proposed rule is not subject to the requirements of section 203 of UMRA.

E. Executive Order 13132: Federalism

This proposed rule seeks to clarify the definition of the extent of CWA jurisdiction established by statute. State and local governments have well-defined and long-standing relationships in implementing affected CWA programs and these relationships will not be altered. Forty-six states and the Virgin Islands have been authorized to administer the NPDES program under section 402, while two states administer the section 404 program. This action will not have substantial direct effects on the states, on the relationship between the national government and the states, or on the distribution of power and responsibilities among the various levels of government. Thus, Executive Order 13132 (64 FR 43255,

August 10, 1999) does not apply to this action. Consistent with EPA and Corps policy to promote communications between the agencies and state and local governments, and in recognition of the vital role states play in implementation of the CWA, EPA voluntarily undertook federalism consultation for this effort and met the terms of E.O. 13132 and EPA guidance for implementing the Order. EPA held a series of meetings and outreach calls with state and local governments and their representatives soliciting input on a potential rule to define "waters of the United States."

As part of this consultation, early in the rulemaking process, EPA held three in-person meetings and two phone calls in the fall and winter of 2011 Organizations involved include the National Governors Association, the National Conference of State Legislatures, the Council of State Governments, the National Association of Counties, the National League of Cities, the U.S. Conference of Mayors, the County Executives of America, the National Associations of Towns and Townships, the International City/ County Management Association, and the Environmental Council of States. In addition, the National Association of Clean Water Agencies (NACWA) and the Association of Clean Water Administrators (ACWA) were invited to participate. As part of the consultation 12 counties, 8 associations and various state agencies and offices from five states (Alaska, Wyoming, Kansas, Tennessee, and Texas) submitted written comments. In addition, EPA held numerous outreach calls with state and local government agencies seeking their technical input. More than 400 people from a variety of state and local agencies and associations, including the Western Governors' Association, the Western States Water Council and the Association of State Wetland Managers participated in various calls and meetings.

The agencies engaged in voluntary federalism consultation on this rule and we will continue to work closely with the states with respect to development of a final rule. Additionally, EPA and the Corps are specifically soliciting comments on this proposed action from state and local officials. The agencies will include a detailed narrative of intergovernmental concerns raised during the course of the rule's development and a description of the agencies' efforts to address them with the final rule.

F. Executive Order 13175: Consultation and Coordination With Indian Tribal Governments

Subject to the Executive Order (E.O.) 13175 (65 FR 67249, November 9, 2000) Agencies may not issue a regulation that has tribal implications, that imposes substantial direct compliance costs, and that is not required by statute, unless the Federal government provides the funds necessary to pay the direct compliance costs incurred by tribal governments, or the Agencies consult with tribal officials early in the process of developing the proposed regulation and develops a tribal summary impact statement. This action does not have tribal implications as specified in E.O. 13125

In compliance with the EPA Policy on Consultation and Coordination with Indian Tribes (May 4, 2011), EPA consulted with tribal officials to gain an understanding of and, where appropriate, to address the tribal implications of the proposed rule. In the course of this consultation EPA coordinated with the Corps, and the Corps jointly participated in aspects of the consultation process. In the fall of 2011 EPA sent a Tribal Consultation Notification letter to all federally-recognized tribal leaders, via mail and email, inviting tribal officials to participate in outreach and consultation events and provide comments to EPA in coordination with the Corps. Close to 200 tribal representatives and more than 40 tribes participated in the consultation process, which included multiple webinars and national teleconferences and face-to-face meetings. In addition, EPA received written comments from 3 tribes during the consultation period. In the spirit of E.O. 13175, and consistent with EPA and Corps policy to promote communications between the agencies and tribal governments, the agencies specifically solicit additional comment on this proposed action from tribal officials.

G. Executive Order 13045: Protection of Children From Environmental Health and Safety Risks

This action is not subject to E.O. 13045 because the environmental health or safety risks addressed by this action do not present a disproportionate risk to

H. Executive Order 13211: Actions Concerning Regulations That Significantly Affect Energy Supply, Distribution, or Use

This action is not a "significant energy action" as defined in Executive

Order 13211 (66 FR 28355, May 22, 2001), because it is not likely to have a significant adverse effect on the supply, distribution, or use of energy.

I. National Technology Transfer and Advancement Act

Section 12(d) of the National Technology Transfer and Advancement Act of 1995 ("NTTAA"), Public Law 104–113, 12(d) (15 U.S.C. 272 note) directs Federal agencies to use voluntary consensus standards in its regulatory activities unless to do so would be inconsistent with applicable law or otherwise impractical. Voluntary consensus standards are technical standards (e.g., materials specifications, test methods, sampling procedures, and business practices) that are developed or adopted by voluntary consensus standards bodies. NTTAA directs Federal agencies to provide Congress, through OMB, explanations when the Agency decides not to use available and applicable voluntary consensus standards butters.

This proposed rulemaking does not involve technical standards. Therefore, the agencies are not considering the use of any voluntary consensus standards.

J. Executive Order 12898: Federal Actions To Address Environmental Justice in Minority Populations and Low-Income Populations

Executive Order (E.O.) 12898 (59 FR 7629, Feb. 16, 1994) establishes Federal executive policy on environmental justice. Its main provision directs Federal agencies, to the greatest extent practicable and permitted by law, to make environmental justice part of their mission by identifying and addressing, as appropriate, disproportionately high and adverse human health or environmental effects of their programs, policies, and activities on minority populations and low-income populations in the United States.

The agencies have determined that

The agencies have determined that this proposed rule will not have disproportionately high and adverse human bealth or environmental effects on minority or low-income populations. The proposed rule defines the scope of waters protected under the CWA. The increased clarity regarding the definition of "waters of the United States" will be of benefit to all regulators, stakeholders, and interested parties. However, in the spirit of Executive Order 12898, we specifically request comment regarding potential environmental justice issues raised by the proposed rule, and will fully consider those comments when preparing the final rule.

K. Environmental Documentation

The U.S. Army Corps of Engineers has prepared a draft environmenta assessment in accordance with the National Environmental Policy Act (NEPA). The Corps has made a preliminary determination that the section 404 aspects of today's proposed rule do not constitute a major Federal action significantly affecting the quality of the human environment, and thus preparation of an Environmental Impact Statement (EIS) will not be required. The proposed rule will increase and make more efficient the protection of the aquatic environment. Additional the aquatic environment. Additionally, the Corps complies with NEPA programmatically for general permits, and specifically for each and every standard individual permit application before making final permit decisions. The implementation of the procedures prescribed in this proposed regulation would not authorize anyone (e.g., any

landowner or permit applicant) to perform any work involving regulated activities in "waters of the United States" without first seeking and obtaining an appropriate CWA authorization, which concurrently documents compliance with all applicable environmental laws

Appendix A

Scientific Evidence

Overview of Scientific Literature on Aquatic Resource Connectivity and Downstream Effects

Resource Connectivity and Downstream Effects

In preparation for this proposal, more than a thousand peer-reviewed scientific papers and other data that address connectivity of aquatic resources and effects on downstream waters were reviewed and considered. EPA's Office of Research and Development (ORD) has prepared a draft peer-reviewed scientific literature discussing the nature of connectivity and effects of tributaries and wetlands on downstream waters (U.S. Environmental Protection Agency, Cannectivity of Streams and Wetlands to Downstream Waters: A Heview and Synthesis of the Scientific Evidence, (Washington, DC. U.S. Environmental Protection Agency, 2013), bereinafter, "Report"). This draft Report similarly has been considered in the development of this proposal. The Report is full and is available at http://yosemite.epa.gov/sbr/sabproduct.ns/fedagstr_activites/Watershed %20Connectivity%20feapstr_activites/Watershed for this proposed rule. The Report summarizes and assesses much of the currently available scientific literature that is part of the administrative record for this proposal. The and assesses much of the carrotty available scientific literature that is part of the administrative record for this proposal. The agencies anticipate that additional data and information will become available during the

rulemaking process, including that provided during the public comment process, and by additional research, studies, and investigations that take place before the rulemaking process is concluded. At the conclusion of the rulemaking process, the agencies will review the entirety of the completed administrative record, including the final Report reflecting SAB roview, and will make any adjustments to the final rule deemed to be appropriate at that time. The Report is under review by the Science Advisory Board, and the rule will not be finalized until that raview and the final report are complete. Part I of this Appendix provides the conclusions of the review and synthesis. Part II provides additional detail of the scientific literature and the agencies' reasoning in support of this proposal.

Part I: Synthesis of Peer-Reviewed Scientific

Part I: Synthesis of Peer-Reviewed Scientific

Background

Hackground

The draft Report prepared by ORD reviews and synthesizes the peer-reviewed scientific literature on the connectivity or isolation of streams and wetlands relative to large water bodies such as rivers, lakes, estnaries, and oceans. The purpose of the review and synthesis is to summarize current understanding about these connections, the factors that influence them, and the mechanisms by which connected waters, singly or in aggregate, affect the function or condition of downstream waters. The focus of the Report is on surface and shallow subsurface connections from small or temporary streams, non-tidal wetlands, and certain open waters. Specific types of certain open waters. Specific types of connections considered in the Report include transport of physical materials and chemicals such as water, wood, and sediment, nutrients, pesticides, and mercury;

such as water, wood, and sediment, nutrients, pesticides, and mercury; movement of organisms or their seeds or eggs; and hydrologic and biogeochemical interactions occurring in surface and groundwater flows, including hyporcheic zones and alluvial aquifers.

The draft Report prepared by ORD consists of six chapters. Following an executive summary and an introduction to the Report, chapter 3 presents a conceptual framework describing the hydrologic elements of a watershed, the types of chemical, physical, and biological connections that link them, and watershed and climatic factors that influence connectivity at various temporal and spatial scales. It also provides background on the structure and function of streams and wetlands viewed from an integrated watershed perspective. In a discussion of connectivity, the watershed scale is the appropriate context for interpreting technical evidence about individual watershed components, reviewed in subsequent chapters. Chapter 4 surveys the literature on stream networks (lotic systems) in terms of chemical, physical, and biological connections between upstream and downstream habitats. Two case studies from the literature examine in greater detail longitudinal connectivity and downstream uowistream natitats. I wo case studies from the literature examine in greater detail longitudinal connectivity and downstream effects in prairie streams and arid streams of the Southwest. Chapter 5 reviews the literature on connectivity and effects of non-tidal wetlands and certain open waters

(lentic systems) on downstream waters. This chapter is further subdivided into two broad categories of landscape settings based on directionality of hydrologic flows:

Bidirectional settings, in which wetlands and open waters can have two-way hydrologic exchanges with other water bodies (e.g., riparian and floodplain wetlands and open waters) and undirectional settings, in which water flows only from the wetland or open water lowards the downstream water (e.g., most wetlands and open waters outside of riparian areas and floodplains). Directionality of hydrologic flow was selected as an organizational principle for this section because it has a dominant role in determining the types of connectivity and downstream effects (if any) of wetlands. However, the use of these landscape settings for hydrologic directionality should not be construed as suggesting directionality of geochemical or biological flows. Also, the terms "unidirectional" and "bidirectional" describe the landscape setting in which wetlands and open waters occur, and do not refer to wetland type or class. Four case studies from the literature examine evidence pertaining to connectivity and downstream effects of robow lakes, Carolina and pertaining to connectivity and downstream effects of oxbow lakes, Carolina and

ettects of oxbow lakes, Carolina and Dehnarva hays, prairie potholes, and vernal pools in greater detail. Chapter 6 presents and discusses key findings and major conclusions of the review, which also are included at the end of each review section and in this executive summery.

Summary of Major Conclusions

Based on the review and synthesis of more than a thousand publications from the peer reviewed sciontific literature, the available evidence supports three major conclusions.

1. The scientific literature demonstrates that streams, individually and cumulatively, over a strong influence on the character and

The scientific intending demonstrates that streams, individually and cumulatively, exert a strong influence on the character and functioning of downstream waters. All tributary streams, including perennial, intermittent, and ephemeral streams, are chemically, physically, and biologically connected to downstream rivers via channels and associated alluvial deposits where water and other materials are concentrated, mixed, transformed, and transported. Headwater streams (headwaters) are the most abundant stream-type in most river networks, and supply must of the water in rivers. In addition to water, streams supply sediment, wood, organic matter, nutrients, chemical contaminants, and many of the organisms found in rivers. Streams are biologically connected to downstream waters by the connected to downstream waters by the dispersal and migration of aquatic and semiaquatic organisms, including fish, amphibians, plants, microorganisms, and invertebrates, that use both up- and dinvertebrates, that use both up- and downstream habitats during one or more stages of their life cycles, or provide food resources to downstream communities. Chemical, physical, and biological connections between streams and downstream waters interact via processes such as nutrient spiraling, in which stream communities assimilate and chemically transform large quantities of nitrogen and aquatic organisms, including fish. transform large quantities of nitrogen and other nutrients that would otherwise increase nutrient loading downstrea

2. Wetlands and open waters in landscape settings that have bidirectional hydrologic settings that have bidirectional hydrologic exchanges with streams or rivers (e.g., wetlands and open waters in riparian areas and floodplains) are chemically, physically, and biologically connected with rivers via the export of channel-forming sediment and woody debris, temporary storage of local groundwater that supports baseflow in rivers and transport of stored organic matter. They remove and transform excess nutrients such as nitrozen and phosphorus. They provide as nitrogen and phosphorus. They provide nursery habitat for breeding fish, nusery habitat for breeding fish, colonization opportunities for stream invertebrates, and maturation habitat for stream insects. Moreover, wetlands in this landscape setting serve an important role in the integrity of downstream waters because they also act as sinks by retaining floodwaters, sediment, nutrients, and contaminants that could otherwise negatively impact the condition of function of impact the condition or function of

impact the condition of function of downstream waters.

3. Wetlands and open waters in landscape settings that lack bidirectional hydrologic exchanges with downstream waters (e.g., many prairie potholes, vernal pools, and playa lakes) provide numerous functions that can benefit downstream water quality and integrity. These functions include storage of floodwater, retention and transformation of nutrients, metals, and pesticides; and recharge of groundwater sources of river charge of groundwater sources of river baseflow. The functions and effects of this charge of groundwater sources of river baseflow. The functions and effects of this diverse group of wetlands, which the Report refers to as "unidirectional wetlands," affect the condition of downstream waters if there is a surface or shallow subsurface water connection to the river network. In unidirectional wetlands that are not connected to the river network through surface or shallow subsurface water, the type and degree of connectivity varies geographically within a watershed and over time. Because such wetlands occur on a gradient of connectivity, it is difficult to generalize about their effects on downstream waters. Generalization for this class is further complicated because, for certain functions (e.g., sediment removal and water storage), downstream effects are due to wetland isolation, rather than connectivity. The literature reviewed does not provide sufficient information to evaluate or generalize about the degree of connectivity dasolute or relative) or the downstream effects of wetlands in unidirectional effects of wetlands in unidirectional landscape settings, However, evaluations of landscape settings. However, evaluations of individual sogoraphically isolated wetlands or groups of geographically isolated wetlands could be possible through case-by-case analysis. Further, while the review did not specifically address other unidirectional water bodies, the conclusions apply to these water bodies (e.g., ponds and lakes that lack surface water inlets) as well, since the same principles govern hydrologic connectivity. principles govern hydrologic connectivity between these water bodies and downstream

waters.
Section 3 below provides an overview of
the conceptual framework, with further
discussion of the key findings for streams,
riparian and floodplain areas, and
unidirectional wetlands.

1. Conceptual Framework Overview

1. Conceptual Framework Overview
Connectivity is a foundational concept in
hydrology and freshwater ecology. The
structure and function of downstream waters
are highly dependent on the constituent
materials contributed by and transported
through water bodies located elsewhere in
the watershed. Most of the materials in a
river, including water, sediment, wood,
organic matter, nutrients, chemical
contaminants, and certain organisms,
originate outside of the river, from upstream
tributaries, wetlands, or other components of
the river system, and are transported to the
river by water movement, wind, or other
means. Therefore, streams and wetlands
function by altering transport of various
types of materials to the river. This alteration
of material transport depends on two key of material transport depends on two key factors: (1) Connectivity (or isolation) between streams, wetlands and rivers that enables (or preyents) the movement of materials between the system components: and (2) functions within streams and wetlands that supply, remove, transform provide refuge for, or delay transport of

provide refuge for, or delay transport of materials.

The ORD Report defines connectivity as the degree to which components of a system are joined, or connected, by various transport mechanisms. Connectivity is determined by the characteristics of both the physical landscape and the bioto of the spocific system. Isolation is the opposite of connectivity; or the degree to which system components are not joined. Both connectivity and isolation have important effects on downstream waters. For example, stream channels convey water and channel-forming sediment to rivers, whereas wetlands that lack output channels can reduce flooding and store excess sediment. Materials transport connects different ecosystem types, at multiple spatial and temporal scales. For example, streams flowing into and out of wetlands or between lakes form continuous or seasonal connections across ecosystem or seasonal connections across ecosystem boundaries. Similarly, aquatic food webs connect terrestrial ecosystems, streams wetlands, and downstream waters.

wetlands, and downstream waters. Water movement through the river system is the primary, but certainly not the only, mechanism providing physical connectivity within river networks. It provides a "hydraulic highway" that transports chemical, physical, and biological materials associated with the water (e.g., sediment, woody debris, contaminants, and organisms). Because the movement of water is woody debris, contaminants, and organisms; Because the movement of water is fundamental to understanding watershed connectivity. Chapter 3 begins with a review and an explanation of the hydrologic foundation of river systems, and terms and concepts used throughout the Report are defined.

Numerous factors influence watershed connectivity. Climate, watershed topography, soil and aquifer permeability, the number and types of contributing waters, their spatial distribution in the watershed, interactions among aquatic organisms, and human among aquatic organisms, and human alteration of watershed features, among other things, can act individually or in concert to influence stream and wetland connectivity to, and effects on, downstream waters. For

example, all else being equal, materials traveling shorter distances could enter the river with less transformation or dilution, thus increasing a beneficial or harmful effect. In other cases, sequential transformations such as nutrient spiraling (defined and discussed below) connect distant water bodies and produce beneficial effects on downstream waters, Infrequent events that temporarily connect nearby or distant streams or wellands to rivers also can have large, long-lasting effects. Most of the major changes in sediment load and river channel structure that are critical to maintaining river structure that are critical to maintaining river health—including meanders of rivers in floodplains and creation of oxbow lakes—are a result of large floods that provide infrequent, intense connections with more distant streams and riparian or floodplain

Based on a review of the peer-reviewed scientific literature, the Report identifies five functions by which streams, wetlands, and open waters influence material transport into downstream waters:

- Source: The net export of materials, such as water and food resources
- Sink: The net removal or storage of materials, such as sediment and contaminants
- contaminants
 Refuge: The protection of materials,
 especially organisms
 Transformation: The transformation of
 materials, especially nutrients and
 chemical contaminants, into different
 physical or chemical forms
- Lags: The delayed or regulated release of materials, such as storm water

These functions are not static or mutually exclusive (e.g., a wetland can be both a source of organic matter and a sink for nitrogen) and can change over time (e.g., one wetland can be a water sink when wetland can be a water sink when evapotranspiration is high and a water source when evapotranspiration is low). Further, some functions work in conjunction with others. For example, a lag function can include transformation of materials prior to their delayed release. In a particular stream, wetland, or open water, the presence ur absence of these functions depends upon the biota, bydrology, and environmental conditions in the watershed.

When considering effects on downstream

conditions in the watershed.

When considering effects on downstream waters, it is helpful to distinguish between actual function and potential function of a stream, wetland, or open water. For example, a wetland with appropriate conditions for deniturification is a potential sink for nitrogen, a nutrient that can be a contaminant when present in high concentrations. This function is conditional; if nitrogen were to enter a wetland (from agricultural runoff, for example), the wetland has the capacity to example) the wetland has the capacity to example with the strength of the strengt wetland will not serve this function. however, if no nitrogen enters the wetland. Even if a stream or wetland is not currently serving an actual function, it has the potential to provide that function when a new material enters it, or when environmental conditions change. Thus, potential functions play a critical role in protecting those waters from future impacts.

2. Discussion of Major Conclusions

A. Streams

A. Streams

The scientific literature demonstrates that streams, individually or cumulatively, exert a strong influence on the character and functioning of downstream waters. All tributary streams, including perennial, intermittent, and ephemeral streams, are chemically, physically, or biologically connected to downstream rivers via channels and associated alluvial deposits where water and other materials are concentrated, mixed, transformed, and transported. Headwater streams (headwaters) are the most abundant stream type in most river networks, and transformed, and transported. Headwater streams (headwaters) are the most abundant stream type in most river networks, and supply most of the water in rivers. In addition to water, streams supply sediment, wood, organic matter, nutrients, chemical cantaminants, and many of the organisms found in rivers. Streams are biologically connected to downstream waters by dispersal and migration of aquatic and semi-aquatic organisms, including fish, amphibians, plants, microorganisms, and invertebrates, that use both up- and downstream habitats during one or more stages of their life cycles, or provide food resources to downstream communities. Chemical, physical, and biological connections between streams and downstream waters interact via processes such as nutrient spiraling, in which stream communities assimilate and chemically transform large quantities of nitrogen and other nutrients that would otherwise increase nutrient loading downstream. nutrient loading downstream.

Key findings:
a. Streams are hydrologically connected to downstream waters via channels that convey downstream waters via channels that convey surface and subsurface water year-round (perennial flow), weekly to seasonally (intermittent flow), or only in direct response (intermittent flow), or only in direct responsa to precipitation (ephemeral flow). Streams are the dominant source of water in most rivers, and the great majority of tributaries are perennial, intermittent, and ephemeral headwater streams. For example, headwater streams, which are the smallest channels where stream flows begin, are the source of approximately 60% of the total mean annual flow to all northeastern U.S. streams and rivers.

rivers.
b. Headwaters convey water into local b. Headwaters convey water into local storage compartments such as ponds, shallow aquifers, or river banks and into regional and alluvial aquifers. These local storage compartments are important sources of water for baseflow in rivers. The ability of streams to keep flowing even during dry periods typically depends on the delayed (laggod) release of local groundwater, also referred to as shallow groundwater, originating from these water sources, especially in areas with shallow groundwater tables and pervious subsurfaces. For example, in the shallow groundwater tables and pervious subsurfaces. For example, in the southwestern United States, short-term shallow groundwater storage in alluvial floodplain aquifers, with gradual release into stream channels by intermittent and ephemeral streams, is a major source of annual flow in rivers.

c. Even infrequent flows through ephemeral or intermittent channels influence fundamental biogeochemical processes by connecting the channel and shallow groundwater with other landscape elements.

Infrequent, high-magnitude events are Infrequent, high-magnitude events are especially important for transmitting materials from headwater streams in most river networks. For example, beadwater streams, including ephemeral and intermittent streams, shape river channels by accumulating and gradually or episodically releasing stored materials such as sediment and large woody debris. These materials provide substrate, habitat for aquatic organisms, and slow the flow of water through channels.

d. Connectivity between streams and rivers provides opportunities for materials.

provides opportunities for materials, including nutrients and chemical including nutrients and chemical contaminants, to be sequentially altered as they are transported downstream. Although highly efficient at transport of water and other physical materials, streams are not pipes. They are dynamic ecosystems with permeable beds and banks that interact with permeable beds and banks that interact with terrestrial and aquatic ecosystems above and below the surface. The connections formed by surface and subsurface streamflows act as series of complex chemical, physical, and biological alterations that occur as materials move through different parts of the river system. The amount and quality of such materials that eventually reach a river are determined by the aggregate effect of these sequential alterations that begin at the source waters, which can be at some distance from waters, which can be at some distance from waters, which can be at some distance from the river. The greater the distance a material travels between a particular stream reach and the river, the greater the opportunity for that material to be altered in intervening stream reaches, which can allow for uptake, assimilation, or beneficial transformation. One exemple of sequential alteration with significant beneficial effects on downstream waters is the process of nutrient spiraling, in which nutrients entering headwater streams are transformed by various aquatic organisms and chemical reactions as they are transported downstream hystreamflow. Nutrients which enter the headwater stream (e.g., via overland flow) are first removed from the water column by streambed algal and microbial populations. Fish or insects feeding on algae and microbes take up some of those nutrients, which are subsequently released back to the stream via excretion and decomposition, and the cycle is repeated. In each phase of the cycling process—from dissolved inorganic nutrients in the water column. through microbial uptake, subsequent transformations through the food web, and back to dissolved nutrients in the water column—nutrients are subject to downstream transport. Stream and wetland waters, which can be at some distance from the river. The greater the distance a material web, and back to dissolved nutrients in the water column—nutrients are subject to downstream transport. Stream and wetland capacities for nutrient cycling have important implications for the form and concentration of nutrients exported to downstream waters.

e. The literature review found strong evidence that headwater streams function as nitrogen sources (export) and sinks (uptake and transformation) for river networks. One study estimated that rapid nutrient cycling in small streams that were free from agricultural

small streams that were free from agricultural or urban impacts removed 20-40% of the nitrogen that otherwise would be delivered to downstream waters. Nutrients are necessary to support aquatic life, but excess nutrients create conditions leading to eutrophication and hypoxia, in which oxygen concentrations fall below the level necessary to sustain most

within and near-bed animal life. Thus, the role of streams in influencing nutrient loads can have significant repercussions for hypoxic areas in downstream waters.

I. Headwaters provide critical habitat during one or more life cycle stages of many organisms capable of moving throughout river networks. This review found strong evidence that headwaters provide habitat for complex life-cycle complextine, refuge from predators or adverse physical conditions in rivers, and reservoirs of genotic- and species-level diversity. Use of headwater streams as habitat is especially obvious for the many habitat is especially obvious for the many species that migrate between small streams species that migrate between small streams and marine environments during their life cycles (e.g., Pacific and Atlantic salmon, American eels, certain lamprey species), and the presence of these species within river networks provides robust evidence of biological connections between headwaters and larger rivers. In prairie streams, many fishes swim upstream into tributaries to release eggs, which develop as they are transported downstream. Small streams also provide refuge habitat for riverine organisms seeking protection from temperature extremes. How extremes, blow extremes, blow dissolved oxygen, high sediment levels, or the presence of predators, parasites, and competitors.

B. Riparian/Floodplain Waters

B. Riparian/Floodplain Waters

B. Riparian/Floodpiain Waters
Wetlands and open waters in landscape
settings that have bidirectional hydrologic
exchanges with streams or rivers (e.g.,
wetlands and open waters in riparian areas
and floodplains) are chemically, physically,
or biologically connected with rivers via the
export of channel-forming sediment and
woody debris, temporary storage of local
groundwater that supports baseflow in rivers
and transport of stored organic matter. They
remove and transform excess nutrients such
as nitrogen and phosphorus. They provide
nursery habitat for breeding fish
colonization opportunities for stream
invertebrates, and maturation habitat for
stream insects. Moreover, wetlands in this
landscape setting serve an important role in
the integrity of downstream waters because
they also act as sinks by retaining they also act as sinks by retaining floodwaters, sediment, nutrients, and contaminants that could otherwise negatively impact the condition or function of

wnstream waters. Key Findings:

a. Riparian areas act as buffers that are among the most effective tools for mitigating nonpoint source pollution. The wetland literature shows that collectively, riparian wetlands improve water quality through assimilation, transformation, or sequestration of nutrients, sediment and other pollutants— such as pesticides and metals—that can affect such as pesticides and metals—that can affect downstream water quality. These pollutants enter wetlands via various pathways that include various sources such as dry and wet atmospheric deposition, some runoff from upland agricultural and urban areas, spray drift, and subsurface water flows, as well as point sources such as outfalls, pipes, and ditches.

attenes.

b. Riparian and floodplain areas connect upland and aquatic environments through both surface and subsurface hydrologic flow paths. These areas are therefore uniquely situated in watersheds to receive and process

waters that pass over densely vegetated areas and through subsurface zones before reaching streams and tivers. When contaminants reach a riparian or floodplain area, such materials can be sequestered in sediments, assimilated into the wetland plants and animals, transformed into less harmful forms or compounds, or lost to the atmosphere. Wetland potential for biogeochemical transformations (e.g., denitrification) that can improve the quality of water entering streams and rivers is influenced by factors present in riparian areas and floodplains, including anoxic conditions, shallow water tables, slow organic matter decomposition, wetland plant communities, permeable soils, and complex towograble.

communities, permeable soils, and complex topography.
c. Riparian and floodplain areas can reduce flood peaks by storing and desynchronizing floodwaters. They also can contribute to maintenance of flow by rechanging alluvial aquifers, Many studies have documented the ability of riparian and floodplain areas to reduce flood pulses by storing excess water from streams and rivers. One review of wetland studies reported that riparian wetlands reduced or delayed floods in 23 of 26 studies. For example, peak discharges between upstream and downstream gauging stations on the Cache River in Arkansas were reduced 10–20% primarily due to floodplain water storage.

reduced 10-20% primarily due to floodplain water storage.

d. Riparian and floodplain areas store large amounts of sediment and organic matter from upland areas before those sediments enter the stream. For example, riparian areas have been shown to filter 80-90% of sediments leaving agricultural fields in North Carolina. At Cooper, et al., "Riparian Areas as Filters for Agricultural Sediment," Soil Science Society of America Proceedings 51:416-420 (1987); R.B. Daniels, and J.G. Gilliam, "Sediment and Chemical Load Reduction by Grass and Riparian Filters," Soil Science Society of America Journal 60:246-251 (1998); R.J. Naiman, and H. Decamps, "The Ecology of Interfaces: Riparian Zones," Annual Review of Ecology and Systematics 28:821-658 (1997).

Crass and Riparian Filters," Soil Science Society of America Journal 60:246–251 (1996); R.J. Naiman, and H. Decamps, "The Ecology of Interfaces: Riparian Zones," Annual Review of Ecology and Systematics 28:621–658 (1997)].

e. Ecosystem function within a river system is driven by intoractions between the physical environment and the diverse biological communities living within the river system. Movements of organisms connect aquatic habitats and populations in different locations through several processes important for the survival of individuals, populations, and species, and for the functioning of the river ecosystem. For example, lateral expansion and contraction of the river in its floodplain results in an exchange of matter and organisms, including fish populations that are adapted to use floodplain habitat for feeding and spawning during high water. Refuge populations of aquatic plants in floodplains can become important seed sources for the river network especially if catastrophic flooding scours vegetation and seed banks in other parts of the channel. Many invertebrates exploit temporary hydrologic connections between rivers and floodplain welland habitats, moving into these wellands to feed, reproduce, or avoid barsh environmental conditions and then returning to the river network. Amphibians and aquatic reptiles in

many parts of the country commonly use both streams and wetlands, including wetlands in riparian and floodplain areas, to hunt, forage, overwinter, rest, or hide from predators.

C. Unidirectional Wetlands

Wetlands and open waters in landscape settings that lack bidirectional hydrologic exchanges with downstream waters (e.g., many prairie potholes, vernal pools, and playa lakels provide numerous functions that can benefit downstream water quality and integrity. These functions include storage of floodwater, retention and transformation of nutrients, metals, and pesticides; and recharge of groundwater sources of river baseflow. The functions and effects of this diverse group of wetlands, hereafter referred to as "uniferctional wetlands," clearly affect the condition of downstream waters if there is a surface or shallow subsurface water connection to the river network. In unidirectional wetlands that are not connected to the river network through surface or shallow subsurface water, the type and degree of connectivity varies geographically within a watershed and over time. Because such wetlands occur on a gradient of connectivity, it is difficult to generalize about their effects on downstream waters. This evaluation is further complicated because, for certain functions (e.g., sediment removal and water storage) downstream effects after for the method isolation, rather than connectivity. The literature reviewed does not provide sufficient information to evaluate or generalize about the degree of connectivity flesholute or relative) or the downstream effects of wellands in unidirectional landscape settings. However, evaluations of connectivity of individual wetlands or groups of wetlands could be possible through case-by-case analysis. Further, while the review did not specifically address other unidirectional water bodies, the conclusions apply to these water bodies (e.g., ponds and lakes that lack surface water inlets) as well, since the same principals govern hydrologic connectivity between these water bodies and downstream waters.

downstream waters.
Key Findings:
a. Water storage by wetlands well outside
of riparian or floodplain areas can affect
streamflow. Hydrologic models of prairie
potholes in the Starkweather Coulee authbasin
(North Dakota) that drain to Devils Lake
indicate that increasing the volume of
potholes storage across the sub-basin by
approximately 60% caused simulated total
annual streamflow to decrease 50% during a
series of dry years and 20% during wet years.
Similar simulation studies of watersheds that
feed the Red River of the North in North
Dakota and Minnesota demonstrated
qualitatively comparable results, suggesting
that the ability of potholes to modulate
streamflow may be widespread across
portions of the prairie pothole region. This
work also indicates that reducing wetland
water storage capacity by connecting
formerly isolated potholes through ditching
or drainage to the Devils Lake and Red River
basins could increase stormflow and
contribute to downstream flooding. In many
agricultural areas already crisscrossed by

extensive drainage systems, total streamflow and baseflow are enhanced by directly connecting potholes to stream networks. The impacts of changing streamflow are numerous, including altered flow regime, stream geomorphology, babitat, and ecology. The presence or absence of an effect of prairie pothole water storage on streamflow depends on many factors, including patterns of precipitation, topography and degree of human alteration. For example, in parts of the prairie pothole region with low precipitation, low stream density, and little human alteration, hydrologic connectivity between prairie potholes and streams or rivers is likely to be low.

b. Unidirectional wetlands act as sinks and transformers for various pollutants, especially nutrients, which pose a serious pollution problem in the United States. In one study, sewage wastewaters were applied to forested unidirectional wetlands in Florida for a period of 4.5 years. More than 95% of the phosphorus, nitrate, ammonium, and total nitrogen were removed by the wetland during the study period, and 66–a6% of the

b. Unidirectional wetlands act as sinks and transformers for various pollutants, especially nutrients, which pose a serious pollution problem in the United States. In one study, sewage wastewaters were applied to forested unidirectional wetlands in Florida for a period of 4.5 years. More than 95% of the phosphorus, nitrate, ammonium, and total nitrogen were removed by the wetland during the study period, and 66–86% of the nitrate removed was attributed to the process of denitrification. In another study, sizeable phosphorus retention occurred in unidirectional marshes that comprised only 7% of the lower Lake Okeechobee besin area in Florida. A unidirectional bog in Massachusetts was reported to sequester nearly 80% of nitrogen inputs from various sources, including atmospheric deposition, and prairie pothole wetlands in the upper Midwest were found to remove >80% of the tornove 86% of initrace, 7.8% of ammonium, and 20% of phosphate through assimilation and sedimentation, sorption, and other studies indicate that on-site removal of nutrients by unidirectional wetlands is significant and geographically widespread. The effects of this removal on rivers are generally not reported in the literature. C. Biological connectivity can occur between unidirectional wetlands and downstream waters through movement of amphibians, aquatic seeds, macroinvertebrates, rerules, and mammals.

c. Biological connectivity can occur between unidirectional wetlands and downstream waters through movement of amphibians, aquatic seeds, macroinvertebrates, reptiles, and mammals. Many species in those groups that use both stream and wetland habitats are capable of dispersal distances equal to or greater than distances between many unidirectional wetlands and river networks. Unidirectional wetlands and river networks. Unidirectional wetlands can be hydrologically connected directly to river networks through channels, non-channelized surface flow, or subsurface flows. A wetland surrounded by uplands is defined as "geographically isolated." Our review found that in some cases, wetland types such as vernal pools and coastal depressional wetlands are collectively, and incorrectly, referred to as geographically isolated. Technically, the term "geographically isolated" should be applied only to the particular wetlands within a type or class that are completely surrounded by uplands. Furthermore, "geographic isolation" should not be confused with functional isolation, because geographically isolated wetlands can still have hydrological and biological connections to downstream waters.

- d. Unidirectional wetlands occur along a gradient of hydrologic connectivity-isolation with respect to river networks, lakes, or marine/estuarine water bodies. This gradient includes, for example, wetlands that serve as origins for stream channels that have orgins for stream channels that have permanent surface water connections to the river network; wetlands with outlets to stream channels that discharge to deep groundwater aquifers; geographically isolated wetlands that have local groundwater in occasional surface water connections to downstream waters; and geographically isolated wetlands that have minimal isolated wetlands that have minimal bydrologic connection to other water bodies (but which could include surface and subsurface connections to other wetlands). The existence of this gradient among wetlands of the same type or in the same geographic region can make it difficult to determine or generalize, from the literature alone, the degree to which particular wetlands (individually or as classes), including geographically isolated wetlands, are hydrologically connected.

 e. A related issue is that spatial scale must be considered when determining geographic isolation. Individual wetlands that are geographically isolated could be connected to downstream waters when considered as a complex (a groun of interactine wetlands)
- downstream waters when considered as a complex (a group of interacting wetlands). This principle was demonstrated in a recent study that examined a depressional wetland complex on the Texas coastal plain. These wetlands have been considered as a type of wetlands have been considered as a type of geographically isolated wetlands. Collectively, however, they are geographically and hydrologically connected to downstream waters in the area. During an almost 4-year study period, nearly 20% of the precipitation that fell on the wetland complex flowed as surface unouff through an intermittent stream to a nearby waterway, the Armand Bayou. Thus wetland complexes Armand Bayou. Thus, wetland complexes could have connections to downstream waters through stream channels even when the individual wetland components are geographically isolated.

3. Closing Comments

The strong hydrologic connectivity of river networks is apparent in the existence of stream channels that form the physical structure of the network itself. Given the discussion above, it is clear that streams and rivers are much more than a system of physical channels for conveying water and other materials downstream, but the presence of physical channels is one strong line of evidence for surface water connections from tributaries, or water bodies of other types, to downstream waters. Physical channels are defined by continuous bed and bank structures, which may include apparent disruptions (such as by bedrock outcrops, braided channels, flow-through wetlands) braided channels. flow-through wetlands) associated with changes in the material and gradient over and through which water flows. The continuation of bed and banks down gradient from such disruptions is evidence of the surface connection with the channel that is up gradient of the perceived disruption. The structure and function of rivers are highly dependent on the constituent materials that are stored in and transported through them. Most of these materials, broadly defined here as any chemical,

physical, or biological entity, including, but physical, or biological entity, including, but not limited to, water, heat energy, sediment, wood, organic matter, nutrients, chemical contaminants, and organisms, originate outside of the river: They originate from either the upstream river network or other components of the river system, and then are transported to the river by water movement or other mechanisms. Thus, the fundamental way in which streams and wetlands affect river structure and function is by altering fluxes of materials to the river. The control of material fluxes depends on two key tiuxes of materials to the river. The control of material fluxes depends on two key factors; (1) Functions within streams and wetlands that affect material fluxes, and (2) connectivity (or isolation) between streams and wetlands and rivers that allows (or prevents) transport of materials between the systems.

Absence of channels does not, however, mean that a wetland or open water is isolated or only infrequently connected to downstream waters. Areas that are infrequently flooded by surface water can be connected more regularly through shallow groundwater or through dispersal among biological populations and communities. Such wetlands and open waters also can reduce flood peaks by storing flood waters, reduce flood peaks by storing flood waters, filter large amounts of sediment and nutrients from upland areas, influence stream geomorphology by providing woody debris and sediment, and regulate stream temperature. They also serve as sources of food for river biota and sources of genetic diversity for populations of stream invertebrates. Untildirectional wetlands can reduce and attenuate floods through water storage, and

attenuate floods through water storage, and can recharge groundwater, thereby can recharge groundwater, thereby contributing to stream and river baseflow. These wetlands also affect nutrient delivery and improve water quality by functioning as sources of food and as sinks for metals, pesticides, excess nutrients. Biological connectivity can also occur between unidirectional wetlands and downstream unidirectional wetlands and downstream waters, through movement of amphibians, aquatic insects, aquatic reptiles, migratory birds, and riverine mammals that require or opportunistically use both river and wetland or open water habitats. However, given a goographically isolated wetland for which a surface water connection cannot be observed, it is difficult to assess its degree of connectivity with the river network without site-specific data. Additionally, caution should be used in interpreting connectivity for wetlands based

interpreting connectivity for wetlands based on their being designated as "geographically isolated" since (a) the term can be mistakenly applied to a heterogeneous group of wetlands that can include wetlands that are not geographically isolated. (b) wetlands with geographically isolated, (b) wetlands with permanent channels could be miscategorized as geographically isolated if the designation is based on maps or imagery with inadequate spatial resolution, obscured views, etc., and (c) wetland complexes could have connections to downstream waters through stream channels even if individual wetlands within the complex are geographically isolated. Thus, the term "geographically isolated" should only be applied to groups of wetlands if they fit the technical definition (i.e., they are surrounded by uplands). Further, even geographically isolated wetlands can be connected to other wetlands and downstream waters through groundwater connections, occasional spillage, or biological connections. Thus, the term "geographically isolated" should not be used to infer lack of hydrologic, chemical, or biological properties.

'geographically isolated' should not be used to inter lack of hydrologic, chemical, or biological connectivity.

Lastly, to understand the health, behavior, and sustainability of downstream waters, effects of small water bodies in a watershed need to be considered in aggregate. The contribution of material by a particular stream and wetland might be small, but the aggregate contribution by an entire class of streams and wetlands (e.g., all phemeral streams in the river network) might be substantial. For example, western vernal pool stypically occur within' "vernal pool landscapes" or complexes of pools in which swales connect pools to each other and to seasonal streams, and in which the hydrology and ecology are tightly coupled with the local and regional geological processes that formed them. The vernal pool basins, swales, and seasonal streams are part of a single surface water and shallow groundwater system connected to the river network when seasonal precipitation exceeds storage canacity of the wetalnals. Since rivers seasonal precipitation exceeds storage capacity of the wetlands. Since rivers develop and respond over time and are functions of the whole watershed, understanding the integration of contributions and effects over time is also contributions and effects over time is also necessary to have an accurate understanding of the system, taking into account the duration and frequency of material export and delivery to downstream waters. In addition, when considering the effect of an individual stream or wetland, it is important to include the cumulative effect of all materials that originate from it, rather than each material individually, to understand that water body's influence on downstream waters.

Part II: Additional Scientific Support

i. Tributaries

The agencies propose that all waters that meet the proposed definition of tributary are "waters of the United States" because they meet Justice Kennedy's test for jurisdiction under Rapanos. In other words, the agencies are asserting that all tributaries have a significant nexus with traditional navigable waters, interstate waters, and/or the territorial seas. EPA and the Corps' territoral seas. EPA and the Corps:
longstanding definition of "waters of the
United States" has included tributaries. That
regulation was based on the agencies' historic
view of the scope of the CWA and the general
scientific understanding about the ecological
and hydrological relationship between
waters

waters.

Tributaries have a substantial impact on the chemical, physical, or biological integrity of waters into which they eventually flow—including traditional navigable waters, interstate waters, and the territorial seas. The great majority of tributaries are headwater streams, and whether they are perennial, intermittent, or ephemeral, they play an important role in the transport of water, sed iments, organic matter, pollutants, nutrients, and organisms to downstream environments. Tributaries serve to store

water (thereby reducing flooding), provide biogeochemical functions that help maintain biogeochemical functions that help maintain water quality, trap and transport sediments, transport, store and modify pollutants, provide habitat for plants and animals, and sustain the biological productivity of downstream rivers, lakes and estuaries. These conclusions are strongly supported in the scientific literature, as discussed below.

Headwater streams are the smallest channels where stream flows begin, and often

Headwater streams are the smallest channels where stream flows begin, and often occur at the outer rims of a watershed. Typically these are first-order streams (i.e., they do not have any other streams flowing into them.) However, headwater streams can include streams with multiple tributaries flowing into them and can be perennial, intermittent or ephemeral, but are still located near the channel origins of the tributary system in a watershed.

Protection of tributaries under the CWA is critically important because they serve many important functions which directly influence the integrity of downstream waters. It is necessary to regulate the entire tributary system to fulfill the objective of the CWA, because discharges of pollutants into the tributary system adversely affect the chemical, physical, or biological integrity of these waters. For example, destruction or modification of headwater streams has been shown to affect the integrity of downstream waters, in part through changes in hydrology, chemistry and stream biota. M.C. Freeman, et al., "Hydrologic Connectivity and the Contribution of Stream Headwaters to Ecological Integrity at Regional Scales," fournal of the American Water Resources Continuou on Steam neadwaters to Ecological Integrity at Regional Scales,"
Journal of the American Water Resources
Association 43:5–14. (2007); M.S. Wipfli., et al., "Ecological Linkages between
Headwaters and Downstream Ecosystems: Transport of Organic Matter, Invertebrates and Wood Down Headwater Channels." and Wood Down Headwater Channels," Journal of the American Water Resources Association 43:72–85 (2007). Additionally, activities such as discharging a pollutant into ne part of the tributary system are well-documented to affect, at times, other parts of the system, even when the point of discharge is far upstram from the navigable water that experiences the effect of the discharge. In order to protect traditional navigable waters, interstate waters, and the territorial seas it is also critically important to protect tributaries as defined in today's proposal that are upstream from those waters.

. The Agencies Have Concluded That Tributaries, as Defined in the Proposed Rule, Have a Significant Nexus

The scientific literature documents that tributary streams, including perennial, intermittent, and ephemeral streams, and certain categories of ditches are integral parts of river networks because they are directly connected to rivers via permanent surface features (channels and associated alluvial deposits) that concentrate, mix, transform, and transport water and other materials, including food resources, downstream. Tributaries transport, and often transform, chemical elements and compounds, such as nutrients, ions, dissolved and particulate organic matter and contaminants, influencing organic matter and contaminants, influencing The scientific literature documents that organic matter and contaminants, influencing water quality, sediment deposition, nutrient availability, and biotic functions in rivers. Streams also are biologically connected to

downstream waters by dispersal and migration, processes which have critical implications for aquatic populations of organisms that use both headwater and river open water habitats to complete their life cycles or maintain viable populations. The scientific literature clearly demonstrates that cumulatively, streams exert strong influence on the character and functioning of rivers. In light of these well documented connections and functions the agentices concluded the on the character and functioning of rivers, in light of these well documented connections and functions, the agencies concluded that tributaries, as defined, alone or in combination with other tributaries in a watershed, significantly affect the chemical, physical, or biological integrity of a traditional navigable water, interstate water, or the territorial seas. The scientific literature supports this conclusion for ephemeral tributaries, as well as for intermittent and perennial tributaries; for tributaries both noar to and far from the downstream traditional navigable water, interstate water, or the territorial seas; and for natural tributaries or man-altered tributaries, which may include certain ditches and canals.

The discussion below summarizes the key points in the literature regarding the chemical, physical, and biological connections and functions of tributaries that significantly affect downstream waters. In

significantly affect downstream waters. In addition, the evidence regarding headwater streams and non-perennial streams, types of tributaries whose important functional relationships to downstream traditional navigable waters and interstate waters might not be obvious, is summarized. The scientific literature does not use legal terms like "traditional navigable water," "interstate water," or "the territorial seas." Rather, the literature assesses tributaries in terms of their connections to and effects on downstream waters in a watershed. While the agencies define as "waters of the United States" define as "waters of the United States" tributaries only in watersheds which drain to a traditional navigable water, interstate water, or the territorial seas, that distinction does not affect the conclusions of the scientific literature with respect to the effects of tributaries on downstream waters.

B. Tributaries Significantly Affect the Physical Integrity of (a)(1) Through (a)(3)

Tributaries, even when seasonally dry, are the dominant source of water in most rivers, rather than direct precipitation or groundwater input to main stem river segments. See, e.g., Roport at 4–3 (citing T.C. Winter, 2007, "The role of groundwater in generating streamflow in headwater areas and in maintaining base flow." Journal of the American Water Resources Association 43:15–25; P.A. Bukaveckas, "Rivers," in G.E. Likens, ed., Encyclopedia of Inland Waters, Vol. 1 (Elsevier: Oxford, 2009)). Distant headwaters with stronger connections to groundwater or consistently higher precipitation levels than downstream rivers. In the northeastern United States headwater streams contribute greater than 60% of the water vulume in larger tributaries, including navigable rivers. See, e.g., id. (citing R.B. Alexander, et. al., "The role of headwater streams in downstream water quality." Journal of the American Water Resources Association 43:41–59 (2007)). The Tributaries, even when seasonally dry, are the dominant source of water in most rivers. Association 43:41-59 (2007)), The

contributions of tributaries to river flows are often readily measured or observed, especially immediately below confluences, where tributary flows increase the flow volume and alter physical conditions, such as water temperature, in the main stream. The physical effects of tributaries are particularly clear after intense rainfall occurs over only the upper tributary reaches of a river network. For example, a study of ephemeral tributaries to the Rio Grande in New Mexico found that after a storm event contributions of the stormflow from ephemeral tributaries accounted for 76% of rew mession ound that after a storm event contributions of the stormflow from epheneral tributaries accounted for 76% of the flow of the Rio Grande. See, e.g., id. at 4–5 (citing E.R. Vivoni, et. al., "Analysis of a Monsoon Flood Event in an Ephemeral Tributary and Its Downstream Hydrologic Effects," Water Resources Research 42:W03404 (2006)). A key effect of tributaries on the hydrologic response of river networks to storm events is dispersion, or the spreading of water output from a drainage basin over time. Hydrologic dispersion of connected tributaries influence the timing and volume of water reaching a river network outlet. See, e.g., id. at 4–5 to 4–6 (citing P. M. Saco and P. Kumar, "Kinematic dispersion in stream networks coupling hydrallies and control for the reaching a river network outgrand of the reaching a river network outlet. M. Saco and F. Kumar. "Kinematic dispersion in stream networks coupling hydraulics and network geometry." Water Resources Research 38:1244 (2002)]. Tributaries also can reduce the amount of water that reaches downstream rivers and minimize downstream fooding, often through infiltration or seepage through channel beds and banks or through evapotranspiration. See. e.g., id. at 4–8 (citing S.K. Hamilton, et al., "Persistence of Aquatic Refugia between Flow Pulses in a Dryland River System (Cooper Creek, Australia)," Limnology and Oceanography 50:743–754 (2005), J.F. Costelloc, et al., "Determining Loss Characteristics of Arid Zone River Waterbodies." River Research and Applications 23:715–731 (2007)].

Loss Canadamistos in Attu Zoile Nier Westerbodies." River Research and Applications 23:715–731 (2007). One of the primary functions of tributaries is transporting sediment to downstream waters. Tributaries, particularly headwaters, shape and maintain river channels by accumulating and gradually or episodically releasing sediment and large woody debris into river channels. Sediment transport is also clearly provided by ephemoral streams. Effects of the releases of sediment and large woody debris are especially avident at tributary-river confluences, where discontinuities in flow regime and temperature clearly demonstrate physical temperature clearly demonstrate physical alteration of river structure and function by headwater streams. Report at 4–10, 4–14. Sediment movement is critical for Sediment movement is critical for maintaining the river network, including rivers that are considered to be traditional navigable waters, as fluvial (produced by the action of a river or stream) sediments are croded from some channel segments, and deposited in others downstream to form channel features, stream and riparian habitat which supports the biological communities resident downstream, and influence the river hydrodynamics. See e.g. it. It prophers of resident downstream, and influence the river hydrodynamics. See, e.g., J.L. Florsheim, et al., "Bank Erosion as a Desirable Attribute of Rivers," Bioscience 38:513–29 (2008), Report at 4–9 (citing M. Church, "Bed material transport and the morphology of alluvial river channels." Annual Review of Earth and

Planetary Sciences: 325-354 (2006)). While Planetary Sciences: 325–334 (2009). While sessential to river systems, too much sediment can impair ecological integrity by filling interstitial spaces, blocking sunlight transmission through the water column, and increasing contaminant and nutrient concentrations. Report at 4–9 (citing P.J. Wood and P. D. Armitage, "Biological Effects of Fine Sediment in the Lotic Environment," Environment, Marcarenet Marcarenet 23 (2023-21). of Fine Sediment in the Lotic Environment."
Environmental Management 21:203–217
(1997). Over sedimentation thus can reduce photosynthesis and primary productivity within the stream network and otherwise have harmful effects on downstream biotaticulding on the health and abundance of fish, aquatic macrophytes (plants), and aquatic macrophytes (plants), and aquatic macroinverlebrates that inhabit downstream waters. See, e.g., Wood and Armitage 1997. Headwater streams tend to trap and store sediments behind large structures, such as boulders and trees, that are transported downstream only during infrequent large storm events. See Report at 4–10, 4–12 (citing L.E. Benda, and T.W. Cundy, "Predicting deposition of debris Cundy, "Predicting deposition of debris flows in mountain channels," Canadian Geotechnical Journal 27:409-417 (1990); T. Gomi and R.C. Sidle, "Bed load transport in managed steep-gradient headwater streams of southeastern Alaska," Water Resources

managed steep-gradient headwater streams or southeastern Alaska," Water Resources Research 39:1336 (2003); L.E. Benda, et al., "Geomorphology of steepland headwaters: The transition from hillslopes to channels," Journal of the American Water Resources Association 41:835–831 (2005); P.E. Bigelow, et al., "On Debris Flews, River networks, and the Spatial Structure of Channel Morphology." Forest Science 53:220–238 (2007); J.P.R. Gooderham, et al., "Upstream Heterogeneous Zones: Small Stream Systems Structured by a Lack of Competence?" Journal of the North American Benthological Society 26:565–374 (2007)].

Tributaries can greatly influence water temperatures in tributary networks. This is important because water temperature is a critical factor governing the distribution and growth of aquatic life, both directly (through its effects on other physiochemical properties, such as dissolved oxygen and suspended solids). Id. at 4–13 (citing J.D. Allan, Stream Ecology—Structure and Function of Running Waters (New York, NY: Chapman & Hall, 1995). For instance, water temperature controls metabolism and level of activity in cold-blooded species like fish, amphibians, and aquatic invertebrates. See, e.g., G.G. ice, "Chapter 3: Stream

Temperature and Dissolved Oxygen," in J.D. Stednick, ed., "Hydrologic and Biological Responses to Forest Practices (Springer, 2008). Temperature can also control the amount of dissolved oxygen in streams, as colder water holds more dissolved oxygen, which fish and other fauna need to breathe. Connections between tributaries and downstream rivers can affect water Connections between tributaries and downstream rivers can affect water temperature in river networks. See, e.g., Report at 4–73 (citing S. Knispel, and E. Castella, "Disruption of a Longitudinal Pattern in Environmental Factors and Benthic Fauna by a Glacial Tributary," The Recological Importance of Tributaries and Confluences," in S.P. Rice, et al., "The Ecological Importance of Tributaries and Confluences," in S.P. Rice, et

al., ed., River Confluences, Tributaries and the Fluvial Network, (Chichester, UK. John Wiley & Sons, 2008), pp. 209–242). In particular, tributaries provide both cold and warm water refuge habitats that are critical for protecting aquatic life. (d. at 4-32.

Because headwater tributaries often depend occases featured inputs, temperatures in these systems tend to be warmer in the winter (when groundwater is warmer han ambient temperatures) and colder in the summer (when groundwater is warmer than ambient temperatures) relative to downstream waters, and cliding (5 Power, et al., "Groundwater and Fish: Insights from Northern North America," Hydrolauria Processes 13-011-422 (1990) In: (tilling I. Fower, et al., Conditional and in the lish insights from Northern North America," Hydrological Processes 13:401-422 (1999). Thus tributaries provide organisms with both warm water and coldwater refuges at different times of the year. Id. (citing R.A. Curry, et al., "Use of Small Streams by Young Brook Trout Spawmed in a Lake," Transactions of the American Fisheries Society 12:677-83 (1997); C.V. Baxter, and F.R. Hauer, "Geomorphology, Hyporheic Exchange and Selection of Spawning Habitat by Bull Trout (Salvelinus confluentus)." Canadian Journal of Fisheries and Aquatic Sciences 57: 1479-1481 (2000); T.R. Labbe, and K.D. Fausch, "Dynamics of Intermittent Stream Habitat Regulate Persistence of a Threatened Fish at Multiple Scales," Ecological Applications 10:1774-1791. and K.D. Fausch, "Dynamics of Intermittent Stream Habitat Regulate Persistence of a Threatened Fish at Multiple Scales," Ecological Applications 10:1774–1791 (2000); M.J. Bradford, et al., "Ecology of Juvenile Chinook Salmon in a Small Nonnatal Stream of the Yukon River Drainage and the Role of Ice Conditions on Their Distribution and Survival," Canodian Journal of Zoology-Revue Canadienne De Zoologie 79:2043–2054 (2001). For example, when temperature conditions in downstream waters are adverse, fish can travel upstream and use tributaries as refuge habitat. Id. (citing Curry et al. 1997; M.A. Cairns, et al., "Influence of Summer Stream Temperatures on Black Spot Infestation of Juvenile Coho Salmon in the Oregon Coast Range," Transactions of the American Fisheries Society 134:1471–1479 (2005). Tributaries also help buffer temperatures in downstream waters. Id. at 4–13 to 4–14 (citing D. Caissie, "The thermal regime of rivers: A review," Freshwofer Biology 51:1389–1406 (2006). Temperatures in tributaries affect downstream water temperature many kilometers away, Id. at 4–14 (citing B. Gardner, and P.J. Sullivan, "Spatial and Temporal Stream Temperature Prediction: Modeling Nonstationary Temporal Covariance Structures." Water Resources Research 40:W01102 doi: [2004]; Bl.R. Johnson, et al., "Use of Spatially Explicit Physicochemical Data to Measure Downstream Impacts of Headwater Stream Disturbance." Water Resources Research 46:W09526 (2010).

C. Tributaries Significantly Affect the Chemical Integrity of (a)(1) Through (a)(3)

Tributaries transform and export injournes transform and export significant amounts of nutrients and carbon to downstream waters, serving important source functions that greatly influence the chemical integrity of downstream waters. Organic carbon, in both dissolved and particulate forms, exported from tributaries is consumed by downstream organisms. The organic carbon that is exported downstream thus supports biological activity (including metabolism) throughout the river network. See, e.g., Report at 4–22 (citing S.G. Fisher and G.E. Likens, "Energy Flow in Bear Brook, New Hampshire: An Integrative Approach to Stream Ecosystem Metabolism," Ecological Monographs 43: 421–439 (1973); JL. Meyer. "The Microbial Loop in Flowing Waters." Microbial Ecology 28:195–199 (1994); JB. Wallace, et al. "Multiple Trophic Levels of a Forest Stream Linked to Terrestrial Litter Inputs." Science 277:102–104 (1997); R.O. Hall, and JL. Meyer, "The Trophic Significance of Bacteria in a Detritus-Based Stream Food Web," Ecology 79:1995–2012 (1998); R.O. Hall, et al., "Organic Matter Flow in Stream Food Web," Ecology 19:13945–3463 (2000); C. Augspurger, et al., "Tracking Carbon Flow in a 2-Week-Old and 6-Week-Old Stream Biofilm Food Web," Limnology and Oceanography 5:364–3650 (2008)). Much or most of the organic carbon that is exported from tributaries has been altered either physically or chemically by ecosystem processes within the tributary streams. either physically or chemically by ecosystem processes within the tributary streams, particularly by headwater streams

Nutrient export from tributaries has a large effect on downstream water quality, as excess nutrients from surface runoff from lawns and effect on downstream water quality, as excess nutrients from surface runoff from lawns and agricultural fields can cause algal blooms that reduce dissolved oxygen levels and increase turblidity in rivers, lakes, estuaries, and territorial seas. Water low in dissolved oxygen cannot support aquatic life; it is widely-recognized that this phenomenon has resulted in the devastation of commercial and recreational fisheries in the northern Gulf of Mexico. Committee on Environment and Natural Resources, Integrated Assessment of Hypoxia in the Northern Gulf of Mexico (Washington, DC: National Science and Technology Council, 2000). The amount of nitrogen that is exported downstream varies depending on stream size, and how much nitrogen loss is greater in smaller, shallow streams, most likely because dentification and settling of nitrogen particles occur at slower rates in deeper channels. Roport at 4–16 (citing R.G. Aloxander, et al., "Effect of Stream Channel Size on the Delivery of Nitrogen to the Gulf of Mexico," Nature 403:758–761 (2000)). At low loading rates, the biotic removal of dissolved nitrogen from water is high and occurs primarily in small ributaries, reducing the loading to larger water is high and occurs primarily in small tributaries, reducing the loading to larger tributaries and rivers downstream. At high tributaries and rivers downstream. At high nitrogen loading rates, tributaries become nitrogen saturated and are not effectively able to remove nitrogen, reanting in high nitrogen export to rivers. Id. at 4–18 (citing P.). Muhlelland, et al., "Stream Denitrification across Biomes and Its Response to Anthropogenic Nitrate Loading," Nature 45:2202–205 (2008). The transport of nitrogen and phosphorus downstream has also been well-documented, particularly in the cases of the Gulf of Mexico and the Chesapeake Bay. Tributary streams in the the cases of the Gulf of Mexico and the Chesapeake Bay. Tributary streams in the uppermost portions of the Gulf and Bay watersheds transport the majority of nutrients to the downstream waters; an estimated 55% of nitrogen arriving at the hypoxic zone in the Gulf originates in the

upper Mississippi (north of Cairo, Illinois) and the Ohio River Basins. D. Goolsby, et al., Topic Report 3, Flux and Sources of Nutrients in the Mississippi-Atchafolaya River Basin (Washington, D.C: National Science and Technology Council Committee on Environment and Natural Resources, 1999). The export of nutrients from streams in the Mississippi River Basin has an effect on anoxia, or low oxygen levels, in the Gulf. Report at 4–17 (citting N.N. Rabalais, et al., "Gulf of Mexico Hypoxia, a.k.a. "the Dead Zone," "Annual Review of Ecology and Systematics 33:233–263 (2002)). Similarly, nutrient loads from virtually the entire Zone." Annual Review of Ecology and Systematics 33:235–263 (2002)]. Similarly, nutrient loads from virtually the entire 64.006 square mile watershed affect water quality in the Chesapeake Bay. Simulation tools have been used to determine the nutrient and sediment load reductions that must be made at many different points throughout the entire watershed in order to achieve acceptable water quality in the mainstem of the Bay. These reductions included specific annual nitrogen caps on the upper reaches of the Suxuehanna River in New York State, more than 400 miles from the mouth of the Chesapeake Bay. See e.g., U.S. Environmental Protection Agency (EPA), Region III, Chesapeake Bay Program Office, Setting and Allocating the Chesapeake Bay Basin Nutrient and Sediment Loads: The Collaborative Process, Technical Tools and Innovative Approaches, EPA 903-R-03-007 (Washington, DC: EPA, 2003); Rabalais et al. 2002.

Although tributaries export nutrients. Although tributaries export nutrients, carbon, and contaminants downstream, they also transfirm these substances. Phosphorous and nitrogen arrive at downstream waters having already been cycled, or taken up and transformed by living organisms, many times in besadwater and smaller tributaries. Report at 4–19 to 4–20, 6–3 to 6–4 (citing J.R. Webster, and B.C. Patten, "Effects of watershed perturbation on stream potassium and calcium dynamics." Ecological Monographs 49:51–72 (1979); J.D. Newbold, et al., "Measuring nutrient spiraling in streams," Canadion Journal of Fisheries and Aquatic Sciences 38:866–863 (1981); Eliwood, et al., "Resource spiraling: An operational paradigm for analyzing lotic ecosystems," in T.D. Fontaine and S.M. Bartell, ed., Dynomics of Lotic Ecosystems (Ann Arbor, Mt. Ann Arbor Science, 1983), pp. 3–23: S.H. Ensign, and M.W. Doyle, "Nutrient Spiraling in Streams and River Networks," Journal of Geophysical Research-Biogeosciences 11:C04009 (2008), In addition, some of the nutrient that is taken up as readily available inorganic forms is released back to the water as organic forms that are less available for biotic uptake. Id. at 4–20 (citing P.J. Mutholland, et al., "Production of Soluble, High Molecular Weight Phosphorus and Its Subsequent Uptake by Stream Derticus," Verhandlungen des Internationalen Verein Limnologie 23:1190–1197 (1988); S.P. Seitzinger, et al., "Bioavailability of DON from Natural and Anthropogenic Sources to Estuarine Plankton," Limnology and Oceanography carbon, and contaminants downstream, they also transform these substances. Phosphorou Anthropogenic Sources to Estuarine Plankton," Limnology and Oceanography Plankton," Limnology and Oceanography 47:353-365 (2002)]. Similarly, nutrient incorporated into particulates is not entirely regenerated, but accumulates in longitudinally increasing particulate loads

(i.e. increases moving downstream). Id. at 4—20 (citing I.I. Merriam, et al., "Characterizing Nitrogen Dynamics. Retention and Transport in a Tropical Rainforest Stream Using an In situ N-15 Addition," Preshwater Biology 47:143—160 (2002); M.R. Whiles, and W.K. Dodds, "Relationships between Stream Size, Suspended Particles, and Filter-Feeding Macroinvertebrates in a Great Plains Drainage Metwork," Journal of Environmental Quality 31:1589—1600 (2002); R.O. Hall, et al., "Hydrologic Control of Nitrogen Removal, "Hydrologic Control of Nitrogen Removal, Storage, and Export in a Mountain Stream," Limnology and Oceanography 54:2128–2142 (2009)), Headwater streams have seasonal Lammoby und Ceenography 3-2:21e8-214 (2009)). Headwater streams have seasonal cycles in the concentrations of phosphorous and nitrogen that are delivered downstream by accumulating nutrient derived from temporarily growing streambed biomass. Id. (citing P.J. Mulholland, and W.R. Hill, "Seasonal Patterns in Stream Effects," Water Resources Research 3:1297-1306 (1997); P.J. Mulholland, "The Importance of In-stream Effects," Water Resources Research 3:1297-1306 (1997); P.J. Mulholland, "The Importance of In-stream Uptake for Regulating Stream Concentrations and Outputs of N and P from a Forested Watershed; Evidence From Long-Term Chemistry Records for Walker Branch Watershed, "Biogeochemistry 70:403-426 (2004)). Such variations have been (2004)). Such variations have been downstream downstream productivity. Id. (citing P.J. Mulholland, et al., "Longitudinal Patterns of Nutrient Cycling and Peripbyton Characteristics in Streams: a Test of Upstream—Downstream Linkage." Journal of the North American Benthological Society 14:357–370 (1995)). Nitrification, the microbial transformation of ammonium to nitrate, affects the form of downstream nutrient delivery. Nitrification occurs naturally in undisturbed headwater streams, but increases sharply in response to ammonium inputs, thereby reducing potential ammonium toxicity from pollutant inputs. Id. (citing Newbold, et al., "Phosphorus Dynamics in a Woodland Stream Ecosystem: a Study of Nutrient demonstrated to affect downstream "Phosphorus Dynamics in a Woodland Stream Ecosystem: a Study of Nutrient Spiraling." Ecology 64:1249-1265 (1983); S.C. Chapra, Surface Water Quality Modeling McGraw-Hill, 1996); E.S. Bernhardt, et al., "Whole-system Estimates of Nitrification and Nitrate Uptake in Streams of the Hubbard Brook Experimental Forest." Ecosystems 5:419-430 (2002)). Denitrification, the removal of nitrate from streamwater through transformation to atmospheric nitrogen, is widespread among headwater streams; research indicates that small, unimpacted tributaries can reduce up to 40% of downstream nitrogen delivery through denitrification. Id. at 4-20 to 4-21 (citing P.J. Mulholland, et al., "Stream Denitrification across Biomes and Its Response to Anthropogenic Nitrate Loading," Nature Anthropogenic Nitrate Loading," Nature 452:202–205 (2008)). Small tributaries also 452:202–205 (2008)). Small tributaries also affect the downstream delivery of nutrients through abiotic processes. Streams can reduce phosphorus concentrations through sorption (i.e., "sticking") to stream sediments. Id. at 4–21 (citing), L. Meyer, "The Role of Sediments and Bryophytes in Phospborus Dynamics in a Headwater Stream Coosystem," Limnology and Oceanography 24:365–375 (1979)). This is particularly

beneficial to downstream chemical integrity

beneficial to downstream chemical integrity where phosphorus sorbs to contaminants such as metal hydroxide precipitates. Id. (citing J.A. Simmons, "Phosphorus Removal by Sediment in Streams Contaminated with Acid Mine Drainage," Water Air and Soil Pallution 209:123–132 (2010).

Tributaries also store significant amounts of nutrients and carbon, functioning as important sinks (lags) for river networks so that they do not reach downstream traditional navigable waters, interstate waters, or the territorial seas. Small tributary streams in particular often have the greatest waters, or the territorial seas. Small tributary streams in particular often have the greatest effect on downstream water quality, in terms of storage and reducing inputs to downstream waters. For instance, uptake and transformation of inorganic nitrogen often occurs most rapidly in the smallest tributaries. See, e.g., id. at 4–18 (citing B.J. Peterson, et al., "Control of Nitrogen Export from Watersheds by Headwater Streams," Science 292:86–90 (2001). Small tributaries affect the downstream delivery of nutrients such as phosphorus through abiotic processes; such streams can reduce phosphorus concentrations by sorption to stream sediments. stream sediments. Tributaries can also serve as a temporary

Tributaries can also serve as a temporary or permanent source or sink for contaminants, for instance substances like metals, sodium, and even dead fish carcasses that adversely affect organisms when occurring at excessive or elevated concentrations to reduce the amounts that reach downstream traditional navigable waters, interstate waters, or the territorial seas. The transport of contaminants to downstream waters can impact water quality downstream waters can impact water quality downstream, if they are not stored in tributaries. See, e.g., id. at 4–26 (citing X. Wang, et al., "Water Quality Changes as a Result of Coalbed Methane Development in a Rocky Mountain Watershed," Journal of the American Water Resources Association 43:1383–1399 (2007)]. Tributaries can also serve as al least a temporary sink for contaminants that would otherwise impair downstream water quality. See, e.g., id. at 133–134 (citing W. L. Graf, Plutonium and the Rico Grande Environmental Change and Contamination in the Nuclear Age (New York: Oxford University Press; 1994)]. The distances and extent of metal contaminant transport was shown in separate studies in the upper Arkansas River in Colorado, and Clark Fork River in Montana, where past mining activities impacted the headwater tributaries. River bed sediments showed that metals originating from the mining and smellting areas in the headwaters were reaching water bodies up to 550 km downstream. Id. at 4–26 to 4–27 (citing E.V. Axtmann, and S.N. Luoma, "Large-Scale Distribution of Metal Contamination in the Fine-grained Sediments of the Clark Fork River. Montana, U.S.A." Applied or permanent source or sink for contaminants, for instance substances like

Distribution of Metal Contamination in the Fine-grained Sediments of the Clark Fork River, Montana, USA," Applied Geochemistry 6:75–88 (1991); B.A. Kimhall, et al., "Effects of Colloids om Metal Transport in a River Receiving Acid Mine Drainage, Upper Arkansas River. Colorado, USA," Applied Geochemistry 10:258–306 (1995)). Military studies of the distribution, transport, and storage of zidiopuclidice (a.g.

Military studies of the distribution, transport, and storage of radionuclides (e.g., plutonium, thorium, uranium) have provided convincing evidence for distant chemical

connectivity in river networks because the connectivity in river networks because the natural occurrence of radionuclides is extremely rare. From 1942 to 1952, prior to the full understanding of the risks of radionuclides to human health and the environment, plutonium dissolved in acid was discharged untreated into several intermittent headwater streams that flow into the Rio Grande at the Los Alamos National Laboratory, New Mexico. Id. at 4–28 (citing W.L. Graf, Plutonium and the Rio Grande: W.L. Utal, Plutonium and the Hio Grande: Environmental Change and Contamination in the Nuclear Age (New York: Oxford University Press, 1994); S.L. Reneau, et al., "Geomorphic Controls on Contaminant Distribution along an Ephemeral Stream," Earth Surface Processes and Landforms 29:1209–1223 (2004)). Also during this time, nuclear weapons testing occurred west of the upper Rio Grande near Socorro, New Mexico (Trinity blast site) and in Nevada, where fallout occurred on mountainous areas with thin soils that are readily transported to headwater streams in the upper Rio Grande basin. The distribution of plutonium within the Rio Grande illustrates how headwater the streams of the store contaminated basin. The distribution of pitudinium within the Rio Grande illustrates but wheadwater streams transport and store contaminated sediment that has entered the basin through fallout and from direct discharge. Los Alamos Canyon, while only representing 0.4% off the drainage area at its confluence with the Rio Grande, had a mean annual bedload contribution of plutonium almost sevent times that of the mainstem. Id. citing Graf 1994). Much of the bedload contribution occurred sporadically during intense storms that were out of phase with flooding on the upper Rio Grande. Total estimated contributions of plutonium between the two sources to the Rio Grande were approximately 90% from fallout to the landscape and 10% from direct effluent discharge at Los Alamos National Laboratory. Id. (citing Graf 1994).

C. Tributaries Significantly Affect the Biological Integrity of (a)(1) Through (a)(3)

Maters

Tributaries are biologically linked to downstream waters through the movement of living organisms or their reproductive propagules, such as eggs or seeds. For organisms that drift with water flow, biological connections depend on hydrological connections. However, many equatic organisms are capable of active movement with or against water flow, and others disperse actively or passively over land by walking, flying, drifting, or "hitchhiking." All of these different types of movement form the basis of hiological connectivity between headwater tributaries and downstream waters.

Headwater tributaries increase the amount and quality of habitat available to aquatic organisms. Under adverse conditions, small tributaries provide safe refuge, allowing organisms to persist and recolonize downstream areas once adverse conditions have abated. See, e.g., Report at 4–29 (citing LL Mever and I.B. Wallare. "Lost linkness."

have abated. See, e.g., Report at 4-29 (citing J.L. Meyer and J.B. Wallace, "Lost Linkages J.L. Meyer and J.B. Wallace, "Lost Linkages and Lotic Ecology: Rediscovering Small Streams," Pages 295–317 in M.C. Press, N. J. Huntly, and S. Levin, editors. Ecology; Achievement and Challenge (Oxford, UK: Blackwell Science, 2001); A. Meyer et al., "The Effect of Low Flow and Stream Drying

on the Distribution and Relative Abundance of the Alien Amphipod, Echinogammarus berilloni (Catta, 1878) in a Karstic Stream System (Westphalie, Germany), "Crustaceana 77:909–922 (2004); A.D. Huryn et al. "Landscape Heteregeneity and the Biodiversity of Arctic Stream Communities: A Habitat Template Analysis," Canadian Journal of Fisheries and Aguatic Sciences 62:1905–1919 (2005)). Use of tributaries by salmon and other anadromous fish for salmon and other anadromous fish for spawning is well-documented, but even nonsamoin and other anadomious Jist on spawning is well-documented, but even non-migratory species can travel great distances within the river and tributary networks. See. e.g., id. at 4–31 (citing O.T. Gorman, "Assemblage Organization of Stream Fishes: The Effects of Rivers on Adventitious Streams," American Naturalist 128(4): 611–616 (1986); A. L. Sheldon, "Conservation of Stream Fishes: Patterns of Diversity, Rarity, and Risk," Conservation Biology 2:149–156 (1986); N.P. Hitt and P.L. Angermeier, "Evidence for Fish Dispersal from Spatial Analysis of Stream Network Topology," Jaurnal of the North American Berthological Society 27:304–320 (2008)]. Tributaries also serve as an important source of food for biota in downstream rivers. Tributaries export plankton, vegetation, fish eggs, insects, plankton, vegetation, fish eggs, insects, invertebrates like worms or crayfish, smaller fish that originate in upstream tributaries and other food sources that drift downstream to fish that originate in upstream tributaries and other food sources that drift downstream to be consumed by other animals. See, e.g., id. at 4–29 (citing D.]. Proggar and A.R. Modenke, "Insect Production from Temporary and Perennially Flowing Headwater Streams in Western Oregon," Journal of Freshwater Ecology 17-301—407 (2002)]. For example, many fish feed on drifting insects, and numerous studies document the downstream drift of stream invertebrates that then are esten by fish in larger rivers. See, e.g., id. at 4–29 to 4–30 (citing S. Nakano and M. Murakami, "Reciprocal Subsidies: Dynamic Interdependence between Terrestrial and Aquatic Food Webs." Proceedings of the National Academy of Sciences USA 98-166–170 (2001); M.S. Wipfli and D.P. Gregovich, "Export of Invertebrates and Detritus from Fishless Headwater Streams in Southeastern Alaska: Implications for Downstream Salmonid Production," Freshwater Biology 47:957–969 (2002).

Biological connectivity also allows gene

47:957-959 (2002).
Biological connectivity also allows gene flow, or genetic connectivity, among tributary and river populations. Gene flow is needed to maintain genetic diversity in a species, a basic requirement for that species to be able to adapt to environmental change. Populations connected by gene flow have a larger breeding population size, making them less prone to the deleterious effects of inbreeding and local extinction. Id. at 4—33 (citting R. Lande and S. Shannon. 'The role of genetic variation in danptation and of genetic variation in adaptation and population persistence in a changing environment," Evolution 50:434-437 (1996)). environment," Evolution 50:434-437 (1996)], Genetic connectivity exists at multiple scales and can extend beyond one a single river catchment, and for species capable of long distance movement (such as salmon), reveals complex interactions among spatially distant populations of aquatic organisms Id. (citing J.M. Hughes, et al., "Cenes in Streams: Using DNA to Understand the Movement of Freshwater Fauna and Their Riverine

Habitat," Bioscience 59:573–583 (2009); C.D. Anderson, "Considering spatial and temporal scale in landscape-genetic studies of gene flow," Molecular Ecology 19:3565–3575 (2010)).

D. Headwater Tributaries Significantly Affect the Chemical, Physical, or Biological Integrity of (a)(1) Through (a)(3) Waters

Integrity of (a)(1) Through (a)(3) Waters

As discussed above, the scientific literature supports the conclusion that tributaries, including headwater streams, have a significant nexus to downstream waters based on their contribution to the chemical, physical, or biological integrity of (a)(1) through (a)(3) waters. Headwater tributaries, the small streams at the uppermost reaches of the tributary network, are the most abundant streams in the United States. See, e.g., i.d. at 4–2 clitting T.L. Nadeau and M.C. Rains, "Hydrological connectivity between headwater streams and downstream waters: How science can inform policy," Journal of the American Water Resources Association 43:118–133 (2007)). Collectively, they help hape the chemical, physical, and biological integrity of downstream waters, and provide many of the same functions as non-headwater streams. See, e.g., i.d. at 1–7 to 1– many of the same functions as non-headwater streams. See, e.g., id. at 1-7 to 1-8, 4-1. For example, headwater streams reduce the amount of sediment delivered to 5.4-1. Fol Example, neatwater streams reduce the amount of sediment delivered to downstream waters by trapping sediment from water and runoff. See, e.g., M. Dieterich and N.H. Anderson. "Dynamics of Abiotic Parameters, Soliute Removal and Sediment Retention in Summer-Dry Headwater Stream of Western Oregon," "Hydrobiologic 379: 1-15 (1998). Headwater streams shape river channels by accumulating and gradually or episodically releasing sediment and large woody debris into river channels. They are also responsible for most nutrient cycling and removal, and thus transforming and changing the amount of nutrients delivered to downstream waters. See, e.g., Report at 4–18 (citing B.). Peterson, et al., "Control of Nitrogen Export from Watersheds by Headwater Streams," Science 292: 86–90 (2001). A close connection exists between (2001)). A close connection exists between the water quality of these streams and the water quality of traditional navigable waters, interstate waters, and the territorial seas. See, e.g., State of Ohio Ecvironmental Protection Agency, Nonpoint Source impacts on Primary Headwater Streams (Columbus, OH: Primary Headwater Streams (Columbus, OH:
Ohio Environmental Protection Agency,
2003). Activities such as discharging a
pollutant into one part of the tributary system
are well-documented to affect other parts of
the system, even when the point of discharge
is far upstream from the navigable water that
experiences the effect of the discharge. See,
e.g., F.M. Dunnivant and E. Anders, A Basic
Introduction To Pollutant Fate and
Transport: An Integrated Approach With
Chemistry, Modeling, Bisk Assessment, and
Environmental Legislation (Hoboken, NJ:
John Wiley & Sons, Inc., 2006).
Headwater streams provide unique habitat
and protection for semi-aquatic species living

other aquatic or semi-aquatic species living in and near the stream that may use the in and near the stream that may use the downstream waters for other portions of their life stages. See, e.g., Report at 1–8; J.L. Meyer, et al., "The Contribution of Headwater Streams to Biodiversity in River Networks," Journal of the American Water Resources

Association 43(1): 86-103 (2007). They also Association 43(1): 66–103 (2007). They also serve as migratory corridors for fish. Tributaries can improve or maintain biological integrity and can control water temperatures in the downstream waters. See, 8g, Report 44–14 (citing JL. Ebersole, et. al., "Cold water patches in warm streams: Physicochemical characteristics and the influence of shading," Journal of the American Water Resources Association 39:355–368 (2003): B. Gardner, and P.J. Sullivan "Statisl and temporal stream 389:353-368 (2003); B. Gardner, and P.J. Sullivan, "Spatial and temporal stream temperature prediction: Modeling nonstationary temporal covariance structures," Water Resources Research 40:1-9 (2004); B.R. Johnson, et al., "Use of spatially explicit physicochemical data to measure downstream impacts of headwater stream disturbance," Water Resources Research 46:W09526 (2010)]. Headwater streams also provide refuge habitat for riverine organisms seeking protection from temperature extremes, flow extremes, low dissolved oxygen, high sediment levels, or the presence of predators, parasites, and competitors. See, e.g., id. 41-32 (citing J.C. Scrivener, et al., "Invenile Chinook salmon (Oncorhynchus tshawytscha) utilization of Hawks Creek, a small and nonnetal tributary Concorlynchus tshawytscha) utilization of Hawks Creek, a small and nonnetal tributary of the Upper Fraser River, "Canadian Jeurnal of Fisheries and Aquatic Sciences 51:1139–1146 (1994): R.A. Curry, et al., "Use of small streams by young brook trout spawned in a lake." Transactions of the Americon Fisheries Society 126:77–83 (1997); A.M. Pires, et al., "Seasonal changes in fish community structure of intermittent streams in the middle reaches of the Guadiana basin, Portugal." Journal of Fish Biology 54:235–249 (1999); M.J. Bradford, et al., "Ecology of juvenile Chinook salmon in a small nonnatal stream of the Yukon River drainage and the role of ice conditions on their distribution and survival." Canadian Journal of Zoologie 79:2043–2054 (2001); M.A. Cairns, et al., "Influence of summer stream temperatures on black spot Revue Canadienne De Zoologie 79:2043–
2054 (2001); M.A. Caims, et al., "Influence of summer stream temperatures on black spot infestation of juvenile coho salmon in the Oregon Coast Range," Transactions of the American Fisheries Society 134:1471–1479 (2005): Wigngton, P. J., et al., "Coho salmon dependence on intermittent streams," Frontiers in Ecology and the Environment 4:513–518 (2006)). Hendwater streams serve as a source of food materials such as insect, larvae, and organic matter to nourish the fish, mammals, amphibians, and other organisms in downstream streams, rivers, and lakes. See, e.g., id. at 4–22, 4–24 (citing S.G., Fisher, and G.E. Likens, "Energy flow in Bear Brook, New Hampshire: An integrative approach to stream ecosystem metabolism," Ecological Monographs 43:421–439 (1973); I.L. Meyer, "The microbial loop in flowing waters," Microbial Ecology 28:195–199 (1994); J.B. Wallace, et al., "Multiple trophic levels of a forest stream linked to terrestrial litter inputs," Science 277:102–104 (1997); R.O. Hall, and J.L. Meyer, "The trophic significance of bacteria in a detritus-based stream food web," Ecology 79:1995–2012 (1998); R.O. Hall, et al., "Organic matter flow in stream food web," Ecology 81:3445–3463 (2000); T. Gomi, et al., "Understanding processes and downstream linkeges of headwater

systems." Bioscience 52:905-916 (2002); C. Augspurger, et al., "Tracking carbon flow in a 2-week-old and 6-week-old stream biofilm food web." Limnology and Oceanography 53:642-650 (2008). Disruptions in these biological processes affect the ecological functions of the entire downstream system. See, e.g., L.A. Kaplan, et al., "Patterns of Dissolved Organic Carbon in Transport," Limnology and Oceanography 25: 1034-1043 (1980); R.L. Vannote, et. al., "The River Continuum Concept," Canadian Jaurnal of Fisheries and Aquotic Sciences 37: 130-37 (1980). Headwater streams can help to maintain base flow in the larger rivers downstream, which is particularly important in times of drought. See, e.g., Report at 4-4, 4-66 (citing P.D. Brooks, and M.M. Lemon, "Spatial variability in dissolved organic matter and inorganic aitrogen concentrations in a semiarid stream, San Pedro River, Arizona," Journal of Geophysical Research-Biogeosciences 112:C03655.D (2007); Tetzlaff, and C. Soulsby, "Sources of baseflow in larger catchments—using tracers to develop a holistic understanding of runoff generation," Journal of Hydrology 359:287-302 (2008). At the same time, the network of headwater streams can regulate the flow of water into downstream flooding, and preventing excess erosion caused by flooding. See, e.g., United States, U.S. EPA systems," Bioscience 52:905-916 (2002); C. local and downstream flooding, and preventing excess erosino caused by flooding, See, e.g., United States, U.S. EPA and USDA/ARS Southwest Watershed Research Center, EPA/560/R-08/134, ARS/2330452008: The Ecological and Hydrological Significance of Ephemeral and Intermittent Streams in the Arid and Semi-arid American Southwest (Washington, DC: U.S. EPA and USDA/ARS Southwest Watersheld Research Control Leistick et al. Watershed Research Center, Levick et al., 2008) (Levick et al. 2008).

Tributaries do not need to flow perennially Industries do not need to now perennally to have a significant nexts to downstream waters. Approximately 59% of streams across the United States (excluding Alaska) flow intermittently or ephemerally; ephemeral and intermittent streams are particularly prevalent in the arld and semi-arid Southwest, where they account for over 81% Intermittent streams are particularly provalent in the arid and semi-arid Southwest, where they account for over 81% of streams. Levick et al. 2008. Despite their intermittent or ephemeral flow, these streams monetheless perform the same important ecological and bydrological functions documented in the scientific literature as perennial streams, through their movement of water, nutrients, and sediment to downstream waters. Id. The importance of intermittent and ephemeral streams is documented in a 2008 peer-reviewed report by EPA's Office of Research and Development and the U.S. Department of Agriculture's Agriculture's Agriculture's Agriculture's Agriculture's Agriculture's Agriculture's Agriculture's and ecological significance of ephemeral and ecological significance of ephemeral and semi-arid Southwestern United States and their connections to downstream waters; the report connections to downstream waters; the report is a state-of-the-art synthesis of current knowledge of the ecology and hydrology in these systems. Id.

F. Ephemeral and Intermittent Tributaries

Waters

ficantly Affect the Chemical, Physical or Biological Integrity of (a)(1) Through (a)(3) Intermittent and ephemeral streams are chemically, physically, and biologically connected to downstream waters, and these connections have effects downstream. See, e.g., id. In some areas, stormflows chameled into alluvial floodplain aquifers by intermittent and ephemeral streams are the major source of annual streamflow in rivers. Perennial flows are not necessary for chemical connections. Periodic flows in ephemeral or intermittent tributaries can have a strong influence on biogeochemistry by connecting the channel and other landscape elements. See, e.g., Report at 4–16 (citing H.M. Valett, et. al., "Biogeochemical and Metabolic Responses to the Flood Pulse in a Semiarid Floodplain," Ecology 86(1): 220–234 (2003). This episodic connection can be very important for transmitting a substantial amount of material into downstream rivers. See, e.g., id. (citing Nadeau and Rains (2007)). Ephemeral desert streams have been shown to export particularly high sediment loadings. See, e.g., d. 44–10 (citing M.A. Hassan, "Observations of Desert Food Bores," Earth Surface Processes and Landforms 15-4814–485 (1990)). Ephemeral streams can also Intermittent and ephemeral streams are (1990)). Ephemeral streams can also temporarily and effectively store large amounts of sediment that would other amounts of sediment that would otherwise wash downstream, contributing to the maintenance of downstream water quality and productive fish habitat. See, e.g., S. H. Duncan, et al., "Transport of Road-Surface Sediment through Ephemeral Stream Channels." Water Resources Bulletin 23(1): 113–119 (1987). This temporary storage of sediment thus helps maintain the chemical and biologic integrity of downstream waters. The Report provides case studies of prairie streams and Southwest intermittent and ephemeral streams, two stream types whose

streams and Southwest intermittent and ephemeral streams, two stream types whose jurisdictional status has been called into question in the past. These case studies highlight the importance of these streams to downstream waters, despite their small size and ephemeral or intermittent flow regime. Prairie streams are frequently subjected to the extremes of drying and flooding, and intermittent of flashy hydrology is prevalent in river networks throughout most of the Creat Plains. Report at 4-40 (citting W.l. Matthews, "North American Prairie Streams Systems for Ecological Study," Journal of the North American Benthological Society 7:387-409 (1988); A.V. Zale et al., "The Physicochemistry, Flora, and Fauna of 7.337-404 (1988); A.V. Zaie et al., "The Physicochemistry, Flora, and Fauna of the Intermittent Prairie Streams: A Review of the Literature," United States Fish and Wildlife Service Biological Report 89:1-44 (1989); N.L. Poff., "A Hydrogeography of Unregulated Streams in the United States and an Streams in the United States and an Examination of Scale Dependence in Some Hydrological Descriptors," Freshwater Biology 36:71–91 (1996); W.K. Dodds, et al., "Life on the Edge: The Ecology of Great Plains Prairie Streams," Bioscience 54:205–216 (2004). Prairie streams typically represent a collection of spring-fed, perennial pools and reaches, embedded within larger, intermittently flowing segments. Id. at 4–55 (citing T.R. Labbe, and K.D. Fausch, "Dynamics of Intermittent Stream Habitat Regulate Persistence of a Threatened Fish at Multiple Scales," Ecological Applications 10:1774–1791 (2000)). These streams have significant chemical, physical, and biological connections to downstream waters, despite extensive alteration of historical prairie regions by agriculture, water impoundment, water withdrawals, and other human activities, and the challenges these alterations create for assessing connectivity. Id. Icting W.J. Matthews, and H.W. Robinson, "Influence of Drainage Connectivity, Drainage Area and Regional Species Richness on Fishes of the Interior Original Species Richness on Fishes of the Interior Highlands in Arkansas," American Midland Naturalist 139:1–19 (1998); W.K. Dodds, et al., "Life on the Edge. The Ecology of Great Plains Prairie Streams," Bioscience 54:205–216 (2004). The most notable connections are via flood propagation, contaminated sediment transport, nutrient retention, and the extensive transport and movement of fish species (including eggs and larvae) throughout these networks. Id. at 4–55 (citing H.F. Matthai. Floods of June 1985 in South Platte River Basin, Colorado, Water Supply Paper 1850–8 (Washington, DC: U.S. Geological Survey, 1989); A.J. Horowitz, et al., "The Effect of Mining on the Sediment trace Element Geochemistry of Cores from the Cheyenne River Arm of Lake Oahe, Sond Under Sciences 194:19–26 (1998); W.K. Dodds, et al., "Nitrogen Transport of Mine Tailings as Suspended Sediment in the Bielle Fourche River, West-central South Dakota, USA," International Association of Hydrologic Sciences 194:19–26 (1998); W.K. Dodds, et al., "Nitrogen Transport from Tailgrass Prairie Watersheds," Journal of Environmental Quality 25:973–981 (1996); W.K. Dodds, et al., "Nitrogen Transport from Tailgrass Prairie Watersheds," Journal of Environmental Quality 25:973–981 (1996); W.K. Dodds, et al., "Biffect of Mining on Intermittent Stream Senson, ed., Ecology on Fishes Indigenous to the Central and Southwestern Great Plains," in F.L. Knopf and F.B. Samson, ed., Ecology on Fishes Indigenous to the Central and Southwestern Great Plains, in F.L. Knopf and F.B. Samson, ed., Ecology on Fishes Indigenous to the C

risheries 36:371–383 (2011).
Southwestorn intermittent and ephemeral streams exert strong influences on the structure and function of downstream waters, and the case study (included in the Report) echoes many of the findings of the functions of intermittent and ephemeral tributaries generally, which are described above. The case study focuses on the heavily studied San Pedro River, located in southeast Arizona, in particular, as a representative example of the

hydrological behavior and the connectivity of rivers in the Southwest, but also examines evidence relevant to other Southwestern streams. The chemical, physical, and biological connections of Southwestern intermittent and ephemeral streams highlighted in the case study are summarized below. Flows from ephemeral streams are one of the major drivers of the dynamic hydrology of Southwest rivers (particularly of floods during momsons ossons. Id. at 4–60, 4–67 (citing DC Goodrich, et al., "Linearity of Basin Response as a Function of Scale in a Semiarid Watershed," Water Resources Research 33:2951–2985 (1997); F. Yuan, and 4-67 (citing D.C. Goodrich, et al., Linearity of Basin Response as a Function of Scale in a Semiarid Watershed." Water Resources Research 33:2951–2955 (1997); F. Yuan, and S. Miyamoto, "Characteristics of Oxygen-18 and Deuterium Composition in Waters from the Pecca River in American Southwest." Chemical Geology 255:220–230 (2008)). Downstream river fishes and invertebrates are adapted to the variable flow regimes that are influenced strongly by ephemeral tributary systems, which provide isolated pools as refuges for fish during dry periods. Id at 4–68 to 4–69 (citing K.R. John. "Survival of Fish in Intermittent Streams of the Chirichus Mountains, Arizona" Ecology 45:112–119 (1964); T.R. Labbe, and K.D. Fausch, "Dynamics of Intermittent Stream of the Chirichus Mountains, Arizona" Ecology 45:112–119 (1964); T.R. Labbe, and K.D. Fausch, "Dynamics of Intermittent Stream of the Chirichus Mountains, Arizona" Ecology 45:112–119 (1964); T.R. Labbe, and K.D. Fausch, "Dynamics of Intermittent Stream of the Chirichus Mountains, Arizona" Ecology 46:112–119 (1964); T.R. Labbe, and K.D. Fausch, "Dynamics of Intermittent Stream of the Chirichus Mountains, Arizona" Ecology 46:112–119 (1964); T.R. Labbe, and K.D. Fausch, "Dynamics of Intermittent Stream of the Mountains of the Chirichus Science 14:91–110 (2006); D.A. Lytle, et al., "Element of the Chirichus of Cale in Suntiness of the Royal Society—Series B 275:453–462 (2008). Society—Series B 275 nutrient export from ephemeral tributaries after storm flow events. *Id.* at 4–18, 4–66 (citing P.D. Brooks, and M.M. Lemon, Spatial Variability in Dissolved Organic Spatial variation in Dissolved Organic Matter and Inorganic Nitrogen Concentrations in a Semiarid Stream, San Pedro River, Arizona," Journal of Geophysical Research-Biogeosciences 112:G03S05 (2007)). Extensive downstream

river ripartian communities are supported by water, sediment and nutrients exported to the river from ephemeral tributaries; these riparian communities have a profound influence on the river attributes through shading, allochthonous foriginating from outside of the channel] inputs of organic matter, detritus, wood, and invertebrates to the river. Id. at 4–65 to 4–66 (citing S.V. Gregory, et al., "An Ecosystem Perspective of Riparian Zones: Focus on Links between Land and Water," Bioscience 41:540–551 (1991); R.J. Naiman, et al., Riparia: Ecology, Conservation, and Management of Streamside Communities (Burlington, MA: Elsevier, Inc., 2005); J.C. Stromberg, et al., "Effects of Stream Flow Intermittency on Riparian Vogetation of a Semiarid Region River (San Pedro River, Arizona)," Hiver Research and Applications 21:925–938 (2005), M. Baillie, et al., "Quantifying Water Sources to a Semiarid Riparian Ecosystem, San Pedro River, Arizona," Journal of Geophysical Research 11:2-G03502 (2007); National Research Council, Riparian Areas: Functions and Strategies for Management (Washington, DC: National Academy Press, 20021).

E. Tributary Lakes, Ponds, and Wetlands Significantly Affect the Chemical, Physical, or Biological Integrity of (a)(1) Through (a)(3) Waters

Waters

As discussed elsewhere in this preamble, riparian and floodplain wetlands have a significant nexus to downstream waters, and wetlands that are tributaries are a subset of such wetlands. The fact that a wetland tributary is in-stream often enhances its ability to filter pollutants and contaminants that would otherwise make it downstream; in-stream wetlands also attenuate floodwaters. Lakes and ponds serve many important functions that affect the chemical, physical, and biological conditions downstream. Lake tributaries can act as sinks, storing floodwaters, sediment, and nutrients, as these materials have the opportunity to settle out, at least temporarily, as water moves through the lake to downstream waters. See, e.g., R. W. Phillips, et al., "Connectivity and Runoff Dynamics in Heterogeneous Basins." Hydrological Processes 25(19), 3061–3075 (2011). The attenuation of floodwaters can also maintain stream flows downstream. Id. Lakes, as with other tributaries, can also act as sources, contributing flow, nutrient, sediment, and other materials downstream. Total Maximum Daily Loads (TMDLs) for nutrients have been established for many in-stream lakes across the country in recognition of the ability of lakes to transport nutrients downstream, contributing to downstream impairments. See, e.g. Maine Department uf Environmental Protection, Phosphorus Control Action Plan and Total Maximum Daily (Lang Lond Report, Maine DEPLW—0789 (Maine DEP, 2006); U.S. Environmental Protection Agency. "Section & Echo Park Lakes Can Mills." Los Angeles Area Lakes
TMDLs, Jonuary 2011 Hevised Draft (2011). Lakes can also serve as habital for species that then move downstream. For instance, brook trout that are stocked in headwater

lakes in Idaho and Montana are capable of invading most downstream habitat, including through very steep channel slopes and waterfalls. S.B. Adams, et al., "Geography of Invasion in Mountain Streams: Consequences of Headwater Lake Fish Introductions," Ecosystems (4): 296–307. These non-native species can then affect the biological integrity of downstream waters by impacting populations of native fish species, such as cuthroat trout, downstream. See, e.g., J.B. Dunham, et al., "Alien Invasions in Aquatic Ecosystems: Toward an Understanding of Brook Trout Invasions and Potential Impacts on Inland Cuthroat Trout in Western North America," Reviews in Fish Biology and Fisheries 12(4): 373–391 (2002). For example, non-native trout were introduced in headwater tributary lakes to the Little Kern River in the southern Sierra Nevada and dispersed downstream, causing the near-extinction of the native Little Kern golden trout. R.A. Knapp, and K.R. Matthews, "Effects on Nonnative Fishes on Wilderness Lake Ecosystems in the Sierra Nevada and Recommendations for Reducing Impacts." in O. N. Cole, et al., ed., Wilderness Science in a Time of Change Conference, Volume 5: Wilderness Ecosystems, Threats, and Management, Missoula, Montana, May 23–27, 1999, Proceedings RNRS-P-15-VOL-27, 1999, Proceedings RNRS-P-15-VOL-5 (Egden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2000), 312–317. These studies demonstrate the ability of organisms to travel from tributary lakes to downstream waters, which is not limited to just non-native species; many other species can also move

Forest Service, Rocky Mountain Research Station, 2000), 312–317. These studies demonstrate the ability of organisms to travel from tributary lakes to downstream waters, which is not limited to just tron-native species; many other species can also move downstream and back again.

One type of wetlands located in-stream are unidirectional wetlands that are connected to the river network through a channel (e.g., wetlands that serve as stream origins; a definition of "unidirectional wetlands" can be found in part I section 4.8 above). These tributary wetlands are generally exemplary of tributary wetlands as a whole, and because the Report focuses in part on these wetlands, they are discussed here in further detail. These are wetlands from which a stream channel originates. Report at 5–1 to 5–2. They are part of the stream network itself, and along with first- and second-order streams, form the headwaters of the river network. Such wetlands have a direct hydrologic connection to the tributary network via unidirectional flow from wetland to the headwater stream. Channel origin wetlands generally have important chemical, physical, and biological effects on [a](1) through (a)(2) waters, including hydrologic, water quality, and habitat functions, regardless if the outflow from the wetlands to the stream is perennial, intermittent, or ophemeral. Id. Like other wetlands, wetlands that serve as stream origins can transport channel-forming sediment and woody debris, transport stored organic matter, remove and transform pollutants and woody debris, transport stored organic matter, remove and transform pollutants and excess nutrients such as nitrogen and phosphorus, attenuate and store floodwaters, contribute to stream baseflow through groundwater recharge, and provide habitat for hereding fish, amphibians, reptiles, birds, and other aquatic and semi-aquatic species that move from the wetlands to the river network. Id. at 5–41.

Wetlands that serve as stream origins connect via perennial, intermittent, or ephemeral drainages to river notworks. Id. at 5–22 to 5–23 (citing M.C. Rains, et al., "The Role of Perched Aquifers in Hydrological Connectivity and Biogeochemical Processes in Vernal Pool Landscapes, Central Valley, California," Hydrological Processes 20:1157–1175 (2006); M.C. Rains, et al., "Geological Control of Physical and Chemical Hydrology in California vernal Pools," Wetlands 28:347–362 (2008); T.R. Morley, et al., "The Role of Headwater Wetlands in Altering Streamflow and Chemistry in a Maine, USA Catchment," Journal of the American Water Hesources Association 47:337–349 (2011)]. Regardless of the permanence of flow, such wetlands have an impact on downstream water. Id. at 5–1 to 5–2. Wetland seeps, for example, can form where groundwater discharges from breaks in slope. Id. at 5–2 (citing B.R. Hall, et al., "Environmental Influences on Plant Species Composition in Ground-water Seeps in the Catskill Mountains of New York," Wetlands 21:125–134 (2001); M.A. O'Driscoll, and D.R. Bewalle, "Seeps Regulate Stream Nitrate Concentration in a Forested Appalachian Catchment," Journal of Environmental Quality 39:240–341 (2010)]. They often have perennial connections to the stream, providing important sources of water downstream, particularly during summer baselow. Id. at 5–22 (citing T.R. Morley, et al., "The Role of Headwater Wetlands in Altering Streamlow and Chemistry in a Maine, USA Catchment," Journal of the American Water Resources Association 41:337–349 (2011). In Maine, for example, seeps were found to provide 40 to 80% of stream water during basellow periods. Id. In other cases, surface cunnections between themelon from the remained for the Provide All on 80% of the American Water Resources Association of the A

at 5-23.

The hydrologic connection of the wetland to the stream can affect streamflow by altering baseflow or storm flow through several mechanisms, including surface storage and groundwater recharge. Id. at 5-25. Studies at the larger scale have shown that wetlands, by storing water, reduce peak streamflows and, thus, downstream flooding, Id. (citing J. Incques, and D. L. Lorenz, Techniques for Estimating the Magnitude and Frequency of Floods of Ungauged Streams in Minnesola, Report 87-4170 (Washington, DC: U.S. Geological Survey, 1988); Vining, X.C., Simulation of Streamflow and Wetland Storage, Starkweather Coulee Subbosin, North

Dakoto, Water Years 1981–98, Water-Resources Investigations Report 02–4113 (Bismarck, ND: U.S. Geological Survey, 2002), 33 p.; P. McEachern, et al., "Landscape Control of Water Chemistry in Northern Boreal Streams of Alberta." Journal of Hydrology 323:303–324 (2006); R.A. Glesson, et al. Estimating Water Storage Capacity of Existing and Potentially Restorable Wetland Depressions in a Subbasin of the Red River of the North, U.S. Geological Survey, 2007, 36 p.). In some cases, however, where wetlands that serve as stream origins are already saturated prior to rainfall, they can convey stormwater quickly downstream and thus actually increase flood peaks. Id. at 227 (citing Bay R., "Smnoff from Small Peatland Watersheds." Journal of Hydrology 9:30–102 (1969); A. Bullock, and M. Acreman, "The Role of Wetlands in the Hydrological Cycle, "Hydrology and Earth System Sciences 7:358–389 (2003)). This is because the wetland soil, if completely saturated, cannot store any additional water, making the wetland enable to store floodwater.

to store Hoodwater.
Wetlands that serve as stream origins have important chemical connections to downstream waters that affect the integrity of those waters. These wetlands contain diverse microbial populations that perform various chemical transformations, acting as source of compounds and influencing the water quality downstream. Id. at 5-28 (citting K.R. Reddy, and R.D. Delaune. Biogeochemistry of Wetlands: Science and Applications, 774 p. (2008). Sulfate-reducing bacteria found in some headwater wetlands produce methylated mercury, which is then tansported downstream by surface flows. Id. (citting O.K. Linqvist, et al., "Mercury in the Swedish Environment—Recent Research on Causes, Consequences, and Remedial Measures," Water Air and Soil Pollution 55:xi-xiii (1991); G. Mietle, and R. Ingram, "The Role of Humic Substances in the Mobilization of Mercury from Watershed, "Water Air and Soil Pollution 55:xi-xiii (1991); G. Mietle, and R. Ingram, "The Role of Humic Substances in the Mobilization of Mercury from Watershed, "Water Air and Soil Pollution 36:xi49-337 (1991); C.T. Driscoll, et al., "The Role of Dissolved Organic Carbon in the Chemistry and Bioavailability of Mercury in Remote Adirondack Lakes," Water Air and Soil Pollution 30:xi49-30-30 (1995); E.A. Branfreun, et al., "in situ Sulphate Stimulation of Mercury Methyladon in a Boreal Peatland: Toward a Link Between Acid Rain and Methylmercury Contamination in Remote Environments," Global Biogeochemical Cycles 13:743-750 (1999)]. Wetlands, including those that serve as stream origins, are the principle sources of dissolved organic carbon (DCC) in forests to downstream waters. Id. (itting P.J. Mullolland, and E.J. Kuenzler, "Organic Carbon Export from Upland and Forested Wetland Watersheds," Limnology and Oceanography 24:960-966 (1979), N.R. Urban, et al., "Export of Fisheries and Aquotic Sciences 47:1537-1544 (1990); J.-F. Koprivnjak and T.R. Moore, "Controls on Dissolved Organic Carbon Carbon Carbon Concertations in Streams of Southern Quebac," Canadian

"Sources, Sinks, and Fluxes of Dissolved Organic Carbon in Subarctic Fen Catchments." Arctic and Alpine Research 24:204–210 (1992); P. Kortelainen, "Content of Total Organic Carbon in Finnish Lakes and Its Relationship to Catchment Characteristics," Canadian Journal of Fisheries and Aquatic Sciences 50:1477–1483 (1992); T. A. Clair et al. "Exposts of Carbon (1993); T.A. Clair, et al., "Exports of Carbon and Nitrogen from River Basins in Canada's Atlantic Provinces," Glabal Biogeochemical Cycles 8:441–450 (1994); D. Hope, et al., "A Cycles 8:441—450 (1994); D. Hopp, et al., "A Review of the Export of Carbon in River Water: Fluxes and Processes," Environmental Pollution 84:301—324 (1994); P.J. Dillon and LA. Molot, "Effects of Landscape Form on Export of Dissolved Organic Carbon, Iron, and Phosphorus from Forested Stream Catchments," Water Resources Research 33:2591—2500 (1997): S. E. Gergel, et al., "Dissolved Organic Carbon as an Indicator of the Scale of Watershed Influence on Lakes and Rivers," Ecological Applications 9:1377—1390 (1999)). Export of DOC to downstream waters supports primary productivity, effects waters supports primary productivity, effects pH and buffering capacity, and regulates exposure to UV–B radiation. Id. at 5–29 (citing K.N. Eshelman and H.F. Hemond, The Role of Organic Acids in the Acid-base Status of Surface Waters at Bickford Watershed, Massachusetts," Water Resources

Status of Surface Waters at Bickford Watershed, Massachusetts," Water Resources Research 21:1503-1510 (1985); L.O. Hedin, et al., "Patterns of Nutrient Loss from Unpolluted Old-growth Temperate Forests: Evaluation of Biogeochemical Theory," Ecology 76:493-509 (1995); D.W. Schindler and P.J. Curtis, "The Role of DOC in Protecting Freshwaters Subjected to Climate Warming and Acidification from UV Exposure," Biogeochemistry 36:1-a (1997); L.C. Nuff and G.P. Asner, "Dissolved Organic Carbon in Terrestrial Ecosystems: Synthesis and a Model," Ecosystems 4:29-44 (2001)]. Wetlands also act as sinks and transformers or pollutants, including excess nutrients, through such processes as denitrification, ammonia volstilization, microbial and plant biomass assimilation, sedimentation, sorption and precipitation, biological uptake, and long-term storage of plant detritus. Id. (citing K.C. Ewel and H.T. Gotum, Cypress Swamps (Sainesville, F.L. University Presses of Florida, 1904); S.J. Nixon and V.J. Lee, Wetlands and Water Quality: A Regional Review of Recent Research in the United States on the Role of Freshwoter and Saltwater Wetlands as Sources, Sinks, and Transformers of Nitrogen, Phosphorus, and Vorious Heavy Metals, Technical Report Y-86-2 (Vicksburg, MS. U.S. Army Corps of Engineers, Waterways Experiment Station, 1986); C. Johnston, "Sediment and Nutrient Retention by Freshwater Wetlands: Effects on Surface Water Quality," Critical Reviews in Environmental Control 21:491–565 (1991); K.R. Reddy, et al., "Phosphorus Retention in Environmental Control 21:491–565 (1991); K.R. Reddy, et al., "Phosphorus Retention in Environmental Control 21:491–565 (1991); K.R. Reddy, et al., "Phosphorus Retention in Environmental Control 21:491–565 (1991); K.R. Reddy, et al., "Phosphorus Retention in Environmental Control 21:491–565 (1991); K.R. Reddy, et al., "Phosphorus Retention in Environmental Control 21:491–565 (1991); K.R. Reddy, et al., "Phosphorus Retention in Environmental Control 21:491–565 (1991); K.R. Reddy, et al., "Phosphoru Environmental Control 21:491-565 (1991); K.R. Reddy, et al., "Phosphorus Retention in Streams and Wetlands: A Review." Critical Reviews in Environmental Science and Technology 29:83-146 (1999); W.J. Mitsch and J.G. Gosselink, Wetlands, 4th edition (Hoboken, Nj. John Wiley 8 Sons Inc., 2007); K.R. Reddy, and K.D. DeLaune. Riogeochemistry of Wetlands: Science and Applications (Boca Raton, FL: CRC Press, 2008); R.H. Kadlec and S.D. Wallace. Treatment Wetlands, 2nd edition (Boca

Raton, FL: CRC Press, 2009)). Specifically, Raton, FL: CRC Press, 2009)). Specifically, wetlands reduce phosphorus, nitrate, and ammonium by large percentages. Id. at 5–30 (citing F.E. Dierberg and P.L. Brezonik. "Nitrogen and Phosphorus Mass Balances in a Cypress Dome Receiving Wastewater," in K.C. Ewel and H.T. Odum, ed., Cypress Swamps (Gainesville, FL: University Presses of Florida, 1994), pp. 112–118: El. Dunne, et al., "Phosphorus Release and Retention by Soils of Natural Isolated Wetlands." Soils of Natural Isolated Wetlands,"
International Journal of Environment and
Pollution 28:496–516 (2006); T.E. Jordan, et al., "Comparing Functional Assessments of Wetlands to Measurements of Soil
Characteristics and Nitrogen Processing,"
Wetlands 27:479–499 (2007); These processes are important for protecting downstream waters from pollutants from agricultural runoff. Wetland microbial processes reduce other pollutants, such as pesticides, hydrocarbons, heavy metals, and chlorinated solvents. Id. (citing R.R. Brooks, et al., "Cobal and Nickel Uptake by the Nyssuceee," Taxon 26:197–201 (1977); C.M. Kao, et al., "Non-point Source Pesticide Removal by a Mountainous Wetland," Water

st al., "Clobat and Nickel pipets of the Nyssaceae," Taxon 26:197–201 (1977); C.M. Kao, et al., "Non-point Source Pesticide Removal by a Mountainous Wetland." Water Science and Technology 46:199–206 (2002); P.I. Boon, "Biogeochemistry and Bacterial Ecology of Hydrologically Dynamic Wetlands," in D. P. Batzer and R. R. Sharitz, ed., Ecology of Freshwater and Estuarine Wetlands (Berkeley, CA: University of California Press, 2006), pp. 115–1765.

Tributary wetlands have important biological connections downstream that impact the integrity of (a)(1) through (a)(3) waters. Emergent and aquatic vegetation found in wetlands disperse by water, wind, and hitchkliking on migratory animals from tributary wetlands downstream. Id. at 5–31 (citing M.B. Sooos and G.W. Heil, "Reduced Colonization Capacity in Fragmented Copulations of Wind-Dispersed Grassland Forbs," Journal of Ecology 90:1033–1043 (2002); M.B. Sooos, "Wind Dispersal in Freshwater Wetlands: Knowledge for Conservation and Restoration," Applied Vegetation Science 9:271–278 (2006); C. Nilsson, et al., "The Role of Hydrochory in Structuring Riparian and Wetland Vegetation," Biological Reviews 85:837–88 (2010). Similarly, fish move between the river network and wetlands during times of surface water connections, and tributary wetlands by definition are connected on the surface to downstream waters. I. at 5–32 (citing J.W. Snodgrass, et al., "Factors affecting the occurrence and structure of fish assemblages in isolated wetlands of the sassemblages in Isolated wetlands of the same sas (citing). W. Snodgrass, et al., "Factors affecting the occurrence and structure of fish assemblages in isolated wetlands of the upper coestal plain, USA," Canadian Journal of Fisheries and Aquatic Sciences 53:443–454 (1996); K.D. Zimmer, et al., "Effects of fathead minnow colonization and removal on a prairie wetland ecosystem; "Ecosystems 4:346–357 (2001); M.J. Baber, et al., "Controls on fish distribution and abundance in temporary wetlands," Canadian Journal of Fisheries and Aquotic Sciences 59:1441–1450 (2002); M.A. Hanson, et al., "Biotic interactions as determinants of ecosystem structure in prairie wetlands; An example interactions as determinants of ecosystem structure in prairie wetlands: An example using fish," Wetlands 25:7.84–775 (2005); B.R. Herwig, et al., "Factors influencing fish distributions in shallow lakes in prairie and prairie-parkland regions of Minnesota, USA,"

Wetlands 30:609-619 (2010)). Mammals that weedates 30009-31 (2010). Manihals usia can disperse overland can also contribute to connectivity. Id. [citing C.E. Shanks, and G.C. Arthur, "Muskat movements and population dynamics in Missouri farm ponds and streams," Journal of Wildlife Management 16:139-148 (1952); W.R. Clark, "Ecology of muskrats in prairie wetlands," in H.R. Murkin, et al., ed., Prairie Welland Ecology: The Contribution of the Murch Ecology. The Contribution of the Marsh Ecology Research Program, (Ames, IA: Iowa State University Press, 2000), pp. 287–313). Insects also hitchhike on birds and mammals from also hitchhike on birds and mammals from tributary wetlands to the stream network, which can then serve as a food source for downstream waters. Id. (citing). Figuerola, and A.J. Green, "Dispersal of Aquatic Organisms by Waterbirds: A Review of Past Research and Priorities for Future Studies." Freshwater Riology 47:483–494 (2002); I. Figuerola, et al., "Invertebrate Eggs Can Fly: Evidence of Waterfowl-Mediated Gene Flow in Aquatic Invertebrates;" American Naturalist 165:274–280 (2003). Insects that are flight-capable also use both stream and tributary wetlands, moving from the stream tributery wetlands, moving from the stream to the wetland to find suitable habitat for to the wieland to find suitable habitat for overwintering, refuge from adverse conditions, hunting, foraging, or breeding. Id. at 5–33 (citing D.D. Williams, "Environmental Constraints in Temporary Fresh Waters and Their Consequences for the Insect Fauna," Journal of the North American Benthological Society 15:634–650 (1998); A.J. Bohonak and D.G. Jenkins, "Ecological and Evolutionary Significance of Dispersal by Freshwater Invertebrates," Ecology Letters 6:783–798 (2003). Amphibians and reptiles, including frogs, toads, and newts, also move between streams or rivers and tributary including frogs, toads, and newts, also move between streams or rivers and tributary wetlands to satisfy part of their life history requirements, feed on aquatic insects, and avoid predators. Id. (etting V.S. Lamoureux and D.M. Madison, "Overwintering Habitats of Radio-Implanted Green Frogs, Rama clamitans," Journal of Herpetology 33:430– 435 (1999). Ed., Babbitt, et al., "Patterns of Larval Amphibian Distribution Along a World of Coology-Revue Canadienne De Zoologie 81:1539–1552 (2003); S.B. Adams, et al., "Instream Movements by Boreal Toads et al., "Instream Movements by Boreal Toads Journal of Zoology-Revue Canadienne De Zoologie 81:1539–1552 (2003); S.B. Adams, et al., "Instream Movements by Boreal Toads (Bufo boreas boweas)," Herpetological Review 36:27–33 (2005); D.M. Green, "Bufo americonus, American Toad," In M. Lannoo, ed., Amphibian Declines: The Conservation Status of United States Species (Borkeley, CA: University of California Press, 2005), pp. 692–704; T.W. Hunsinger and M.J. Lannoo, "Notophthalmus viridescens, Eastern Newt," in M. Lannoo, ed., Amphibian Declines: The Conservation Status of United States Species (Berkeley, CA: University of California Press, 2005), pp. 912–914; J.W. Petrahas, and C.T. Holbrook, "Wetland Restoration for Amphibians: Should Local Sites Be Designed to Support Metapopulations or Patchy Populations?," Restoration Ecology 14:404–411 (2006); A.L. Subalusky, et al. "Ontogenetic Niche Shifts in the American Alligator Establish Functional Connectivity between Aquatic Systems," Biological Conservation 142:1507–1514 (2009)]. Lake, pond, and wetland tributaries, including wetlands that serve as stream origins, have important chemical, physical,

and biological connections downstream that affect (a)(1) through (a)(3) waters. Their direct hydrologic connection to the stream network facilitates the significant impact they have downstream. This impact on downstream waters occurs regardless of whether their flow is perennial, intermittent, or ophemeral. Thus, lake, pond, and wetland tributaries sorve the same important functions as stream tributaries, which in turn greatly impact downstream (a)(1) through (a)(3) waters, particularly when their functional contributions to the chemical, physical, and biological conditions of downstream waters are combined at a watershed scale.

F. Man-Made or Man-Altered Tributaries Significantly Affect the Physical, Chemical and Biological Integrity of (a)(1) Through (a)(3) Waters

(a)(3) Waters

The agencies' proposed rule clarifies that man-made and man-altered tributaries as defined in the proposed rule are "waters of the United States" because the significant nexus between a tributary and a traditional navigable water or interstate water is not broken where the tributary flows through a culvert or other structure. Note that the proposal excludes certain ditches from CWA jurisdiction by rule in paragraphs (b)(3) and (b)(4). The scientific literature indicates that structures that convey water do not affect the connectivity between streams and downstream rivers. Indeed, because such structures can reduce water losses from structures can reduce water losses from evapotranspiration and seepage, such structures likely enhance the extent of connectivity by more completely conveying

evapotranspiration and seepage, such structures likely enhance the extent of connectivity by more completely conveying the water downstream.

Man-made and man-altered tributaries include impoundments, ditches, canals, channelized streams, piped, and the like. Ditches and canals are wide-spread across the United States. Ditches may have been streams that were channelized. They are purposely constructed to allow the hydrologic flow of the trihutary to continue downstream. Man-made and man-altered tributaries, despite human manipulation, usually continue to have chemical, physical, or biological connections downstream and to serve important functions downstream considered ributaries, despite human manipulation, usually continue to have chemical, physical, or biological connections downstream. Because these tributaries are hydrologically connected to diwnstream waters, that are supported by this hydrologic connections where they did not previously exist, such as canals that connect two rivers in different watersheds.

Tributary ditches and other man-made or man-altered waters that meet the definition of 'tributary' have a significant nexus to (a)(1) through (a)(3) waters due to their impact, either individually or with other tributaries, on the chemical, physical, or biological integrity of those downstream waters. Tributary ditches and the like, as with other tributaries, have chemical, physical, and biological connections with downstream waters that substantially impact those waters. Tributary ditches and canals can have perennial, internient, or ephemeral flow. As described above, tributaries and all flow rectines have a

can have perennial, intermittent, or ephemeral flow. As described above, tributaries of all flow regimes have a significant nexus to downstream (a)(1)

through (a)(3) waters. Due to the often through (a)(3) waters. Due to the often straightened and channelized nature of ditches, these tributaries quickly move water downstream to (a)(1) through (a)(3) waters. Ditches and canals, like other tributaries, export sediment, nutrients, and other materials downstream. Due to their often channelized nature, ditches are very effective at transporting water and these materials, including nitrogen downstream. See a at dialiporting water and these materials, including nitrogen, downstream. See, e.g., J.P. Schmidt, et al., "Nitrogen Export from Coastal Plain Field Ditches," Journal of Soil and Water Conservation 52(4):235–243; J.S. Strock, et al., "Managing Natural Processes in Drainage Ditches for Nonpoint Source Nitrogen Control." Journal of Soil and Water Conservation 52(4): 188–196 (2007). Ditches provide habitat for fish and other aquatic organisms. See, e.g., P.C. Smiley, Jr., et al., "Contribution of Habitat and Water Quality "Contribution of Habitat and Water Quality to the Integrity of Fish Communities in Agricultural Drainage Ditches," Journal of Soil and Woter Conservation 53(6):218A—219A (2008). Fish and other aquatic organisms utilize canals and ditches to move to different habitats, sometimes over long distances. F.J. Rahel. "Biogeographic Barriers, Connectivity and Homogenization of Freshwater Faunas: It's a Small World after All," Freshwater Biology 52(4): 696–710 (2007).

These significant connections and Inese significant connections and functions continue seven where the tributary has a natural or man-made break in its channel, bed and banks, or OHWM. The presence of a channel, bed and banks, and OHWM upstream or downstream of the break is an indication that connections still exist. The significant nexus between a tributary and a downstream water is not broken where the tributary flows underground for a portion of its length, such as in karst topography. The hydrologic connection still exists, meaning that the chemical and biological connections that are mediated by the hydrologic connection shat are mediated by the hydrologic connection also still exist. Similarly, flow through boulder fields does not sever the hydrologic connection. When a tributary flows through a wetland enroute to another or the same tributary, the significant nexus still exists even though the bed and banks or ordinary high waternark is broken for the functions continue even where the tributary still exists even though the bed and banks or ordinary high waternark is broken for the length of the wetland. As discussed in Part II, section 1.G. of this appendix, in-stream wetlands provide numerous benefits downstream, and the presence of the wetland in stream can provide additional water quality benefits to the receiving waters. Flow in flat areas with very low gradients may temporarily break the tributary's bed and banks or OHWM, but these systems continue to have a significant nexus downstream. These are just illustrative examples of break in ordinary high waternark; there are several other types, all of which do not break the significant nexus between a tributary and the downstream (a)(1) through (a)(3) water.

There are more than 80,000 dams in the United States, with over 6,000 exceeding 15

There are more than 80,000 dams in the United States, with over 6,000 exceeding 15 meters in height. Report at 3–48 (citing U.S. Army Corps of Engineers, National Inventory of Jams (2009)]. The purpose of a dam is to impound (store) water for any of several reasons (e.g. flood control, human water supply, irrigation, livestock water supply, energy generation, containment of mine

tailings, recreation or pollution control]. See http://www.damsafety.org/layout/ subsection.aspx?groupid=14Econtentid=47. Many dams fulfil a combination of the above functions. Because the purpose of a dam is to retain water effectively and safely, the water retention ability of a dam is of prime importance. Water may pass from the reservoir to the downstream side of a dam by: passing through the main spillway or outlet works; passing over an suxlilary spillway; overtopping the dam; seepage through the abutments; and seepage under the dam. Id. All water retention structures are subject to seepage through their foundations and abutments. Department of the Army, U.S. Army Corps of Engineers, Engineering and Design—Design, Construction and Maintenance of Relief Wells, EM 1110–2–1914 (Washington, DC. Department of the Army, 1992), p. 1–1. Thus waters behind a dam still maintain a hydrologic connection to downstream waters.

Numerous studies have shown that dams impede biotic movements, reducing biological connectivity between upstream and downstream locations. Report at 3–48 (citing E.A. Greathouse, et al., "Indirect tailings, recreation or pollution control). See

Numerous studies have shown that dams impede biotic movements, reducing biological connectivity between upstream and downstream locations. Report at 3–48 (citing E.A. Greathouse, et al., "Indirect Upstream Effects Of Dams: Consequences Of Migratory Consumer Extirpation in Puerto Rico," Ecological Applications 16: 339–352 (2006): C.J. Hall, et al., "The Historic Influence of Dams on Diadromous Fish Habitat with a Focus on River Herring and Hydrologic Longitudinal Connectivity," Landscape Ecology 28: 95–107(2011). Dams alter but typically do not sever the hydrologic connection between upstream and downstream waters. (See Part II, section 2.C of this appendix). Upstream of large dams riparian areas are permanently inundated, increasing hydrological connectivity. Downstream, peak flows and the potential for overbank lateral flow are reduced; however, dams may also reduce flow variability downstream, resulting in higher minimum flows and reduced flow intermittency and thereby increasing hydrological (and potentially biological) connectivity. Id. (citing N.L. Poft, et al., "Homogenization of Regional River Dynamics by Dams and Clobal Biodiversity Implications." Proceedings of the National Academy of Sciences of the United States of America 104: 5732–5737 (2007)]. Where an impoundment does stop flow, it also has significant effects on downstream segments have a reduced quantity of waters, less sediment, and reduced species biological connectivity with upstream refugia.

Because dams reduce the emount of sediment delivered downstream, waters. For example, the one waters for internative Riverse.

reservoirs bohind dams are actually very effective at retaining sediment, which can have significant effects in downstream waters. For instance, the Mississippi River's natural sediment load has been reduced by an estimated 50% through dam construction in the Mississippi Basin. Mp. Blum, and H. H. Roberts, "Drowning of the Mississippi Delta Due to Insufficient Sediment Supply and Global Sea-Level Rise," Nature Geoscience 2(7): 488–491 (2009).

Man-made or man-altered tributaries

Man-made or man-altered tributaries continue to have chemical, physical, and

biological connections that significantly biological connections that significantly affect the integrity of [a](1) through [a](3) waters. Though the man-made or man-altered nature of such tributaries can change the nature of the connections, it does not eliminate them. Thus, man-mada and manaltered tributaries continue to serve the same important functions as "natural" tributaries, which in turn greatly impact downstream [a](1) through [a](3) waters, particularly when their functional contributions to the chemical, physical, and biological conditions of downstream waters are combined at a watershed scale.

ii. Adiacent Waters

Adjacent waters, including adjacent wetlands, alone or in combination with other adjacent waters in the watershed, have a substantial impact on the chemical, physical, or biological integrity of traditional navigable waters, interstate waters, and the territorial seas. In addition, waters adjacent to waters, interstate waters, and the territorial seas. In addition, waters adjacent to tributaries serve many important functions that directly influence the integrity of downstream waters including traditional navigable waters, interstate waters, and the territorial seas. Adjacent waters store water, which can reduce flooding of downstream waters, and the loss of adjacent waters has been shown, in some circumstances, to increase downstream flooding. Adjacent waters maintain water quality and quantity, trap sediments, store and modify potential pollutants, and provide habitat for plants and animals, thereby sustaining the biological productivity of downstream rivers, lakes and estuaries, which may be traditional navigable waters, interstate waters, or the territorial seas. The scientific literature and Report supports these conclusions, as discussed in greater detail below.

1. Adjacent Waters Under This Proposed

1. Adjacent Waters Under This Propo Rule Have a Significant Nexus to (a)(1) Through (a)(3) Waters

The discussion below summarizes the key points made in the Report and explains the technical basis for supporting a conclusion that adjacant waters, as defined in this proposed rule, have a significant nexus to waters identified in paragraphs (a)(1) through (a)(3) of the proposed rule. The geographic position of an "adjacent" water relative to the stream is indicative of the relationship they share, with many of its defining characteristics resulting from the movement of materials and energy between the two. A review and analysis of the scientific literature supports the conclusion that individually or in combination with similarly situated waters in a watershed, adjacent waters have a significant effect on the chemical, physical, and biological integrity of downstream traditionally navigable waters, interstate waters, and the territorial seas.

a. Riparian and Floodplain Waters The discussion below summarizes the key

a. Riparian and Floodplain Waters Significantly Affect the Chemical, Physical, or Biological Integrity of (a)(1) Through (a)(3) Waters

Waters, including wetlands, often lie within landscape settings that have bidirectional hydrological exchange with (a)(1) through (a)(5) waters (e.g., wetlands and open waters in riparian areas and flood plains). Such waters play an integral role in

the chemical, physical, and hiological integrity of the waters to which they are adjacent. Riparian areas and floodplains often describe the same geographic region. Report at 3-4. Therefore, the discussion of the functions of waters, including wetlands, in riparian areas will typically apply to floodplains unless otherwise noted. Where connections arise specifically from the act of inundation of adjacent land during times of higher-than-normal water, the term "floodplain" is solely used to describe the area.

Riparian areas are transition zones between Riparian areas are transition zones between terrestrial and aquatic ecosystems that are distinguished by gradients in biophysical conditions, ecological processes, and biota. Id., Report at 31. Waters including wetlands in riparian areas significantly influence oxchanges of energy and matter with aquatic ecosystems. See, e.g., id. (citing National Research Council, Riparian Areas: Functions and Strotegies for Management (Washington, DC: The National Academies Press, 2002). Floodplains are low gradient areas bordering stream or river channels, lakes, and impoundments that were formed by sediment deposition from those waters under present

bordering stream or river channels. lakes, and impoundments that were formed by sediment deposition from those waters under present climatic conditions. These natural geomorphic features are inundated during moderate to high water events. Id. (citting L.B. Leopold, A View of the River (Cambridge, MA: Harvard University Press, 1994); W.R. Osterkamp, Annotated Definitions of Selected Geomorphic Terms and Related Terms of Hydrology, Sedimentology, Soil Science and Ecology, USGS Open File Report 2008—1217 (Reston, VA: U.S. Department of the Interior, U.S. Geological Survey, 2008). By "present climactic conditions." the agencies mean that currently or recently active floodplains will be used to belp determine whether wetlands or waters are adjacent to "waters of the United States." The proprised definition is limited to the present climactic conditions in order to best represent the floodplain that has an active and significant relationship with the stream or river channel. Historic fluodplains that played a role in the river or lake dynamics in the nast only will not be used to determine and significant relationship with the stream or river channel. Historic fluodplains that played a role in the river or lake dynamics in the past only will not be used to determine whether a water is adjacent. Floodplains formed under different climactic conditions that no longer connect to the stream channel that formed them are terraces. Id. It should be noted that "floodplains" as defined in today's proposed rule does not necessarily equate to the 100-year floodplain as defined by the Federal Emergency Management Agency (EMA). However, the FEMA defined floodplain may often coincide with the current definition proposed in this rule. Fluod insurance rate maps are based on the probability of a flood event occurring (e.g., 100-year floods have a 1% probability of coccurring in a given year of 500 year-floods have a 0.2% probability of occurring in a given year of 500 year-floods have a not based on an ecological definition of the term "floodslain" and therefore may not particular year), rhoot insurance rate maps are not based on an ecological definition of the term "floodplain," and therefore may not be appropriate for identifying adjacent wetlands and waters for the purposes of CWA jurisdiction. Flood insurance rate maps are developed by applying models and other information to identify areas that would be inundated by a flood event of a particular probability of source over the control of probability of recurring

Riparian waters take many different forms. Some may be wetlands, which are defined in paragraph (c)(6) of the proposed rule. Others may be ponds, oxbow lakes, or other types of open waters. Oxbow lakes, commonly found in floodplains, are formed when river meanders are cutoff from the rest of the river. Id. at 5–42.

b. Riparian and Floodplain Waters Significantly Affect the Physical Integrity of (a)(1) Through (a)(3) Waters

b. Riparian and Floodplain Waters Significantly Affect the Physical Integrity of (a)(1) Through (a)(3) Waters
Scientific research shows waters and wetlands in riparian areas and floodplains to be important in protecting the physical integrity of aquatic resources. Because riparian and floodplain waters exhibit bidirectional exchange of water with the waters to which they are adjacent, they play an important role in determining the volume and duration of stream flow. Riparian and floodplain waters shahave an essential role in regulating and stabilizing sediment transport to downstream waters. These characteristics are fundamental to the physical integrity of streams as well as downstream traditional navigable waters, interstate waters, and the territorial esses. Riparian and floodplain wetlands are important for the reduction or delay of floods. Id. at 3–22 (citing A. Bullock and M. Acreman, "The Role of Wetlands in the Hydrological Cycle," Hydrology and Earth System Sciences 7:358–369 (2003)). Waters in riparian areas control flooding during times of high precipitation or snowmelt by capturing water from overbank flow and storing excess stream water. Id. at 5–6. One study found that peak flows in the Cache River in Arkansas decreased by 10–20% mainly because of floodplain water storage. Id. (citing R. Wattons 14, 20% and 140% of the flow of small streams. Id. at 5–6 to 5–7 (clting D.E. Gamble, et al., An Ecological ond Functional Assessment of Urban Wetlands in Central Ohio. Columbus, Ohio, EPA Technical Report WET/2007–38, (Coltumbus, Ohio, EPA Techni

streams.

Some adjacent waters are bordering or contiguous with (a)(1) through (a)(5) waters. Because of their close physical proximity to nearby water bodies, they readily exchange their waters through the saturated soils surrounding the stream or through surface exchange. This commingling of waters allows bordering or contiguous waters to both provide chemically transformed waters to

provide chemically transformed waters to streams and to absorb excess stream flow. Flow between neighboring waters and streams is more longitudinal (downslope) at headwaters and more lateral further downstream. Id. at 5–38, Table 5–3. These connections in part determine stream flow volume and duration. Waters, including wetlands, in riparian areas connect to neighboring water bodies through various surface and subsurface connections. See, e.g., id. at 3–4 (citing National Research Council,

Riparian Areas: Functions and Strategies for Management (Washington, DC: National Academy Press. 2002). Floodplains, similarly, are closely associated with the groundwater found beneath and beside river channels (which are considered shallow aquifers) and waters in floodplains readily exchange water with such aquifers. Id. at 3–14 (citing 1,4. Stanford and J. V. Ward. "An Ecosystem Perspective of Alluvial Rivers: Connectivity and the Hyporheic Cornico." Journal of the North American Benthological Society 12:48–86 (1993). C. Amoros and G. Bornette, "Connectivity and Biocompexity in Waterbodies of Riverine Floodplains." Freshwater Biology 47:61–776 (2002); G.C. Poole, et al., "Multiscale Genmorphic Drivers of Groundwater Flow Paths: Subsurface Hydrologic Dynamics and Hyporheic Diversity," Journal of the North American Benthological Society 25:288–303 (2006)]. Riparian and floodplain wetlands are frequently contiguous with streams and other water bodies and significantly influence the hydrology of such water bodies. Id. at 5–8 (citing R.). Naiman, et al., Hiparia: Ecology, Coaservotion, and Management of Streamside Communities (Burlington, MA: Elsevier Academic Press, 2005); P. Vidon, et al., "Hot Spots and Hot Moments in Riparian Zones: Potential for Improved Water Quality Management," Journal of the American Water Resources Association 46:278–298 (2010). Floodplain wetlands are important for the reduction or delay uf floods. Id. (citing A. Bullock and M. Acreman, "The Role (1984) (2010). Floodplain wetlands are important for the reduction or delay uf floods. Id. (citing A. Bullock and M. Acreman, "The Role (1984) and Earth System Sciences 7:358–389 (2003). Oxbow lakes also retain flood waters. Id. at 5–44. Adjacent ponds generally function similarly to oxbew lakes.

Waters in riparian areas filter sediment from oxbewahak flow as the river or stream floods. Id. at 5–7. For example. riparian areas were observed to collect 80–90% of the sediment from farmlands in a study in North Carolina. Id. (citing A. Cooper, et

sediment deposition and sediment transport is important to maintain the physical shape and structure of stream channels. Significant changes to upstream channels can affect the chemical, physical, and biological condition of downstream (a)[1] through (a)[3] waters. The physical effects of excess sediment can impair chemical and ecological integrity in a wariety of ways. Id. at 59 - (citing P. J. Wood and P.D. Armitage, "Biological Effects of Fine Sediment in the Lotic Environment." Environmental Management 21:203–217 (1997)]. Excess sediment is linked to increasing contaminant and nutrient concentrations, all of which tributaries can transmit downstream, affecting water quality. transmit downstream, affecting water quality Excess sediment may block and absorb

sunlight transmission through the water column, inhibiting plant photosynthesis and warming the water in the stream. Sediment may fill the interstitial spaces between rocks in a streambed, which many fish and aquatic species use for mating, reproduction, and shelter from predators. This kind of physical degradation of tributary streambeds results in less suitable habitat available for animals and fish that move between upstream and downstream waters. Riparian waters that retain sediments thus protect downstream waters from the effects of excess sediment. Oxbow lakes play similar roles in the floodplain as they are an integral part of alluvial floodplains of meandering rivers, Id. at 5–42 (citing K.O. Winemiller, et al., "Fish Assemblage Structure in Relation to Environmental Variation among Brazos River Oxbow Lakes." Transactions of the American Pisheries Society 129:451–468 (2000). K. Glinska-Lewczuk. "Water Quality Dynamics of Oxbow Lakes in Young Glacial Landscape of NE Poland in Relation to Their Hydrological Connectivity." Ecological Engineering 35:25–37 (2009). They connect of Oxfow Lakes in Young Giacial Landscape of NP Poland in Relation to Their Hydrological Connectivity." Ecological Engineering 35:28–37 (2009)]. They connect to rivers by periodic overland flow, typically from the river during flooding events, and bidirectional shallow subsurface flow through fine river soils foldirectional means flow from river to lake and lake to river). Id. at 5–48 to 5–44. Oxbow lakes generally have an important influence on the condition and function of rivers. Id. at 5–48 to 5–49. That influence can vary with the distance from the river and the age of the oxbow, reflecting the frequency and nature of the exchange of materials that takes place between the two water bodies.

Because adjacent waters support riparian vegetation, they affect the capacity of riparian vegetation to influence stream flow, morphology, and babital provided in the nearby water body. Vegetation in riparian waters influences the amount of water in the stream by capturing and transpiring stream flow and intercepting eroundwater and

stream by capturing and transpiring stream flow and intercepting groundwater and overland flow. Id. at 3-22, 5-7 (citing P. Meyhoom, "Three Observations on Streamflow Depletion by Phreatophytes," Meyhoom, "Three Observations on Streamflow Depletion by Phreatophytes," Journal of Hydrology 2:248–261 (1964). Riparian vegetation in adjacent waters also reduces stream bank erosion, serving to maintain the physical integrity of the channel. See, e.g., id. at 5-6 (citing C.E. Beeson and P. F. Doyle, "Comparison of Bank Erusion at Vegetated and Non-Vegetated Channel Bends," Journal of the American Water Resources Association 31:983–990 (1995)], in addition, inputs of woody debris from aquatic vegetation into waters make important contributions to the channel's geomorphology and the stream's aquatic habitat value. Id. (citing N.H. Anderson and J. R. Sedell, "Detritus Processing by Macroinvertebrates in Stream Ecosystems," Annual Review of Entomology 24:315–377 (1979); M.E. Harmon, et al., "Ecology of Coarse Woody Debris in Temperature Ecosystems," Advances in Ecological Research 15:133–302 (1966); F. Nakamura and F. J. Swanson, "Effects of Coarse Woody Debris on Morphology and Sediment Storage of a Mountain Stream System in Western Oregon," Earth Surface Processes and Landforms 18:43–61 (1993); T.E. Abbe and D. R. Montgomery, "Large Woody Debris Jams, Channel Hydraulics and Habitat Formation in Large Rivers," Regulated Rivers: Research & Management 12:201–221 (1986); R.J. Maiman and H. Decamps, "The Ecology of Interfaces: Riparian Zones," Annual Review of Ecology and Systematics 28:621–658 91997; A.M. Gurnell, et al., "Large Wood and Fluvial Processes," Freshwater Biology 47:601–619 (2002)). Also, the riparian vegetation that overhangs streams provides shade, providing a critically important function of reducing fluctuations in water temperature helping to reduce excessive algal production and to maintain life-supporting oxygen levels in streams and other waters. Id. at 5–9 (citing S. V. Gregory, et al.," An Ecosystem Perspective of Riparian Zones: Focus on Links between Land and Water," Bioscience 41:540–551 (1991): E.C. Volkmar and R.A. Dahlgren, "Biological Oxygen Demand Dynamics in the Lower San Joaquin River, California," Environmental Science & Technology 40:5583–5660 (2006). Even small changes in water temperature can have significant impacts on the type and number Technology 40:3653–3680 (2008); Even small changes in water temperature can have significant impacts on the type and number of species present in waters, with higher temperatures generally associated with degraded habitat which supports only those species that can tolerate higher temperatures and reduced levels of dissolved oxygen. Higher water temperatures are associated and reduced levels of dissolved oxygen. Higher water temperatures are associated with streams and rivers with less valuable recreational and commercial fisheries. As discussed below, these physical characteristics of headwater streams influence what types of organisms live in the region.

characteristics of headwater streams influence what types of organisms live in the region.

Headwaters and nearby wetlands supply downstream waters with dissolved organic carbon as a result of decompnistion processes from dead organic matter such as plants. The biological consequences of this dissolved organic carbon are discussed in more detail below. The presence of dissolved organic carbon are discussed in more detail below. The presence of dissolved organic carbon and affect how light penetrates the water, an important factor in the growth of plants, algae, and other primary producers, and can protect aquatic organics from the harmful effects of UV-B radiation. Id. at 5-28 to 5-29 (citing K.N. Eshelman and H.F. Hemond, "The role of organic acids in the acid base status of surface waters at Bickford Watershed, Massachusetts," Water Resources flessorch 2:11503-1510 (1885); J.E. Hobbi and K.G. Wettel, "Microbial control of dissolved organic carbon in lakes: Research (1992); D.W. Schindler and P.J. Curtis, "The role of DOC in protecting freshwaters subjected to climate warming and actidification from UV exposure," Biogeochemistry 36:1-8 (1997); K.R. Reddy and R.D. DeLaune, Biogeochemistry of Wetlands: Science and Applications, (Boca Raton, FL; CKC Press, 2008)).

c. Riparian and Floodplain Waters Significantly Affect the Chemical Intentity of

Raton, P.E. Cicc Press, 2010).

C. Riparian and Floodplain Waters
Significantly Affect the Chemical Integrity of
(a)(1) Through (a)(3) Waters

As stated above in the section on tributaries, pollutants such as petroleum waste products and other harmful pollutants dumped into any part of the tributary system are likely to flow downstream, or to be washed downstream, and thereby pollute traditional navigable waters, inter

waters, and the territorial seas from which American citizens take their drinking water, shellfish, fin fish, water-based recreation, and many other uses. Some wetlands perform the valuable function of trapping or filtering out some pollutants (such as fertilizers, silt, and some pesticides), thereby reducing the likelihood that those pollutants will reach and pollute the tributaries of the downstream navigable or interstate waters (and eventually pollute those downstream waters than selvent of the self-many other pollutants (such as petroleum wastes and toxic chemical wastes), if dumped into wetlands or other waters that are adjacent to tributary streams, may reach those tributaries themselves, and thereafter flow downstream to pollute the nation's drinking water supply, fisheries, and recreation areas.

fisheries, and recreation areas.

Riparian and floodplain waters play a critical role in controlling the chemicals that Riparian and floodplain waters play a critical role in controlling the chemicals that enter streams and other "waters of the United States" and as a result are vital in protecting the chemical, physical, and biological integrity of downstream (al(1) through (al(3) waters. Runoff (the water that has not evaporated or infiltrated into the groundwater) from uplands is a large source of pollution, but research has shown that wetlands and other riparian waters trap and chemically transform a substantial smount of the nutrients, pesticides, and other pollutants before they enter streams, river, lakes and other waters.

Chemicals and other pollutants enter waters from point sources, non-point sources, atmospheric deposition, upstream reaches, and through the hypotheic zone, a region beneath and alongside a stream bed where surface water and shallow groundwater mix. Id. at 5–10 (citing SW. Nixon and V.J. Lee, Wetlands and Water Quality: A Regional Review of Recent Research in the United States on the Role of Freshwater and

Wetlands and Water Quality: A regional Review of Recent Resourch in the United Stotes on the Role of Freshwater and Saltwater Wetlands as Sources, Sinks, and Transformers of Nitrogen, Phosphorus, and Various Heavy Metals. Technical Report Y-85-2, (Vicksburg, MS: U.S. Army Corp of Engineers, Waterways Experiment Station, 1966); D.F. Whigham and T.E. Jordan, "Isolated Wetlands and Water Quality," Wetlands 2:541-549 (2003); S.L. Whitmire and S.K. Hamilton, "Rates of Anaerobic Microbial Metabolism in Wetlands of Divergent Hydrology on a Glacial Landscape," Wetlands 28:703-714 (2008)]. Throughout the stream network, but especially in headwater streams and their adjacent wetlands, chemicals are sequestered, assimilated, transformed, or lost to the atmosphere by microbes, fungi, algae, and macrophytes present in riparian waters and soils. Id. (citing SW. Nixon and V.J. Lee, Wetlands and Water Quality: A Regional Review of Recent Research in the United States on the Role of Freshwater and Saltwater Wetlands as Sources, Sinks, and Transformers of Nitrogen, Phosphorus, and Various Heavy Metals, Technical Report Y-68-2, (Vicksburg, MS: U.S. Army Corp of Bengineers, Waterways Experiment Station, 1966); C. Johnston, "Sediment and Nutrient Retention by Freshwater Wetlands: Effects on Surface Water Quality," Critical Reviews in Environmental Control 2:1494-565 (1991); P.I. Boon, "Biogeochemistry and Bacterial Review of Recent Research in the United States on the Role of Freshwater and

Ecology of Hydrologically Dynamic Wetlands," in D.P. Batzer and R.R. Sharitz, ed., Ecology of Freshwater and Estuorine Wetlands," in D.P. Batzer and R.R. Sharitz, ed., Ecology of Freshwater and Estuorine Wetlands (Berkeley, CA: University of California Press, 2006), pp. 115–176; W.J. Mitsch and J.G. Gosselink, Wetlands, 4th edition, (Hoboken, NJ: John Wiley & Sons Inc., 2007); K.R. Reddy and R.D. DeLaune, Biogeochemistry of Wetlands: Science and Applications (Boca Raton, FL: CRC Press, 2008). These chemical processes reduce or eliminate pollution that would otherwise enter streams, rivers, lakes and other waters and subsequently downstream traditional navigable waters, interstate waters, or the territorial seas. The removal of the nutrients nitrogen and phosphorus is a particolarly important role for riparian waters. Nutrients are necessary to support aquatic life, but the presence of excess nutrients can lead to eutrophication and the depletion of oxygen nearly waters and in waters far downstream. See, e.g., id. at 1–8. Eutrophication is a large problem in waters across the United States including such significant ecosystems as the Chesapeake Bay and Lake Spokane in Washington. W.M. Kemp, et al.,
"Eutrophication of Chesapeake Bay:
Historical Trends and Ecological Interactions," Marine Ecology Progress Series 303(21):1–27 (2008): D.J. Moore and J. Ross. Spokane River and Lake Spokane Dissolved Oxygen Total Maximum Daily Load: Water Quality Improvement Report, Publication No. 70–10–073 (Spokane, W.A. Washington State Department of Ecology, 2010): R.R. Murphy, et al., "Cong.-Term Trends in Chesapeake Bay Seasonal Hypoxia, Stratification, and Nutrient Loading," Estuaries and Coasts 34(6):1293–1309 (2011). Eutrophication is the process by which plants and algae grow in waters to such an extent that the abundance of vegetation monopolizes the available oxygen, detrimentally affecting other aquatic organisms, Al. Oxbow Makes also have high mineralization rates, suggesting that similar to adjacent wetlands they proces

maintain the chemical integrity of the nation's waters.

The removal of nitrogen is an important function of all waters, including wetlands, in the riparian areas. Riparian areas regularly remove more than half of dissolved nitrogen found in surface and subsurface water by plant uptake and microbial transformation. Id. at 5-11 (citing P. Vidon, et al., "Hot Spots and Hot Moments in Riparian Zones: Potential for Improved Water Quality Management," Journal of the American Water Resources Association 46:278-298 (2010)). Dentification in surface and subsurface flows is highest where there is high organic matter and/or anoxic conditions. Id. Denitrification occurs in wetland soils where there is high organic matter and/or anoxic conditions. Jan Denitrification occurs in wetland soils where there is high organic matter and/or enoxic matter, low oxygen, denitrifying microbes and saturated soil conditions, and rates increase with proximity to streams. Id. (citing S.V. Gregory, et al., "An Ecosystem

Perspective of Riparian Zones: Focus on Links between Land and Water," Bioscience 41:540–551 (1991); P. Vidon, et al., "Hot Spots and Hot Moments in Riparian Zones: Potential for Improved Water Quality Management," Journal of the American Water Resources Association 46:278–298 Water Resources Association 46:278–298 (2010)). Riparian waters are therefore important in maintaining the conditions important for denitrification, which in turn protects streams, rivers, lakes and other waters from nitrogen pollution. Plant uptake of dissolved nitrogen in subsurface flows also accounts for large quantities of nitrogen removal. Riparian forests have been found to remove 75% of dissolved nitrate transported from

forests have been found to remove 75% of dissolved nitrate transported from agricultural fields in Maryland. Id. (citing P. Vidon, et al., "Hot Spots and Hot Moments in Riparian Zones: Potential for Improved Water Quality Management," Journal of the American Water Resources Association 48:278–298 (2010)). Likewise, riparian forests in Georgia remove 65% of intiogen and 30% of phosphorus from agricultural sources. Id. at 5–11 to 5–12 (citing Vidon, et al. 2010). A Pennsylvania forest removed 26% of the nitrate from the subsurface. Id. at 5–12 (citing J.D. Newbold, et al., "Water Quality

at 5-11 to 5-12 (citting Vidon, et al. 2010).

At S-11 to 5-12 (citting Vidon, et al. 2010).

Pennsylvania forest removed 25% of the nitrate from the subsurface. Id. at 5-12 (citting J.D. Newbold, et al., "Water Quality Functions of a 15-Year-Old Riparian Forest Buffer System." Journal of the American Water Resources Association 46:299-310 (2010). The vegetation associated with riparian waters also removes nitrogen from subsurface flows. Therefore, the conservation of riparian waters have so the subsurface flows. Therefore, the conservation of riparian waters from influxes of dissolved nitrogen. Phosphorus is another potentially harmful nutrient that is captured and processed in riparian waters. Id. (citing T.A. Dillaha and S.P. Inamdar, "Buffer Zones as Sediment Traps or Sources," in N.E. Haycock, T.P. Burt, K.W.T. Goulding, and G. Pinay, ed., Buffer Zones: Their Processess and Potential in Water Protection. Proceedings of the International Conference on Buffer Zones, September 1996 (Hertfordshire, UK: Quest Environmental, 1997), pp. 33-42; A.N. Sharpley and S. Rekolainen, "Phosphorus in Agriculture and its Environmental Implications," in H. Tunney, et al., ed., Phosphorus Losses from Soil to Water (Cambridge, UK: CAB International, 1997), pp. 1-34; G.C. Carlyle and A.R. Hill, "Groundwater Phosphate Dynamics in a River Riparian Zone: Effects of Hydrologic Flowpaths, Lithology, and Redox Chemistry," Journal of Hydrology 247:151-168 (2001)). Biogeochemical processes, sedimentation, and plant utyake account for high rates of removal of particulate phosphorus in riparian areas. Id. (citing C.C. Hoffmann, et al., "Phosphorus Retention in Riparian Buffers: Review of Their Efficiency," Journal of Environmental Quality 38:1942-1955 (2009). The amount of contact the water has with nearby soils determines the ability of the riparian area to remove phosphorus. Id. This function of contact the water has with nearby soils determines the ability of the riparian area to remove phosphorus. Id. This function of upstream riparian waters is crucial for maintaining the chemical and biological integrity of the waters to which they are adjacent, and for preventing eutrophication in downstream traditional navigable waters, interstate waters, and the territorial seas.

d. Riparian and Floodplain Waters Significantly Affect the Biological Integrity of (a)(1) Through (a)(3) Waters

(a)(1) Through (a)(3) Waters

Waters and wetlands located in both riparian areas and floodplains support the biological integrity of downstream (a)(1) through (a)(3) waters in a variety of ways. They provide habitat for aquatic and water-tolerant plants, invertebrates, and vertebrates, and provide feeding, refuge, and breeding areas for invertebrates and fish. Seeds, plants, and animals move between waters in the riparian zone and floodplains and the adjacent streams, and from there colonize or utilize downstream waters, including traditional navigable waters.

Organic matter from adjacent wetlands is

traditional navigable waters.

Organic matter from adjacent wetlands is critical to aquatic food webs, particularly in headwaters, where it is the primary source of energy flow due to low light conditions that inhibit photosynthesis. Id. at 5–13 (citing J.L. Tank, et al., "A Review of Allochthonous) Organic Matter Dynamics and Metabolism in Streams," Journal of the North American Benthological Society 29:118–146 (2010)). Headwater streams tend to be located in Streams, "Journal of the North American Benthological Society 29:118–146 (2010)]. Headwater streams tend to be located in heavily vegetated areas compared to larger waters, so they are more likely to contain leaf litter, dead and decaying plants, and other organic matter that forms the basis of headwater fond webs. The organic matter is processed by microbes and insects that make the energy available to higher levels of stream life such as amphibians and fish. Studies have shown that macroinvertebrates rely on leaf inputs in headwater streams and that excluding organic litter from a stream resulted in significant changes to the food web at multiple levels. Id. (citing G.W. Minshall, "Role of Allocathionous Detritus in the Tropic Structure of a Woodland Springbrook Community," Ecology 49:139–149 (1967); J.B. Wallace, et al., "Multiple Trophic Levels of a Forest Stream Linked to Terrestrial Litter Inputs," Science 277:102–104 (1997); J.L. Meyer, et al., "Leaf Litter as a Source of Dissolved Organic Carbon in Streams," Ecosystems 1:240–249 (1998)]. Fish and amphibian species found in headwaters travel downstream and in turn become part of the food web for larger aquatic organisms in rivers and other waters. Organic material provided by riparian waters to small, headwater streams is therefore important not only to the small streams that directly utilize this source of energy to support their biological populations but also to the overall biological integrity of downstream waters that also benefit from the movement of fish and other species streams and rivers.

contribute to the food web of larger streams and rivers. Floodplain water bodies, including oxbow lakes, accumulate organic carbon, an important function influenced by the size and frequency of floods from adjacent rivers. See, e.g., i.d. at 5–45 [citing A. Cabezas, et al., "Chanding Datterner of Corn, in Cabezas, et al.," Changing Patterns of Organic Carbon and "Changing Patterns of Organic Carbon and Nitrogen Accretion on the Middle Ebro Floodplain (NE Spain)." Ecological Engineering 35:1547-1558 (2009). These stored chemicals are available for exchange with river water when hydrological connections form. Organic materials are the hasis for the food web in stream reaches where photosynthetic production of energy is

absent or limited, particularly in headwater assent or limited, particularly in neadwater systems where vegetative litter alone makes up the base of the aquatic food web. The maintenance of floodplain waters is therefore an important component of protecting the biological integrity of downstream waters into which the headwaters flow.

The waters, including wetlands, in the integrity of the partial response to the particular of the

into which the headwaters flow. The waters, including wetlands, in the riparian area play an important role in the removal of pesticides. Id. 45 –14 (citing P. Vidon, et al., "Hot Spots and Hot Moments in Riparian Zones Potential for Improved Water Quality Management," Journal of the American Water Resources Association 46:278–298 (2010). Microbes near plant roots break down these pesticides. See, e.g., id. (citing G. Voos, and P.M. Groffman, "Relationships between microbial biomass and dissipation of 2,4–10 and dicamba in soil," Biology and Fertility of Soils 24:106–110 (1996). Uptake by aquatic plants has also been shown to be an important mechanism for removal of the pesticides alachlor and atrazine. Id. (citing K.G. Paterson and J.L. Schnoor, "Fate of Alachlor and Atrazine in a Riparian Zone Field Site," Water Environment Research 64:274–283 (1992)). Riparian waters also trap and hold

(1992)). Riparian waters also trap and hold pesticide contaminated runoff preventing it rom harming neighboring waters Riparian areas are dynamic places that

Riparian areas are dynamic places that support a diversity of aquatic, amphibious, and terrestrial species adapted to the unique habitat created by periodic flooding events. Id. at 5–15 (citing W.). Junk, et al., 'The flood pulse concept in river-floodplain systems,' in D.P. Dodge, ed., Proceedings of the International Large River Symposium Ottawa (Ottawa, Canada: Canadian Special Publication of Fisheries and Aquatic Sciences 106, 1999), pp. 110–127. K. Tockner, et al., ''An Extension of the Flood Pulse Concept,'' Hydrological Processes 14:2861–2893 (2000): C.T. Robinson, et al., ''The Fauna of Dynamic Riverine "The Fauna of Dynamic Riverine Landscapes," Freshwater Biology 47:661–677 (2002)). Plants, invertebrates, and vertebrates Landscapes," Freshwater Biology 47:661–677 (2002). Plants, invertebrates, and vertebrates use waters, including wetlands, in the riparian areas for habitat, nutrients, and breeding. As a result, the waters, including wetlands, in the riparian areas set as sources of organisms, particularly during inundation events, replemishing neighboring waters with organisms, particularly during inundation events, replemishing neighboring waters with organisms, seeds, and organic matter. Inundation and hydrological connectivity of riparian areas greatly increase the area of aquatic babitats and species diversity. Id. at 5–15 to 5–16 (citiog W. J. Junk et al. 1989; R. Jansson, et al., "Hydrochory Increases Riparian Plant Species Richness: A Comparison between a Free-Phowing and a Regulated River." Journal of Ecology 93:1084–1103 (2005)). Aquatic animals, including amphibians and fish, take advantage of the waters present in riparian areas, either inhabiting them or moving between the riparian water and neighboring waters. Id. at 5–15, 5–17, 5–19 (citing G. H. Copp. "The habitat diversity and fish reproductive function of floodplain ecosystems," Environmental Biology of Fishes 26:1–27 (1989): L.A. Smock, et al., "Lotic macroinvertebrate production in three dimensions: Channel surface, hyporheic, and floodplain environments," Ecology 73:876–886 (1992); L.A. Smock, ."Movements of

invertebrates between stream channels and forested floodplains," Journal of the North American Benthological Society 13:524-531 (1994); C. T. Robinson, et al., "The fauna of dynamic riverine landscapes," Freshwater Biology 47:661-677 (2002); J.S. Richardson, Diology 47:001-07 (2002); J.S. RIChardson, et al., "Riparian communities associated with Pacific Northwest headwater streams: Assemblages, processes, and uniqueness," Journal of the American Water Resources Association 41:935-947 (2005); C. lig, et al., "Italian and the processing of the Community of the Commun Assemblinges, processes, and uniqueness, and uniqueness, fournal of the American Water Resources Association 41:935–947 (2005); C. Ig, et al., "Long-term reactions of plants and macroinvertebrates to extreme floods in floodplain grasslands," Ecology 89:2392–2398 (2008); D.E. Shoup, and D. H. Wahl, "Fish diversity and abundance in relation to interannual and lakespecific variation in abiotic characteristics of floodplain lakes of the lower Kaskaskia River, Illinois," Transactions of the American Fisheries Society 183:1076–1032 (2009)). Likewise, seeds, plant fragments, and whole plants move between riparian and floodplain waters and the river network. Id. at 5–15 (citing R.L. Schneider, and R.R. Shatitz, "Hydrochory and regeneration in a bald cypress water tupelo swamp forest," Ecology 69:1055–1063 (1988); B. Middleton, "Hydrochory, seed banks, and regeneration dynamics along the landscape boundaries of a forested wetland." Plant Ecology 146:169–184 (2000); C. Nilsson, et al., "The role of hydrochory in structuring riparian and wetland vegetation," Biological Heviews 86:397–358 (2010). Hydrological connections are often drivers of biological connections, and floodipal systems and the river network. As a result, waters within floodplains have important functions for aquatic health. Many species have cycles timed to flooding events, particularly in circumstances where flooding is associated with annual spring snowmelt or high precipitation. Id. at 5–15 to 5–17, 5–20 (citing procepitation. Id. at 5–15 to 5–17, 5–20 (citing precipitation. Id. at 5–15 to 5–17, 5–20 (citing precipitation.)

circumstances where flooding is associated with annual spring snowmelt or high precipitation. Id. at 5–15 to 5–17, 5–20 (citing J.R. Thomas, et al., "A landscape perspective of the steam corridor invasion and habitat characteristics of an exotic (Dioscorea oppositifolia) in a pristine watershed in Illinois," Biological Invasions 8:1103–1113 (2006): LM. Tronstad, et al., "Aerial colonization and growth: Rapid invertebrate responses to temporary aquatic habitats in a river floodplain," Journal of the North American Benthological Society 28:440–471 (2007): A. Gurnell, et al., "Propagule deposition along river margins: Linking hydrology and ecology," Journal of Ecology 99:533–555 (2008). Waters within floodplains act as sinks of seeds, plant floodplains act as sinks of seeds, plant fragments, and invertebrate eggs, allowing for fragments, and invertebrate eggs, allowing for cross-breeding and resulting gene flow across time. Id. at 5-10 to 5-21 (citing K.M.) enkins, and A.J. Boulton, "Connectivity in a dryland view: Short-term aquatic microinvertebrate recruitment following floodplain inundation." Ecology 84:2708-2723 (2003); D. Frisch, and S.T. Threlkeld, "Flood-mediated dispersal versus batching: Early recolonisation strategies of copepods in floodplain ponds," Freshwater Biology 50:323-330 (2005); B. Vanschoenwinkel, et al., "Wind mediated dispersal of reshwater invertebrates in a rock pool metacommunity: Differences in dispersal capacities and modes," Hydrobiologia 635:363-372 (2009)].

Micro- and macroinverbrates colonize nutrient rich waters within floodplains during periods of inundation, facilitating an increase in population and sustaining them though times of limited resources and population and sustaining them though times of limited resources and population decline. Id. at 5–19 (citting W.J. Junk, et al., "The flood pulse concept in river-floodplain systems," in D.P. Dodge, ed., Proceedings of the International Large River Symposium Ottawa (Ottawa. Canada: Canadian Special Publication ut Fisheries and Aquatic Sciences 106, 1989), pp. 110–127; B. Malmqvist, "Aquatic invertebrates inverine landscapes," Freshwater Biology 47:679–694 (2002); C. Ilg, et al., "Long-term reactions of plants and macroinvertebrates to extreme floods in floodplain grasslands," Ecology 89:2392–2398 (2008). Such animals are adapted to high floods, desiccation (drying out), or other stresses that come with these regular, systemic fluctuations. Id. at 5–20 (citting fenkins and Boulton 2003). Floodplain waters therefore maintain various biological populations, which periodically replenish adjacent jurisdictional waters,

tiose regular, systemic functuations. Id. at 5-20 (citting lenkins and Boulton 2003). Floodplain waters therefore maintain various biological populations, which periodically replenish adjacent jurisdictional waters, serving to maintain their biological integrity. Plants and animals use waters, including wetlands, in the riparian areas and floodplains for habitat, food, and breeding. Oxbow lakes in the floodplain provide critical fish habitat needed for feeding and floodplains for habitat, food, and breeding and rearing, leading researchers to conclude that the entire floodplain should be considered a single functional unit, essential to the river's biological integrity. Id. at 5-17 (citing D.E. Shoup and D.H. Wahl, "Fish Diversity and Abundance in Relation to Interannual and Lake-Specific Variation in Abiotic Characteristics of Floodplain Lakes of the Lower Kaskaskia River, Illinois,"

Transactions of the Americon Fisheries Society 138:1076-1092 (2009). Since adjacent ponds are structurally and biologically similar to oxbow lakes they serve similar functions relative to the nearby river or stream. Waters, including wetlands, in the riparian areas also provide food sources fir stream invertebrates, which colonize during inundation events. Id. at 5-19 (citing W.J. Junk, et al., "The Flood Pulse Concept in Kiver-Floodplain Systems," in D.P. Dodge, ed., Proceedings of the International Large River Symposium Ottawa (Ottawa, Canada: Canadian Special Publication of Fisheries and Aquatic Sciences 106, 1989), pp. 110–127; C. lig, et al., "Ung-term Reactions of Plants and Macroinvertebrates to Extreme Floods in Floodplain Grasslands," Ecology 82:2392–2398 (2008). Riparian waters also form an integral part of the food web, linking primary producers and plants to higher animals. Id. (citing B. Malmqvist, "Aquatic Invertebrates in Riverine Landscapes," Freshwater Biology 4:7:679–604 (2002); Freshwater Biology 4:7:677–798 (2002), T.K. Stead, et al., "Secondary Production of a Structure in Riverine Landscapes," Freshwater Bio

foraging, hunting, and breeding sites for fish and amphibians. Id. at 5–15 (citing G.H. Copp. "The Habitat Diversity and Fish Reproductive Function of Floodplain Ecosystems." Environmental Biology of Fishes 26:1–27 (1983); J.S. Richardson, et al., "Riparian Communities Associated with Pacific Northwest Headwater Streams: Assemblages, Processes, and Uniqueness," Assemblages, Processes, and Uniqueness Association 4:1:935–947 (2005).

Plants and animals move back and forth

Plants and animals move back and forth between riparian or floodplain waters and the river network. This movement is assisted in some cases when flooding events create hydrological connections. For instance, these floodplain and riparian wetlands provide refuge, feeding, and rearing habitat for many fish species. Id. at 5–17 (citing C.H. Wharton, et al., The Ecology of Bottomland Hardwood Swamps of the Southeast: A Community Profile, PWS/OBS-8-137 (Washington, DC: U.S. Department of the Interior, Fish and Wildlife Service, Biological Services Program, 1982): M.P. Mathency and C.F. Rabeni, "Patterns of Movement and Habitat Use by Northern Hogsuckers in an Ozark Stream," Transactions of the American Fisheries Society 124:1866-897 (1995): A.A. Pease, et al., "Habitat and Resource Use by Larval and Juvenile Fishes in an Ard-Land River (Rio Grande, New Mexico)," Freshwater Biology 51:475-486 (2006); J.A. Henning, et al., "Use of Seasonal Freshwater Wetlands by Fishes in a Temperate River Floodplain," Journal of Fish Biology 71:476-482 (2007); C.A. Jeffres, et al., "Ephemeral Floodplain Habitats Provide Best Growth Conditions for Juvenile Chinook Salmon in a California River," Environmental Biology of Fishes 83:494-58 (2008). Seeds ingested by animals such as carp are dispersed in stream channels and associated waters. See, e.g., id. at 5–16 (citing B.J.A. Pollux, et al., "Consequences of Intraspecific Seed-Size Variation in Sparganium emersum for Dispersal by Fish," Functional Ecology 21:1084–1091 (2007). Also, phytoplankton move between floodplain wetlands and the river network. Id. at 5–17 (citing D.G. Angeler, et al., "The Influence of Floodplain in sults in large populations of phytoplankton community similarity in a semiarid floodplain under contrasting hydrological connectivity endices in the floodplain results in large populations of phytoplankton community similarity in a semiarid floodplain in large populations of phytoplankton form the Flood Season in San Francisco Estuary." Aquatic Ecology 42:363–378 (200

However, even when hydrological connections are absent, some organisms can move between riparian waters and their neighboring tributaries by overland movement in order to complete their life cycle. River-dwelling mammals, such as river otters, move from the river to riparian wetlands. Id. at 5–18 (citing D.G. Newman and C.R. Griffin, "Wetland Use by River

Otters in Massachusetts," Journal of Wildlife Management 58:18–23 (1994)). Several species of amphibians and reptiles including frogs, snakes and turtles use both streams and neighboring waters. Id. at 1–10, 5–4 to 5–5 (Table 5–1), 5–15 (citing J.S. Richardson, et al., "Riparian Communities Associated with Pacific Northwest Headwater Streams: Assemblages, Processes, and Uniqueness," Journal of the American Water Resources Association 41:935–937 (2005)). Movement between wellands and the river network also occurs by the dispersal of seed and plant fragments and the wind dispersal of invertebrates. Id. at 5–15, 5–20 (citing R.L. Schneider and R.R. Sharitz, "Hydrochory and Regeneration in a Baid Cypress Water Tupels Swamp Forest," Ecology 69:1055–1063 (1988); B. Middlieton, "Hydrochory, Seed Banks, and Regeneration Dynamics Along the Landscape Boundaries of a Forested Wetland," Plant Ecology 146:169–184 (2000); A.M. Gurnell, "Analogies Between Mineral Sediment and Vegetative Particle Dynamics in Fluvial Systems," Geomorphology 89:9–22 (2007); A. Gurnell, et al., "Propagule Deposition Along River Margins: Linking Hydrology and Ecology," Journal of Ecology 96:53–565 (2008); C. Nilsson, et al., "The Role of Hydrochory in Structuring Riparian and Wetland Vegetation," Biological Reviews 85:837–858 (2010); L.M. Tronstad, et al., "Aerial Colonization and Growth: Rapid Invertebrate Responses to Temporary Aquatic Habitats in a River Floodhism," Journal of the North American Benthological Society 26:460–471 (2007)). Animals, particularly migratory fish, may thus move between adjacent waters and (a)(1) through (a)(3) waters. And even when some species do not traverse the entire distance from adjacent waters and selectionship that adjacent waters to downstream waters still benefit from the ecological integrity that persists because of the Moratream data biological properties that arise from interactions between adjacent waters and reluctations of the Acet Lewes and incontinues waters and support the integrity of (a)(1) throug

waters.

Biological connections between adjacent waters and river systems do not always incruase with hydrologic connections. In some cases, the lack of connection improves the biological contribution provided by riparian waters towards neighboring streams, rivers, and lakes. For instance, the periodic hydrologic disconnectedness of oxbow lakes is necessary for the accumulation of plankton, an important source of carbon more easily assimilated by the aquatic food chain than terrestrial forms of carbon. Id. at 3–46 (citing C. Baranyi, et al., "Zooplankton Biomass and Community Structure in a Danube River Floodplain System: Effects of Hydrology." Fresthwater Biology 47, 473–482 (2002); S. Keckeis, et al., "The Significance of Zooplankton Grazing in a Floodplain System of the River Danube," Journal of Plankton Research 25:243–253 (2003). Plankton Research 25:243–253 (2003). Similarly, some degree of hydrological disconnectedness is important in increasing the number of mollusk species and macroinvertebrate diversity in oxbow lakes, which in turn support the diversity of

mollusks throughout the aquatic system. Id. at 5–46 to 5–47 (citing W. Reckendorfer, et al., "Floodplain Restoration by Reinforcing Hydrological Connectivity: Expected Effects on Aquatic Mollusc Communities," Journal of Applied Ecology 43:474–484 (2006); K. Obolewski, et al., "Effect of Hydrological Connectivity on the Molluscan Community Structure in Oxbow Lakes of the Lyna River, Oceanological and Hydrobiological Studies 38:75–88 (2009).

2. Confined Surface and Shallow Subsurface Hydrologic Connections Significantly Affect the Chemical, Physical, or Biological Integrity of (a)(1) Through (a)(3) Waters

Hydrologic Connections Significantly Affect the Chemical, Physical, or Biological Integrity of (a)(1) Through (a)(3) Waters Wetlands and open waters, including those outside the riparian zone and floodplain, can be connected downstream through unidirectional flow from the wetland or open water to a nearby tributary. Such connections can occur through a confined surface or a shallow subsurface hydrologic connection. Report at 3-7, 5-23. Outside of the riparian zone and floodplain, surface hydrologic connections between adjacent waters and jurisdictional waters can occur via confined flows (e.g. a swale, gally, ditch, or other discrete feature). For purposes of this rule, confined surface connections are defined as permanent, intermittent or ephemeral surface connections through directional flowpaths, such as (but not limited to) swales, gullies, rills, and ditches. in some cases, these connections will be a result of "fill and spill" hydrology. A directional flowpath is a path where water flows repeatedly from the wetland or open water to the nearby jurisdictional water that at times contains water originating in the wetland or open water swaler originating in the wetland or open water shall to expactly during intense precipitation events or high cumulative precipitation. For the purposes of this rule, "fill and spill" describes situations where wetlands or open waters fill to capacity during intense precipitation events or high cumulative precipitation over time and then spill to the downstream jurisdictional water. Id. at 5-62 (citing T.C. Winter and D.O. Rosenberry, "Hydrology of Prairie Pothole Wetland Complex in North Dakota in the Perspective of Longer Tem Measured and Proxy Hydrological Records," Climatic Change 40:199-209 (1998); S.C. Leibowitz, and K.C. Vining, "Temporal connectivity in a prairie pothole complex," Wetland 23:13-25 (2003). Water connected through such flows originate from the adjacent wetland or open water, travel to the downstream jurisdictional water, and are connected to those downstr water, and are connected to those downstream waters by swales or other directional flowpaths on the surface. A confined surface hydrologic connection, which may be perennial, intermittent or

which may be perennial, intermittent or ephemeral, supports periodic flows between the adjacent water and the jurisdictional water. For example, wetland seps are likely to have perennial connections to streams that provide important sources of baseflow, particularly during summer. Id at 5–22 (citing T.R. Morley, et al., "The Role of Headwater Wetlands in Altoring Streamflow and Chemistry in a Maine, USA catchment," Journal of the American Water Resources Association 47:337–349 (2011), Other wetlands are connected to streams via

intermittent or ephemeral conveyances and can contribute flow to downstream waters via their surface hydrologic connection. Id. at 5–22 (citing Mc. Rains. et al., "The Role of Perched Aquifiers in Hydrological Connectivity and Biogeochemical Processes in Vernal Pool Landscapes, Central Valley, California, "Hydrological Processes 20:1157–1175 (2006); M.C. Rains, et al., "Geological Control of Physical and Chemical Hydrology in California Vernal Pools." Wetlands 28:347–362 (2008); B.P. Wilcox, et al., "Evidence of Surface Connectivity for Texas Gulf Coast Depressional Wetlands," Wetlands 31:451–458 (2011)]. The surface hydrologic connection of the neighboring Gulf Coast Depressional Wetlands."
Wetlands 31:451—458 (2011)). The surface
hydrologic connection of the neighboring
water to the jurisdictional water and the
close proximity of the waters enhance the
neighboring waters substantial effects the
waters have on downstream (a)(1) through
(a)(3) waters. Wetlands and open waters that
are connected to (a)(1) through (a)(6) waters
through a confined surface hydrologic
connection will have an impact on
downstream (a)(1) through (a)(3) waters,
regardless of whether the outflow is
permanent, intermittent, or ephemeral. See,
e.g., id. at 5–1 to 5–2.
Wetlands and open waters with confined
surface connections can affect the physical
integrity of waters to which they connect.
Such waters can provide an important source
of baseflow to the streams to which they are
adjacent, helping to sustain the water levels
in the nearby streams. Id. at 5–22 (citing T.R.
Morley, et al., "The Role of Headwater
Wetlands in Altering Streamflow and
Chemistry in a Maine. 1158 catchment."

in the nearby streams. Id. at 5–22 (citing T.R. Morley, et d., "The Role of Headwater Wetlands in Altering Streamflow and Chemistry in a Maine, USA catchment." Journal of the American Water Resources Association 47:337–349 (2011); M.C. Rains, et al., "The Role of Perched Aquifers in Hydrological Connectivity and Biogeochemical Processes 20:1157–1175 (2006); M.C. Rains, et al., "Geological Control of Physical and Chemical Hydrology in California, "Geological Control of Physical and Chemical Hydrology in California Vernal Pools," Wetlands 28:347–362 (2008); B.P. Wilcox, et al., "Evidence of Surface Connectivity for Texas Gulf Coast Depressional Wetlands," Wetlands 31:451–458 (2011)] and T.M. Lee, et al., Effect of Groundwater Levels and Headwater Wetlands on Streamflow in the Charlie Creek Bosin, Peace River Wotershed, West-Central Florida, U.S. Geological Survey Scientific Investigations Report 2010–5189 (Reston, Virginia: U.S. Department of the Interior, U.S. Geological Survey, 2010). Waters with a confined surface connection to downstream jurisdictional waters can affect streamflow by altering baselow or stornflow thrunch watering baselow or stornflow thrunch watering baselow or stornflow thrunch." jurisdictional waters can affect streamflo altering baseflow or stormflow through jurisuctional waters can affect streamilow by altering baseflow or stormflaw through several mechanisms, including surface storage and groundwater recharge. Report at 5–25. Wetlands effectively store water because the entire aboveground portion of the wetland basin is available for water storage, in contrast to upland areas where soil particles or rock reduce water storage volume for a given volume of that soil or rock (i.e., the specific yield). Id. at 5–25 [citing A.I. Johnson. Specific Yield—Compilation of Specific Yields for Various Materials, USCS Water Supply Paper 1662—D (Washington, DC; U.S. Department of the Interior, U.S. Geological Survey, 1967)]. By storing water,

these waters can reduce peak strea and thus, downstream Gooding, Id. at 5–25 (citing A. Bullock, and M. Acreman, "The Role of Wetlands in the Hydrological Cycle," Hydrology and Earth System Sciences 7:358–389 (2003); P. McGachern, et al., "Landscape Control of Water Chemistry in Northern Boreal Streams of Alberta," Journal of Hydrology 323:303–324 (2006)], Antecedent moisture conditions available awalland Boreal Streams of Alberta, "Journal of Hydralogy 232:303–324 (2006)]. Antecedent moisture conditions, available wetland storage, and evaporation rates could impact water storage, as some waters connected to jurisdictional waters via discrete features may actually reduce flows in the streams they neighbor during dry periods. Id. at 5–26 (citting A. Bullock, and M. Acroman, "The Role of Wetlands in the Hydrological Cycle," Hydrology and Earth System Sciences 7:358–399 (2003)]. Thus, wetlands and open waters with a confined hydrologic connection to jurisdictional waters may function as a sink in dry periods if storage capacity is not exceeded and evaporation rates sorpass groundwater recharge. Id. at 5–26 to 5–27. Wetlands and open waters with confined surface connections can affect the chemical integrity of waters to which they connect. Such waters can affect water quality of lariddictional waters through source and sink functions, effect mediated by transformation functions.

functions, often mediated by transformation functions, often mediated by transformation of chemical constituents. The surface hydrologic connections to nearby jurisdictional waters provide pathways for materials transformed in the wetlands and open waters (such as methylmercury or degraded organic matter) to reach and affect the nearby waters and the downstream (a)(1) through (a)(3). Id. at 5–27. Functions that occur in the wetlands and open waters can affect downstream (a)(1) through (a)(3) waters when compounds that are transformed in wetland environments move to downstream waters via the surface hydrologic connection. Id. at 5–26 (citing T.C. Winter and J.W. LaBaugh. "Hydrologic Considerations in Defining Isolated Wetlands," Wetlands 23:322–340 (2003)). For example, methylmercury (which can form in peatlands) can be transported through entrainment with organic matter exports, and can move through surface flows from peatlands with confined surface connections to downstream waters. Id. at 5–28 (citing O. Linqvist, et al., "Mercury in the Swedish Environment—Recent Research on Causes, Consequences, and Remedial Measures," Water Air and Soil Pollution 55:349–357 (1991); V.L. St. Louis, et al., "Importance of Wetlands as Sources of Methyl mercury to Boreal Forest Ecosystems," Canadian Journal of Fisheries and Aquatic Sciences \$1:1065–1076 (1994); CT. Diriscoll, et al., "The Role of Dissolved Organic Carbon in the Chemistry and Bioavailability of Mercury for Remote Addirondack Lakes," Water Air and Soil Pollution Addirondack Lakes," Water Air and Soil Pollution Soil (CT. Diriscoll, et al., "The Role of Dissolved Organic Carbon in the Chemistry and Bioavailability of Mercury for Remote of chemical constituents. The surface Organic Carbon in the Chemistry and Bioavailability of Mercury in Remote Adirondack Lakes," Water Air and Soil Pollution 80:499–508 (1995); P. Porvari, and M. Verta, "Total and Methyl mercury Concentrations and Fluxes from Small Boreal Forest Catchments in Finland," Environmental Pollution 123:181–191 (2003)). The mercury that is transported downstream can enter the food chains of the

(a)(1) through (a)(3) waters and negatively impact wildlife inhibiting those downstream waters. Id. at 5–28. Export of dissolved organic matter from neighboring waters connected via a confined surface connection can have potentially negative effects on downstream waters because contaminants, such as Melig and other trace metals, can be adsorbed to the organic matter. Id. at 5–28 (citing E.M. Thurman, Organic Geochemistry of Natural Waters (Boston, MA: Martinus Nijhoff/Dr. W. Junk Publishers, 1985); C.T. Dirscoll, et al., "The Role of Dissolved Organic Carbon in the Chemistry and Bioavailability of Mercury in Remote Adirondack Lakes," Water Air and Soil Pollution 80:499–508 (1995). Dissolved organic matter, however, is also an important source of energy for downstream aquatic communities. Id. at 5–28 (citing J.E. Hobbie and R.G. Wetzel, "Microbial control of dissolved organic carbon in lakes: Research for the future," Hydrobiologia 229:169–180 (1992); K.R. Reddy and R.D. DeLaune. Biogeachemistry of Watlands: Science and Applications, 774 p. (2008)). Wetlands with confined surface hydrologic connections to the stream are connected to jurisdictional tributary system and therefore can efficiently transport dissolved organic carbon and other dissolved organic matter to the nearby jurisdictional water and downstream (a)(1) through (a)(3) waters. See, e.g., 1.F. Creed, et al., "Cryptic Wetlands: Integrating Hidden Wetlands in Regression Models of the Export Instinctional water and downstream (a)(1) through (a)(3) waters. See, e.g., 1.F. Creed, et al., "Cryptic Wetlands: Integrating Hidden Wetlands in Regression Models of the Export Instinctional water and downstream (a)(1) through (a)(3) waters and downstream (a)(1) through (a)(4) material seed of the Export (a)(4) material see

Wetlands and open waters with confined surface connections can affect the biological integrity of waters to which they connect. Movement of organisms between these adjacent waters and the nearby jurisdictional water is governed by many of the same factors that affect movement of organisms

between riparian/floodplain waters and the river network. Id. at 5–31. Because such waters are at least periodically hydrologically connected to the nearby jurisdictional tributary network on the surface, dispersal of organisms can occur actively through the tributary network on the surface, dispersal of organisms can occur actively through the surface connection or via wind dispersal, hitchiking, walking, crawling, or flying, See, e.g., id, at 5–31. For example, waterborne dispersal of aquatic and emergent plants can occur between the jurisdictional water and the neighboring water due to the periodic hydrologic connection to the tributary system. Id. at 5–31 (citing C. Nilsson, et al., "The Role of Hydrochory in Structuring Riparian and Watland Vegetation," Biological Reviews 85:837–858 (2010)). Fish can also move between the jurisdictional water and the neighboring water to which it is connected via a surface hydrologic connection during periodic surficial hydrologic connection. Id. at 5–32 (citing J.W. Snodgrass, et al., "Factors affecting the occurrence and structure of fish assemblages in isolated wetlands of the upper coastal plain, USA, "Canadian Journal of Fisheries and Aquatic Sciences 53:443–454 (1996); K.D. Zimmer, et al., "Effects of fathead ninnow colonization and removal on a natire wetland ecosystem." "Ecosystems minnow colonization and removal on a prairie wetland ecosystem," Ecosystems 4:346-357 (2001); M.J. Baber, et al., "Cor 4:346–357 (2001); M.J. Baber, et al., "Controls on fish distribution and abundance in temporary wetlands," Canadian Journal of Fisheries and Aquatic Sciences 59:1441–1450 (2002); M.A. Hanson, et al., "Biotic interactions as determinants of ecosystem structure in prairie wetlands: An example using fish," Wetlands 25:764–775 (2005); B.R. Herwig, et al., "Factors influencing fish distributions in shallow lakes in prairie and prairie-parkland regions of Minnesota, USA," Wetlands 30:609–619 (2010)). Mammals and aquatic and semi-aquatic amphibians and prame-parkiand regions of Minnesota, USA." Wetlands 30:609–619 (2010)]. Mammals and aquatic and semi-aquatic amphibians and reptiles that can disperse overland can also contribute to connectivity, as can aquatic birds, particularly given the close proximity of the neighboring water to the jurisdictional water. Mammals and birds can act as transport vectors for hitchhikers like algae or aquatic insects. Id. at 5–32 (citing J.P. Roscher, "Alga Dispersal by Muskrat Intestinal Contents," Transactions of the American Microscopical Society 86:497–498 (1967); J. Figuerola and A.J. Green, "Dispersal of Aquatic Organisms by Waterbirds: a Review of Past Research and Priorities for Future Studies," Freshwater Biology 47:483–494 (2002); J. Figuerola, et al., "Invertebrate Eggs Can Fly: Evidence of Waterfowl-Mediated Gene Flow in Aquatic Invertebrates," American Naturalist 165:274–280 (2005)), Amphibians and ramities more Invertebrates," American Naturalist 165:274– 280 (2005)). Amphibians and reptiles move between streams and their adjacent waters to satisfy part of their life-history requirements. Id.at 5–33, Table 5–2. The hydrologic Id.at 5–33. Table 5–2. The hydrologic connection between neighboring waters with a surface connection to the jurisdictional water allows for that movement to occur either in the water or over land. Aquatic insects that use both streams and their adjacent waters can move outside of the stream network to the nearby wetland or open water to seek suitable habitat for overwintering, refuer form adverse. overwintering, refuge from adverse conditions, hunting, foraging or breeding, and then return to the stream for other life

history requirements. Id. at 5–33 (citing D.D. Williams, "Environmental Constraints in Temporary Fresh Waters and Their Consequences for the Insect Fauna," Journal of the North American Benthological Society 15:634–650 (1996); A.J. Bohonak and D.G. Jenkins, "Ecological and Evolutionary Significance of Dispersal by Freshwater Invertebrates," Ecology Letters 6:793–796 (2003)). Neighboring waters with a confined surface hydrologic connection to intrinsictional waters help to maintain various biological populations, which periodically replenish adjacent jurisdictional waters, serving to maintain the biological integrity of (a)(1) through (a)(3) waters (a)(1) through (a)(3) water flow through a shallow subsurface hydrologic connection is lateral water flow through a shallow subsurface layer, such as can be found in steeply sloping areas with shallow soils and soils with a restrictive horizon that prevents vertical water flow, or in karst systems. K.). Devito, et al., "Groundwater-Surface Water Interactions in Headwater Forested Wetlands of the Canadian Shield," Journal of Hydrology 181:127–47 (1998); M.A. O'Driscoll and R.R. Parizek, "The Hydrologic Catchment Area of a Chain of Karst Wetlands in Central Pennsylvania,

A shallow subsurface hydrologic connection is lateral water flow through a shallow subsurface layer, such as can be found in steeply sloping areas with shallow soils and soils with a restrictive horizon that prevents vertical water flow, or in karst systems, K.J. Devito, et al., "Groundwater-Surface Water Interactions in Headwater Forested Wetlands of the Canadian Shield," fournal of Hydrology 181:127–47 (1996); M.A. O'Driscoll and R.R. Parizek, "The Hydrologic Catchment Area of a Chain of Karst Wetlands in Central Pennsylvania, USA," Wetlands 23:171–79 (2003); B.J. Cook and F.R. Hauer, "Effects of Hydrologic Connectivity on Water Chemistry, Soils, and Vegetation Structure and Function in an Intermontane Depressional Wetland Landscape," Wetlands 27:179–38 (2007). Shallow subsurface connections may be found below the ordinary not zone (below 12 inches), where other wetland delineation factors may not be present. The presence of an aquicilude (impervious layer) near the surface leads to shallow subsurface flows through the soil, which favors local groundwater flowpaths that connect to nearby wetlands or streams. Report at 3–38. Wetlands with shallow subsurface connections and affect the physical integrity

Wetlands with shallow subsurface connections can affect the physical integrity of waters to which they connect. In general, the volume and sustainability of streamflow within river networks depends on contributions from groundwater, especially in areas with shallow groundwater tables and pervious (meaning water can easily pass through) subsurfaces. Id. at 3-12 (citing J.J. de Vries, "Seasonal Expansion and Contraction of Stream Networks in Shallow Groundwater Systems," Journal of Hydrology 170:15-26 (1995); T.C. Winter, "The Role of Groundwater in Generating Streamflow in Headwater Areas and in Maintaining Base Flow," Journal of Harbards and Stream (Stream Stream 1997). Gr. Kish, at I., "A Geochemical Mass-Balance Method for Bass-Flow Separation, Upper Hillsborough River Watershed, West-Central Florida, 2003-2005 and 2009," USGS Scientific Investigations Report 2010-5002 (Washington, D.C. U.S. Department of the Interior, U.S. Geological Survey, 2010). Because wetlands with shallow subsurface connections to streams and rivers provides some of these groundwater contributions, they influence the flow regime. Wetlands connected vis shallow subsurface connections also can act as water sinks when evaportanspiration is lough. Id.

at 3–25. As a result, these adjacent waters moderate peak flows, reduce downstream flooding, and provide runoff to help maintain baseflow for streams during times of low flows.

Wetlands and other waters with shallow subsurface connections affect the chemical and biological integrity of downstream waters in ways similar to wetlands with surface connections. The distance between these wetlands and jurisdictional waters may influence the connectivity since wetlands with shorter distances to the stream network. Will have higher hydrological and biological connectivity than wetlands located further from the same network. Id. at 3–43. The distance between the wetland and water may also influence whether waters are connected via surface or shallow subsurface hydrological connections, as wetlands and open waters that are closer to rivers and streams will have a higher probability of being connected than more distant waters, assuming that conditions governing type and quantity of flows (e.g. slope, soil and aquifer permeahlity) are similar. Id at 5–2. For wetlands connected to tributaries through groundwater flows, less distant wetlands/ waters are generally connected through shallower flowpaths, assuming similar soil and geologic properties. Id. at 3–11 (Figure 3–5), 3–42. These shallower flows have the greatest interchange with surface waters and travel between points in the shortest amount of time. Id. at 3–42.

shouses amount of time. II. at 3-42.

3. Adjacent Waters, including Wetlands, Separated From Other "Waters of the Unite States" by Man-Made Dikes or Barriers, Natural River Berms, Beach Dunes and the Like Significantly Affect the Chemical, Physical, or Biological Integrity of (a)(1) Tbrough (a)(3) Waters

Physical, or Biological Integrity of (a)(1)
Through (a)(3) Waters

The terms earthen dam, dike, herm, and levee are used to describe similar structures whose primary purpose is to help control flood waters. Such structures vary in scale and size. A levee is an embankment whose primary purpose is to furnish flood protection from seasonal high water and which is therefore subject to water loading for periods of only a few days or weeks a year. Earthen embankments that are subject to water loading for proinged periods (longer than normal flood protection requirements) are called earth dams. There are a wide variety of types of structures and an even wider set of construction methods. These range from a poorly constructed, low earthen borm pushed up by a backhoe to a well-constructed, impervious core, tiprap lined levee that printest shouses mid to detach the floodplain from the channel, decreasing overbank flood events. S.B. Franklin, et al., "Complex Effects of Channelization and Levee Construction on Western Tennessee Floodplain Forest Fluction." Wetlands 29(2): 451–464 (2009). The investigation methods to determine the presence or absence of the hydrologic Function." Wetlands 29(2): 451–464 (2009). The investigation methods to determine the presence or absence of the hydrologic connection depend on the type of structure, the underlying soils, the presence of groundwater, and the depth of the water table. Department of the Army, U.S. Army Corps of Engineers, Engineering and Design—Design and Construction of Levees,

EM 1110-2-1913 (Washington, DC, EM 1110-2-1913 (Washington, DC. Department of the Army, 2000), p. 1-1. Man-made berms and the like are fairly common along streams and rivers accross the United States and often accompany stream channelization. S.B. Franklin, et al., "Complex Effects of Channelization and Levee Construction on Western Tennessee Floodplain Forest Function," Wetlands 29(2): 451-464 (2009). One study conducted in Portland, Oregon Gund that 42% of surveyed wetlands had dams, dikes, or berms. M. Kentula, et al., "Tracking Changes in Wetlands with Urbanization: Sixteen Years of Experience in Portland, Oregon USA.

wetlands had dams, dikes, or berms, M. Kentula, et al., "Tracking Changes in Wetlands with Urbanization: Sixteen Years of Experience in Portland, Oregon, USA." Wetlands 2(44):734-743 (2004). Likewise, over 90% of the tidal freshwater wetlands of the Sacramento-San Joaquin Delta have been diked or levced. C. Simenstad, et al., "Preliminary Results from the Sacramento-San Joaquin Delta Breached Levee Wetland Study." Interagency Ecological Program for the Sacramento-San Joaquin Estuary Newsletter 12(4):15-21 (1999). At least 40,000 kilometers of levees, floodwalls, embankments, and dikes are estimated across the United States, with approximately 17,000 kilometers of levees in the Upper Mississippi Valley alone. SE. Gergel, et al., "Consequences of Human-altered Floods: Levees, Floods, and Floodplain Forests along the Wisconsin River," Ecological Applications 12(6): 1755-1770 (2002). Adjacent waters separated from the tributary network by dikes, levees, berms and the like continue to have a hydrologic connection to downstream waters. This is because berms and similar feetures typically do not block all water flow, indeed, even dams, which are specifically designed and constructed to impound large amounts of water effectively and safely, do not prevent all water flow, but rather allow seepage under the foundation of the dam and through the dam itself. See, e.g., International Atomic Energy Agency, Factsheet on Investigating Leaks through Dams and Reservoirs, http://www.tc.ieae.org/tcweb/publications/foctsheet/sheet/20dr.pdf, U.S. Bureau of Reclamation, Provo Office, Safety of Dams, http://www.tc.ieae.org/tcweb/publications/foctsheet/sheet/20dr.pdf, U.S. Bureau of Reclamation, Provo Office, Safety of Dams, http://www.tc.ieae.org/tcweb/publications/foctsheet/sheet/20dr.pdf, U.S. Bureau of Reclamation, Provo Office, Safety of Dams, http://www.tc.ieae.org/tcweb/publications/foctsheet/sheet/20dr.pdf, U.S. Bureau of Reclamation, Provo Office, Safety of Dams, http://www.tc.ieae.org/tcweb/publications/foctsheet/sheet/20dr.p

38 to 14-39. Seepage is the flow of a fluid through the soil pores. Seepage through a dam, through the embankments, foundations or abturnests, for through a berm is a normal condition. D.A. Kovacic, et al., "Effectiveness of Constructed Wetlands in Reducing Nitrogen and Phenchone Event from Account." The Wetlands in Reducing Nitrogen and Phosphorus Export from Agricultural Tile Drainage. "Journal of Environmental Quality 29(4): 1262–1274 (2000); Federal Energy Regulatory Commission (FERC). "Chapter 14: Dan Safety Performance Monitoring Program," Engineering Guidelines for the Evaluation of Hydropower Projects (FERC, 2005), pp. 14–36 to 14–39. This is because water seeks paths of least resistance through the berm or dam and its foundation. Michigan Department of Environmental Quality, Seepage Through Earth Dams (2002), http://www.michigon.gov/deq/0,1607,7-135-

3313 3684 3723-9515-,00.html. All earth and rock-fill dams are subject to seepage through the embarkment, foundation, and abutments. Department of the Army, U.S. Army Corps of Engineers, Seepage Analysis and Control for Dams, EM 1110-2-1901, (Washington, D.C. Department of the Army, U.S. Army Corps of Engineers, Seepage Analysis and Control for Army, U.S. Army Corps of Engineers, Engineering and Design: General Design and Construction Considerations for Earth and Construction Considerations for Earth and Rock-filled Dams, EM 1110-2-2300 (Washington, D.C. Department of the Army, 2004), pp. 6-1 to 6-7. Concrete gravity and arch dams similarly are subject to seepage through the foundation and abutments. Department of the Army, U.S. Army Corps of Engineers, Seepage Analysis and Control for Dams, EM 1110-2-1901 (Washington, D.C. Department of the Army, Original 1986—Revised 1993), Page 1-1. Levees and the like are subject to breaches and breaks during times of floods. C. Nilsson, et al., "Fragmentation and Flow Regulation of the World's Large River Systems," Science 308(5720):405-408 (2005). Levees are similarly subject to failure in the case of externe events, such as the extensive levee failures caused by Hurricanees Katrina and similarly subject to railure in the case of extreme events, such as the extensive levee failures caused by Hurricanes Katrina and Rita. J.W. Day, et al., "Restoration of the Mississippi Delta: Lessons from Hurricanes Katrina and Rita." Science 315(819): 1679–1684 (2007). In designing levees and similar structures, seepage control is necessary to prevent possible failure caused by excessive uplift pressures, instability of the downstroam slope, piping through the emhankment and/or foundation, and erosion of material by migration into open pioints in the foundation and abutments. Id.; D.A.

Kovacic, et al., "Effectiveness of Constructed Wetlands in Reducing Nitrogen and Phosphorus Export from Agricultural Tile Drainage." Journal of Environmental Quality 19(4): 1262–1274 (2009); U.S. Department of the Interior. Bureau of Reclamation, Upper Colorado Region, see http://www.usbr.gov/uc/provo/progact/damsofety.html; International Atomic Energy Agency, Investigating Leaks through Dams and Reservoirs, see http://www.usbr.go/uches/publications/factsheets/sheet20dr.pdf; California Division of Safety of Dams, Embankment them.

The rate at which water moves through the embankment.htm.

The rate at which water moves through the embankment them and size of cracks and voids within the embankment. All but the smallest earthon dams are commonly built with internal subsurface drains to intercept water extreme events, such as the extensive levee failures caused by Hurricanes Katrina and

within the embankment. All but the smallest earthen dams are commonly built with internal subsurface drains to intercept water seeping from the reservoir (i.e., upstream side) to the downstream side. Department of the Army, U.S. Army Corps of Engineers, Construction Control for Earth and Rockfilled Dams, EM 1110–2–1911, September 30, 1995, Washington, DC 20314–1000, Page 1–1. Where it is not intercepted by a subsurface drain, the seepage will emerge downstream from or at the toe of the embankment.
Michigan Department of Environmental Quality, Seepage Through Earth Dams (2002), http://www.michigan.gov/deq/0,1607,7-135-

3313_3684_3723-9515-,00.html. Seepage may vary in appearance from a "soft." wet area to a flowing "spring." It may show up first as an area where the vegetation is lush and darker green. Cattalis, reach, mosses, and other marsh vegetation may grow in a seepage area. Michigan Department of Envitronmental Quality, Seepage Through Earth Dams (2002), http://www.michigan.gov/deg/0.1607,7-135-3313_3684_3723-9515-00.html.

.00.html.
Engineered berms are typically designed to interfere with the seasonal pattern of water level (hydroperiod) of the area behind the berm, reducing the frequency and severity of inundation. Berms are not designed to eliminate all hydrologic connection between the channel on one side and the area behind the berm on the other. It is almost always impracticable to build a berm that will not be overtopped by a flood of maximum severity, and most berms are not designed to withstand severe floods. See, e.g., Department of the Army, U.S. Army Corps of Engineers, Seepage Analysis and Control for Dams, EM 110–2–1901. (Washington, D.C. Department of the Army, U.S. Army Corps of Engineers, Seepage Analysis and Control for Dams, EM 110–2–1901. (Washington, D.C. Department of the Army, Original 1986—Revised 1993), Page 1–1. Levees are designed to allow seepage and are frequently situated on foundations having natural covers of relatively fine-grain imporvious to semipervious soils overlying pervious sands and gravels. Department of the Army, U.S. Army Corps of Engineers, Engineering and Design: Design Guidance for Levee Underseepage, ELT 1110–2–569, Washington, D.C. Department of the Army, 2005), pp. 1–9. These surface strata constitute impervious or semipervious blankets when considered in connection with seepage. Principals seepage control measures for foundation underseepage are (a) cutoff treoches, (b) riverside inpervious blankets, (c) landslide berms, (d) pervious tee trenches, and (e) pressure relief wells. Department of the Army, U.S. Army Corps of Engineers, Engineering and Design—Design and Construction of Levees, EM 1110–2–1913 (Washington, D.C. Department of the Army, 2000), p. 1–1. Overtopping of an embankment dam is very undesirable because the embankment materials may be croded away. Additionally, only a small number of concrete dams have been designed to be overtopped. Water normally passes through the main spillway or outlet works; it should pass over an auxiliary spillway only during periods of hig

Berm-like landforms known as natural levees occur naturally and do not isolate adjacent wellands from the streams that form them. Natural levees and the wellands and waters behind them are part of the floodplain, including along some small streams and streams in the Arid West, C.A. Johnston, et al., "Nutrien Dynamics in Relation to Geomorphology of Riverine

Wetlands," Soil Science Society of America Journal 63(2):357–357 (2001). Every flowing watercourse transports not only water, but sediment—eroding and rebuilding its banks and floodplains continually. Federal lateragency Stream Restoration Working Group, Stream Corridor Restoration: Principles, Processes and Practices, USDA National Engineering Handbook Part 653 (1999). Different deposition patterns occur under varying levels of streamflow, with higher flows having the most influence on the resulting shape of streambanks and floodplains. Id. In relatively flat landscapes drained by low-gradient streams, this natural process deposits the most sediment on the bank immediately next to the stream channel while floodplains farther from the channel are usually lower-lying wetlands ("backswamps" or "backwater wetlands") that receive less sodiment. See, e.g., C.A. Johnston, et al., "The Potential Role of Riverine Wetlands as Buffer Zones," in N.E. Haycock, et al., ed., Buffer Zones," in N.E. Haycock, et al., ed., Buffer Zones, "in N.E. Haycock, et al., ed., Buffer Zones, "in N.E. Haycock, et al., ed., Buffer Zones, "in N.E. Haycock, et al., ed., Buffer Zones Their Processes and Potential in Water Protection (Quest International, 1997), pp. 155–170. The somewhat elevated land thus built up at streams die is called a natural levee, and this entirely natural landform is physically and hydrologically similar to narrow, man-made berms. See, e.g., L.B. Leopold, et al., Fluvial Processes in Geomorphology (Toronto: General Publishing Co. Ltd., 1964). Natural levees are discontinuous, which allows for a hydrologic connection to the stream or river ia openings in the levees and thus the periodic mixing of river water and backwater. C.A. Johnston, et al., "Nutrient Dynamics in Relation to Geomorphology of Riverine Wetlands," Soil Science Society of America Journal 65(2): 557–577 (2001). In addition, streams with natural levees, in settings with no human interference whatsoever, retain hydrologic connection with their wetlands beh

previously mentioned, are connected via seepage.

Waters, including wetlands, separated from a stream by a natural or man-made berm serve many of the same functions as those discussed above on other adjacent waters. Furthermore, even in cases where a hydrologic connection may not exist, there are other important considerations, such as chemical and biological factors, that result in a significant nexus between the adjacent wetlands or waters and the nearby "waters of the United States," and (a)(1) through (a)(3) waters.

The movement of surface and subsurface both over berns and through soils and berns adjacent to rivers and streams is a hydrologic connection between wetlands and flowing watercourses. The intermittent connection of surface waters over top of, or around, natural and manmade berms further strengthens the evidence of hydrologic connection between wetlands and flowing watercourses. Both natural and man-made barriers can be topped by occasional floods or storm events. See, e.g., R.E. Turner, et al., "Wetland Sedimentation from Hurricanes Katrina and

Rita," Science 314(5798): 449–452 (2006);
P.A. Keddy, et al., "The Wetlands of Lakes
Pontchartain and Maurepsi: Past, Present
and Future," Environmental Reviews 15: 43–
77 (2007). When berms are periodically
overtopped by water, wetlands and waters
behind the barriers are directly connected to
and interacting with the nearby stream and
its downstream waters. In addition, surface
waters move to and from adjacent soils
(including adjacent wetlands osils)
continually. Along their entire length,
streams alternate between effluent (watergaining) and influent (water-losing) zones ast
he direction of water exchange with the
streambed and banks varies. Federal
Interagency Stream Restoration:
Principles. Processes and Practices, USDA
National Engineering Handbook Part 653
(1999). The adjacent areas involved in this
surface water exchange with a stream or river
are known as the hyporheic zone. Hyporheic
zone waters are part of total surface waters
temporarily moving through soil or sediment.
Like within-channel waters, these waters are
oxygenated and support living communities
of organisms in the hyporheic zone.
Because a hydrologic connection between

Because a hydrologic connection between adjacent wetlands and waters and downstream waters still exists despite the presence of a berm or the like, the chemical and biological connections that rely on a hydrologic connection also exist. For instance, adjacent waters behind herms can still serve important water quality functions, serving to filter pollutants and sediment hefore they reach downstream waters. Wetlands behind berms can function to filter pollutants before they enter the nearby tributary, with the water slowly released to the stream through seepege or other hydrological connections. See, e.g., L.L. Osborne and D.A. Kovacic, "Riparian Vegetated Buffer Strips in Water-Quality Rostoration and Stream Management," Freshwater Biology 29(2): 243–258 (1993); D.A. Kovacic, et al., "Effectiveness of Constructed Weallands in Reducing Nitrogen and Phosphorus Export from Agricultural Tile Drainage," Journal of Environmental Quality 29(4): 1262–1274 (2000). Their ability to retain sediment and floodwaters may be enhanced by the presence of the berm. For instance, some backwater wetlands in floodplain/riparian areas exhibit higher sedimentation rates than streamside locations. E.J. Kuenzler, et al., "Distributions and Budgets of Carbon, Phosphorus, Iron and Manganese in a Floodplain Swamp Ecosystem," Woter Resources Research Institute Report 157 (Chapel Hill, NC: University of North Carolina, 1980); C.A. Johnston, et al., "Not tient Dynamics in Relation to Geomorphology of Riverine Wetlands," Soil Science Society of America Journal 65(2): 557–577 (2001). The presence of manmade leves can actually increase of manmade leves can actually increase of manmade loves can actually increase of manmade loves can actually increase of manmade loves flood Alterations on Floodplain Denitrification," Global Change Filology 11(8): 1352–1367 (2005). However, the presence of manmade berms does limit

the ability of the river to connect with its adjacent wetlands through overbank flooding and thus limits sediment, water and nutrients transported from the river to the adjacent waters. Id.; JL. Florsheim and J.F. Mount, "Changes in Lowland Floodplain Sedimentation Processes: Pre-disturbance to Post-rehabilitation, Cosumnes River, CA," Geomorphology 56(3–4):305–323 (2003). However, the presence of a berm does not completely eliminate the transport of sediments and water from the river to the nearby adjacent wetland, as suspended sediments and water from the river to the nearby adjacent wetland, as suspended sediments and water can overflow both that under the control of th the ability of the river to connect with its natura and man-made levees, though me transport is usually more pronounced in settings with natural levees. See, e.g., R.E. Turner, et al., "Welland Sedimentation from Hurricanes Katrina and Rita," Science 314(5798):449–452 (2006); P.A. Keddy, et al., "The Weltands of Lakes Pontchartrain and Maurepas: Past, Present and Future," Employmental Review 1543, 77 (2007) Maurepas: Past, Present and Future,"
Environmental Reviews 15:43-77 (2007).
Sediment deposition over levees is
particularly enhanced by extreme events like
hurricanes. Id.; D.J. Reed, et al., "Reducing
the Effects of Dredged Material Levees on
Coastal Marsh Function: Sediment
Deposition and Nekton Utilization."
Environmental Management 37(5):671-685
(2006). Wetlands behind bernns, where the
system is extensive, can help reduce the
impacts of storm surges caused by
hurricanes. J.W. Day, et al., "Restoration of
the Mississippi Delta: Lessons from
Hurricanes Katrina and Rita," Science
315(5819):1679-1684 (2007).
Adjacent waters, including wetlands,
separated from water bodies by berms and
the like maintain ecological connection with
those water bodies. Though a berm may
reduce habitat functional value and may
prevent some species from moving back and Environmental Reviews 15:43-77 (2007)

prevent some species from moving back and forth from the wetland to the river, many major species that prefer habitats at the interface of wetland and stream ecosystem major species that prefer habitats at the interface of wetland and stream ecosystems remain able to utilize both habitats despite the presence of such a bern. Additional species that are physically isolated in either stream or wetlands habitat still interact stream or wetlands habitat still interact ecologically with species from the other component. Thus, adjacent wetlands with or without small berms can retain numerous similarities in ecological function. For example: Wetland bird species such as wading birds are able to utilize both wetland and adjacent stream/ditch habitats; wetland amphibians would be able to bypass the berm in their adult stage; aquatic invertebrates and fish would still interact with terrestrial/wetland predators and prey in common food web relationships despite the presence of a berm. See, e.g., C.S. Buther, and B. Zimpel, "Habitat Value of Isolated Waters to Migratory Birds," Prepared by Cornell Laboratory of Ornithology and The Cadmus Group, Inc. for U.S. Environmental Protection Agency Office of Wetlands Group, Inc. for U.S. Environmental Protection Agency Office of Wetlands Protection, (Washington, DC: Cornell and Cadmus, 1991); M.F. Willson and K.C. Halupka, "Anadromous Fish as Keystone Species in Vertebrate Communities," Conservation Biology 9(3):489–497 (1995); C.J. Cederholm, et al., "Pacific Salmon Garcasses: Essential Contributions of Nutrients and Energy for Aquatic and

Terrestrial Ecosystems," Fisheries 24(10):6–15 (1999): S.S. Schwartz and D.G. Jenkins, "Temporary Aquatic Habitats: Constraints and Opportunities," Aquatic Ecology 34:3–8 (2000): D.T. Bilton, et al., "Dispersai in Freshwater Invertebrates," Annual Review of Ecology and Systematics 32:159–81 (2001). One example of adjacent waters behind berms and the like are interdunal wetlands located in coastal areas, including some areas of the Great Lakes and along barrier islands. Interdunal wetlands form in swales or depressions within open dunes or between beach ridges along the coast and experience a fluctuating water table seasonally and yearly in synchrony with sea or lake level changes. W.E. Odum, "Non-Tidal Freshwater Wetlands in Virginia." Virginia Journal of Natural Resources Law 7: 421–434 (1988); D.A. Albert, Berthe, Borne of the Wind: An Introduction to the Ecology of Michigan Sand Dunes (Lansing, Mi: Michigan Natural Features Inventory, 2000), 63 pp.; D.A. Albert, Between Land and Lake: Michigan's Great Lakes Coastal Wetlands, Builletin E-2902 (Bast Lansing, Mi: Michigan State Liniversity Extension, 2003), 96 pp.; D.A. Albert, Natural Community Abstract for Interdunal Wetland (Lansing, Mi: Michigan Natural Features Inventory, 2007), 6 pp. For those along the ocean coast, they are typically formed as a result of oceanic those along the ocean coast, they are typically formed as a result of oceanic processes where the wetlands establish processes where use mountained behind relict dune ridges (dunes that were formed along a previously existing coast at line). Wetlands in the interdunal system are in close proximity to each other and to the surrounding (a)(1) through (a)(3) waters. Their proximity to one another and to the (a)(1) through (a)(3) waters indicates a close physical relationship between interdunal wetland systems and the traditional navigable waters, interstate waters, or the territorial seas. Despite the presence of the beach dunes, interdunal wetlands have chemical, physical, or biological connections that greatly influence the integrity of the nearby (a)(1) through (a)(3) waters. The wetlands are hydrologically connected to these (a)(1) through (a)(3) waters through unconfined, directional flow and shallow subsurface flow during normal precipitation events and extreme events. As proviously noted, they are linked to the rise and fall of the surrounding tides—the water-level fluctuatious of the nearby (a)(1) through (a)(3) waters are important for the dynamics of the wetlands. D.A. Albert, Between Land and Lake: Michigan's Great Lakes Coastal Wetlands. Bulletin E-2902 (Bast Lansing, Michigan State University Extension, 2003), 98 pp. The wetlands provide floodwater storage and attenuation, retaining and slowly releasing floodwaters before they reach the nearby (a)(1) through (a)(3) waters, as they serve important weter quality benefits. The wetlands store sediment and pollutants that water death and a control of the formed along a previously existing coast line). Wetlands in the interdunal system are serve important water quality benefits. The wetlands store sediment and pollutants that would otherwise reach the surrounding (a)(1) through (a)(3) waters. The wetlands are biologically connected to the surrounding (a)(1) through (a)(3) waters. For instance, they

provide critical habitets for species that utilize both the wetlands and the nearby (a)(1) through (a)(3) waters, supporting high diversity and structure. Habitat uses include basic food, shelter, and reproductive requirements. Aquatic insects, amphibians, and resident and migratory birds all use interdunal wetlands as critical habitat, and the wetlands provide better shelter than the nearby exposed beach. D.A. Albert, Borne of Michigan Sand Dunes (Lansing, MI: Michigan Natural Features Inventory, 2000), 63 pp.; S.M. Smith, et al., "Development of Vegetation in Dune Slack Wetlands of Cape Cod National Seashore (Massachusetts, USA)," Plant Ecology 194(2): 243–256 (2008). In marine coastal areas, the wetlands are

Cod National Seashore (Massachusetts, USA)." Plant Ecology 194(2): 243–256 (2008). In marine coastal areas, the wetlands are often the only freshwater system in the immediate landscape, thus providing critical drinking water for the species that utilize both the wetlands and the nearby (a)(1) through (a)(3) waters, although some interdunal wetlands are brackish in nature. See. e.g., C.M. Heckscher and C.R. Bartlett, "Rediscovery and Habitat Associations of Photuris Bethaniensis McDermott (Coleopters: Lampyridat), "The Coleopterists Bulletin 58(3): 349–353 (2004). Wetlands behind the extensive levee system in the Yazoo Basin are an example of adjacent waters behind man-made barriers. A regional hydrogeomorphic approach guidebook for the Yazoo Basin of the Lower Mississippi River Allavial Valley assesses the functions of these wetlands. R.D. Smith and C.V. Klimss, A Regional Guidebook for the Yazoo Basin of the Lower Mississippi River Allavial Valley assesses the functions of these wetlands. R.D. Smith and C.V. Klimss, A Regional Guidebook for Applying the Hydrogeomorphic Approach Assessing Wetland Functions of Selected Regional Wetland Subclasses, Yazoo Basin, Lower Mississippi River Allavial Volle, Prepared for the U.S. Army Corps of Engineers, REDO/EL TR-02-4 (2002), An extensive levee system was built along the view system to prevent Hooding of the Engineers, ERDC/EL TR-02-4 (2002). An extensive leves system was built along the river system to prevent flooding of the Mississippi River, resulting in drastic effects to the hydrology of the basin. Id. at 47. Despite the alteration of hydrology in the basin, extensive wetlands systems still exist behind the man-made and natural levees and maintain a hydrologic connection to the river system. These wetlands detain floodwater, detain procipitation, cycle nutrients, export organic carbon, remove elements and compounds, maiutain plant communities, and provide fish and wildlife habitat. Id. The functions in turn provide numerous and substantial benefits to the nearby tivet.

4. Conclusions Regarding Adjacent Waters

The scientific literature documents that vaters which are adjacent to (a)(1) through waters which are adjacent to (a)(1) through (a)(5) waters, including wetlands, oxbow lakes and adjacent ponds, are integral parts of tributary networks to (a)(1) through (a)(3) waters because they are directly connected to streams via permanent surface features that concentrate, mix, transform, and transport water and other materials, including food resources, downstream to larger rivers. Adjacent wetlands and other adjacent waters filter pollutants before they enter the tributary system, they attenuate flow during flood events, they regulate flow rate and timing, they trap sediment, and they input organic material into rivers and streams, providing the basic building blocks for their

healthy functioning. These waters also are heatily idintioning. These waters also are by providing habitat and refuge to many species, and storing and releasing food sources. The scientific literature demonstrates that adjacent waters in a watershed together exert a strong influence on the character and functioning of rivers, strongs and blue.

streams and lakes.
Adjacent waters, as defined, alone or in combination with other adjacent waters in a watershed, significantly affect the chemical, physical, or biological integrity of traditional navigable waters, interstate waters, and the territorial seas. Based on studies of waters in territorial seas. Based on studies of waters in riparian areas, flood plains, and their hydrologic connections through the tributary system there is sufficient scientific evidence regarding the important functions of these adjacent wetlands to demonstrate that, alone or in combination with similarly situated waters in the region, wetlands and open waters adjacent to any tributary have a significant effect on the chemical, physical, or biological integrity of traditional navigable waters, interstate waters, or the territorial seas. The reviewed scientific literature supports the conclusion that adjacent waters supports the conclusion that adjacent waters generally play a larger role in the ecological condition of smaller tributary systems, which, in turn, determines the effects on the chemical, physical, and biological health of larger downstream waters.

iii. "Other Waters"

The Report includes a focused evaluation The Keport includes a focused evaluation of the connections and effects to downstream waters for several regional types of streams and wetlands. Prairie streams, southwest intermittent and ephemeral streams, oxbow lakes, Carolina and Delmarva bays, prairie potholes, and vernal pools. These regional types were chosen for evaluation because they represent a broad geographic area as well as a diversity of water types based on their origin, landscape setting, hydrology, and other factors. Most prairie streams and southwest intermittent and ephemeral streams are likely to be considered tributaries to [al(1) through [a)[3) waters (with the exception of streams, for example, located in closed basins, which lack an [al(1) through [a)[3) water or a connection thereto); similarly, most oxbow lakes are likely to be considered adjacent to [a](1) through [a)[5) waters. Carolina and Delmarva bays, prairie potholes, and vernal pools may or may not be considered adjacent to [a](1) through [a)[5) waters. Where waters are not considered tributaries (e., waters in a solley himzestap. of the connections and effects to downstream be considered adjacent to [a](1) through [a](5) waters. Where waters are not considered tributaries (e.g. waters in a solely intrastate closed basin that does not contain a radiational navigable water, interstate water, or a territorial sea, or a connection thereto) or where waters, including wetlands, do not meet the proposed regulatory definition of adjacent, they should be evaluated to determine whether they are [a][7] waters. The agencies seek comment on establishing such categories, as well as on other options for addressing "other waters."

The term "other waters," refers to waters that cannot be considered "adjacent," to

that cannot be considered "adjacent" to downstream jurisdictional waters and that are not tributaries of such waters. "Other waters" are found outside the riparian zone and the floodplain, as waters within these

areas are considered to be "adjacent." As such, wetlands that are "other waters" typically will have unidirectional flow. As mentioned in Part II, section 2.B. above, many unidirectional wetlands are considered adjacent and interact with downstream jurisdictional waters through channels, shallow subsurface flow, or by providing additional functions such as storage and mitigating peak flows. Unidirectional wetlands that lack a confined surface connection or a shallow subsurface connection or a shallow subsurface connection or a shallow subsurface surrounded by uplands will typically fall under the definition of "other waters," and are often referred to in scientific literature and policy as "geographically isolated under the definition of "other waters," and are often referred to in scientific literature and policy as "geographically isolated waters." The term "geographically isolated should not he used to implicate the lack of connectivity to downstream waters, as these wetlands are often connected to downstream waters through deeper groundwater connections, biological connectivity of such wetlands will vary depending on landscape features such as distance from downstream waters and proximity to other wetlands of similar nature that as a group connect to jurisdictional downstream waters and proximity to other wetlands of similar nature that as a group connect to jurisdictional downstream waters. Report at 3–43, 5–2.

For purposes of assessing whether a perticular water is a "water of the United States" because it, alone or in combination with other similarly situated waters, has a significant nexus to an [a](1) through [a](3) water, the agencies are proposing to define each of the elements of hivier of Konnedi's

water, the agencies are proposing to define cach of the elements of Justice Kennedy's significant nexus standard in the definition of "significant nexus."

A. In the Region

of "significant nexus."

A. In the Region

The ageocies have determined that because the movement of water from watershed drainage basins to river networks and lakes shapes the development and function of these systems in a way that is critical to their long term health, the watershed is a reasonable and technically appropriate interpretation of Justice Kennedy's standard.

See, e.g., D.R. Montgomery, "Process Domains and the River Continuum," Journal of the American Water Resources Association 35:397-410 (1999).

Using a watershed as the framework for conducting significant nexus evaluations is scientifically supportable. Watersheds are generally regarded as the most appropriate spatial unit for water resource management. See, e.g., J.M. Omernik and R.G. Bailey, "Distinguishing Between Watersheds and Ecoregions," Journal of the American Water Resources Association 33.5: 939-40 (1997); D.R. Montgomery, "Process Domains and the River Continuum," Journal of the American Water Resources Association 35: 397-410 (1999); T.C. Winter "The Concept of Hydrologic Landscapes," Journal of the American Water Resources Association 37: 333-49 (2001); J.S. Baron, et al., "Meeting Ecological and Societal Needs for Freshwater," Ecological Applications 12: 1247-60 (2002); J.D. Allan, "Landscapes and Riverscapes: The Influence of Land Use on Stroam Ecosystems," Annual Review of Ecology Evolution and Systematics 35: 257-84 (2004); United States, EPA 841-8-0-8-002: U.S. Environmental Protection Agency,

Handbook for Developing Watershed Plans to Restore and Protect Our Waters: Planning & Implementation Steps (Washington D.C.: U.S. EPA, March 2008); P.J. Wgington, et al., "Oregon Hydrologic Landscapes: A Classification Framework," Journal of the American Water Resources Association 49:1163–82 (2013). Anthropogenic actions and natural events can have widespread effects within the watershed that collectively impact the quality of the relevant traditional navigable water, interstate water or territorial sea. United States, U.S. EPA and USDA/ARS Southwest Watershed Research Center, EPA/600/R-08/134, ARS/2330462008: The Ecological and Hydrological Significance of Ephemeral and Internittent Streams in the Ecological and hyperological significance of Ephemeral and Intermittent Streams in the Arid and Semi-arid American Southwest (Washington, D.C.; U.S. EPA and USDA/ARS Southwest Watershed Research Center, Levick et al., 2008) [Levick, et. al.). For these reasons, it is more appropriate to conduct a significant nexus determination at the watershed scale than to focus on a specific site, such as an individual stream segment. The watershed size reflects the specific water management objective, and is scaled up or down as is appropriate to meet that objective. If the objective is to manage the water quality in a particular receiving water body (the "target" water body), the watershed should include all those waters that are contributing to that target water since they will primarily

include all those waters that are contributing to that target water since they will primarily detormine the quality of the receiving water. The watershed that drains to the single point of entry to a traditional navigable water, interstate water or territorial sea is a logical spatial framework for the evaluation of the nexus. This is because, from a water quality management perspective, the (al(1), (a)(2) or (a)(3) water is the downstream affected water whose quality is dependent on the condition of the contributing upstream waters, including streams, lakes, and waters, including streams, lakes, and wetlands. To restore or maintain the health of the downstream affected water, it is wetiands. To restore or maintain the health of the downstream affected water, it is standard practice to evaluate the condition of the waters that are in the contributing watersheds and to develop a plan to address the issues of concern. The functions of the contributing waters are inextricably linked and have a cumulative effect on the integrity of the downstream traditional navigable water, interstate water or territorial sea. The size of that watershed can be determined by identifying the geographic area that drains to the nearest traditional navigable water, interstate water or the territorial seas, and then using that point of entry watershed to conduct a significant nexus evaluation. P.E. Black, "Watershed Functions," Journal of the American Water Resources Association 33.1:1—11 (1997).

The Corps is organized based on

33.1:1-11 (1997).

The Corps is organized based on watersheds and has used watershed framework approaches for water sources, navigation approaches for over 100 years, and in the regulatory program since its inception. Also, using a watershed framework is consistent with over two decades of practice by EPA and many other governmental, academic, and other entities which recognize that a watershed approach is the most effective framework to address water resource challenges. U.S.
Environmental Protection Agency, The

Wotershed Protection Approach Framework Wotershed Protection Approach Framework (Oct. 1991). The agencies both recognize the importance of the watershed approach by investing in opportunities to advance watershed protection and in developing useful watershed tools and services. For example, EPA is allowing states that are reorganizing programs to function on a watershed basis to have short-term backlogs on CWA section 402 National Pollution Discharge Elimination System (NPDES) permit review—without penalty. This Bexibility gives states time to synchronize the reissuance of major and minor permits the reissuance of major and minor permits within a watershed. By managing NPDES permits on a watershed basis, all the permits for discharges to the water body can be coordinated and the most efficient and coordinated and the most efficient and equitable allocation of pollution control responsibility can be made. U.S. Environmental Protection Agency, Why Watersheds, Pro Acot (February 1996). Applying a watershed approach continues to be a priority of EPA, and is one of the three key strategies the agency is using drive progress toward the Agency's health and environmental goals over the next five years. U.S Environmental Protection Agency, Y 2011–2015 Strategies Plan: Achieving Our Vision, 2010.

N. Similardy Situated

B. Similarly Situated

Scientists routinely aggregate the effects of groups of waters, multiplying the known effect of one water by the number of similar effect of one water by the number of similar waters in a specific geographic area, or to a certain scale. This kind of functional aggregation of non-adjacent (and other types of waters) is well-supported in the scientific literature. See, e.g., R.J. Stevenson and F.R. Hauer, "Integrating Hydrogeomorphic and Index of Biotic Integrity Approaches for Environmental Assessment of Wetlands," Journal of the North American Benthological Society 21(3): 502–513 (2002); S.G. Leibowitz, "Isolated Wetlands and Their Functions: An Ecological Perspective," Wetlands 23:517–531 (2003); D. Gamble, et al., An Ecological and Functional Assessment of Urban Wetlands in Central Orbio, Ohio EPA Technical Report WET/ 2007–3B (Columbus, OH: Ohio EPA Technical Report WET/ 2007–3B (Columbus, OH: Ohio ERA Technical Report WET/ 2007); C.R. Lane and E. D'Amico, "Calculating the Ecosystem Service of Water Storage in Isolated Wetlands using LiDAR in North Central Florida, USA," Wetlands 30:967–977 (2010); B.P. Wilcox, et al., "Evidence of Surface Connectivity for Texas Gulf Const Depressional Wetlands," Wetlands 30:967–977 (2010); B.P. Wilcox, et al., "Evidence of Surface Connectivity for Texas Gulf Const Depressional Wetlands," Wetlands 30:967–977 (2010); B.P. Wilcox, et al., "Evidence of Surface Connectivity for Texas Gulf Const Depressional Wetlands," Wetlands 30:967–977 (2010); B.P. Wilcox, et al., "Evidence of Surface Connectivity for Texas Gulf Const Depressional Wetlands," Wetlands 30:967–977 (2010); B.P. Wilcox, et al., "Evidence of Surface Connectivity for Texas Gulf Const Depressional Wetlands," Wetlands 30:967–977 (2010); B.P. Wilcox, et al., "Evidence of Surface Connectivity for texas Gulf Const Depressional Wetlands," Wetlands 30:967–977 (2010); B.P. Wilcox, et al., "Evidence of Surface Connectivity for texas Gulf Const Depressional Wetlands," Wetlands 30:967–977 (2010); B.P. Wilcox, et al., "Evidence of Surface Connectivity for texas Gulf Const Depressional Wetlands," Wetlands 30:967–977 (2010); B.P. Wilcox, et al., "Evidence of waters in a specific geographic area, or to a certain scale. This kind of functional inclining any moments well and several well and she separate when the scientific literature and the Report consistently documents that the health of larger downstream waters is directly related to the aggregate health of waters located upstream, including waters such as well-ands that may not be hydrologically connected but function together to prevent floodwaters and

contaminants from reaching downstream

waters.

In the aggregate, similarly situated wetlands may have significant effects on the quality of water many miles away, particularly in circumstances where numerous similarly situated waters are located in the region and are performing like functions that combine to influence downstream waters. See, e.g., A. Jansson et al., "Quantifying the Nitrogen Retention Capacity of Natural Wetlands in the Large-Scale Drainage Basin of the Baltic Sea," Landscope Ecology 13:249–262 (1998); W.J. Mitsch et ol., "Reducing Nitrogen Loading to the Gulf of Mexico from the Mississippi River Basin: Strategies to Counter a Persistent Ecological Problem," BioScience 51(5): 373–388 (2001); M.G. Forbes, et al., "Nutrient Transformation and Retention by Coastal Prairie Wetlands. Upper Gulf Coast, Texas," Wetlands 32(4):705–15 (2012). Cumulatively, many small wetlands can hold a large amount of snowmelt and precipitation, reducing the likelihood of flooding downstream. Report at 5–25 (citing D.E. Hubbard and R.L. Linder, "Spring Runoff Retention in Prairie Pothole Wetlands," Journal of Soil and Water Conservation 41(2):122–128 (1996)).

Scientists can and do routinely classify similar waters and wetlands into groups for a number of different reasons; because of In the aggregate, similarly situated

Scientists can and do routinely classify similar waters and weelands into groups for a number of different reasons; because of their inherent physical characteristics, because they provide similar functions, because they provide similar functions, because they were formed by similar geomorphic processes, and by their level of biological diversity, for example. Classifying wetlands based on their functions is also the basis for the U.S. Army Corps of Engineers hydrogeomorphic (HGM) classification of wetlands. MM. Brinson, A Hydrogeomorphic Classification for Wetlands (Washington, D.C.: U.S. Army Corps of Engineers, 1993). The HGM method is a wetlands assessment approach pioneered by the Corps in the 1990s, and extensively applied via regional handbooks since then. The Corps HGM method uses a conceptual framework for method uses a conceptual framework for identifying broad wetland classes based o common structural and functional features which includes a method for using local attributes to further subdivide the broad attributes to further subdivide the broad classes into regional subclasses. Assessment methods like the HCM provide a basis for determining if waters provide similar lunctions based on their structural attributes and indicator species. Scientists also directly measure attributes and processes taking place in particular types of waters during in-depth field studies that provide reference information that informs the understanding of the functions performed by many types of aquatic systems nationwide.

These waters, primarily depressional wetlands, small open waters and peatlands, wetlands. Small open waters and peatlands, are known to have important hydrologic.

are known to bave important hydrologic, water quality, and habitat functions which vary as a result of the diverse settings in which they exist across the country which they exist across the country. For example, a report that reviewed the results of multiple scientific studies concluded that depressional wellands lacking a surface outlet functioned together to significantly reduce or attenuate flooding. Report at 5–26 (citing A. Bullock and M. Acreman, "The

Role of Wetlands in the Hydrological Cycle, Hydrology and Earth System Sciences 7:358–389 (2003)). Some of the important factors which influence the variability of their functions and connectivity include the topography, geology, soil features, antecedent moisture conditions, and seasonal position of the water table relative to the wetland. Report wt 5-25

the water table relative to the wetland. Report at 5–25.

When proposing that "other waters" are sufficiently close and should be considered similarly situated, it is recognized that they are more likely to have similar influence with regard to their effect on the chemical, physical, or biological integrity of a downstream water identified in paragraphs (a)(1) through (a)(3). If a water is a great distance from a group of similar "other waters," it may be performing some of the same functions as those in the group, but their distance from each other or from downstream (a)(1) through (a)(3) waters will decrease the probability that it has some kind of chemical, physical, or biological connectivity to the downstream water, assuming that conditions governing the type and quantity of flows (e.g. slope, soil, and aquifer permeability, etc.) are similar. Id. at 5–2.5–41. -2, 5-41. Consideration of the aggregate effects of

wetlands and other waters often gives the most complete information about how such most complete information about how such waters influence the chemical, physical, or biological integrity of downstream waters. In many watersheds, wetlands have a disproportionate effect on water quality relative to their surface area because wetland plants slow down water flow, allowing suspended sediments, nutrients, and poliutants to settle out. They filter these materials out of the water received from large areas, absorbing or processing them, and then releasing higher quality water. National Research Council. Wellands: Characteristics and Boundories (Washington, D.C.: National Academy Press, 1995), p. 38. For a individual wetland, this is most pronounced where it lies immediately upstream of a drinking water intake, for example. See, e.g., C.A. Johnston, et al., "The Cumulative Effect of Wellands on Stream Water Quality and Quantity." Biogeochemistry 10:105–141 (1990). waters influence the chemical, physical, or

The structure and function of a river are The structure and function of a river are highly dependent on the constitueot materials that are stored in, or transported through the river. Most of the materials found in rivers originate outside of them. Thus, the fundamental way that "other waters" are able to affect river structure and function is by providing or altering the materials delivered to the river. Report at 1–13. Since the altoration of material fluxes depends on the functions within these waters and the degree of connectivity, it is an promise to consider

functions within these waters and the degree of connectivity, it is appropriate to consider both these factors for purposes of significant nexus under this provision.

Numerous factors affect chemical, physical, and biological connectivity, operating at multiple spatial and temporal scales, and interacting with each other in complex ways, to determine where components of aquatic systems fall on the connectivity-isolation gradient at a given time. Some of these factors include climate, watershed characteristics, spatial distribution watershed characteristics, spatial distribution. watershed characteristics, spatial distribution patterns, biota, and human activities and alterations. Id. at 3–33. Recognizing the limits on the ability to observe or document all of these interacting factors, it is reasonable to look for visible patterns in the landscape and waters that are often indicative of the connectivity factors, in determining what waters to aggregate. Due to relative similarity of soils, topography, or groundwater connections, for example, there may be a group of wetlands scattered throughout a watershed, at similar distances from the tributaries in the watershed and performing similar functions. It is appropriate to assess the significance of the nexus of those waters in the aggregate, consistent with Justice Kennedy's standard.

C. Significant Nexus

C. Significant Nexus

The scientific literature regarding "other waters" documents their functions, including the chemical, physical, and biological impact they can have downstream. Available literature indicates that "other waters" have important hydrologic, water quality, and habitat functions but have the shillity to affect downstream waters if and when a connection exists between the "other water" and downstream waters. Report at 6–1. "Other waters" generally fit into the category of unidirectional waters as described in the Report. However, there are some unidirectional waters that are in fact adjacent under (a)(6) to (a)(1) through (a)(3) waters (e.g., neighboring waters that are outside of the ripartian area and/or floodplain but that have a surface or shallow subsurface hydrologic connection to (a)(1) through (a)(5) waters). Connectivity of "other waters" to dewnstream waters that do not meet the definition of adjacent will vary within a watershed and over time, which is why a watershed and over time, which is why a case-specific significant nexus determination for "other waters" is necessary under (a)(7). See, e.g., id. at 6–2. The types of chemical, physical, and biological connections between "other waters" and downstream waters are described below for illustrative purposes. As described in the preamble above, when the agencies are conducting a case-specific determination for significant nexus under (a)(7), they examine the connections between he water (including any similarly situated waters in the region) and downstream waters and determine if those connections significantly affect the chemical, physical, or between the water (including any similarly situated waters in the region) and downstream waters and determine if those connections between the water (including any similarly situated waters in the region) and downstream waters and determined the water (including any similarly situated waters in the region) and downstream waters and determined the water (including any similarly situated waters in the region) and down The scientific literature regarding "other aters" documents their functions, includin observations where available, relevant scientific studies or data, or other relevant jurisdictional determinations that have been

made on similar resources in the region.

The hydrologic connectivity of "other waters" to downstream waters occurs on a gradient and can include waters that have gradient and can include waters that have groundwater or occasional surface water connections (through overland flow) to the tributary network and waters that have no hydrologic connection to the tributary network. Id. at 5–1. The connectivity of "other waters" to downstream waters will vary within a watershed as a function of local factors (e.g. position, topography, and soil characteristics). Id. at 3–41 to 3–43. Connectivity also varies over time, as the tributary network and water table expand and contract in response to local climate. Id.

at 3-31 to 3-33. Lack of connection does not necessarily translate to lack of impact; even when lacking connectivity, waters can still impact chemical, physical, and biological conditions downstream its less obvious than the physical offect that "other waters" have downstream its less obvious than the physical connections of waters that are table to the physical distance of "other waters" from the stream network. Despite this physical distance of "other waters" from the stream network. Despite this physical distance of "other waters" from the stream network. Despite this physical distance of "other waters" from the stream network. Despite this physical orgoundwater systems; over time, impacts in one part of the hydrologic system will be felt in other parts. T.C. Winter and J.W. LaBaugh, "Hydrologic Considerations in Defining Isolated Wetlands," Wetlands 23:532–540 (2003) at 538. For example, "other waters" hat overspill into downstream water bodies during times of abundant precipitation are connected over the long term. Id. at 539.
Wetlands that lack surface connectivity in a particular season or year can, nonetheless, be highly connected in wetter seasons or years. Report at 5-22 to 5-25. Many "other waters" interact with groundwater eisher by receiving groundwater discharge (flow of groundwater), or both. Id. at 5-23 (citing R.F. Lide, et al., "Hydrology of a Carolina R.F. Lide, et al., "Hydrology of a Ca Surface-Water Interactions in Headwater Forested Wetlands of the Canadian Shield Surface-Water interactions in Headwater Forested Wetlands of the Canadian Shield," Journal of Hydrology 181:127–47 (1996): R.K. Matheney and P.J. Gerla, "Environmental Isotopic Evidence for the Origins of Ground and Surface Water in a Prairie Discharge Wetland," Wetlands 16:109–120 (1996): D.O. Rosenberry and T.C. Winter. "Dynamics of Water-Table Fluctuations in an Upland between Two Prairie-Pothole Wetlands in North Dakota," Journal of Hydrology 191:266–289 (1997): J.E. Pyzoha, et al., "A Conceptual Hydrologic Model for a Forested Carolina Bay Depressional Wetland on the Coastal Plain of South Carolina, USA." Hydrological Processes 22:2689–2698 (2008). Factors that determine whether a water racharges groundwater or is a site of groundwater discharge include topography, geology, soil features, and seasonal position of the water table relative to the water. Id. at 5–24 (citing P.J. Phillips and R.J. Shedlock. geology, son eatures, and seasonal postion of the water table relative to the water. Id. at 5–24 (citing P.J. Phillips and R.J. Shedlock, "Hydrology and Chemistry of Groundwater and Seasonal Ponds in the Atlantic Coastal-Plain in Delaware, USA," Journal of Hydrology 141:157–78 [1993]; R.J. Shedlock, et al., "Interactions between Ground-Water and Wetlands, Southern Shore of Lakenichigan, USA," Journal of Hydrology 141:127–55 (1993); D.O. Rosenberry and T.C. Winter, "Dynamics of Water-Table Fluctuations in an Upland Between two Yeniters, "Dynamics of Water-Table Fluctuations in an Upland Between two Prairie-Pothole Wetlands in North Dakota," Journal of Hydrology 191:266–89 (1997); J.E. Pyzoba, et al., "A Conceptual Hydrologic Model for a Forested Carolina Bay Depressional Wetland on the Coastal Plain of South Carolina, USA," Hydrological Pracesses 22: 2689–88 (2008)]. Similarly, the magnitude and transit time of groundwater magnitude and transit time of gr

flow from an "other water" to downstream waters depend on several factors, including the intervening distance and the properties of the rock or unconsolidated sediments between the water bodies (i.e., the hydraulic conductivity of the material). Id. at 5–24. Surface and groundwater hydrological connections are those generating the capacity for "other waters" to affect downstream waters, as water from the "other water" may contribute to baseflow or stormflow through groundwater recharge. Id. at 5–25. Contributions to baseflow are important for maintaining conditions that support aquatic life in downstream waters. As discussed further below, even in cases where waters lack a connection to downstream waters, they can influence downstream waters waters, they can influence downstream water through water storage and mitigation of peak flows Id. at 5-36.

n at 5–36. The chemical effects that "other waters" The chemical effects that "other waters" have on downstream waters are linked to their hydrologic connection downstream, though a surface connection is not needed for a water to influence the chemical integrity of the downstream water. Because the majority of "other waters" are hydrologically connected to downstream waters via surface or groundwater connections, most "other waters" can affect water quality downstream water via connections of not meet the falthough these connections do not meet the (although these connections do not meet the definition of adjacency). D.F. Whigham and T. E. Jordan, "isolated Wetlands and Water Quality," Wetlands 23:541-549 (2003) at 542. T. E. Jordan. "Isolated Wetlands and Water Quality." Wetlands 23:541-549 (2003) at 542. "Other waters" can act as sinks and transformers for nitrogen and phosphorus, metals, pesticides, and other contaminants that could otherwise negatively impact downstream waters. Report at 5-30 (citing R.R. Brooks, et al., "Cobalt and Nickel Uptake by the Nyssaccae," Taxon 26:197-201 (1977); H.F. Hemond, "Biogeochemistry of Thoreau's Bog. Concord. Massachusetts." Ecological Monographs 59:507-526 (1940); C.B. Davis, et al., "Pratrie Pathole Marshes as Traps for Nitrogen and Phosphorus in Agricultural Runoff," in B. Richardson, ed., Selected Proceedings of the Midwest Conference on Wedland Values and Management, June 17-19, 1981; St. Paul, MN. The Freshwater Society, 1981), pp. 153-163; H.F. Humond, "The Nitrogen Budget of Thoreau's Bog., Ecology 64:99-109 (1983); K.C. Ewel and H.T. Odum, ed., Cypress Swamps, Gainesville, Florida: Budget of Thoreau's Bog," Ecology 84:99–109 (1983); K.C. Ewel and H.T. Odum, ed. (Vypress Swamps, (Cainesville, Florida: University of Florida Press, 1984); J.T. Moraghan. "Loss and Assimilation of 15N-nitrate Added to a North Dakota Cattail Marsh," Aquatic Botany 46:225–234 (1993); C.M. Kao, et al., "Non-point Source Pesticide Removal by a Mountainous Wetland," Water Science and Technology 46:199–206 (2002); P.I. Boon, "Biogeochemistry and Bacterial Ecology of Hydrologically Dynamic Wetlands," in D.P. Batzer and R.R. Sharitz, ed., Ecology of Freshwater and Estuarine Wetlands, in D.P. Batzer and R.R. Sharitz, ed., Ecology of Freshwater and Estuarine Wetlands (Berkeley, CA. University of California Press, 2006), pp. 115–176; E.J. Dunne, et al., "Phosphorus Release and Retention by Soils of Natural Isolated Wetlands," International Journal of Environment and Pollution 28:496–516 (2006); T.E. Jordan, et al., "Comparing Functional Assessments of Wetlands to Measurements of Soil Characteristics and Nitrogen Processing," Wetlands 27:479–497

(2007); S.L. Whitmire and S.K. Hamilton,
"Rates of Anaerobic Microbial Metabolism in
Wetlands of Divergent Hydrology on a
Glacial Landacape," Wetlands 28:703-714
(2008)). Also see, e.g., T.M. Isenhart,
Transformation and Fate of Nitrote in
Northern Prairie Wetlands, Ph.D. Dissertation
(Ames. Iowa: Iowa State University, 1992).
The body of published scientific literature
and the Report indicate that sink removal of
nutrients and other pollutants by "other
waters" is significant and geographically
widespread. Report at 5-30. Water quality
otharacteristics of "other waters" are highly
variable, depending primarily on the sources
of water, characteristics of the substrate, and
land uses within the watershed. D.F.
Whigham and T.E. Jordan, "Soalteed
Wetlands and Water Quality," Wetlands
23:541-549 (2003) at 541. These variables
inform whether an "other water" has a
significant nexus to an (al(1) through (al(3)
water. For instance, some prairie potholes
may improve water quality and may
efficiently retain nutrients that might
otherwise cause water quality problems
downstream; in such systems it may be their
lack of a direct hydrologic connection that
enables the prairie potholes to more
effectively retain nutrients. Id. at 543.
"Other waters" can be biologically
connected to each other and to downstream
waters through the movement of seeds,
macroinvertebrates, amphibians, reptiles,
birds, and mammals. Report at 5-31 to 5-33;
S.G. Leibewitz. "Isolated Wetlands and Their
Punctions: An Ecological Perspective,"
Wetlands 23:317-531 (2003) at 519. The

"Other waters" can be biologically connected to each other and to downstream waters through the movement of seeds. macroinvertebrates, amphibians, reptiles, birds, and mammals. Report at 5–31 to 5–33; S.G. Leibowitt, "isolated Wetlands and Their Functions: An Ecological Perspective." Wetlands 2:3-131–351 (2003) at 519. The movement of organisms between "other waters" and downstream waters is governed by many of the same factors that affect movement of organisms between adjacent wetlands and downstream waters (See Part II Section 2.A.d.). Report at 5–31. Generally. "other waters" are further away from stream channels than adjacent waters, making hydrologic connectivity less frequent, and increasing the number and variety of landscape harriers over which organisms must disperse. Id. Plants, though non-mobile, have evolved many adaptations to achieve disporsal over a variety of distances, including water-borne dispersal during periodic hydrologic connections. "httchhiking" on or inside highly mobile animals, and more typically via wind dispersal of seeds and/or pollen. Id. at 5–31 (citing S.M. Galatowitsch and A.G. van de Valk, "The Vegetation of Restored and Natural Prairie Wetlands," Ecological Applications 6:102–112 (1998); H.R. Murkin and P.J. Caldwell, "Avian Use of Prairie Wetland Ecology: The Contribution of the Marsh Ecology Research Program, (Arms, IA: Iowa State University Press, 2000), pp. 249–286; J.M. Amezaga, et al., "Biotic Wetland Comectivity—Supporting a New Approach for Wetland Policy," Acta Oecologica-International Journal of Ecology 23:213–222 (2002); J. Figuerola and A.J. Green, "Dispersal of Aquatic Organisms by Waterbirds: a Review of Past Research and Priorities for Future Studies," Preshwater Biology 47:483–494 (2002); M.B. Soons and G.W. Heil, "Reduced Galonization Capacity in

Fragmented Populations of Wind-Dispersed Grassland Forbs," Journal of Ecology 90:1033–1043 (2002); M.B. Soons, "Wind Dispersal in Freshwater Wetlands: Knowledge for Conservation and Restoration," Applied Vegetation Science 9:271–278 (2006); C. Nilsson, et al., "The Role of Hydrochory in Structuring Riparian and Wetland Vegetation," Biological Reviews 85:837–858 (2010)). Mammals that disperse overland can also contribute to connectivity and Wetland Vegetation." Biological Reviews 5:837-856 (2010)). Mammals that disperse overland can also contribute to connectivity and can act as transport vectors for hitchhikers such as algae. Id. at 5-32 (citing C.E. Shanks and G.C. Arthur. "Muskrat Movements and Population Dynamics in Missouri Farm Ponds and Streams." Journal of Wildlife Management 16:138-148 (1952); 1P. Roscher, "Alga Dispersal by Muskrat Intestinal Contents." Transactions of the American Microscopical Society 86:497-498 (1967); W.R. Clark, "Ecology of Muskrats in Prairie Wetlands," in H. R. Murkin, et al., ed., 2000, pp. 297-313]. Invertebrates also utilize birds and mamals to hitchhike, and these hitchhikers can be an important factor structuring invertebrate metapopulations in "other waters" and in aquatic habitats separated by hundreds of kilometers. Id. (citing J. Figuerola and A.J. Green. "Dispersal of Aquatic Organisms by Waterbirds: A Review of Past Research and Priorities for Future Studies." Freshwater Biology 47-483-494 (2002); J. Figuerola et al., "Invertebrate Eggs Can Fly: Evidence of Waterfowl-Mediated Gene Flow in Aquatic Invertebrates," American Naturalist 165:274-280 (2003); M.R. Allen. "Measuring and Modeling Dispersal of Adult Zooplankton," Oecologio 153:135-143 (2007); D. Frisch, et al., "Illyed Dispersal of Adult Zooplankton," Oecologio 153:135-143 (2007); D. Frisch, et al., "Illyed Dispersal of Adult Zooplankton," Oecologio 163:135-143 (2007); D. Frisch, et al., "Illyed Dispersal Capacity of a Broad Spectrum of Aquatic Invertebrates Via Waterbirds," Aquatic Sciences 69:568-574 (2007)). Numerous flight-capable insects use toth "other waters" and downstream waters; these insects move outside the tributary network for other lifecycle needs. Id. at 5-33 (citing D.D. Williams, "Environmental Constraints in Temporary Fresh Waters and Their Consequences for the Insect Founa," overland can also contribute to connectivity icting D.D. Williams, "Environmental Constraints in Temporary Fresh Waters and Their Consequences for the Insect Fauna," Journal of the North American Benthological Society 1:634–630 (1996); A.J. Böhonsak and D.G. Jenkins, "Ecological and Evolutionary Significance of Dispersal by Freshwater Invertebrates," Ecology Jetters 8:783–796 (2003)]. Amphihians and reptiles also move between "other waters" and downstream waters to satisfy part of their life history requirements. Id. at 5–33. Alligators in the Southeast, for instance, can move from tributaries to shallow, seasonal limesink wetlands for nesting, and also use these wetlands as nurseties for juveniles; subadults then shift back to the tributary network through overland movements. Id. network through overland movements. Id citing A.L. Subalusky, et al., "Ontogenetic Niche Shifts in the American Alligator Niche Shiris in the American Alligator Establish Functional Connectivity between Aquatic Systems, "Biological Conservation 142:1507–1514 (2009): Al. Subalusky, et al., "Detection of American Alligators in Isolated, Seasonal Wetlands," "Applied Herpetology 6:199–210 (2009). Similarly,

amphibians and small reptile species, such as frogs, toads, and newts, commonly use both tributaries and "other waters," during one or more stages of their life cycle, and can at times disperse over long distances. Id. [citing V.S. Lamoureux and D.M. Madison. "Overwintering Habitats of Radio-Implanted Green Frogs, Rana clamitans," Journal of Herpetology 33:430—435 (1999); K.J. Babbitt, et al., "Patterns of Larval Amphibian Distribution along a Wetland Hydroperiod Gradient," Canadian Journal of Zoology-Revue Conadienne De Zoologie 81:1539—1552 (2003); S.B. Adams, et al., "Instream Movements by Boreal Toads (Bufo boreas boreas)," Herpetological Review 36:27—33 (2005); D.M. Green, "Bufo americanus, American Toad," in M. Lannoe, ed., Amphibian Declines: The Conservation Status of the United States Species (Berkeley, CA: University of California Press, 2005), pp. 622–794; T.W. Hunsinger and M. J. Lannoo. "Notophthalmus viridescens, Eastern Newt," in M. Lannoe, ed., 2005, pp. 912–914; JW. Petranka and C.T. Holbrook. "Wetland Restoration for Amphibians: Should Local Sites & De Seigned to Support Metapnpulations or Patchy Populations?," Restoration Ecology 14-404—411 (2006)). Even when a surface or groundwater still have the ability to substantially waters still have the ability to substantially waters still have the ability to substantially

Even when a surface or groundwater hydrologic connection between a water and a downstream water is visibly absent, many water still have the ability to substantially influence the integrity of downstream waters. However, such circumstances would be uncommon. Id. at 5–22 to 5–25. Aquatic systems that may seem disconnected hydrologically are often connected but at irregular timeframes or through subsurface flow, and perform important functions that can be vital to the chemical, physical, or biological integrity of downstream waters. Some wetlands that are not adjacent may be hydrologically disconnected most of the time but connected to the stream network during rare high-flow events. The lack of a hydrologic connection also allows for water storage in "other waters," attenuating peak streamflows, and, thus, downstream flooding, and also reducing nutrient and soil pollution in downstream waters. Report at 5–25 to 5–26, 5–36. Prairie potholes a great distance from any tributary, for example, are thought to store significant amonates of runoff. Id. at 5–36 (citing R.P. Novitzki, "Hydrologic Characteristics of Wisconsin's Wetlands and Their Influence on Floods," in P. Gresson, et al., ed., Wetland Functions and Values: The Status of Our Understanding, Proceedings of the National Symposium on Wetlands (Minneapolis, MN: American Water Resources Association, 1979), p. 377–388; D.E. Hubbard and R.L. Linder, "Spring Runoff Retention in Prairie Pothnie Wetlands and Thereon." The continues for Estimating the Magnitude and Frequency of Floods in Minnesota." Water Resources Investigations Report 87–4170, (St. Paul, MN: U.S. Geological Survey, 1983); K.C. Wining, "Simulation of Streamflow and Wetland, Storage, Starkweather Coulee Subbasin, North Dakotz U.S. Geological Survey U.S. Geological Survey U.S. Geological Side and Storage, Starkweather Coulee Subbasin, North Dakotz U.S. Geological Survey U.S. Geological Su

Survey, 2002): R.A. Glesson, et al., Estimating Water Storage Capacity of Existing and Potentially Restorable Wetland Depressions in a Subbasia of the Red River of the North. U.S. Geological Survey Open-File Restor. 1916. Restor. VA: U.S. Gleological Survey, 2007); D.L. Lorenz, et al., "Techniques for Estimating the Magnitude and Frequency of Peak Flows on Small Streams in Minnesota Based on Through Water Year 2005," USGS Scientific Investigations Report 2009–5250, (Reston, VA: U.S. Geological Survey, 2010). Filling wetlands reduces water storage capacity in he landscape and causes runoff from rainstorms to overwhelm the remaining available water conveyance system. See, e.g., Survey, 2002); R.A. Gleason, et al. rainstorns to overwhelm the remaining available water conveyance system. See, e.g., C.A. Johnston, et al., "The Cumulative Effect of Wetlands on Stream Water Quality and Quantity," Biogeochemistry 10:105–141 (1990); A.L. Moscrip and D.R. Montgomery, "Urbanization, Flood Frequency, and Salmon Abundance in Puget Lowland Streams," Journal of the American Water Resources Association 33:1289–1297 (1997); N.E. Detenbeck, et al., "Evaluating Perturbations and Developing Restoration Strategies for Inland Wetlands in the Great Lakes Basin." Wetlands 19(4): 789–820 (1999); N.E. Beck, et al., "Relationship of Stream Flow Regime in the Western Lake Superior Basin to Watershed Type Characteristics," Journal of Watershed Type Characteristics." Journal of Hydrology 309(1-4): 258-276 (2005). Wetlands, even when lacking a hydrologic connection downstream, improve downstream water quality by accumulating

connection downstream, improve downstream water quality by accumulating nutrients, trapping sediments, and transforming a variety of substances. See, e.g., National Research Council, Wetlands: Characteristics and Boundaries (Washington, DC: National Academy Press, 1995), p. 38. Under today's proposal, on a case-specific basis, "other waters" that have a significant nexus to an [a](1) through [a](3) water are "waters of the United States" under [a](7). The scientific literature and data in the Report and elsewhere support that some "other waters" (including some of those in the case studies), along with other similarly situated waters in the region, do greatly affect the chemical, physical, or biological integrity of [a](1) through [a](3) waters, and thus would be jurisdictional under [a](7).

Though much of the literature cited in the Report relates to "other waters" that are wetlands, the Report indicates that non-wetland waters that are not [a](1) through [a](6) waters also can have chemical, physical, or biological connections that

(a)(6) waters also can have chemical ophysical, or biological connections that significantly impact downstream waters. For instance, non-adjacent ponds or lakes that are not part of the tributary network cen still be connected to downstream waters through connected to downstream waters through chemical, physical, and biological connections. Lake storage has been found to attenuate peak streamflows in Minnesota. Id. at 5–25 (citing J. Jacques and D.L. Lorenz, Techniques for Estimating the Magnitude and Frequency of Floods of Ungauged Streams in Minnesota, USGS Water-Resources Description. Resources Investigations Report 84-4170 (Washington, DC: U.S. Geological Survey, 1988); D.L. Lorenz, et al., Techniques for Estimating the Magnitude and Frequence Peak Flows on Small Streams in Minnesota Based on Data through Water Yeor 2005, U.S.

ol. 79, No. 76 / Monday, April 21, 20

Geological Survey Scientific Investigations Report 2009–5250 (Reston, VA: U.S. Geological Survey, 2010). Similar to wetlands, ponds are often used by invertebrate, reptile, and amphibian species that also utilized downstream waters for various life history requirements, particularly because many ponds, particularly temporary ponds, are free of predators, such as fish, that prey on larvae. The American toad and Eastern newt are widespread habitat generalists that can move among streams, wetlands, and ponds to take advantage of each aquatic habitat, feeding on aquatic invertebrate prey, and avoiding predators. See, e.g., id. at 5–33 (citing K.J. Babbit et al., "Patterns of Larval Amphibian Distribution along a Wetland Hydroperiod Gradient," Canadian Journal of Zoology-Revue Canadienne De Zoologie 81:1539–1552 (2003); D.M. Green, "Bufo americanus, American Toad," in M. Lannoo, ed., Amphibian Declines: The Conservation Status of United States Species, (Berkeley, CA: University of California Press, 2005), pp. 892–794; T.W. Hunsinger and M.J. Lannoo, "Notophthalmus wiridescens, Eastern Newt," in M. Lannoo, ed., Amphibian Declines: The Conservation Status of United States Species, (Berkeley, CA: University of California Press, 2005), pp. 912–914; J.W. Petranka and C.T. Holbrook, "Wetland Restoration for Amphibians: Should Local Sites Be Designod to Support Metapopopulations or Patchy Populations?", **Restoration Ecology 14:404–411 (2006)). Additionally, stream networks that are not part of the tributary system (e.g., streams in closed basins without an (al(1) hrmugh (al)) waters) may likewise have a significant impact on the chemical, physical, or biological integrity of downstream waters. Such streams may also provide habitat to insect, amphibian, and reptile species that also use the tributary network. groundwater to downstream waters, such streams may also provide habitat to insect, amphibian, and reptile species that also use the tributary network.

Additional Request for Public Comment on Other Waters'

"Other Waters"
To agencies are considering whether to determine by rule that prairie potholes. Carolina and Delmarve bays, pocosins, Texas coastal prairie weldands, western vernal pools, and perhaps other categories of waters, either alone or in combination with "other waters" of the same type in a single point of entry watershed have a significant nexus and are jurisdictional. R.W. Tiner, "Geographically isolated Wellands of the United States," Wellands 23(3):494–516 (2003); M.G. Forbes, et al., "Nutrient Transformation and Retention by Coastal Prairie Wetlands, Upper Glif Coast, Texas," Prairie Wetlands, Upper Gulf Coast, Texas, Wetlands 32(4): 705–715 (2012). These Wetlands 32(4): 705-715 (2012). These waters would not require a case-by-case analysis. At the same time, the agencies could determine by rule that playa lakes, an perhaps other categories of waters, do not have a significant nexus and are not jurisdictional. Those waters would not be subject to a case-by-case analysis of significant nexus. As the science develops, the agencies may determine that additional categories of "other waters" have a

significant nexus and are thus categorically jurisdictional. The specific categories of "other waters" for which there is currently evidence of a significant nexus are discussed below:

a. Prairie potholes are a complex of glacially formed wetlands, usually occurring in depressions that lack permanent natural outlets, that are found in the central United States and Canada. Report at 5–57. The vast area they occupy is variable in many aspects, including climatically, topographically, goologically, and in terms of land use and alteration, which imparts variation on the potholes themselves. Prairie potholes demonstrate a wide range of hydrologic permanence, from holding permanent standing water to wetting only in years with high precipitation, which in turn influences the diversity and structure of their biological communities. Owing in large part to their spatial and temporal variability, individual prairie potholes span the entire continuum of connectivity to and isolation from the river network and other bodies of water. Potholes generally accumulate and retain water effectively due to the low permeability of their underlying soil, which can modulate flow characteristics of nearty streams and rivers. Potholes also can accumulate rivers. Potholes also can accumulate chemicals in overland flow, thereby reducing rivers. Potnoies also can accuminate chemicals in overland flow, thereby reducing chemical loading to other bodies of water. When potholes are attificially connected to streams and lakes through drainage, isolation is eliminated and they become sources of water and chemicals. Potholes also support a community of highly mobile organisms, from plants to invertebrates that move among potholes and that can biologically connect the entire complex to the river network. Based on these connections and the strength of their effects, individually or in combination with other prairie potholes in the watershed, on the chemical, physical, or biological integrity of an (a)(1) through (a)(3) water, the agencies could conclude by rule that prairie potholes have a spirificant nexus and are jurisdictional. The agencies' determination will be informed by the final version of the Report and other available

and are jurisdictional. The agencies determination will be informed by the final version of the Report and other available scientific information.

b. Carolina and Delmarva bays are ponded depressional wetlands that occur along the Atlantic coastal plain from northern Florida to New Jursey. Id. at 5-49. Most bays receive water through precipitation, no lack natural surface outlets. Both mineral-based and peat-based bays have shown connections to shallow groundwater. Bays typically are in proximity to each other or to open waters, providing the potential for surface water connections in large rain events via overland flow. Fish are reported in bays that are known to dry out, indirectly demonstrating surficial connections. Amphibians and known to dry out, indirectly demonstrating surficial connections. Amphibians and reptiles use bays extensively for breeding and for rearing young. These animals can disperse many meters on the landscape and can colonize, or serve as a food source to, downstream waters. Similarly, bays foster abundant insects that have the potential to become part of the downstream food chain. Humans bave ditched and channelized a high preventage of have creating new vertices. high percentage of bays, creating new surface connections to "other waters" and allowing

transfer of nutrients, sediment, and other pollutants such as methylmercury. Based on these connections and the strength of their effects, individually or in combination with other Carolina or Delmarve bays in the watershed, on the chemical, physical, or biological integrity of an (a)(1) through (a)(3) water, the agencies could conclude by rule that Carolina and Delmarve bays have a significant nexus and are jurisdictional. The agencies' determination will be informed by the final version of the Report and other available scientific information.

C. Vernal pools are shallows, seasonal

c. Vernal pools are shallow, seasonal wetlands that accumulate water during colder, wetter months and gradually dry up during warmer, drier months. Id. at 5–66. colder, wetter months and gradually dry up during warmer, drier months. Id. at 5-66. Western vernal pools are seasonal wetlands associated with topographic depressions, soils with poor drainage, mild, wet winters and hot, dry summers in western North America from southeastern Oregon to northern Baja California, Mexico (Id. at 5-67, citing E.T. Bauder and S. McMillan, "Current Distribution and Historical Extent of Vernal Pools in Southern California and Northern Baja California, Mexico," pp. 56-70 in C.W. Witham, et al., editors. Ecology. Conservation, and Management, 1998). Because their hydrology and ecology are so tightly coupled with the local and regional geological processes that formed them, western vernal pools typically occur within "vernal pool landscapes," or complexes of pools in which swales connect pools to each other and to seasonal streams (Id. at 5-67 to 5-68, citing W.A. Weitkamp, et al., "Pedogenesis of a Vernal Pool Entisol-Alfisol-Vertisol Catena in Southern Alfisol-Vertisol Catena in Southern California," Soil Science Society of America Journal 60:316323 (1996); D.W. Smith and Journal 60:316323 (1996); D.W. Smith and W.L. Verrill, "Vernal Pool Soil-Landform Relationships in the Central Valley, California," pp. 18–23 in C.W. Witham, et al., editors, Ecology, Conservation, and Management of Vernul Pool Ecosystems—Proceedings from a 1996 Configence (California Native Plant Society, Sacramento, CA.1998); M.C. Rains, et al., "The Role of Perched Aquifers in Hydrological Connectivity and Biggeochemical Processes in Vernal Pool Landscapes, Central Valley, California," Hydrological Processes 20:1157–1178 (2008)). Despite differences in geology, climate, and biological communities, same common findings about the hydrologic connectivity of vernal pools in different regions, including Western vernal pools, include widence for temporary or permanent oudets, frequent filling and spilling of higher pools into lower elevation swales and stream channels, and conditions supporting subsurface flows through pools without perched aquifers to nearby streams. Nonglaciated vernal pools in western states are reservoirs of biodiversity and can be connected genetically to other locations and aquatic habitats through wind- and animal-mediated dispersal. Based on these connections and the strength of their effects, individually or in combination with other western vernal pools in the watershed, on the chemical, physical, or biological integrity of an [4](1) through [4](3) water, the agencies could conclude by rule that western vernal W.L. Verrill, "Vernal Pool-Soil-Landform Relationships in the Central Valley, California" nr. 15-23 in C.W. Witham, a an (a)(1) through (a)(3) water, the agencies could conclude by rule that western vernal pools have a significant nexus and are

jurisdictional. The agencies' determination will be informed by the final version of the Report and other available scientific information. The jurisdictional status of orenal pools located in other areas will be determined on a case-by-case significant nexus analysis with any similar situated waters in the single point of entry watershed. For example, insects and amphibians that can live in streams or permanent pools opportunistically use glaciated vernal pools in the Northeast and Midwest as alternative breeding habitat, erigge from predators or environmental stressors, hunting or foraging habitat, or stepping-stone corridors for dispersal and migration.

d. The word pocosin comes from the Algonquin Native American word for "swamp on a hill," and these evergreen shrub and tree dominated landscapes are found from Virginia to northern Florida, but mainly in North Carolina. (C.J. Richardson, "Pocosins: Hydrologically Isolated or Integrated Wetlands on the Landscape?." Wetlands 23(3):553–576 (2003)]. Usually, there is no standing water present in these peat-accumulating wetlands, hut a shallow water table leaves the soil saturated for much of the year. They range in size from less than an acre to several thousand acres. The slow movement of water through the dense organic matter in pocosins removes excess nutrients deposited by rainwater. The same an acre to several thousand acres. The slow movement of water through the dense organic matter in pocosins removes excess nutrients deposited by rainwater. The same organic matter also acidifies the water. This pure water is slowly released to downstream waters and estuaries, where it helps to maintain the proper salinity, nutrients, and acidity. [Id.] Because pocosins are the topographic high areas on the regional landscape, they serve as the source of water for downstream areas. Pocosins often have seusonal connections to drainageways leading to estuaries or are contiguous with other wetlands draining into perennial streams or estuaries. [R.W. Tiner. "Geographically Isolated Wetlands of the United States." Wetlands 23(3):494–516 (2003). Other pocosins have been ditched and are directly connected to streams. [Id.] The draining of pocosins and decreased salinity in estuaries may be having a negating the effect on brown shrimp in North Carolina. [Id.] Based on these connections and the strength of their effects, individually or in combination with other pocosins in the watershed, on the chemical, physical, or biological integrity of an [a](1) through [a](3) water. the seencies could conclude by rule watersned, on the chemical, physical, or biological integrity of an (al(1) through (a)(3) water, the agencies could conclude by rule pocosins have a significant nexus and are jurisdictional. The agencies' determination will be informed by the final version of the Report and other available scientific information.

information.

e. Along the Gulf of Mexico from western Louisiana to south Texas, freshwater wetlands occur as a mosaic of depressions, ridges, intermound flats, and minm mounds. (M.G. Forbes, et al., "Nuttient Transformation and Retention by Coastal Pearlies Wellands, Inner Gulf Coast Towar." Prairie Wetlands, Upper Gulf Coast, Texas, Wetlands 32(4): 705-715 (2012)). These Wetlands 32(4): 705-715 (2012)). These coastal prairie wetlands were formed thousands of years ago by ancient rivers and bayous and once occupied almost a third of the landscape around Galveston Bay, Texas. Texas coastal prairie wetlands are locally.

abundant and in close proximity to other coastal prairie wetlands and function together cumulatively. (N. Enwright, et al., "Using Geographic Information Systems (CIS) to Inventory Coastal Prairie Wetlands Along the Upper Gulf Coast, Texas," Wetlands 31:687–687 (2011). Collectively as a complex, Texas coastal prairie wetlands may be geographically and hydrologically connected to each other via swales and connected to downstream waters, contributing flow to those downstream waters. (B.P. Wilcox, et al., "Evidence of Surface Connectivity for Texas Gulf Coast Depressional Wetlands." Wetlands 31(3):451–458 (2011). Cumulatively, these wetlands can control nutrient release levels 31(3):451-4458 (2011)). Cumulatively, these wetlands can control nutrient release levels and rates to downstream waters, as they capture, store, transform and pulse releases for intrinents to those waters. (M.G. Forbes, et al., "Nutrient Transformation and Retention by Coastal Prairie Wetlands, Upper Gulf Coast, Texas," Wetlands 32(4): 705-715 (2012)). Based on these connections and the strength of their effects, individually or in combination with other coastal prairie wetlands in the watershed, on the chemical, physical, or biological integrity of an (a)[1 hrough (a)[3) water, the agencies could conclude by rule Texas coastal prairie wetlands by rule Texas coastal prairie wetlands have a significant nexus and are jurisdictional. The agencies' determination will be informed by the final version of the Report and other available scientific

will be informed by the final version of the Report and other available scientific information.

The agencies could also conclude that playa lakes in the Great Plains even in combination with other playa lakes in a single point of entry watershed always lack a significant nexus and therefore are not jurisdictional. Playa lakes are round, shallow wetlands found primarily in the High Plains, a subregion of the Great Plains in the western and Midwestern United States. (D.A. Hankos, and L.M. Smith, "Past and Future Impacts of Wetland Regulations on Playas," Wetlands 23(3):577–589 (2003); R.W. Tiner,
"Geographically Isolated Wetlands of the United States," Wetlands 23(3):494–516 (2003). Each playa typically occurs within a closed or terminal watershed, where all water in the watershed drains to the playa, (D.A. Haukos, and L.M. Smith, "Past and future Impacts of Wetland Regulations on Playas," Wetlands 23(3):577–589 (2003). As such, playas typically do not drain to an (a)(1) through (a)(3) water. Most playas are fed by precipitation and associated runoff, though a few are fed by groundwater. (R.W. Tiner, "Geographically Isolated Wetlands of the United States," Wetlands 23(3):494–516 (2003). Most playas fill with water only after spring rainstorms when freshwater collects in the round depressions of the otherwise flat landscape of west Texas, Oklahoma, New Mexico, Colorado, and Kanassa. Although playas play a role in groundwater recharge of Mexico, Colorado, and Kansas. Although playas play a role in groundwater recharge o the Ogallala Aquifer, in local floodwater storage, and in provision of wildlife habitat, available scientific literature indicates that their chemical, physical, or biological connections to and effects on (all') through (al'3) waters are of a limited and tenuous nature.

The agencies seek comment, data, and information on whether there are

subcategories of "other waters" or specific combinations of characteristics that are "likely, in the majority of cases, to perform important functions for an aquatic ecosystem incorporating navigable waters," and, thus, should be per se jurisdictional. For example, if there are additional studies addressing the connectivity of prairie potholes in the Red River Valley, including the factors influencing that connectivity and how it is important to particular downstream waters, that would be relevant information.

Appendix B

Legal Analysis

Background

Background
Congress enacted the Federal Water
Pollution Control Act Amendments of 1972,
Public Law 92–500, 86 Stat. 816, as amended,
33 U.S.C. 1251 et seq.) Clean Water Act or
CWA) "to restore and maintain the chemical,
physical, and biological integrity of the
Nation's waters." 33 U.S.C. 1251(a)." The
U.S. Supreme Court first addressed the scope
of "waters of the United States" protected by
the CWA in United States Nierside
Bayview Homes, 474 U.S. 121 (1985), which
involved wetlands adjacent to a traditional
navigable water in Michigan. In a unanimous
opinion, the Court deferred to the Corps'
ecological judgment that adjacent wetlands
are "inseparably bound up" with the waters
to which they are adjacent, and upheld the
inclusion of adjacent wetlands in the
regulatory definition of "waters of the United
States." Id. at 134. The Court observed that
the broad objective of the CWA to restore and
maintain the integrity of the Nation's waters
incomposited a broad systemic view of the the broad objective of the CWA to restore and maintain the integrity of the Nation's waters "incorporated a broad, systemic view of the goal of maintaining and improving water quality. . . . Protection of aquatic ecosystems, Congress recognized, demanded broad federal authority to control pollution, for 'lyaler moves in hydrologic cycles and it is essential that discharge of pollutants be controlled at the source.' In keeping with these views, Congress chose to define the waters covered by the Act broadly." Id. at 132–33 (cithn's Senate Report 92–414).

these views, Congress chose to define the waters covered by the Act broadly." Id. at 132–33 (citing Senate Report 92–414). The issue of CWA jurisdiction over "waters of the United States" was addressed again by the Supreme Court in Solid Waste Agency of Northern Cook County v. U.S. Army Corps of Engineers, 531 U.S. 159 (2001) (SWANCC). In SWANCC, the Court (in a 5–4 opinion) held that the use of "isolated" onnavigable intrastate ponds by migratory birds was not by itself a sufficient basis for the exercise of Federal regulatory authority under the CWA. The SWANCC Court noted that in Riverside it had "found that Congress" concern for the protection of water quality and aquatic ecosystems indicated its intent to regulate wetlands "inseparably bound up" with the "waters of the United States" and that "it was the significant nexus between the wetlands and "navigable waters" that informed our reading of the CWA" in that

case. Id. at 167. SWANCC did not invalidate (a)[3] or other parts of the regulatory definition of "waters of the United States." Five years after SWANCC, the Court again addressed the CWA term "waters of the United States" in Ropanos v. United States. 547 U.S. 715 (2006). Rapanos involved two consolidated cases in which the CWA had been applied to wetlands adjacent to nonnavigable tributaries of traditional navigable waters. All Members of the Court agreed that the term "waters of the United States" encompasses some waters that are not navigable in the traditional sense. A four-justice plurality in Rapanos interpreted the Justice plurality in Rapanos interpreted the term "waters of the United States" as term "waters of the United States" as covering "relatively permanent, standing or continuously flowing bodies of water . . . "id. at 739, that are connected to traditional navigable waters, id. at 742, as well as wetlands with a "continuous surface connection . . "to such water bodies, id. (Scalia, J., plurality opinion). The Rapanos plurality noted that its reference to "relatively permanent" waters did "not necessarily exclude streams, rivers, or lakes that might dry up in extraordinary circumstances, such as drought," or "seasonal rivers, which contain continuous flow during dry months . . . "Id. at 732 n. 6 (emphasis in original). Justice Kennedy's flow during dry months'' *Id*. at 732 (*emphasis in original*). Justice Kennedy's concurring opinion took a different approach. Justice Kennedy concluded that "to constitute" navigable waters' under the Act, a water or wetland must possess a 'significant nexus' to waters that are or were navigable in fact or that could reasonably be so made. "Id. at 759 (citting SWANCC, 531 U.S. at 167, 172). He concluded that wetlands possess the requisite significant nexus if the wetlands "either alone or in combination with similarly situated (wetllands in the region, significantly affect the chemical, physical, and biological integrity of other covered waters more readily understood as "navigable." "547 U.S. at 780. Justice Kennedy's opinion notes that such a relationship with navigable waters must be more than 'speculative or insubstantial." "Id. at 780. In Rapanos, the four dissenting Justices, who would have affirmed the court of appeals' application of the pertinent regulatory provisions, concluded that the term "waters of the United States" encompasses, inter alia, all tributaries and wetlands that satisfy either the plurality standard or that of Justice Kennedy, Id. at 810 & n.14 (Stevens, J., dissenting). Neither the plurality or the Kennedy poinions invalidated any of the regulatory provisions confining "waters of the United States."

The Circuit Courts of Appeals are not uniform as to the controlling standard for "waters of the United States."

The First, Third and Eighth Circuits have concluded that CWA Jurisdiction exists if either Justice Kennedy, Id. concurring opinion took a different approach. Justice Kennedy concluded that "to

either Justice Kennedy's standard or the either Justice Kennedy's standard or the phurality's standard is met. United States v. Johnson, 467 F.3d 56, 66 (1st Cir. 2006), cert. denied, 552 U.S. 948 (2007); U.S. v. Donovan 561 F.3d. 174, 176 (3rd Cir. 2011), cert. denied, 132 S.Ct. 2409 (2012); U.S. v. Bailey, 571 F.3d 791, 798–99 (8th Cir. 2009). The Seventh and Ninth Circuits limited their holdings that the Kennedy standard applied to the facts of the cases before them, and did not foreclose the possibility that in some cases the plurality's standard might apply, N. Cal. River Watch v. City of Headdsburg, 496 F.3d 993, 999–1000 (9th Cir. 2007), cert. denied, 552 U.S. 1180 (2008); United States v. Gerke Excuvating, Inc., 464 F.3d 723, 725 (7th Cir. 2006), cert. denied, 552 U.S. 810 (2007). The Fifth and Sixth Circuits did not choose a controlling standard because the waters at issue satisfied both standards. United States v. Lucas, 516 F.3d 316, 326–27 (5th Cir. 2008), cert. denied, 553 U.S. 822 (2008); United States v. Cundiff, 555 F.3d 200, 210–13 (6th Cir. 2009), cert. denied, 558 U.S. 818 (2009). The Eleventh Circuit has held that only the Kennedy standard determines jurisdiction. United States v. McWane and McWane v. United States, 555 U.S. 1045 (2008). No Circuit Court has held that only the plurality standard applies.

Traditional Navigable Waters

Traditional Navigable Waters

EPA and the Corps are proposing no changes to the existing regulation related to traditional navigable waters and at paragraph (a)(1) will continue to assert jurisdiction over all waters which are currently used, or were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters which are subject to the ebb and flow of the tide. See e.g., 33 CFR 328.3(a)(1); 40 CFR 230.3(s)(1); 40 CFR 122.2 ("waters of the U.S."). These "(a)(1) waters' are the "traditional navigable waters." These (a)(1) waters include all of the waters defined in 33 CFR part 329, which implements sections 9 and 10 of the Rivers and Harbors Act, and by numerous decisions of the Federal courts, plus all other waters that are navigable-infact (e.g., the Great Salt Lake, UT and Lake Minnetonka, MN).

To determine whether a water body constitutes an (a)(1) water under the regulations, relevant considerations include Corps regulations, prior determinations by the Corps and by the Federal courts, and case law. Corps districts and EPA regions would determine whether a particular water body is a traditional navigable water based on application of those considerations to the specific facts in each case.

As noted above, the (a)(1) waters include, but are not limited to, waters that meet any of the tests set forth in 33 CFR part 329 (e.g., the water body is (a) subject to the ebb and flow of the tide, and/or (b) the water body is presently used, or has been used in the past, or may be susceptible for use (with or without reasonable improvements) to transport interstate or foreign commerce). The Corps districts have made determinations in the past under these regulations for purposes of asserting in interstate or foreign commerce, including all waters which are subject to the ebb and

The Corps districts have made determinations in the past under those regulations for purposes of asserting jurisdiction under sections 9 and 10 of the Rivers and Harbors Act of 1899 (33 U.S.C. 401 and 403). Pursuant to 33 CFR 329.16, the Corps maintains lists of final determinations of navigability for purposes of Corps jurisdiction under the Rivers and Harbors Act of 1899. While absence from the list should not be taken as an indication that the water is not navigable (§ 329.16(b)). Corps districts and EPA Regions rely on any final Corps

⁹ The 1972 legislation extensively amended the Federal Water Pollution Control Act (FWPCA), which was originally enacted in 1946. Further amendments to the FWPCA enacted in 1977 acknowledged the popular name of the statute as the Clean Water Act. See Public Law 95–217, 91 Stat. 1586. 33 U.SC. 1251 not).

determination that a water body meets any of the tests set forth in part 329.

If the Federal courts have determined that a water body is navigable-in-fact under Federal law for any purpose, that water body qualifies as a "traditional navigable water" subject to CWA jurisdiction under 33 CFR 328.3(a)(1), and 40 CFR 230.3(s)(1). Corps districts and EPA regions are guided by the relevant opinions of the Federal courts in determining whether such water bodies are "currently used, or were used in the past, or may be susceptible to use in interestate or foreign commerce" (33 CFR 230.3(s)(1): 40 CFR 230.3(s)(1)) or "navigable-in-fact."

The definition of "navigable-in-fact."

The definition of "navigable-in-fact."

The definition of "navigable-in-fact."

The Jonniel Ball, 77 U.S. 557 (1870). The Supreme Court stated:

Supreme Court stated:

Those rivers must be regarded as public navigable rivers in law which are navigable in fact. And they are navigable in fact when they are used, or are susceptible of being used, in their ordinary condition, as highways for commerce, over which trade and travel are or may be conducted in the customary modes of trade and travel on

The Daniel Ball, 77 U.S. at 563. In The Montello, the Supreme Court clarified that "customary modes of trade and travel on water" encompasses more than just navigation by larger vessels:

navigation by larger vessels:
The capability of use by the public for purposes of transportation and commerce are provided to the true criterion of the navigability of a river, rather than the extent and manner of that use. If it be capable in its natural state of being used for purposes of commerce, no matter in what mude the commerce may be conducted, it is navigable in fact, and becomes in law a public river or highway.

The Montello, 87 U.S. 430, 441–42 (1874). In that case, the Court held that early for trading

The Montello, 87 U.S. 430, 441–42 (1874). In that case, the Court held that early fur trading using canoes sufficiently showed that the Fox River was a navigable water of the United States. The Court was careful to note that the bare fact of a water's capacity for navigation alone is not sufficient; that capacity must be indicative of the water's being "generally and commonly useful to some purpose of trade or agriculture." Id. at 442.

In Economy Light & Power, the Supreme Court held that a waterway need not be continuously navigable; it is navigable even if it has "occasional natural obstructions or portages" and even if it is nat navigable "at all seasons . . . or at all stages of the water. "Economy Light & Power Co. v. U.S., 256 U.S. 113, 122 (1921).

In United States v. Holt State Bank, 270 U.S. 49 (1926), the Supreme Court summarized the law on navigability as of 1928 as follows:

1926 as follows:

The rule long since approved by this court in applying the Constitution and laws of the United States is that streams or lakes which are navigable in fact must be regarded as navigable in law; that they are navigable in feethby that they are navigable in fact when they are used, or are susceptible of being used, in their natural and ordinary condition, as highways for commerce, over which trade and travel are or may be conducted in the customary modes of trade and travel on water; and further that

navigability does not depend on the particular mode in which such use is or may be had—whether by steamboats, sailing vessels or flatboats—nor on an absence of occasional difficulties in navigation, but on the fact, if it be a fact, that the stream in its natural and ordinary condition affords a channel for useful cornnerce.

channel for useful commerce.

Holt State Bank, 270 U.S. at 56.

In U.S. v. Utah, 283 U.S. 64 (1931) and
U.S. v. Appalachian Elec. Power Co, 311 U.S.
377 (1940), the Supreme Court held that so
long as a water is susceptible to use as a
highway of commerce, it is navigable-in-fact,
even if the water has never been used for any
commercial purpose. U.S. v. Utah, at 81–83

("The question of that susceptibility in the
ordinary condition of the rivers, rather than
of the mere manner or extent of actual use,
is the crucial question."], U.S. v.
Appalachian Elec. Power Co., 311 U.S. at 416

("Nor is lack of commercial traffic a bar to
a conclusion of navigability where personal
or private use by boats demonstrates the
availability of the stream for the simpler
types of commercial navigation.")

types of commercial navigation.")

Appolachian Power further held that a water is navigable-in-fact even if it is not navigable and never has been but may become so by reasonable improvements. 311 U.S. at 407–

on 1971, in Utuh v. United States, 403 U.S. 9 (1971), the Supreme Court held that the Great Salt Lake, an intrastate water body, was navigable under Federal law even though it is not part of a navigable interstate or international commercial highway." Id. at 10, In doing so, the Supreme Court stated that the fact that the Lake was used for hauling of animals by ranchers rather than for the transportation of "water-borne freight" was an "irrelevant detail." Id. at 11. "The lake was used as a highway and that is the gist of the federal test." Id. Most recently, the Supreme Court explained:

The Daniel Ball formulation has been In 1971, in Utah v. United States, 403 U.S.

explained:
The Daniel Ball formulation has been invoked in considering the navigability of waters for purposes of assessing federal regulatory authority under the Constitution, and the application of specific federal statutes, as to the waters and their beds. See, e.g., ibid.; The Montello, 20 Wall. 130, 439, 32 L Ed. 391 (1874). United States v. Appalachian Elee. Power Co., 311 U.S. 377, 406. and n. 21, 61 S.Ct. 291, 85 L Ed. 243 (1940) (Federal Power Act). Hapanos v. United States, 547 U.S. 715, 730-731, 126 S.Ct. 2208, 165 L Ed. 2d 159 (2006) [plurality opinion] (Clean Water Act). id., at 761, 126 S.Ct. 2208 (KENNETY, J., concurring in judgment) (same). It has been used as well to determine questions of title to water beds under the equal-footing doctrine. See Utah. supra, at 76, 51 S.Ct. 230. Cklahoma v. Texas, 256 U.S. 574, 586, 42 S.Ct. 406, 66 L.Ed. 771 (1922); Hold State Bank, supra, at 6, 46 S.Ct. 197. It should be noted, however, that the test for navigability is not applied in the same way in these distinct types of cases. Among the differences in application are the following. En exter title hypers the same water. The Daniel Ball formulation has been Among the differences in application are the following. For state title under the equal-footing doctrine, navigability is determined at the time of statehood, see *Utah*, supra, at 75, 51 S.Ct. 438, and based on the "natural and ordinary condition" of the water, see

Oklahoma, supra, at 591, 42 S.Ct. 406. In contrast, admiralty jurisdiction extends to water routes made navigable even if not formerly so, see, e.g., Ex porte Boyer, 109 U.S. 629, 631–632, 3 S.Ct. 434, 27 L.Ed. 1056 (1884) (artificial canal); and federal regulatory authority encompasses waters that only recortly have become navigable, see, e.g., Philadelphia Co. v. Stimson, 223 U.S. 605, 634–635, 32 S.Ct. 340, 56 L.Ed. 570 (1912). were once navigable but are no e.g., Philadelphia Co. v. Stimson, 223 U.S.
605, 634-635, 32 S.Ct. 340, 56 L.Bd. 570
(1912), were once navigable but are no
longer, see Economy Light & Power Co. v.
United States, 256 U.S. 113, 123-124, 41
S.Ct. 409, 65 L.Ed. 847 (1921), or are not
navigable and never have been but may
become so by reasonable improvements, see
Appalachian Elec. Power Co., supra, at 407408, 61 S.Ct. 291. With respect to the federal
commerce power, the inquiry regarding
navigation historically focused on interstate
commerce. See The Daniel Ball, 1229*11229
supra, at 564. And, of course, the commerce
power extends beyond navigation. See Kaiser
Aetna v. United States, 444 U.S. 164, 173174, 100 S.C. 383, 62 L.Bd. 2d 323 (1979). In
contrast, for title purposes, the inquiry
depends only on navigation and not on
interstate travel. See Utah, supra, at 76, 51
S.Ct. 438. This list of differences is not
exhaustive. Indeed. "[elgch application of
the Daniel Ball test. . . is apt to uncover
variations and refinements which require
further elaboration." Appalachian Elec.
Power Co., supra, at 406, 61 S.Ct. 291.
PPI. Montano v. Montano, 565 U.S. PPL Montano v. Montana, 565 U.S.

PPL Montano v. Montana, 585 U.S.

[2012].

Also of note are two decisions from the courts of appeals. In FPL Energy Marine Hydro, a case involving the Federal Power Act, the D.C. Circuit reiterated the fact that "actual use is not necessary for a navigability determination" and repeated earlier Supreme Court holdings that navigability and capacity of a water to carry commerce could be shown of a water to carry commerce could be shown

determination" and repeated earlier Supreme Court holdings that navigability and capacity of a water to carry commerce could be shown hrough "physical characteristics and experimentation." FPL Energy Marine Hydro LLC V. FERC, 287 F.3d 1151, 1157 (D.C. Cir. 2002). In that case, the D.C. Circuit upheld a FERC navigability determination that was based upon three experimental canoe trips taken specifically to demonstrate the river's navigability. Id. at 1158–59.

The 9th Circuit has also implemented the Supreme Court's holding that a water need only be susceptible to being used for water owner commerci to be mavigable-in-fact. Alaska v. Ahtna, fine. 891 F.2d 1404 (9th Cir. 1889). In Ahtna, fit e9th Circuit held that current use of an Alaskan river for commercial recreational boating was sufficient evidence of the water's capacity to carry waterborne commerce at the time that Alaska became a state. Id. at 1405. It was Alaska became a state, Id. at 1405. It was found to be irrelevant whether or not the found to be irrelevant whether or not the river was actually being navigated or being used for commerce at the time, because current navigation showed that the river always had the capacity to support such navigation. Id. at 1404.

In summary, when determining whether a water body qualifies as a "traditional navigable water" (i.e., an [a]f1) water), relevant considerations include whether the

relevant considerations include whether the water body meets any of the tests set forth in Part 329, or a Federal court has determined that the water body is

"navigable-in-fact" under Federal law for any purpose, or the water body is "navigable-in-fact" under the standards that have been used by the Federal courts.

Interstate Waters

1. Interstate Waters

The agencies' proposal today makes no change to the interstate waters section of the existing regulations and the agencies would continue to assert jurisdiction over interstate waters, including interstate wetlands. The language of the CWA is clear that Congress intended the term "navigable waters" to include interstate waters, and the agencies' interpretation, promulgated contemporaneously with the passage of the CWA, is consistent with the statute and burdelative bettern. The Supremy Courte. legislative history. The Supreme Court's decisions in SWANCC and Rapanos did not address the interstate waters provision of the existing regulation.

A. The Language of the Clean Water Act, the Statute as a Whole, and the Statutory History Demonstrate Congress' Clear Intent To Include Interstate Waters as "Navigable Waters" Subject to the Clean Water Act

While as a general matter, the scope of the terms "navigable waters" and "waters of the United States" is ambiguous, the language of the CWA, particularly when read as a whole, demonstrates that Congress clearly intended demonstrates that Congress clearly intended to continue to subject interstate waters to Federal regulation. The statutory history of Federal water pollution control places the terms of the CWA in context and provides further evidence of Congressional intent to include interstate waters within the scope of the "navigable waters" protected by the Act. Congress clearly intended to subject interstate waters to CWA intendificion without interstate waters to CWA jurisdiction without imposing a requirement that they be water imposing a requirement that they be water that is navigable for purposes of Federal regulation under the Commerce Clause themselves or be connected to water that is navigable for purposes of Federal regulation under the Commerce Clause. ¹⁰ The CWA itself is clear that interstate waters that were previously while to E Tederal regulation. itself is clear that interstate waters that were previously subject to Federal regulation remain subject to Federal regulation. The text of the CWA, specifically the CWA's provision with respect to interstate waters and their water quality standards, in conjunction with the definition of navigable waters, provides clear indication of Congress' intent. Thus, interstate waters are "navigable waters" protected by the CWA. (1) The Plain Language of the Clean Water Act and the Statute as a Whole Clearly Indicate Congress' Intent to Include Interstate Waters Within the Scope of "Navigable Waters" for Purposes of the Clean Water Act

Under well settled principles, the phrase "navigable waters" should not be read in isolation from the remainder of the statute. As the Supreme Court has explained: The definition of words in isolation, however, is not necessarily controlling in statutory construction. A word in a statute may or may not extend to the outer limits of its definitional possibilities. Interpretation of a word or phrase depends upon reading the whole statutory text, considering the purpose and context of the statute, and consulting any precedents or authorities that inform the analysis.

Polant V. U.S. Postol Service 546 U.S. 481. The definition of words in isolation.

Dolan v. U.S. Postal Service, 546 U.S. 481, 486 (2006); see also United States Nat'l. Bank of Oregon v. Indep. Ins. Agents of Am., Inc., 508 U.S. 439, 455 (1993).

508 U.S. 439, 455 (1993).
While the term "navigable waters" is, in general, ambiguous, interstate waters are waters that are clearly covered by the plain language of the definition of "navigable waters." "Congress defined "navigable waters." to mean "the waters of the United States, including the territorial seas." Interstate waters are waters of the several States and Lius, the United States while the 1972 Act was clearly not limited to interstate waters, it was clearly intended to include interstate waters.

interstate waters.
Furthermore, the CWA does not simply runermore, me Gwa does no simply define "navigable waters." Other provisions of the statute provide additional textual evidence of the scope of this term of the Act. Most importantly, there is a specific provision in the 1972 CWA establishing requirements for those interstate

requirements for those interstate waters which were subject to the prior Water Pollution Control Acts.

The CWA requires states to establish water quality standards for navigable waters and submit them to the Administrator for review. 12 Under section 303(a) of the Act, in order to carry out the purpose of this Act, any water quality standard applicable to interstate waters which was adopted by any State and submitted to, and approved by, or is awaiting approval by, the Administrator pursuant to this Act as in effect immediately prior to the date of enactment of the Federal Water Pollution Control Act Amendments of

1972, shall remain in effect unless the Administrator determined that such standard is not consistent with the applicable requirements of the Act as in effect immediately prior to the date of enactment of the Federal Water Pollution Control Act Amendments of 1972. If the Administrator makes such a determination be shall, within three months after the date of enactment of the Federal Water Pollution Control Act Amendments of 1972, notify the State and specify the changes needed to meet such requirements. If such changes are not adopted by the State within ninety days after the date of such notification, the Administrator shall promulgate such changes in accordance with subsection (b). CWA section 303(a)(1) (emphasis added).

Under the 1965 Act, as discussed in more detail below, states were directed to develop

section 303(a)(1) (emphasis added). Under the 1965 Act, as discussed in more detail below, states were directed to develop water quality standards establishing water quality standards establishing water quality goals for interstate waters. By the early 1970s. all the states had adopted such water quality standards. Advanced Notice of Proposed Rulemaking, Water Quality Standards Regulation, 63 FR 36742, 36745, July 7, 1998. In section 303(a), Congress clearly intended for existing Federal regulation of interstate waters to continue under the amended CWA. Water quality standards for interstate waters were not merely to remain in effect, but EPA was required to actively assess those water quality standards and even promulgate revised standards for interstate waters if states did not make necessary changes. By the plain language of the stotute, these water quality standards for interstate waters were to remain in effect "in order to carry out the neurons of the Act. remain in effect "in order to carry out the purpose of this Act." The objective of the Act is "to restore and maintain the chemical, purpose of this Act. 'The objective of the Act is 'to restore and maintain the chemical, physical, and biological integrity of the Nation's waters.' CWA section 101(a). It would contravene Congress' clearly stated intent for a court to impose an additional jurisdictional requirement on all rivers, lakes, and other waters that flow across, or form a part of, state boundaries ('interstate waters' as defined by the 1948 Act, § 10, 62 Stat. 1161), such that interstate waters that were previously protected were no longer protected because they lacked a connection to a water that is navigable for purposes of Federal regulation under tha Commerce Clause. Nor would all the existing water quality standards that could be implemented through the Act (through, for example, National Pollutant Discharge Elimination System permits under section 402) were those water quality standards that could be implemented through the Act (through, for example, National Pollutant Discharge Elimination System permits under section 402) were those water quality standards statished for interstate waters that are also waters that are navigable for purposes of Federal regulation under the Commerce Clause or that connect to waters that are navigable for purposes of Federal regulation under the Commerce Clause or that connect to waters that are navigable for purposes of Federal regulation under the Commerce Clause. Nowhere in section 303(a) does Congress make such a distinction.

(2) The Federal Water Pollution Control Statute That Became the Clean Water Act

(2) The Federal Water Pollution Control Statute That Became the Clean Water Act Covered Interstate Waters

In 1972, when Congress rewrote the law governing water pollution, two Federal statutes addressed discharges of pollutants into interstate waters and water that is

¹⁰ For purposes of the CWA, EPA and the Corps have interpreted the term "traditional navigable waters" to include all of the "navigable waters" to include all of the "navigable waters of the United States," defined in 35 CFR part 329 and by numerous decisions of the Federal courts, plus the United States, "defined in 35 CFR part 329 and by numerous decisions of the Federal courts, plus Corps of the United States," and the United States, and the United States, which was the United States, and the Unit

[&]quot;

"The Supreme Court has found that the term "waters of the United States" is ambiguous in some respects. *Ropanos. 547 U.S. at 752 (plurality opinion). 804 (dissent).

"Section 303 of the Act requires the states to submit revised and new water quality standards to the Administrator for review. CWA section 303(cl)(2)(A). Such revised or new water quality standards "shall consist of the designated uses of the navigable waters involved and the water quality criteria for such waters." *Id. If the Administrator determines that a revised or new standard is not consistent with the Act's requirements, or determines that a revised or new standard is necessary to meet the Act's requirements, and the state does not make required changes. "[t] be Administrator shall promptly prepare and publish proposed regulations settling forth a revised or new water quality standard for the navigable waters involved." CWA section 303(c)(4).

navigable for purposes of Federal regulation under the Commerce Clause, and tributaries of each: The Water Pollution Control Act of of each: The Water Pollution Control Act of 1948, as amended, and section 13 of the Rivers and Harbors Act of 1899 (known as the "Refuse Act"). Of the two, the Water Pollution Control Act extended Federal authority over interstate waters and their tributaries. In contrast, the Refuse Act extended Federal jurisdiction over the "navigable waters of the United States" and their tributaries. These two separate statutes demonstrate that Congress recognized that interstate waters and "navigable waters of the United States" were independent lawful bases of Federal jurisdiction.

a. The Federal Water Pollution Control Act Prior to 1972

Prior to 1972

From the ontset, and through all the amendments pre-deting the 1972

Amendments, the Federal authority to abate water pollution under the Water Pollution Control Act, and the Federal Water Pollution Control Act, the Water Pollution Control Act, the Water Pollution Control Act, frew Capable Water Pollution 1956, extended to interstate waters. In addition, since first enacted in 1948, and throughout all the amendments, the goals of the Act have been, inter alia, to protect public water supplies, propagation of fish the Act have been, inter alia, to protect public water supplies, propagation of fish and aquatic life, recreation, agricultural, industrial, and other legitimate uses. See 62 Stat. 1155 and 33 U.S.C. 466 (1952), 33 U.S.C. 466 (1958), 33 U.S.C. 466 (1964), 33 U.S.C. 1151 (1970).

Stat. 1155 and 33 U.S.C. 466 (1952), 33 U.S.C. 406 (1952), 33 U.S.C. 151 (1970).

In 1948, Congress enacted the Water Pollution Control Act in connection with the exercise of jurisdiction over the waterways of the Nation and in the consequence of the benefits to public health and welfare by the abatement of stream pollution. See Pub. L. No. 80–845, 62 Stat. 1155 (June 30, 1948). The Act authorized technical assistance and financial aid to states for stream pollution abatement programs, and made discharges of pullution into interstate waters and their tributaries a nuisance, subject to abatement and prosecution by the United States. See section 2(d)(11) (4), 62 Stat. at 1156–1157 (section 2(d)(1) of the Water Pollution Control Act of 1948, 62 Stat. at 1156, 155 (section 2(d)(1)) of the Water Pollution Control Act of 1948, 62 Stat. at 1156, stated that the "pollution is discharged directly into such waters are creaches such waters after discharge into a tributary of such waters, which endangers the health or walfare of persons in a State other than that in which the discharge originates, is declared to be a public nuisance and subject to abatement as provided by the Act. (emphasis added); § 2(a), 62 Stat. 1155 (requiring comprehensive programs for "interstate waters and tributary of such waters"). Under the statute, "interstate waters" in the sewage treatment to abate discharges into "interstate waters and tributary of such waters"). Under the statute, "interstate waters", Under the statute, "interstate waters", or form a part of, state boundaries. Section 10, 62 Stat. other waters that flow across, or form a part of, state boundaries. Section 10, 62 Stat.

1181. In 1956, Congress strengthened measures for controlling pollution of interstate waters and their tributaries. Public Law 84–660, 70 Stat. 498 (1956) (directing further cooperation between the Federal and State

Governments in development of Governments in development of comprehensive programs for eliminating or reducing "the pollution of interstate waters and tributaries" and improving the sanitary condition of surface and underground waters, and authorizing the Surgeon General to make joint investigations with States into the conditions of and discharges into "any waters of any State or States."

conditions of and discharges into any waters of any State or States.").

In 1961, Congress amended the FWPCA to substitute the term "interstate or navigable waters" for "interstate waters." See Public Law 87–88, 75 Stat. 208 (1961). Accordingly,

waters' for "interstate waters." See Public Law 87–89, 75 Stat. 208 (1961). Accordingly, beginning in 1961, the provisions of the FWPCA applied to all interstate waters and navigable waters and the tributaries of each, see 33 U.S.C. 466a, 466ig. (1964). In 1965, Congress approved a second set major legislative changes, requiring each state to develop water quality standards for interstate waters within its boundaries by 1967. Public Law 89–234. 79 Stat. 908 (1965). If alling establishment of adequate standards by the state, the Act authorized establishment of water quality standards by Federal regulation. Id. at 908. The 1965 Amendments provided that the discharge of matter "into such interstate waters or portiums thereof," which reduces the quality standards established under this subsection (whether the matter causing or contributing twentier into the stable of the matter causing or contributing themselves. (whether the matter causing or contributing to such reduction is discharged directly into such waters or reaches such waters after discharge into tributaries of such waters), is auscharge into incutaries of such waters), subject to abatement through procedures specified in the Act, including (after conferences and negotiations and consideration by a Hearing Board) legal action in the courts. *Id.* at 909.¹⁵

b. The Refuse Act

Since its original enactment in 1899, the Refuse Act has prohibited the discharge of refuse matter "into any navigable water of the United States, or into any tributary of any navigable water." Ch. 425, 30 Stat. 1152 (1899). It also has prohibited the discharge of such material on the bank of any tributary where it is liable to be washed into a navigable water. Id. Violators are subject to navigable water. Id. Violators are subject to fines and imprisonment. Id. at 1153 (codified at 33 U.S.C. 412). In 1966, the Supreme Court uphel dthe Corps' interpretation of the Refuse Act as prohibiting discharges that pollute the navigable waters, and not just those discharges that obstruct navigation. United States v. Standard Oli Ca., 344 U.S. 224, 230 [1966]. In 1970, President Nixon

signed an Executive Order directing the Corps (in consultation with the Federal Water Pollution Control Administration 18) to Corps (in consultation with the Federal Water Pollution Control Administration 10) to implement a permit program under section 13 of the RHA. To regulate the discharge of pollutants and other refuse matter into the navigable waters of the United States or their tributaries and the placing of such matter upon their banks. "E.O. 11574, 35 FR 19627, Dec. 25, 1970. In 1971, the Corps promulgated regulations establishing the Refuse Act Permit Program. 36 FR 6564, 6565, April 7, 1971. The regulations made it unlawful to discharge any pollutant (except those flowing from streets and sewers in a liquid state) into a navigable waterway or tributary, except pursuant to a permit. Under the permit program, EFA advised the Corps regarding the consistency of a proposed discharge with water quality standards and considerations, and the Corps evaluated a permit application for impacts on anchorage, navigation, and fish and wildlife resources. Id. at 5566.

C. The Federal Water Pollution Control Act

c. The Federal Water Pollution Control Act Amendments of 1972

When Congress passed the Federal Water Pollution Control Act Amendments of 1972
When Congress passed the Federal Water Pollution Control Act Amendments of 1972 (referred to hereinafter as the CWA or CWA), it was not acting on a blank slate. It was a mending existing law that provided for a Federal/State program to address water pollution. The Supreme Court has recognized that Congress, in enacting the CWA in 1972, "intended to repudiate limits that had been placed on federal regulation by earlier water pollution control statutes and to exercise its powers under the Commerce Clause to regulate at least some waters that would not be deemed 'navigable' under the classical understanding of that term. "Riverside Bayview Homes, 474 U.S. at 133; see also International Paper Co. O. Ouellette, 479 U.S. 481, 486, n. 6 [1987].

The amendments of 1972 defined the term "navigable waters" to mean "the waters of the Light of Steep 1 and 1987.

"navigeble waters" to mean "the waters of the United States, including the territorial seas." 33 U.S.C. 1362(7). While earlier sees." 32 U.S.C. 1362(7). While earlier versions of the 1972 legislation defined the versions of the 1972 legislation defined the term to mean "the navigable waters of the United States," the Conference Committee deleted the word "navigable" and expressed the intent to reject prior geographic limits on the scope of Federal water-protection measures. Compare S. Conf. Rep. No. 1236, 92d Cong., 2d Sess. 134 (1972), with H.R. Rep. No. 911, 92 Cong., 2d Sess. 365 (1972) (bill reported by the House Committee provided that "(the term 'navigable waters means the navigable waters of the United States, including the territorial seas"); see also S. Rep. No. 414, 92d Cong., 1st Sess. 77 ("Through a narrow interpretation of the definition of interstate waters the implementation of the 1965 Act was severely limited. ... Therefore, reference to the control requirements must be made to the control requirements must be made to the navigable waters, portions thereof, and their tributaries."). Thus, Congress intended the scope of the 1972 Act to include, at a

¹³ Congress did not define the term "navigable waters" in the 1961 Amendments, or in subsequent FWPCA Amendments, until 1972.
14 In 1967, the state of Arizona created the Water Quality Control Council (Council) to implement the requirements of the 1965 FWPCA. The Council adopted water quality standards for those waters that were considered "interstate waters" jurusuant to the existing Federal law. The Council identified the Santa Cruz River as an interstate water and promulgated water quality standards for the river in accordance with Federal law.

15 The 1966 Amendments authorized civil fines for failing to provide information about an alleged discharge causing or contributing to water pollution. Public Law 89–373. 80 Stat. 1250 (1966); see also S. Rep. No. 414, 92d Congress, 1st Sess. 10 (1972) (describing the history of the FWPCA).

¹⁶ In December 1970, administration of the Federal Water Pollution Control Administration was transferred from the Secretary of the Interior to EPA. S. Rep. No. 414, 92d Congress, 1st Sess. [1972].

minimum, the waters already subject to Federal water pollution control law—both interstate waters and waters that are navigable for purposes of Federal regulation under the Commerce Clause. Those statutes covered interstate waters, defined interstate waters without requiring that they be a traditional navigable water, and demonstrated that Congress knew that there are interstate waters that are not navigable or purposes of Federal regulation under the Commerce Clause.

In fact, Congress amended the Federal Water Pollution Control Act in 1961 to substitute the term "interstate or navigable for the rem" "interstate or navigable substitute the term "interstate or navigable substitute the term "interstate or navigable substitute the term "interstate or navigable

substitute the term "interstate or navigable waters" for "interstate waters." waters" for "interstate waters," demonstrating that Congress wanted to be very clear that it was asserting jurisdiction over both types of waters: interstate waters even if they were not navigable for purposes of Federal regulation under the Commerce Clause, and traditional navigable waters even if they were not interstate waters. At no point were the interstate waters already subject to Federal water pollution control authority required to be navigable or to connect to a traditional navigable water. Further, as discussed above, the legislative history discussed above, the legislative history clearly demonstrates that Congress was expanding jurisdiction—not narrowing i with the 1972 amendments. Thus, it is reasonable to conclude that by defining navigable waters" as "the waters of th "navigable waters" as "the waters of the United States" in the 1972 amendments, Congress included not just traditionally navigable waters, but all waters previously regulated under the Federal Water Pollution Control Act, including non-navigable interstate waters.

Control Act, including non-navigable interstate waters.

Based on the statutory definition of navigable waters, the requirement of section 303(a) for water quality standards for interstate waters to remain in effect, the purposes of the Act, and the more than three decades of Federal water pollution control regulation that provides a context for reading those provisions of the statute, the intent of Congress is clear that the term "navigable waters" includes "interstate waters" as an waters" includes "interstate waters" as a independent basis for CWA jurisdiction, whether or not they themselves are traditional navigable waters or are connected to a traditional navigable water.

B. Supreme Court Precedent Supports CWA Jurisdiction Over Interstate Waters Without Respect to Navigability

In two seminal decisions, the Supreme Court established that resolving interstate water pollution issues was a matter of Federal law and that the CWA was the Federal law and that the CWA was the comprehensive regulatory scheme for addressing interstate water pollution. Illinois v. Milwoukee, 406 U.S. 91 (1972). City of Milwoukee v. Illinois, 451 U.S. 304 (1981). In both of these decisions, the Court held that Federal law applied to interstate waters. Moreover, these cases analyzed the applicable Federal statutory schemes and determined that the provisions of the Federal Water Pollution Control Act and the CWA regulating water pollution apolled esperally regulating water pollution applied generally to interstate waters. The holdings of these cases recognized the Federal interest in interstate water quality pollution; and City of

Milwaukee recognized that CWA jurisdiction extends to interstate waters without regard to navigability.

In Illinois v. Milwaukee, the Court considered a public nuisance claim brought by the State of Illinois against the city of Milwaukee to address the adverse effects of Milwaukee's discharges of poorly treated sewage into Lake Michigan, "a body of interstate water." 406 L/S. at 93. In relevant part, the Court held that the Federal common law of nuisance was an appropriate mechanism to resolve disputes involving interstate water pollution. 406 L/S. at 107 ("federal courts will be empowered to appraise the equities of suits alleging creation of a public nuisance by water pollution"). The Court further noted that in such actions the Court could consider a state's interest in the Court could consider a state's interest in protecting its high water quality standards from "the more degrading standards of a neighbor." Id.

fmm "the more degrading standards of a neighbor." Id.

In reaching this conclusion, the Court examined in detail the scope of the Federal regulatory scheme as it existed prior to the Cotober, 1972 FWPCA amendments. In its April. 1972 decision, the Court concluded that the Federal Water Pollution Control Act "makes clear that it is federal, not state, law that in the end controls the pollution of interstate or navigable waters." 406 U.S. at 120 (emphasis added.) The Court, in this case, concluded that the regulatory provisions of the Federal Water Pollution Control Act did not address the right of a state to file suit to protect water quality. However, this was not because this statute did not reach interstate waters. The Court in the Federal Water Pollution Control Act "makes pollution of interstate vaters. The Court specifically noted that section 10(a) of the Federal Water Pollution Control Act "makes pollution of interstate or navigable waters." pollution of interstate or navigable waters subject 'to abatement''' 406 U.S. at 102 (emphasis added). Rether, the Court noted that the plaintiff in this action was seeking relief outside the scope of the Federal Water Pollution Control Act and that statute

Pollution Control Act and that statute explicitly provided that independent "state explicitly provided that independent "state and interstate action to abate pollution of interstate or navigable waters shall be encouraged and shall not . be displaced by Federal enforcement action." 406 U.S. et al. (1960 U.S. et al. (standard with the environmental rights of a State against improper impairment by sources outside its domain. . . . Until the field has been made the subject of comprehensive legislation or authorized administrative standards, only a federal common law basis can provide an adequate means for dealing with such claims as alleged federal rights.

406 U.S. at 107 n. 9, citing Texas v. Pankey, 441 F.2d 236, 241-242.

In City af Milwaukee, the Court revisited this dispute and addressed the expanded statutory provisions of the CWA regulating

water pollution. The scope of the CWA amendments led the Court to reverse its decision in Illinois v. Milwoukee. In reaching this result, the Court concluded that Congress had elected to exercise its authority under Federal law to occupy the field of water pollution regulation. As a result, the Court concluded that there was no basis for maintaining a Federal common law of muisance. nuisance.

Congress has not left the formulation of Congress has not left the formulation of appropriate federal standards to the court through application of often vague and indeterminate nuisance concepts and maxims of equity jurisprudence, but rather has occupied the field through the establishment of a comprehensive regulatory program supervised by an expert administrative agency. The 1972 Amendments to the Federal Water Pollution Control Act were not merely another law "touching interstate waters". A Rather, the Amendments were viewed by Congress as a "total restructuring" and "complete rewriting" of the existing water pollution legislation considered in that case. 451 U.S. at 317.

451 U.S. at 317.

The Court's analysis in Illinois v. Milwaukee made clear that Federal common law was necessary to protect "the environmental rights of States against improper impairment by sources outside its domain." 406 U.S. at 107, a. 9. In the context of interstate water pollution, nothing in the Court's language or logic limits the reach of this conclusion to only navigable interstate waters. In City of Milwaukee, the Court found that the CWA was the "comprehensive regulatory program" that "occupied the field" (451 U.S. 317) with regard to interstate water pollution, eliminating the hasis for an independent common law of anisance to address interstate water pullution. Since the address interstate water pollution. Since the Federal common law of nuisance (as well as

address interstate water pollution. Since the Federal common law of nuisance (as well as the statutory provisions regulating water pollution in the Federal Water Pollution Control Act) applied to interstate waters whether navigable or not, the CWA could only occupy the field of interstate water pollution if it too extended to non-navigable as well as navigable interstate waters. With regard to the specifics of interstate water pollution, the City of Milwaukee Court noted that, in Illinois v. Milwaukee Court noted that, in Illinois v. Milwaukee in the forum in which it could protect its interests in abating water pollution from out of state, absent the recognition of Federal common law remedies. 451 U.S. at 325. The Court tothen went to an alyze in detail the specific procedures created by the CWA "for a State" spermit granting agency to seek redress." 451 U.S. at 326. The Court noted that "any \$15. whose waters may be affected by the issuance of a permit" is to receive notice and the opportunity to comment on the permit. Id. (citing to CWA section 402(b)(3)(5). In (citing to CWA section 402(b)[3](5). In addition the Court noted provisions giving EPA the authority to veto and issue its own permits "if a stalemate between an issuing and objecting state develops." Id. (citing state develops." Id. (citing to CWA sections 402(d)(2)(A).(4)). In light of these protections for states affected by interstate water pollution, the court concluded that

tithe statutory scheme established by Congress provides a forum for the pursuit of such claims before expert agencies by means of the permit-granting process. It would be quite inconsistent with this scheme if federal courts were in effect to "write their own ticket" under the guise of federal common law after permits have already been issued and permittees have been planning and operating in reliance on them. [t]he statutory scheme established by 451 U.S. at 326.

451 U.S. at 326.

Nothing in the language or the reasoning of this discussion limits the applicability of these protections of interstate waters to navigable interstate waters or interstate waters connected to navigable waters. If these protections only applied to navigable interstate waters, adownstream state would be unable to protect many of its waters from out of state water pollution. This would hardly constitute a comprehensive regulatory scheme that occupied the field of interstate water pollution.

water pollution.
For these reasons, the holdings and the reasoning of these decisions establish that the regulatory reach of the CWA extends to all interstate waters without regard to navigability.¹⁷

C. The Supreme Court's Decisions in SWANCC and Rapanos Do Not Limit or Constrain Clean Water Act Jurisdiction Over Non-Novigable Interstate Waters

Constrain Clean Water Act Jurisdiction Over Non-Novigable Interstate Waters
As noted above, the Supreme Court recognized that Congress, in enacting the CWA, "intended to repudiate limits that had been placed on federal regulation by earlier water pollution control statutes and to exercise its powers under the Commerce Clause to regulate at least some waters that would not be deemed 'navigoble' under the classical understanding of that term.' Riverside Boyriew, 474 U.S. at 133; see also International Paper Co. v. Ouellette, 479 U.S. 481, 486 n. 5, (1987). In Riverside Boyriew, and subsequently in SWANCC and Rapanos, the Court addressed the construction of the CWA terms "navigable waters" and "the waters of the United States." In none of these cases did the Supreme Court address interstate waters, on did it overrule prior Supreme Court precedent which addressed the interaction between the CWA and Federal common law to address pollution of interstate waters. Therefore, the statute, even in light of SWANCC and Rapanos, does not impose an additional requirement that interstate waters. Therefore, the statute, even in light of purposes of Federal regulation under the Commerce Clause or connected to water that is navigable for purposes of Federal regulation under the Commerce Clause to purposes of Federal regulation under the Commerce Clause or connected to water that is navigable for purposes of Federal regulation under the Commerce Clause or connected to water that is navigable in purposes of Federal regulation under the Commerce Clause or connected to water that is navigable for purposes of Federal regulation under the Commerce Clause or connected to water that is navigable for purposes of Federal regulation under the Commerce Clause or connected to water that is navigable for purposes of Federal regulation under the Commerce Clause or connected to water that is navigable for purposes of Federal regulation under the Commerce Clause or connected to water that is navigable for purposes of Federal regulation under the

At the outset, it is worth noting that neither SWANCC nor Rapanos dealt with the jurisdictional status of interstate waters. Repeatedly in the SWANCC decision the Court emphasized that the question presented concerned the jurisdiction status of nonnavigable intrustate waters located in two Illinois counties. SWANCC 531 U.S. at 165–166, 171 ("we thus decline to . . . hold that isolated ponds, some only seasonal, wholly located within two Illinois counties fall under \$404(a) definition of navigable waters . . . ") (emphasis added). Nowhere in justice Rehnquist's majority opinion in SWANCC does the Court discuss the Court's interstate water case law. 18 The Court does not even discuss the fact that CWA jurisdictional

does the Court discuss the Court's interstate water case law. ¹⁸ The Court does not even discuss the fact that CWA jurisdictional regulations identify interstate waters as regulated "waters of the United States." In fact, the repeated emphasis on the intrastate nature of the waters at issue can be read as an attempt to distinguish SWANCC from the Court's interstate water jurisprudence.

In Ropanos, the properties at issue were located entirely within the State of Michigan. 547 U.S. 715, 762–764. Thus, the Court had no occasion to address the text of the CWA with respect to interstate waters or the agencies' regulatory provisions concerning interstate waters. In addition, noither justice Kennedy nor the plurality discusses the impact of their opinions on the Court's interstate waters jurisprudence. The plurality decision acknowledges that CWA jurisdictional regulations include interstate waters. 547 U.S. 715, 724. However, the plurality din ot discuss in any detail its views as to the continued vitality of regulatings concerning such waters. views as to the continued vitality of

views as to the continued withing of regulations concerning such waters. Moreover, one of the analytical underpinnings of the SWANCC and Rapanos decisions is irrelevant to analysis of regulations asserting jurisdiction over interstate waters. In SWANCC, the Court declined to defer to agency regulations asserting jurisdiction over isolated waters because

because [where an administrative interpretation of a statute invokes the outer limits of Congress' power, we expect a clear indication that Congress intended that result. . . This requirement stems from our prudential desire not to needlessly reach constitutional issues and our assumption that Congress does not casually authorize administrative agencies to interpret a statute to push the limit of Congressional authority. This concern is Congressional authority... This concern is heightened where the administrative interpretation alerts the federal-state framework by permitting federal encroachment upon a traditional state power.

encroachment upon a traditional state power. 531 U.S. at 172–173 (citations omitted). However, the Court's analysis in Illinois v. Milwaukee and City of Milwaukee makes clear that Congress has broad authority to create Federal law to resolve interstate water pollution disputes. As discussed above, the Court in Illinois v. Milwaukee, invited further Federal legislation to address interstate water pollution and in so doing concluded that pollution, and in so doing concluded that State law was not an appropriate basis for addressing interstate water pollution issues. 406 U.S. at 107 n. 9 (citing Texas v. Pankey,

441 F.2d 236, 241–242). In City of Milwaukee, the Court indicated that central to its holding in Illinois v. Milwaukee was its concern "that Illinois id di not have any forum to protect its interests (in the matters involving interstate water poliution!" 451 U.S. 325. As discussed above, the Court cited with approval the statutory provisions of the CWA regulating water pollution as an appropriate means to address that concern. The City of Milwaukee and Illinois v. Milwaukee decisions make clear that assertion of Federal authority to resolve disputes involving interstate waters does not alter "the Federal-State framework by permitting Federal encroachment on a

alter "the Federal-State framework by permitting Federal encoachment on a traditional State power." 531 U.S. at 173. "Our decisions concerning interstate waters contain the same theme. Rights in interstate streams, like questions of boundaries, have been recognized as presenting Federal questions." *Illinois v. Milwaukee*, 406 U.S. at 105 (internal quotations and citations omitted).

omitted).

The Supreme Court's analysis in SWANCC and Rapanos materially altered the criteria for analyzing CWA jurisdictional issues for wholly intrastate waters. However, these decisions by their terms did not affect the body of case law developed to address interstate waters. The holdings in the Sunreme Court's interstate waters Supreme Court's intensitie waters jurisprudence, in particular City of Milwaukee, apply CWA jurisdiction to intensitie waters without regard to, or discussion of, navigability. In City of Milwaukee, the Court held that the CWA provided a comprehensive statutory scheme for addressing the consequences of intersite water pollution. Based on this analysis, the Court expressly overruled its holding in Illinois v. Milwaukee that the Federal common law of nuisance would apply to resolving intersitate water pollution disputes. Instead, the Court held that such disputes would now be resolved through application would now be resolved through application of the statutory provisions of the CWA

would now be resurved utrough approximately of the statutory provisions of the CWA regulating water pollution. It would be unreasonable to interpret SWANCC or Rapanos as overruling City of Milwaukee with respect to CWA jurisdiction over non-navigable interstate waters. Such an interpretation would result in no law to apply to water pollution disputes with regard to such waters, unless one were to assume that the Court intended (without discussion or analysis) to restore the Federal common law of nuisance as the law to apply in such matters. Moreover, SWANCC and Rapanos acknowledge that CWA regulatory jurisdiction extends to at least some non-navigable waters. See, e.g., 547 U.S. at 779 (Kennedy, J.). Neither the SWANCC Court nor the plurality or Kennedy opinions in Rapanos purports to set out the complete nor the plurality or Kennedy opinions in Rapanos purports to set out the complete boundaries of CWA jurisdiction. See, e.g., 547 U.S. at 731 ("whe need not decide the precise extent to which the qualifiers 'navigable' and 'of the United States' restrict the coverage of the Act.") (plurality opinion). In addition, as the Supreme Court has repeatedly admonished, if a Supreme Court precedent has direct application in a case yet appears to rest on a rationale rejected in some other line of decisions, lower courts should follow the case which directly controls.

follow the case which directly controls

¹² Nothing in subsequent Supreme Court case law regarding interstate waters in any way conflicts with the agencies' interpretation. See International Papers V. Osleicher, 479 U.S. 48 (1987); Arkansus V. Osleichom, 503 U.S. 91 (1992). In both of these cases, the Court detailed how the CWA had supplanted the Federal common law of nnisance to establish the controlling statutory scheme for addressing interstate water pollution disputes. Nothing in either decision limits the applicability of the CWA to interstate water pollution disputes involving navigable interstate waters or interstate waters councided to navigable waters.

¹⁸ It is worth noting the Justice Rehnquist was also the author of City of Milwaukee.

leaving to the Supreme Court the prerogative reaving to the Supreme Court the perroganve of overruling its precedents. Agostino v. Felton, 521 U.S. 203, 237 (1997). United Stotes v. Hatter, 532 U.S. 557, 566–567 (1981). Moreover, when the Supreme Court overturns established precedent, it is explicit. See, Lowence v. Texas, 539 U.S. 558, 578 ("Bowers was not correct when it was decided, and it is not correct today. It ought not to remain binding merodent. Rowers v. not to remain binding precedent. Bowers v. Hardwick should be and now is overruled.").

D. The Agencies' Longstanding Interpretation of the Term "Navigable Waters" To Include Interstate Waters

of the Term "Navigable Waters" To İnclude "Interstote Waters"

EPA, the agency charged with implementing the CWA, has always interpreted the 1972 Act to cover interstate waters. Final Rules, 38 FR 13528, May 22, 1973 (the term "waters of the United States" includes "interstate waters and their tributaries, including adjacent wetlands"). While the Corps of Engineers initially limited the scope of coverage for purposes of section 404 of the CWA to those waters that were subject to the Rivers and Harbors Act of 1999, after a lawsuit, the Corps amended its regulations to provide for the same definition of "waters of the United States" that EPA's regulations had always established. In 1975, the Corps' revised regulations defined "navigable waters" to include "[interstate waters landward to their ordinary high water mark and up to their headwaters." In their final rules promulgated in 1977, the Corps adopted BPA's definition and included within the definition of "waters of the United States" "interstate waters and their tributaries, including adjacent wetlands." The preamble provided an explanation for the inclusion of interstate waters:

The affects [sic] of water pollution in one state can adversely affect the quality of the The affects [sic] of water pollution in one state can adversely affect the quality of the waters in another, particularly if the waters involved are interstate. Prior to the FWPCA amendments of 1972, most federal statute amendments of 1972, most federal statutes pertaining to water quality were limited to interstate waters. We have, therefore, included this third category consistent with the Federal government's traditional role to protect these waters from the standpoint of water quality and the obvious effects on interstate commerce that will occur through pollution of interstate waters and their tributaries.

Final Rules. 42 FR 37122, July 19, 1977.

The legislative history similarly provides support for the agencies' interpretation. Congress in 1972 concluded that the machanism for controlling discharges and, thereby abating pollution, under the FWPCA and Refuse Act. 'has been inadequate in every vital aspect.' S. Rep. No. 414, 92d Cong. 1st Sess. 7 (1972). The Senate Committee on Public Works reported that development of water quality standards, assigned to the states under the 1965 FWPCA Amendments. "is lagging" and the "1948 abatement procedures, and the almost total lack of enforcement." prompted the search for "more direct avenues of action against water polluters and water pollution." Id. at 5. The Committee further concluded that Final Rules, 42 FR 37122, July 19, 1977. water polluters and water pollution." Id. at 5. The Committee further concluded that although the Refuse Act permit program created in 1970 "seeks to establish this direct approach," it was too weak because it

applied only to industrial polluters and too applied thry or madariar protects and to unwieldly because the authority over each permit application was divided between two Federal agencies. See id. at 5; see also id. at 70–72 (discussing inadequacies of Refuse Act

Federal agencies. See id. at 5; see also id. at 70–72 (discussing inadequacies of Refuse Act program).

In light of the poor success of those programs, the Committee recommended a more direct and comprehensive approach which, after amendment in conference, was adopted in the 1972 Act. The text, legislative history and purpose of the 1972.

Amendments all show an intent—through the revisions—to broaden, improve and strengthen, not to cuttail, the Federal water pollution control program that had existed under the Refuse Act and FWPCA. 19 The 1972 FWPCA Amendments were "not merely another law 'touching interstate waters' "but were "viewed by Congress as a 'total restructuring' and 'complete rewriting' of the existing water pollution legislation." 20

As the legislative history of the 1972 Act confirms, Congress' use of the term "waters of the United States" was intended to repudiate earlier limits on the reach of Federal water pollution efforts: "The conferes fully intend that the term navigable waters' be given the broadest possible constitutional interpretation

conferees fully intend that the term 'navigable waters' be given the broadest possible constitutional interpretation unencumbered by agency determinations which have been made or may be made for administrative purposes. "See S. Conf. Rep. No. 1236, 92d Cong., 2d Sees. 144 (1972). The House and Senate Committee Reports further elucidate the Conference Committee's

course and senate Committee Reports further elucidate the Conference Committee's rationale for removing the word "navigable" from the definition of "navigable waters," in 33 U.S.C. 1362(7). The Senate report stated: The control strategy of tha Act extends to navigable waters. The definition of this term means the navigable waters of the United States, portions thereof, tributaries thereof, and includes the territorial seas and the Great Lakes. Through a narrow interpretation of the definition of interstate waters the implementation of the 1965 Act was severely limited. Water moves in hydrologic cycles and it is essential that discharge of pollutants be controlled at the source. Therefore, reference to the control requirements must be made the navigable waters, portions thereof, and their tributaries.

See S. Rep. 414, 924 Cong., 1st Sess. 77

See S. Rep. 414, 92d Cong., 1st Sess. 77 [1971]; see also H.R. Rep. No. 911, 92d Cong.

2d Sess. 131 (1972) ("The Committee fully 2d Sess. 131 (1972) ("The Committee fully intends that the term "navigable waters" be given the broadest possible constitutional interpretation unencumbered by agency determinations which have been made or may be made for administrative purposes."). These passeges strongly suggest that Congress intended to expand Fedoral protection of waters. There is no evidence that Congress intended to exclude interstate waters which were protected under Federal law if they were not water that is navietted.

intended to exclude interstate waters which were protected under Federal law if they were not water that is navigable for purposes of Federal regulation under the Commerce Clause or connected to water that is navigable for purposes of Federal regulation under the Commerce Clause. Such an exclusion would be contrary to all the stated goals of Congress in enacting the sweeping amendments which became the CWA.

The CWA was enacted in 1972. EPA's contemporaneous regulatory definition of "waters of the United States." promulgated in 1973, included interstate waters. The definition has been EPA's interpretation of the geographic jurisdictional scope of the CWA for approximately 40 years. Congress has also been aware of and has supported the Agency's longstanding interpretation of the CWA. "Where 'an agency's statutory construction has been fully brought to the attention of the public and the Congress, and the latter has not sought to after that interpretation although it has amended the statute in other respects the presumably the the latter has not sought to after that interpretation although it has amended the statute in other respects, then presumably the legislative intent has been correctly discerned." North Haven Board of Education v. Bell, 102 456 U.S. 512, 535 (1982) (quoting United States v. Rutherford, 442 U.S. 544 n. 10 (1979) (internal quotes omitted)).

442 U.S. 544 n. 10 (1979) (internal quotes omitted)).

The 1977 amendments to the CWA were the result of Congress' thorough analysis of the scope of CWA jurisdiction in light of EPA and Corps regulations. The 1975 interim finar gualations promulgated by the Corps in response to NRDC v. Callaway, 21 aroused considerable congressional interest. Hearings on the subject of section 404 jurisdiction were held in both the House and the Senate, 22 An amendment to limit the geographic reach of section 404 to waters that are navigable for purposes of Federal regulation under the Commerce Clauses and Holizadiction under the Commerce Clauses and regulation under the Commerce Clauses and their adjacent wetlands was passed by the House, 123 Cong. Rec. 10434 (1977), defeated on the floor of the Sonate, 123 Cong. Rec. 26728 (1977), and eliminated by the Conference Committee, H.R. Conf. Rep. 55–830, 95th Cong., 1st Sess. 97–105 (1977). Congress rejected the proposal to limit the geographic reach of section 404 because it wanted a permit system with "no gaps" in its protective sweep. 123 Cong. Rec. 26707 (1977) (remarks of Sen. Randolph). Rather than alter the geographic reach of section

¹⁸ See id. at 9 ("The scope of the 1899 Refuse Act is broadened; the administrative capability is strengthened". It is at 3 ("Much of the committee" stime devoted to this Act centered on an edit to resolve the existing water quality and the second of the existing water quality and exception of the existing water quality developing under the 1899 Refuse Act. 1, Congress made an effort "to weave" the Refuse Act permit program into the 1972 Amendments. id. at 7.1, as the statutory text shows. See 33 U.S.C. 1342(a) (providing that each application for a permit under 33 U.S.C. 407, pending on October 18, 1972, shall be deemed an application for a permit under 33 U.S.C. 1342(a).
3 U.S.C. 1342(a).
3 U.S.C. 1342(a).
3 City of Milwaukee v. Illinois, 451 U.S. 43 17:

²⁰ City of Milwaukee v. Illinois, 451 U.S. at 317; see also id. at 318 (holding that the CWA precluded see also 10. at 316 (notding that the CWA prectuded Federal comon-law claims because "Congress" intent in enacting the [CWA] was clearly to establish an all-emcompassing program of water pollution regulation"; Middlesex County Sowerage pollution regulation "; Middlesex County Sowerage pollution and Sea Comment Asis 14, 33 U.S. 1, 22 (1981) (oxisting statutory scheme "was completely revised" by enactment of the CWA).

^{31 40} FR 31320, 31324 (July 25, 1975).

22 Section 404 of the Federal Water Pollution
Control Act Amendments of 1972. Hearings Before
the Senate Comm. on Public Works, 94th Comp., 2d
Sess. (1976); Development of New Regulations by
the Carps of Engineers, Implementing Section 404
of the Federal Water Pollution Control Act
Concerning Permis for Disposal of Dredge or Fill
Moterial: Heorings Before the Subcomm. on Wolste
Resources of the House Comm. on Public Works
and Transportation, 94th Cong., 1st Sess. (1975).

exempting certain activities—most notably certain agricultural and silvicultural activities—from the pormit requirements of saction 404. See 33 U.S.C. 1344(f).

Other evidence abounds to support the conclusion that when Congress rejected the attempt to limit the geographic reach of section 404. It was well aware of the jurisdictional scope of EPA and the Corps' definition of "waters of the United States."

For example, Senator Baker stated (123 Cong. Rec. 26718 (1977).

For example, Senator Baker stated (123 Cong. Rec. 26718 (1977)):
Interim final regulations were promulgated by the Clorps (on] July 25, 1975.* *
Together the regulations and [RPA] guidelines established a management program that focused the decisionmaking process on significant threats to aquatic areas while avoiding unnecessary regulation of minor activities. On July 19, 1977, the Clorps revised its regulations to further streamline the program and correct several misunderstandings. *
Continuation of the comprehensive coverage of this program is essential for the protection of the aquatic environment. The once seemingly separable types of aquatic systems are, we now know, interrelated and interdependent. We cannot expect to preserve the remaining qualities of our water resources without providing appropriate protection for the entire resource. Earlier jurisdictional approaches under the [Rivers and Harbors Act] established artificial Earlier jurisdictional approaches under the [Rivers and Harbors Act] established artificial

Earlier jurisdictional approaches under the [Rivers and Harbors Act] established artificial and often arbitrary boundaries.

This legislative history leaves no room for doubt that Congress was aware of the agencies' definition of navigable waters. While there was controversy ovar the assertion of jurisdiction over all adjacent wetlands and some non-adjacent wetlands, the agencies' assertion of CWA jurisdiction over interstate waters was uncontroversial. Finally, the constitutional concerns which led the Supreme Court to decline to defer to agency regulations in SIWANCC and Rapanos are not present here where the agency is asserting jurisdiction over interstate waters. In SWANCC, the Court declined to defer to agency regulations asserting jurisdiction over non-adjacent, non-navigable, intrastate waters because the Court felt such an interpretation of the statute invoked the outer limits of Congress' power. The Court's concern "is heightened where the administrative interpretation alters the federal-state framework by permitting federal encroachment upon a traditional state power." 531 U.S. at 122–173 (citations omitted). Authority over interstate waters is squarely within the bounds of Congress' Commerce Clause powers. Sa Further, the Federal Government is in the best position to address issues which may arise when waters cross state boundaries, so this interpretation does not disrupt the Federal-State framework in the manner the Supreme Court feared that the assertion of jurisdiction over a non-adjacent, non-navigable, intrastate body of water based on the presence of migratory birds did. The Supreme Court's analysis in

Illinois v. Milwaukee and City of Milwaukee makes clear that Congress has broad authority to create Federal law to resolve interstate water pollution disputes. Therefore, as discussed in Section II.B above, it is appropriate for the agencies to adopt an interpretation of the extent of CWA jurisdiction over interstate waters that gives full effect to City of Milwaukee unless and until the Supreme Court elects to revisit its holding in that case.

Thus, based on the language of the statute, the statutory history, the legislative history, and the caselaw, the agencies continue their longstanding interpretation of "navigable waters" to include interstate waters.

Tributaries

Tributaries

In Rapanos, Justice Kennedy reasoned that Riverside Bayview and SWANCC "establish the framework for" determining whether an assertin of regulatory jurisdiction constitutes a reasonable interpretation of "navigable waters"—"the connection between a non-navigable water or wetland and a navigable water ray be so close, or potentially so close, that the Corps may deem the water or wetland a "navigable water" under the Act." and "labsent a significant nexus, jurisdiction under the Act is lacking." 547 U.S. at 767. "The required nexus must be assessed in terms of the statute's goals and purposes. Congress enacted the law to "restore and maintain the chemical, physical, and biological integrity of the Natun's and biological integrity of the Natiun's waters,' 33 U.S.C. 1251(a), and it pursued

and biological integrity of the Natiun's waters, '33 U.S.C. 1251(a), and it pursued that objective by restricting dumping and filling in 'navigable waters,' sections 1311(a), 1362(12). "I, d. at 779. "Justice Kennedy concluded that the term "waters of the United States" encompasses wetlands and other waters that "possess a 'significant nexus' to waters that are or were navigable in fact or that could reasonably be so made." Id. at 759. He further concluded that wetlands possess the requisite significant nexus: "if the wetlands, either alone or in combination with similarly situated (wetlands) in the region, significantly affect the chemical, physical, and biological integrity of other covered waters mare readily understood as 'navigable." Id. at 730. While Justice Kennedy's opinion focused on adjacent wetlands in light of the facts of the cases before him, the agencies determined it was reasonable and appropriate to undertake a detailed examination of the scientific literature to determine whether tributaries, as a category and as the agencies propose to define them, significantly affect the chemical, physical, or biological integrity of downstream navigable waters, interstate waters, or territorial seas into which they flow. Based on this extensive analysis, the agencies concluded that tributaries with bod and banks, and ordinary high water marks, alone or in combination with other tributaries, as defined by the proposed regulation, in the watershed perform these functions and should be considered, as a category, to be "waters of the United States." considered, as a category, to be "waters of the United States.

United States."

The assertion of jurisdiction over this category of waters is fully consistent with Justice Kennedy's opinion in Rapanas.

"Justice Kennedy concluded that the term

"waters of the United States" encompasses wellands and other waters that "possess a "significant nexus" to waters that are or were navigable in fact or that could reasonably be so made." Id. at 759. With respect to tributaries, Justice Kennedy rejected the plurality's approach that only "relatively permanent" tributaries are within the scope of CWA jurisdiction. He stated that the plurality's requirement of "permanent standing water or continuous flow, at least for a period of 'some months'...makes little practical sense in a statute concerned with downstream water quality." Id. at 769. Instead, Justice Kennedy concluded that "Congress could draw a line to exclude irregular waterways, but nothing in the statute suggests it has done so;" in fact, he statute suggests it has done so; "in fact, be statute suggests it has done so;" in fact, be statute suggests it has done so; "in fact, be statute suggests it has done so;" in fact, be statute suggests it has done so; "in fact, be statute suggests it has done so;" in fact, be statute suggests it has done so;" in fact, be statute suggests it has done so; "in fact, be statute suggests it has done so;" in fact, be statute suggests it has done so; "in fact, be statute that Congress has done "(qluite the opposite..." Id. at 769 Further, justice Kennedy concluded, based on "a full reading of the dictionary definition" of "waters." that "the Corps can reasonably interpret the Act to cover the paths of such impermanent streams." Id. at 770 (emphasis added).

Moreover, justice Kennedy's opinion did not reject the agencies "existing regulations governing tributaries. The consolidated cases in Rapanos involved discharges into wellands adjacent to nonnavigable tributaries and, therefore, justice Kennedy's analysis 'waters of the United States' encompasses

wetlands adjacent to nonnavigable tributaries and, therefore, Justice Kennedy's analysis focused on the requisite showing for wetlands. Justice Kennedy described the wetlands. Justice Kennedy described the Corps' standard for asserting jurisdiction over tributaries: "the Corps deems a water a tributary if it feeds into a traditional navigable water (or a tributary thereof) and possesses an ordinary high water mark" Id. at 781, see also id at 761. He acknowledged that this requirement of a perceptible ordinary high water mark for ephemeral streams, 65 FR 12828, March 9, 2000. "alssuming it is subject to reasonably consistent application, may well provide a reasonable measure of whether specific minor tributaries bear as ufficient nexus with

themselves. Id.

In the foregoing passage regarding the existing regulatory standard for ephemeral streams, Justice Kennedy also provided a "but see" citation to a 2004 U.S. General "but see" citation to a 2004 U.S. General Accounting Office (now the U.S. Government Accountability Office) [GAO] report "noting variation in results among Corps district offices." Id In 2005, the Corps issued a regulatory guidance letter (RGL 05–05) to Corps districts on OHWM identification that was designed to ensure more consistent practice. The Corps has also issued documents to provide additional technical assistance for problematic OHWM delineations. See, e.g., R.W. Lichvar and S.M. delineations.

²³ In Illinois v. Milwaukeo, the Supreme Court noted that "Congress has enacted numerous laws touching interstate waters." 406 U.S. at 101.

McColley, U.S. Army Corps of Engineers, A Field Guide to the Identification of the Ordinary High Water Mark (OHWM) in the Arid West Region of the Western United States: A Delineation Manual, ERDC/CREL TR-08-12 (2008). Moreover, the agencies propose today for the first time a regulatory definition of "tributary." The definition expressly addresses some of the issues with respect to identification of an OHWM that caused many of the inconsistencies reported respect to toentification of an UNIVM that caused many of the inconsistencies reported by the GAO. For example, this proposed regulation clearly provides that a water that otherwise meets the proposed definition of tributary remains a jurisdictional tributary

was meets the proposed definition of tributary remains a jurisdictional tributary even if there are natural or man-made breaks in the OHWM. The proposed definition also provides a non-exclusive list of examples of breaks in the OHWM to assist in clearly and consistently determining what meets the definition of tributary.

Most fundamentally, the agencies believe that the scientific literature demonstrates that tributaries, as a category and as the agencies propose to define them, play a critical role in the integrity of aquatic systems comprising traditional navigable waters and interstate waters, and therefore are "waters of the United States" within the meaning of the Clean Water Act.

Adiacent Waters

Adjacent Waters

The CWA explicitly establishes authority over adjacent wetlands. Under section 404(g), states are authorized to assume responsibility for administration of the section 404 permitting program with respect to "navigable waters (other than those waters which are presently used, or are susceptible to use in their natural condition or by to use in tuerir natural containts of an areas to transport interstate or foreign commerce shoreward to their ordinary high water mark, including all waters which are subject to the ebb and flow of the tide shoreward to their ebb and flow of the tide shoreward to their mean high water mark, or mean higher high water mark, or the strength of the stren ecosystems:

ecosystems:
The regulation of activities that cause water pollution cannot rely on . . artificial lines . . . but must focus on all waters that together form the entire aquatic system. Water moves in hydrologic cycles, and the pollution of this part of the aquatic system, regardless of whether it is above or below an ordinary high water mark, or mean high tide line, will affect the water quality of the other waters within that aquatic system. For this waters within that aquatic system. For this reason, the landward limit of Federal jurisdiction under Section 404 must include any adjacent wetlands that form the border of or are in reasonable proximity to other waters of the United States, as these wetlands are part of this aquatic system.

42 FR 37128, July 19, 1977. As the Supreme Court found in *United States v. Riverside Bayview Homes, Inc.*, "the evident breadth of congressional concern for evident breadth of congressional concern for protection of water quality and aquatic ecosystems suggests that it is reasonable for the Corps to interpret the term 'waters' to encompass wetlands adjacent to waters as more conventionally defined." 474 U.S. at 133.

In upholding the Corps' judgment about the relationship between waters and their adjacent wetlands, the Supreme Court in Riverside Bayview acknowledged that the Riverside Bayview acknowledged that the agencies' regulations take into account functions provided by wetlands in support of this relationship. "[A]djacent wetlands may serve significant natural biological functions, including food chain production, general habitat, and nesting, spawning, rearing and resting sites for aquatic . . . species." Id. at 133 (citing § 320.4bi(2)fi)). The Court further stated that the Corps had reasonably concluded that "wetlands adjacent to lakes, rivers, streams, and other bodies of water may function as integral parts of the aquatic environment even when the moisture creating the wetlands does not find its source in the adjacent bodies of water." 474 U.S. at 135.

Two decades later, a majority of justices in Ropanos concluded that the agencies' regulatory definition of adjacent wetlands reasonable. Justice Kennedy stated: reasonable. Justice Kennedy stated;
As the Court noted in Riverside Bayview, the
Corps has concluded that wetlands may serve
to filter and purify water draining into
adjacent bodies of water, 33 CFR
320.4(b)(2)(vii)(1985), and to slow the flow of 320.4(b)[2](vii](1985), and to slow the flow of surface runoff into lakes, rivers, and streams and thus prevent flooding and crosion, see \$320.4(b)[2](vi) and (v). Where wetlands perform these filtering and runoff-control functions, filling them may increase downstream pollution, much as a discharge of toxic pollutants would. . . In many cases, moreover, filling in wetlands sprarted from another water by a berm can mean that flood water, impurities, or runoff that would have been stored or contained in the wetlands will been stored or contained in the wetlands will instead flow out to major waterways. With these concerns in mind, the Corps' definition uf adjacency is a reasonable one, for it may ut adjacency is a reasonable one, for it may be the absence of an interchange of waters prior to the dredge and fill activity that makes protection of the wetlands critical to the statutory scheme.

547 U.S. at 775 (citations omitted). The four dissenting justices similarly concluded:

The Army Corps has determined that wetlands adjacent to tributaries of traditionally navigable waters preserve the quality of our Nation's waters by, among other things, providing habitat for aquatic animals, keeping excessive sediment and toxic pollutants out of adjacent waters, and toxic polititants out of adjacent waters, and reducing downstream flooding by absorbing water at times of high flow. The Corps' resulting decision to freat these wetlands as encompassed within the term 'waters of the United States' is a quintessential example of the Executive's reasonable interpretation of a statutory provision.

Id. at 778 (citing Chevron U.S.A. Inc. v. Naturol Resources Defense Council, Inc., 467 U.S. 837, 842-845 (1984)). For those wetlands adjacent to traditional navigable waters, Justice Kennedy concluded in Rapanas that the agencies' existing regulation. "Pests upon a reasonable inference of ecologic interconnection, and the assertiou of invisitionin for these wetlands is: of acologic interconnection, and the assertion of jurisdiction for those wetlands is sustainable under the Act by showing adjacency alone." 547 U.S. at 780. For other adjacent waters, including adjacent wetlands, Justice Kennedy's significant nexus standard provides a framework for establishing categories of waters which are per se "waters of the United States." First, he provided that wetlands are jurisdictional if they "either alone or in combination with similarly situated lands in the region, significantly affect the chemical, physical, and biological integrity of other covered waters more readily understood as 'navigable." Id. at 780. Next, Justice Kennedy stated that "(through pregulation or adjudication, the Corps may choose to identify categories of tributaries that, due to their volume of flow leither that, due to their volume of flow (either annually or on average), their proximity to navigable waters, or other relevant considerations, are significant enough that wetlands adjacent to them are likely, in the

considerations, are significant enough that wetlands adjacent to them are likely, in the majority of cases, to perform important functions for an aquatic system incorporating navigable waters." Id. 4760–81.

While the issue was not before the Supreme Court, it is reasonable to also assess whether non-wetland waters have a significant nexus, as Justice Kennedy's opinion makes clear that a significant nexus is a touchstone for CWA jurisdiction. The agencies have determined that adjacent waters as defined in today's proposed rule, alone or in combination with other adjacent waters in the region that drains to a traditional navigable water, interstate water or the territorial seas, significantly affect the chemical, physical, and biological integrity of those waters. As explained in more detail in Section H, below, the proposed rule interprets the plarase "in the region" to mean the watershed that drains to the nearest traditional navigable water or interstate water through a single point of entry. The agencies have determined that because the movement of water from watershed drainage basins to river networks and lakes shapes the development and function of these systems in a way that is critical to their long term health, the watershed is a reasonable and technically appropriate reflection of Congressional intent. technically appropriate reflection of Congressional intent.

Congressional intent.

The agencies have concluded that all waters that meet the proposed definition of "adjacent" are similarly situated for purpose of analyzing whether they, in the majority of cases, have a significant nexus to an (a)(1) through (a)(3) water. Based on the agencies' review of the scientific literature, we have concluded that these waters, when bordering, contiguous or located in the floodplain or riparian area, or when otherwise meeting the definition of "adjacent," provide many similar functions that significantly affect the chemical, physical, or biological integrity of traditional navigable waters, interstate waters, or the territorial seas. Further, because the proposed definition generally

focuses on the location of the waters (i.e. focuses on the location of the waters (i.e., those that are located near (al/1) through (al/8) waters), interpreting the term 'smiralry situated' to include all adjacent waters, as defined in the proposed rule, is reasonable and consistent with the science. The geographic position of an "adjacent" water relative to the tributary is indicative of the relationship to it, with many of its defining characteristics resulting from the movement of materials and energy between the categories of waters. The scientific literature documents that waters that are literature documents that waters that are literature documents that waters that are adjacent to (alf) through (alf) waters, including wetlands, oxbow lakes and adjacent ponds, are integral parts of stream networks because of their ecological functions and how they interact with each other, and with downstream traditional navigable waters, interstate waters, or the territorial seas. In other words, tributaries and their adjacent waters, and the downstream traditional navigable waters, interstate waters, and territorial seas into which those waters flow, are an integrated which those waters flow, are an integrated ecological system, and discharges of pollutants, including discharges of dredged or fill material, into any component of that ecological system, must be regulated under the CWA to restore and maintain the chemical, physical, or biological integrity of

Based on the science, as summarized below, the agencies have concluded that wetlands and waters adjacent to all tributaries that meet the proposed definition of "tributary" provide vital functions for downstream traditional navigable waters, interstate waters, or the territorial seas. In particular, the scientific literature supports the conclusion that waters adjacent to all tributaries as defined in section (a)(5) have a significant nexus to waters described in paragraphs (a)(1) through (a)(3). Because smaller streams, whether perennial, intermittent, or ephemeral, are much more common than larger streams, the volume of Based on the science, as summarized common than larger streams, the volume of a stream's flow is not the best measure of its contribution to the chemical, physical, or biological integrity of downstream water Report at 4–2, 4–3. As discussed in more Report at 4–2, 4–3. As discussed in more detail in Appendix A, small streams cumulatively exert a strong influence on downstream waters, partly by collectively providing a substantial amount of the river's water, id. at 4–3, 4–4 to 4–5, but also by playing unique roles that large streams typically do not, including providing habitat for aquatic maccroinverterbase which help maintain the health of the downstream water. Waters adjacent to those small tributary streams, therefore, also significantly affect (a)(1) through (a)(3) waters through the movement of energy and materials between adjacent waters and those tributaries, resulting ultimately in significant downstream effects on the chemical, physical, and biological integrity of the (a)(1) physical, and biological integrity of the (a)(1) through (a)(3) waters

"Other Waters"

In Rapanos, Justice Kennedy provides an approach for determining what constitutes a approach for determining what constitutes a "significant nexus" that can serve as a basis for defining "waters of the United States" through regulation. Justice Kennedy

concluded that "to constitute 'navigable waters' under the Act. a water or wetland must possess a' significant nexus' to waters that are or were navigable in fact or that could reasonably be so made." Id. 47 59 (citing SWANCC, 531 U.S. at 167, 172). Again, the four justices who signed on to Justice Stevens' opinion would have upheld jurisdiction under the agencies' existing regulations and stated that they would uphold jurisdiction under either the plurality or Justice Stevenedy's opinion. Justice inguinations and sacted that mey would uphold jurisdiction under either the plurality or justice Kennedy stated that wetlands should be considered to possess the requisite nexus in the context of assessing whether wetlands are jurisdictional: "if the wetlands, either alone or in combination with similarly situated [wetlands] in the region, significantly affect the chemical, physical, and biological integrity of other covered waters more readily understood as 'navigable.' "Id. at 780. In light of Rapanos and SWANCC, the "significant nexus" standard for CWA jurisdiction that Justice Kennedy's opinion applied to adjacent wetlands also can reasonably be applied to other waters such as ponds, lakes, and non-adjacent wetlands that may have a significant nexus to a traditional may have a significant nexus to a traditional navigable water, an interstate water, or the territorial seas.

naviganie water, an interstate water, or the territorial seen. The proposed rule includes a definition of significant nexus that is consistent with Justice Kennedy's significant nexus standard. Incharacterizing the significant nexus standard, Justice Kennedy stated: "The required nexus must be assessed in terms of the statute's goals and purposes. Congress enacted the [CWA] to 'restore and maintain the chemical, physical, and biological integrity of the Nation's waters'..." 547 U.S. at 279. It clear that Congress intended the CWA to "restore and maintain" all three forms of "integrity." 33 U.S.C. 1251(a), so if any one form is compromised then that is contrary to the statute's stated objective. It would subvert the intent if the CWA only protected waters upon a showing that they would subtert the meter if the CWA only protected waters upon a showing that they had effects on every attribute of a traditional navigable water, interstate water, or territorial sea. Therefore, a showing of a significant thermical, physical, or biological affect should satisfy the significant nexus standard.

aneut should satisfy the significant nexus standard.

Justice Kennedy's opinion provides guidance pointing to many functions of waters that might demonstrate a significant nexus, such as sediment trapping, and filtering, retention or attenuation of flood waters, and runoff storage. See 547 U.S. at 775, 779–80. Furthermore, Justice Kennedy recognized that a hydrologic connection is not necessary to establish a significant nexus, because in some cases the absence uf a hydrologic connection would show the significance of a water to the aquatic system, such as retention of flood waters or pollutants that would otherwise flow downstream to the traditional avigable water or interstate water. Id. 4, 4775. navigable water or interstate water. Id. at 775. navigable water or interstate water. Id. at 775. Finally, Justice Kennedy was clear that the requisite nexus must be more than "speculative or insubstantial" in order to be significant. Id. at 780. Justice Kennedy's standard is consistent with basic scientific principles about how to restore and maintain the integrity of aquatic ecosystems.

Similarly Situated

Similarly Situated
For purposes of analyzing the significant nexus of tributaries and adjacent waters, tributaries that meet the proposed definition of "tributary" in a watershed draining to an (a)(1) through (a)(3) water are similarly situated, and adjacent waters that meet the proposed definition of "adjacent" in a watershed draining to an (a)(1) through (a)(3) water are similarly situated. That is reasonable because the agencies are identifying characteristics of these waters through the regulation and documenting the science that demonstrates that these defined tributaries and defined adjacent waters provide similar functions in the watershed. provide similar functions in the watershed As stated above, the functions of the tributaries are inextricably linked and have a cumulative effect on the integrity of the downstream traditional navigable water or interstate water. There is also an obvious locational relationship between the (a)(1), (a)(2) or (a)(3) water and the streams, lakes

interstate water. Thore is also an obvious locational relationship between the (a)(1). (a)(2) or (a)(3) water and the streams, lakes, and wetlands that meet the definition of tributaries and the definition of adjacent waters: these waters have a clear linear relationship resulting from the simple existence of the channel itself and the direction of flow. See Appendix A, Scientific Evidence.

"Other waters," on the other hand, constitute a broad range of different types of waters performing different functions. In light of the range and degree of functions performed by waters that are neither tributaries nor adjacent waters under today's proposed rule, the agencies propose a definition of similarly situated which takes into account similarity of functions provided and situation in the landscape. Since the focus of the significant nexus standard is on protecting the chemical, physical, and biological integrity of the nation's waters, the agencies propose to interpret the phrase "similarly situated" in terms of whether the functions provided by the particular "other waters" are similar and, therefore, whether such "other waters" are collectively influencing the chemical, physical, or biological integrity of downstream waters that might demonstrate a significant nexus, such as sediment trapping, nutrient recycling, pollutant trapping, nutrient recycling, and provision of habitat. See 547 U.S. at 775, 79–90. This approach is consistent not only with the significant nexus standard, but with the science of aquatic systems.

The absence of a hydrologic connection hetwen "other waters" and traditional navigable waters, interstate waters, or the territorial seas may demonstrate the presence of a significant nexus entered a surface waters or the territorial seas may demonstrate the presence of a significant nexus entered a surface waters.

territorial seas may demonstrate the presence of a significant nexus between such waters, of a significant nexus between such waters, as Justice Kennedy recognized in his opnison. "Other waters" frequently function alone or cumulatively with similarly situated "other waters" in the region to capture runoff, rain water, or snowmelt and thereby protect the integrity of downstream waters by reducing potential flooding or trapping pollutants that would otherwise reach a traditional navigable water or interstate water. See id. at 175. Such waters can be crucial in controlling flooding as well as in maintaining outer quality by trapping or transforming water quality by trapping or transforming water quality by trapping or transforming

pollutants such as excess nutrients or sediment, for example, or retaining precipitation or snow melt, thereby reducing contamination or flooding of traditional navigable waters, interstate waters, or the territorial seas.

Significant Nexus

The agencies propose to define the term "significant nexus" consistent with language in SWANCC and Rapanos. The proposed definition of "significant nexus" at (c)(7) relies most significantly on Justice Kennedy's Rapanos opinion which recognizes that not all waters have this requisite connection to all waters have this requisite connection to Rapanos opinion which recognizes that not all waters have this requisite connection to waters covered by paragraphs (a)(1) through (a)(3) of the proposed regulations, Justice Kennedy was clear that the requisite nexus must be more than "speculative or insubstantial. ..." Rapanos, 547 U.S. at 780, in order to be significant and the proposed rule defines significant nexus in precisely those terms. In Rapanos, Justice Kennedy stated that in both the consolidated cases before the Court the record contained evidence suggesting the possible existence of a significant nexus according to the principles he identified, See id. at 783, Justice Kennedy concluded that "the end result in these cases and many others to be considered by the Corps may be the same as that suggested by the dissent, namely, that the Corps' assertion of jurisdiction is valid." Id, Justice Kennedy rennaded the cases because neither the agency nor the reviewing courts properly applied the controlling legal standard—whether the wetlands at issue had a significant nexus. See id. Justice Kennedy was clear however, that "imjuch the same evidence should permit the establishment of a significant nexus with navigable-in-fact waters, particularly if supplemented by United Products of the tributaries to which the wetlands are connected." Id. at 784.

With respect to one of the wetlands at issue in the consolidated Rapanos cases, Justice Kennedy stated.

Kennedy stated:

In the consolidates a rapanos cases, justice Kennedy stated:

In Carabell, No. 04–1384, the record also contains evidence bearing on the jurisdictional inquiry. The Corps noted in deciding the administrative appeal that "[blesides the effects on wildlife habitat and water quality, the [district office] also noted that the project would have a major, long-term detrimental effect on wellands, flood retention, recreation and conservation and overall ecology. . . The Corps' evaluation further noted that by 'eliminating) the potential ability of the welland to act as a sediment catch basin." the proposed project "would contribute to increased runoff and . . accretion along the drain and further downstream in Auvase Greek. . . And it observed that increased runoff from the site would likely cause downstream areas to "see an increase in possible flooding magnitude."

an increase in possible flooding magnitude and frequency.

and frequency."

Id. at 785–86. Justice Kennedy also expressed concern that "{!the conditional language in these assessments—potential ability."
possible flooding "—could suggest an undue degree of speculation." Id. at 786.

Justice Kennedy's observations regarding the above case provide guidance as to what it means for a nexus to be more than merely

speculative or insubstantial and inform the proposed definition of "significant nexus." It is important to note, however, that where justice Kennedy viewed the language "more than speculative or insubstantial" to suggest an undue degree of speculation, scientists do not equate certain conditional language (such as "may" or "could") with speculation, but rather with the rigorous and precise language for cinema engegers when applying specific or control of the property of the property of the property of the property when applying specific control of the property when applying specific control of the property when applying specific property when applying specific control of the property when applying specific control of the property when applying specific control of the property when a property when a property when the property whe of science necessary when applying specific findings in another individual situation or findings in another individual situation or more broadly across a variety of situations. Certain terms used in a scientific context do not have the same implications that they have in a legal or policy context. Scientists use cautionary language, such as "may" or "could," when applying specific findings on a broader scale to avoid the appearance of overstating their research results and to avoid insorting bias into their findings (such that the reader may think the results of one study are applicable in all related studies). Words like "potential" are commonly used in the biological sciences, but when viewed under biological sciences, but when viewed under a legal and policy vell, may seem to mean the same as "speculative" or "insubstantial." Instead, potential in scientific terms means ability or capability. For example, when the term "potential" is used to describe how a wetland has the potential to act as a sink for floodwater and pollntants, scientists mean that wetlands in general do indeed perform those functions, but whether a particular wetland performs that function is dependent upon the circumstances that would create conditions for floodwater or pollutants in the watershed to reach that particular wetland to retain and transform. That does not mean, however, that this nexus to downstream waters is "speculative," indeed the wetland biological sciences, but when viewed under waters is "speculative;" indeed the wetland would be expected to provide these functions under the proper circumstances.

Definition of "Waters of the United States" Under the Clean Water Act.

List of Subjects

33 CFR Part 328

Environmental protection, Administrative practice and procedure, Intergovernmental relations, Navigation, Water pollution control, Waterways.

40 CFR Part 110

Environmental protection, Water pollution control

40 CFR Part 112

Environmental protection, Water pollution control.

40 CFR Part 116

Environmental protection, Water pollution control

40 CFR Part 117

Environmental protection, Water pollution control.

40 CFR Part 122

Environmental protection, Water pollution control.

Environmental protection, Water pollution control

40 CFR Part 232

Environmental protection, Water pollution control.

40 CFR Part 300

Environmental protection, Water pollution control.

40 CFR Part 302

Environmental protection, Water pollution control

40 CFR Part 401

Environmental protection, Water pollution control

Dated: March 25, 2014.

Gina McCarthy,

Administrator, Environmental Protection

Agency.
Dated: March 24, 2014.

Jo Ellen Darcy,

Assistant Secretary of the Army (Civil Works), Department of the Army.

Title 33-Navigation and Navigable

preamble, title 33, chapter I of the Code of Federal Regulations is proposed to be

PART 328—DEFINITION OF WATERS OF THE UNITED STATES

■ 1. The authority citation for part 328 continues to read as follows:

Authority: The Clean Water Act, 33 U.S.C.

1251 et seq.

■ 2. Section 328.3 is amended by removing the introductory text and revising paragraphs (a), (b), and (c) to read as follows:

6 328.3 Definitions

(a) For purposes of all sections of the Clean Water Act, 33 U.S.C. 1251 et. seq. Clean Water Act, 33 U.S.C. 1251 et.se and its implementing regulations, subject to the exclusions in paragraph (b) of this section, the term "waters of the United States" means:

(1) All waters which are currently

used, were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters whice are subject to the ebb and flow of the

tide;
(2) All interstate waters, including

interstate wetlands;
(3) The territorial seas;
(4) All impoundments of waters identified in paragraphs (a)(1) through (3) and (5) of this section; (5) All tributaries of waters identified in paragraphs (a)(1) through (4) of this

- (6) All waters, including wetlands. adjacent to a water identified in paragraphs (a)(1) through (5) of this section; and (7) On a case-specific basis, other
- waters, including wetlands, provided that those waters alone, or in combination with other similarly situated waters, including wetlands, located in the same region, have a significant nexus to a water identified in paragraphs (a)(1) through (3) of this
- section.

 (b) The following are not "waters of the United States" notwithstanding whether they meet the terms of paragraphs (a)(1) through (7) of this
- (1) Waste treatment systems including treatment ponds or lagoons designed to meet the requirements of the Clean Water Act.

 (2) Prior converted cropland.
- Notwithstanding the determination of an area's status as prior converted cropland by any other Federal agency, for the purposes of the Clean Water Act the final authority regarding Clean Water Act jurisdiction remains with
- EPA.
 (3) Ditches that are excavated wholly
- (3) Ditches that are excavated wholly to uplands, drain only uplands, and have less than perennial flow.
 (4) Ditches that do not contribute flow, either directly or through another water, to a water identified in
- water, to a water identified in paragraphs (a)(1) through (4) of this section.

 (5) The following features:
 (i) Artificially irrigated areas that would revert to upland should application of irrigation water to that area cease:
- area cease;

 (ii) Artificial lakes or ponds created by excavating and/or diking dry land and used exclusively for such purpose as stock watering, irrigation, settling as stock watering, irrigation, settlin basins, or rice growing; (iii) Artificial reflecting pools or
- (iii) Artificial reflecting pools or swimming pools created by excavating and/or diking dry land; (iv) Small ornamental waters created by excavating and/or diking dry land for primarily aesthetic reasons; (v) Water-filled depressions created incidental to construction activity; (vi) Groundwater, including groundwater drained through subsurface drainage systems; and (vii) Gullies and rills and non-wetland swales.

- swales.
 (c) Definitions—
 (1) Adjacent. The term adjacent means bordering, contiguous or neighboring. Waters, including wetlands, separated from other waters o the United States by man-made dikes or barriers, natural river berms, beach dunes and the like are "adjacent

- (2) Neighboring. The term (2) Neighboring. The term neighboring, for purposes of the term "adjacent" in this section, includes waters located within the riparian are or floodplain of a water identified in paragraphs [a](1) through (5) of this section, or waters with a shallow subsurface hydrologic connection or confined surface hydrologic connection.
- confined surface hydrologic connection to such a jurisdictional water.

 (3) Riparian area. The term riparian area means an area bordering a water where surface or subsurface hydrology disturble influence the control of the control directly influence the ecological processes and plant and animal community structure in that area. Riparian areas are transitional areas between aquatic and terrestrial ecosystems that influence the exchange of energy and materials between those
- ecosystems.

 (4) Floodplain. The term floodplain means an area bordering inland or coastal waters that was formed by sediment denosition from such water under present climatic conditions and is inundated during periods of moderate to high water flows.
 (5) Tributary. The term tributary
- (b) Itioniary. The term tribulary means a water physically characterized by the presence of a bed and banks and ordinary high water mark, as defined at 33 CFR 328.3(c), which contributes flow, either directly or through another water, to a water identified in paragraphs (a)(1) through (4) of the section. In addition, watlands lakes. paragraphs (a)(1) inrough (4) of this section. In addition, wetlands, lakes, and ponds are tributaries (even if they lack a bed and banks or ordinary high water mark) if they contribute flow, either directly or through another water to a water identified in paragraphs (a)(1) through (3) of this section. A water that otherwise outliffes as a tributary under otherwise outliffes as a tributary under otherwise qualifies as a tributary under this definition does not lose its status as a tributary if, for any length, there are one or more man-made breaks (such as bridges, culverts, pipes, or dams), or one or more natural breaks (such as wetlands at the head of or along the run of a stream, debris piles, boulder fields, or a stream that flows underground) so long as a bed and banks and an ordinary high water mark can be identified upstream of the break. A tributary, including wetlands, can be a natural. man-altered, or man-made water and includes waters such as rivers, streams, lakes, ponds, impoundments, canals, and ditches not excluded in paragraph (b)(3) or (4) of this section.
 (6) Wetlands. The term wetlands
- means those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands

- generally include swamps, marshes, bogs and similar areas. (7) Significant nexus. The term
- significant nexus means that a water including wetlands, either alone or in combination with other similarly situated waters in the region (i.e., the watershed that drains to the nearest watershed that drains to the nearest water identified in paragraphs (a)(1) through (3) of this section), significantly affects the chemical, physical, or biological integrity of a water identified in paragraphs (a)(1) through (3) of this section. For an effect to be significant, it must be more than speculative or insubstantial. Other waters, including wetlands, are similarly situated when they perform similar functions and are located sufficiently close together or sufficiently close to a "water of the United States" so that they can be evaluated as a single landscape unit with regard to their effect on the chemical, physical, or biological integrity of a water identified in paragraphs (a)(1) through (3) of this section.

Title 40-Protection of Environment

For the reasons set out in the preamble, title 40, chapter I of the Code of Federal Regulations is proposed to be amended as follows:

PART 110-DISCHARGE OF OIL

- 3. The authority citation for part 110 continues to read as follows:
- Authority: The Clean Water Act, 33 U.S.C. 1321 et seq.
- 4. Section 110.1 is amended by revising the definition of "navigable waters" to read as follows:

§110.1 Definitions.

- Navigable waters means the waters of the United States, including the territorial seas
- (1) For purposes of all sections of the Clean Water Act, 33 U.S.C. 1251 et. seq. and its implementing regulations, subject to the exclusions in paragraph (2) of this definition, the term "waters of the United States" means:
- (i) All waters which are currently used, were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters which are subject to the ebb and flow of the
- (ii) All interstate waters, including interstate wetlands;
- (iii) The territorial seas; (iv) All impoundments of waters identified in paragraphs (1)(i) through (iii) and (v) of this definition;

- (v) All tributaries of waters identified in paragraphs (1)(i) through (iv) of this definition:
- definition;
 (vi) All waters, including wetlands, adjacent to a water identified in paragraphs (1)(i) through (v) of this definition; and (vii) On a case-specific basis, other waters, including wetlands, provided that those waters alone, or in
- combination with other similarly situated waters, including wetlands, located in the same region, have a significant nexus to a water identified in significant nexts to a water identified paragraphs (1)(i) through (iii) of this definition.

 (2) The following are not "waters of
- the United States" notwithstanding whether they meet the terms of paragraphs (1)(i) through (vii) of this
- (i) Waste treatment systems, including treatment ponds or lagoons, designed to meet the requirements of the Clean Water Act.
- (ii) Prior converted cropland. Notwithstanding the determination of an area's status as prior converted cropland by any other Federal agency, for the purposes of the Clean Water Act the final authority regarding Clean Water Act jurisdiction remains with
- EPA.

 (iii) Ditches that are excavated wholly in uplands, drain only uplands, and have less than perennial flow.

 (iv) Ditches that do not contribute flow, either directly or through another water, to a water identified in paragraphs (1)(i) through (iv) of this definition.

 (v) The following features:

 (A) Artificially irrigated areas that would revert to upland should application of irrigation water to that
- application of irrigation water to that
- area coase;
 (B) Artificial lakes or ponds created by excavating and/or diking dry land and used exclusively for such purposes as stock watering, irrigation, settling hasins or rice arounds.
- as stock watering, irrigation, settling basins, or rice growing;
 (C) Artificial reflecting pools or swimming pools created by excavating and/or diking dry land;
 (D) Small ornamental waters created by excavating and/or diking dry land for primarily sesthetic reasons;
 (E) Water-filled depressions created incidental to construction activity;
 (F) Groundwater, including groundwater drained through
- groundwater drained through
- subsurface drainage systems; and (G) Gullies and rills and non-wetland
- swales.
 (3) Definitions-
- (i) Adjacent. The term adjacent means bordering, contiguous or neighboring. Waters, including wetlands, separated Waters, including wetlands, separated from other waters of the United States

- by man-made dikes or barriers, natural river berms, beach dunes and the like are "adjacent waters." (ii) Neighboring. The term neighboring, for purposes of the term "adjacent" in this section, includes waters located within the riparian area or floodplain of a water identified in paragraphs (1)(i) through (v) of this definition, or waters with a shallow subsurface hydrologic connection or confined surface hydrologic connection to such a jurisdictional water.
- (iii) Riparian area. The term riparian area means an area bordering a water where surface or subsurface hydrology directly influence the ecological processes and plant and animal community structure in that area. Riparian areas are transitional areas between aquatic and terrestrial ecosystems that influence the exchange of energy and materials between those
- ecosystems.
 (iv) Floodplain. The term floodplain means an area bordering inland or coastal waters that was formed by sediment deposition from such water under present climatic conditions and is inundated during periods of moderate to high water flows.

 (v) Tributary. The term tributary means a water physically characterized by the presence of a bed and hanks and
- ordinary high water mark, as defined at 33 CFR 328.3(e), which contributes flow, either directly or through another now, either directly or through another water, to a water identified in paragraphs (1)(i) through (iv) of this definition. In addition, wetlands, lakes, and ponds are tributaries (even if they lack a bed and banks or ordinary high water mark) if they contribute flow, either directly or through another water to a water identified in paragraphs (1)(i) to a water identified in paragraphs (1)(i) through (iii) of this definition. A water that otherwise qualifies as a tributary under this definition does not lose its status as a tributary if, for any length, there are one or more man-made breaks (such as bridges, culverts, pipes, or dams), or one or more natural breaks (such as wetlands at the head of or along the run of a stream, debris piles, boulder fields, or a stream that flows underground) so long as a bed and banks and an ordinary high water mark can be identified upstream of the break. A tributary, including wetlands, can be a natural, man-altered, or man-made a natural, main-ancieu, or main-made water and includes waters such as rivers, streams, lakes, ponds, impoundments, canals, and ditches not xcluded in paragraph (2)(iii) or (iv) of
- this definition.

 (vi) Wetlands. The term wetlands means those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to

- support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs and similar areas.
- (vii) Significant nexus. The term significant nexus means that a water, including wetlands, either alone or in combination with other similarly situated waters in the region (i.e., the watershed that drains to the nearest water identified in paragraphs (1)(i) through (iii) of this definition), infouga (iii) of this definition, significantly affects the chemical, physical, or biological integrity of a water identified in paragraphs (1)(i) through (iii) of this definition. For an effect to be significant, it must be more than speculative or insubstantial. Other waters including the think the content of the cont waters, including wetlands, are similarly situated when they perform similar functions and are located similar functions and are located sufficiently close together or sufficiently close to a "water of the United States" so that they can be evaluated as a single landscape unit with regard to their effect on the chemical, physical, or biological integrity of a water identified in paragraphs (1)(i) through (iii) of this definition. definition.

PART 112—OIL POLLUTION PREVENTION

- 5. The authority citation for part 112 continues to read as follows:
- Authority: The Clean Water Act, 33 U.S.C. 1321 et seq.
- 6. Section 112.2 is amended by revising the definition of "navigable waters" to read as follows:

§112.2 Definitions.

Navigable waters means the waters of the United States, including the territorial seas.

- (1) For purposes of all sections of the Clean Water Act, 33 U.S.C. 1251 et. seq. and its implementing regulations, subject to the exclusions in paragraph (b) of this section, the term "waters of the United States" means:
- (i) All waters which are currently used, were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters which are subject to the ehb and flow of the
- (ii) All interstate waters, including interstate wetlands; (iii) The territorial seas:
- (iv) All impoundments of waters identified in paragraphs (1)(i) through (iii) and (v) of this definition;

- (v) All tributaries of waters identified in paragraphs (1)(i) through (iv) of this definition:
- definition;
 (vi) All waters, including wetlands, adjacent to a water identified in paragraphs (1)(i) through (v) of this definition; and (vii) On a case-specific basis, other waters, including wetlands, provided that those waters alone, or in
- combination with other similarly situated waters, including wetlands, situated waters, including wetlands, located in the same region, have a significant nexus to a water identified in paragraphs (1)(i) through (iii) of this definition.

 (2) The following are not "waters of the little of the same regions of the little of the same regions."
- the United States" notwithstanding whether they meet the terms of paragraphs (1)(i) through (vii) of this
- (i) Waste treatment systems, including treatment ponds or lagoons, designed to meet the requirements of the Clean Water Act.
- (ii) Prior converted cropland Notwithstanding the determination of an area's status as prior converted cropland by any other Federal agency, for the purposes of the Clean Water Act the final authority regarding Clean Water Act jurisdiction remains with
- (iii) Ditches that are excavated wholly
- (iii) Ditches that are excavated wholly in uplands, drain only uplands, and have less than perennial flow.
 (iv) Ditches that do not contribute flow, either directly or through another water, to a water identified in paragraphs (1)(i) through (iv) of this definition.
 (v) The following features:
 (A) Artificially irrigated areas that would revert to upland should application of irrigation water to that
- application of irrigation water to that
- area cease;
 (B) Artificial lakes or ponds created by excavating and/or diking dry land and used exclusively for such purposes as stock watering, irrigation, settling basins, or rice growing;
 (C) Artificial reflecting pools or swimming pools created by excavating and/or diking dry land;
 (D) Small ornamental waters created by excavating and/or diking dry land for primarily aesthetic reasons;

- primarily aesthetic reasons;
 (E) Water-filled depressions created incidental to construction activity;
 (F) Groundwater, including
- groundwater drained through subsurface drainage systems; and
 (G) Gullies and rills and non-wetland

- (3) Definitions— (i) Adjacent. The term adjacent means bordering, contiguous or neighboring. Waters, including wetlands, separated from other waters of the United States

- by man-made dikes or barriers, natural
- by man-made dikes or barriers, nature river berms, beach dunes and the like are "adjacent waters." (ii) Neighboring. The term neighboring, for purposes of the term "adjacent" in this section, includes "adjacent" în this section, includes waters located within the riparian area or floodplain of a water identified in paragraphs (1)(i) through (v) of this definition, or waters with a shallow subsurface hydrologic connection or confined surface hydrologic connection to such a jurisdictional water.

 (iii) Riparian area. The term riparian area means an area bordering a water where surface or subsurface hydrology directly influence the ecological
- directly influence the ecological processes and plant and animal community structure in that area. Riparian areas are transitional areas between aquatic and terrestrial ecosystems that influence the exchange of energy and materials between those ecosystems.

 (iv) Floodplain. The term floodplain
- means an area bordering inland or coastal waters that was formed by sediment deposition from such water under present climatic conditions and is
- unuer present cimatic conditions and is inundated during periods of moderate to high water flows.

 (v) Tributary. The term tributary means a water physically characterized by the presence of a bed and banks and ordinary high water mark, as defined at 33 CFR 328.3(e), which contributes flow, either directly or through another. 33 CFR 328.3(e), which contributes flow, either directly or through another water, to a water identified in paragraphs (1)(i) through (iv) of this definition. In addition, wetlands, lakes, and ponds are tributaries (even if they lack a bed and banks or ordinary high water mark) if they contribute flow, either directly or through another water to a water identified in paragraphs (1)(i) to a water identified in paragraphs (1)(i) through (iii) of this definition. A water that otherwise qualifies as a tributary under this definition does not lose its status as a tributary if, for any length, there are one or more man-made breaks (such as bridges, culverts, pipes, or dams), or one or more natural breaks (such as wetlands at the head of or along the run of a stream, debris piles, houlder fields, or a stream that flows underground) so long as a hed and banks and an ordinary high water mark can be identified upstream of the break. A tributary, including wetlands, can be a natural, man-altered, or man-made water and includes waters such as rivers, streams, lakes, ponds, impoundments, canals, and ditches not this definition.

 (6) Wetlands. The term wetlands
- means those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to

- support, and that under normal of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs and similar areas.
- (7) Significant nexus. The term significant nexus means that a water. including wetlands, either alone or in combination with other similarly situated waters in the region (i.e., the watershed that drains to the nearest water identified in paragraphs (1)(i) through (iii) of this definition), significantly affects the chemical, physical, or biological integrity of a water identified in paragraphs (11(i) through (iii) of this definition. For an effect to he significant, it must be more than speculative or insubstantial. Other waters including weathers waters, including wetlands, are similarly situated when they perform similar functions and are located sufficiently close together or sufficiently close to a "water of the United States" close to a "water of the United States" so that they can be evaluated as a single landscape unit with regard to their effect on the chemical, physical, or biological integrity of a water identified in paragraphs (1)(i) through (iii) of this definition. n pa....definition.

PART 116—DESIGNATION OF HAZARDOUS SUBSTANCE

- 7. The authority citation for part 116 continues to read as follows
- Authority: The Clean Water Act. 33 U.S.C.
- 8. Section 116.3 is amended by revising the definition of "navigable waters" to read as follows:

§116.3 Definitions.

- Navigable waters is defined in section 502(7) of the Act to mean "waters of the United States, including the territorial
- (1) For purposes of all sections of the Clean Water Act, 33 U.S.C. 1251 et seq. and its implementing regulations, subject to the exclusions in paragraph (2) of this definition, the term "waters of the United States" means:
- (i) All waters which are currently used, were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters which are subject to the ebb and flow of the tide:
- (ii) All interstate waters, including interstate wetlands;
- (iii) The territorial seas:
- (iii) The territorial seas; (iv) All impoundments of waters identified in paragraphs (1)(i) through (iii) and (v) of this definition;.

- (v) All tributaries of waters identified in paragraphs (1)(i) through (iv) of this definition:
- definition:

 (vi) All waters, including wetlands, adjacent to a water identified in paragraphs (1)(i) through (v) of this definition; and (vii) On a case-specific basis, other waters, including wetlands, provided that those waters alone, or in
- combination with other similarly situated waters, including wetlands located in the same region, have a significant nexus to a water identified in significant nexts to a water toenthed paragraphs (1)(i) through (iii) of this definition.

 (2) The following are not "waters of
- the United States" notwithstanding whether they meet the terms of paragraphs (1)(i) through (viii) of this definition—
- (i) Waste treatment systems, including treatment ponds or lagoons, designed to meet the requirements of the Clean Water Act
- (ii) Prior converted cropland. Notwithstanding the determination of an area's status as prior converted cropland by any other Federal agency, for the purposes of the Clean Water Act the final authority regarding Clean Water Act jurisdiction remains with
- (iii) Ditches that are excavated wholly in uplands, drain only uplands, and
- have less than perennial flow.
 (iv) Ditches that do not contribute
 flow, either directly or through another
 water, to a water identified in paragraphs (1)(i) through (iv) of this
- (v) The following features:
 (A) Artificially irrigated areas that would revert to upland should application of irrigation water to that
- appincation of migation water to that area cease;
 (B) Artificial lakes or ponds created by excavating and/or diking dry land and used exclusively for such purpose as stock watering, irrigation, settling having ar rigor powing.
- as stock watering, in igation, setting basins, or rice growing;

 (C) Artificial reflecting pools or swimming pools created by excavating and/or diking dry land;

 (D) Small ornamental waters created by excavating and/or diking dry land for crimerily acceledated by excavating and/or diking dry land for crimerily acceledate to the contraction of the contra
- primarily aesthetic reasons;
 (E) Water-filled depressions created incidental to construction activity;
 (F) Groundwater, including
- groundwater drained through
- subsurface drainage systems; and (G) Gullies and rills and non-wetland
- swales.
 (3) Definitions-
- (i) Adjacent. The term adjacent means bordering, contiguous or neighboring. Waters, including wetlands, separated from other waters of the United States

by man-made dikes or barriers, natural river berms, beach dunes and the like

- river berms, beach dunes and the like are "adjacent waters."

 (ii) Neighboring. The term neighboring, for purposes of the term "adjacent" in this section, includes waters located within the riparian area or floodplain of a water identified in paragraphs (1)(i) through (v) of this definition or waters with a shallow definition, or waters with a shallow
- definition, or waters with a snahow subsurface hydrologic connection or confined surface hydrologic connection to such a jurisdictional water. (iii) Riparian area. The term riparian area means an area hordering a water where surface or subsurface hydrology directly influence the ecological processes and plant and animal processes and plant and animal community structure in that area. Riparian areas are transitional areas between aquatic and terrestrial ecosystems that influence the exchange of energy and materials between those

ecosystems.
(4) Floodplain. The term floodplain means an area bordering inland or coastal waters that was formed by sediment deposition from such water under present climatic conditions and is inundated during periods of moderate to high water flows. (5) Tributary. The term tributary means a water physically characterized by the presence of a bed and banks and

by the presence of a bed and banks and ordinary high water mark, as defined at 33 CFR 328.3(e), which contributes flow, either directly or through another water, to a water identified in paragraphs (1)(i) through (iv) of this definition. In addition, wetlands, lakes, and ponds are tributaries (www. if they.

and ponds are tributaries (even if they lack a bed and banks or ordinary high lack a bed and banks or ordinary high water mark) if they contribute flow, either directly or through another water to a water identified in paragraphs (1)(i) of this definition. A water that otherwise qualifies as a tributary under this definition does not lose its status as a tributary if, for any length, there are one or more man-made breaks (such as bridges, culverts, pipes, or dams), or one or more natural breaks (such as bridges, culverts, pipes, or dams), or one or more natural breaks (such as wetlands at the head of or along tsuch as wettands at the head of or along the run of a stream, debris piles, boulder fields, or a stream that flows underground) so long as a bed and hanks and an ordinary high water mark can be identified upstream of the break. A tributary, including wetlands, can be

a natural, man-altered, or man-made water and includes waters such as rivers, streams, lakes, ponds, impoundments, canals, and ditches not xcluded in paragraph (2)(iii) or (iv) of

this definition.

(vi) Wetlands. The term wetlands means those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to

support, and that under normal support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, becaused in interaction. bogs and similar areas.

(vii) Significant nexus. The term significant nexus means that a water, including wetlands, either alone or in combination with other similarly situated waters in the region (i.e., the watersbed that drains to the nearest water identified in paragraphs (1)(i) through (iii) of this definition), significantly affects the chemical, physical, or biological integrity of a water identified in paragraphs (1)(i) through (iii) of this definition. For an effect to be significant, it must be more than speculative or insubstantial. Other waters, including wetlands, are similarly situated when they perform similar functions and are located sufficiently close together or sufficiently close to a "water of the United States" close to a "water of the United States so that they can be evaluated as a single landscape unit with regard to their effect on the chemical, physical, or biological integrity of a water identified in paragraphs (1)(i) through (iii) of this definition.

PART 117—DETERMINATION OF REPORTABLE QUANTITIES FOR HAZARDOUS SUBSTANCES

- 9. The authority citation for part 117 continues to read as follows:
- Authority: The Clean Water Act, 33 U.S.C. 1251 et seq.
- 10. Section 117.1 is amended by revising the definition of "navigable waters" to read as follows:

§ 117.1 Definitions.

- (i) Navigable waters means "waters of the United States, including the territorial seas."
- (1) For purposes of all sections of the Clean Water Act, 33 U.S.C. 1251 et. seq. and its implementing regulations, subject to the exclusions in paragraph (i)(2) of this section, the term "waters of the United States" means:
- (i) All waters which are currently used, were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters which are subject to the ebb and flow of the tide:
- (ii) All interstate waters, including interstate wetlands; (iii) The territorial seas:
- (iv) All impoundments of waters identified in paragraphs (i)(1)(i) through (iii) and (v) of this section;

- (v) All tributaries of waters identified in paragraphs (i)(1)(i) through (iv) of this
- section;
 (vi) All waters, including wetlands, adjacent to a water identified in paragraphs (i)(1)(i) through (v) of this
- paragraphs (1)(1)(1) through (v) of this section; and (vii) On a case-specific basis, other waters, including wellands, provided that those waters alone, or in combination with other similarly situated waters, including wellands, located in the seme-script, have, located in the same region, have a significant nexus to a water identified in paragraphs (i)(1)(i) through (iii) of this
- section.
 (2) The following are not "waters of the United States" notwithstanding whether they meet the terms of paragraphs (i)(1)(i) through (vii) of this
- (i) Waste treatment systems, including treatment ponds or lagoons, designed to meet the requirements of the Clean
- Water Act.
 (ii) Prior converted cropland. Notwithstanding the determination of an area's status as prior converted cropland by any other Federal agency, for the purposes of the Clean Water Act the final authority regarding Clean Water Act jurisdiction remains with **EPA**
- ra. (iii) Ditches that are excavated wholly in uplands, drain only uplands, and
- have less than perennial flow.

 (iv) Ditches that do not contribute
 flow, either directly or through another
 water, to a water identified in
 paragraphs (i)(1)(i) through (iv) of this
 cretion.
- section.
 (v) The following features:
 (A) Artificially irrigated areas that would revert to upland should application of irrigation water to that
- area cease;
 (B) Artificial lakes or ponds created by excavating and/or diking dry land and used exclusively for such purposes as stock watering, irrigation, settling basins, or rice growing;
 (C) Artificial reflecting pools or swimning pools created by excavating and/or diking dry land;
 (D) Small ornamental waters created by excavating and/or diking dry land for primarily aesthetic reasons;
- primarily aesthetic reasons;
 (E) Water-filled depressions created
- incidental to construction activity;
 (F) Groundwater, including groundwater drained through subsurface drainage systems; and (G) Gullies and rills and non-wetland

- (3) Definitions—
 (i) Adjacent. The term adjacent means bordering, contiguous or neighboring.
 Waters, including wetlands, separated from other waters of the United States

- by man-made dikes or barriers, natural river berms, beach dunes and the like are "adjacent waters." (ii) Neighboring. The term neighboring, for purposes of the term "adjacent" in this section, includes waters located within the riparian area or floodplain of a water identified in paragraphs (i)(1)(i) through (v) of this paragraphs (A(III) intologic (V) of this section, or waters with a shallow subsurface hydrologic connection or confined surface hydrologic connection to such a jurisdictional water.

 (iii) Riparian area. The term riparian
- area means an area bordering a water where surface or subsurface hydrology directly influence the ecological processes and plant and animal community structure in that area. Riparian areas are transitional areas between aquatic and terrestrial ecosystems that influence the exchange of energy and materials between those ecosystems.

 (iv) Floodplain. The term floodplain
- (iv) Floodplain. The term floodplain means an area bordering inland or coastal waters that was formed by sediment deposition from such water under present climatic conditions and is inundated during periods of moderate to high water flows.
- high water flows.

 (v) Tributary. The term tributary
 means a water physically characterized
 by the presence of a bed and banks and ordinary high water mark, as defined at 33 CFR 328.3(e), which contributes flow, either directly or through another water, to a water identified in water, to a water identified in paragraphs (j(12)(i) through (iv) of this section. In addition, wetlands, lakes, and ponds are tributaries (even if they lack a bed and banks or ordinary high water mark) if they contribute flow, either directly or through another water to a water identified in paragraphs (j)(1)(i) through (iii) of this section. A water that the state with the section is the section of the section of the section in the section of the section is the section of the section in the section in the section of the section is the section of the section in the section in the section is the section of the section in the section in the section is the section of the section in the section in the section is the section in the section in the section in the section is the section in the section in the section in the section is the section in the section in the section in the section is the section in the section in the section in the section in the section is the section in the sec water that otherwise qualifies as a tributary under this definition does not lose its status as a tributary if, for any length, there are one or more man-made breaks (such as bridges, culverts, pipes, or dams), or one or more natural breaks (such as wetlands at the head of or along the run of a stream, debris piles, boulder fields, or a stream that flows underground) so long as a bed and banks and an ordinary high water mark can be identified upstream of the break.
 A tributary, including wetlands, can be a natural, man-altered, or man-made water and includes waters such as rivers, streams, lakes, ponds, impoundments, canals, and ditches not excluded in paragraph (i)(2)(iii) or (iv) of this section.

 (vi) Wetlands. The term wetlands
- means those areas that are inundated or saturated by snrface or groundwater at a frequency and duration sufficient to

- support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs and similar areas. (vii) Significant nexus. The term
- significant nexus means that a water. including wetlands, either alone or in combination with other similarly situated waters in the region (i.e., the watershed that drains to the nearest water identified in paragraphs (i)(1)(i) through (iii) of this section), significantly affects the chemical, physical, or biological integrity of a water identified in paragraphs (i)(1)(i) through (iii) of this section. For an effect through (III) of miss section. For an effect to be significant, it must be more than speculative or insubstantial. Other waters, including wetlands, are similarly situated when they perform similar functions and are located sufficiently close together or sufficiently close to a "water of the United States" close to a "water of the United States" so that they can be evaluated as a single landscape unit with regard to their effect on the chemical, physical, or biological integrity of a water identified in paragraphs (i)(1)(i) through (iii) of this section. this section.

PART 122—EPA ADMINISTERED PERMIT PROGRAMS: THE NATIONAL POLLUTANT DISCHARGE **ELIMINATION SYSTEM**

- 11. The authority citation for part 122 continues to read as follows:
- Authority: The Clean Water Act, 33 U.S.C. 1251 et seq.
- 12. Section 122.2 is amended by revising the definition of "Waters of the United States" and removing the note and editorial note at the end of the

The revision reads as follows

§ 122.2 Definitions.

* * * * *
Waters of the United States or waters of the U.S. means:

- (a) For purposes of all sections of the Clean Water Act, 33 U.S.C. 1251 et seq. and its implementing regulations, subject to the exclusions in paragraph (b) of this definition, the term "waters of the United States" means:
- (1) All waters which are currently used, were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters which are subject to the ehh and flow of the
- (2) All interstate waters, including interstate wetlands;
 (3) The territorial seas;

- (4) All impoundments of waters identified in paragraphs (a)(1) through (3) and (5) of this definition:
- (5) All tributaries of waters identified in paragraphs (a)(1) through (4) of this definition;
 (6) All waters, including wetlands,
- adjacent to a water identified in paragraphs (a)(1) through (5) of this definition; and
- (7) On a case-specific basis, other (7) On a case-specific basis, other waters, including wetlands, provided that those waters alone, or in combination with other similarly situated waters, including wetlands, located in the same region, have a significant nexus to a water identified in paragraphs (a)(1) through (3) of this definition.

 (b) The following are not "waters of
- the United States" notwithstanding whether they meet the terms of paragraphs (a)(1) through (7) of this definition—
- (1) Waste treatment systems including treatment systems, designed to meet the requirements of the Clean Water Act. This exclusion applies only to manmade bodies of water which neither were originally created in waters of the United States (such as disposal area in wetlands) nor resulted from the impoundment of waters of the United States.¹
- (2) Prior converted cropland. Notwithstanding the determination of an area's status as prior converted cropland by any other Federal agency, for the purposes of the Clean Water Act the final authority regarding Clean Water Act jurisdiction remains with EPA.
- (3) Ditches that are excavated wholly in uplands, drain only uplands, and
- have less than peronnial flow.

 (4) Ditches that do not contribute
 flow, either directly or through another
 water, to a water identified in
 paragraphs (a)(1) through (4) of this
 definition.

 (5) The following features:
 (ii) Artificially irrigated areas that
- (i) Artificially irrigated areas that would revert to upland should application of irrigation water to that
- area cease;
 (ii) Artificial lakes or ponds created
 by excavating and/or diking dry land
 and used exclusively for such purposes as stock watering, irrigation, settling basins, or rice growing;
 (iii) Artificial reflecting pools or
- swimming pools created by excavating and/or diking dry land; (iv) Small ornamental waters created
- by excavating and/or diking dry land for primarily aesthetic reasons; (v) Water-filled depressions created
- incidental to construction activity;

- (vi) Groundwater, including
- groundwater drained through subsurface drainage systems; and (vii) Gullies and rills and non-wetland
- swales.
 (c) Definitions—
 (1) Adjacent. The term adjacent (1) Adjacent. The term adjacent means bordering, contiguous or neighboring. Waters, including wetlands, separated from other waters of the United States hy man-made dikes or barriers, natural river berms, beach dunes and the like are "adjacent waters".
- dunes and the like are "adjacent waters."

 (2) Neighboring. The term neighboring, for purposes of the term "adjacent" in this section, includes waters located within the riparian area or floodplain of a water identified in paragraphs (a)(1) through (5) of this section, or waters with a shallow subsurface hydrologic connection or
- section, or waters with a shallow subsurface hydrologic connection or confined surface hydrologic connection to such a jurisdictional water. (3) Riparian area. The term riparian area means an area bordering a water where surface or subsurface hydrology directly influence the ecological processes and plant and animal community structure in that area. community structure in that area. Riparian areas are transitional areas between aquatic and terrestrial ecosystems that influence the exchange of energy and materials between those
- ecosystems.
 (4) Floodplain. The term floodplain means an area bordering inland or coastal waters that was formed by sediment deposition from such water under present climatic conditions and is inundated during periods of moderate to
- high water flows.
 (5) Tributary. The term tributary
 means a water physically characterized by the presence of a hed and banks and by the presence of a hed and banks and ordinary high water mark, as defined at 33 CFR 328.3(e), which contributes flow, either directly or through another water, to a water identified in paragraphs (a)(1) through (4) of this definition. In addition, wetlands, lakes, and nonde are tributaries (aven if these and ponds are tributaries (even if they lack a bed and banks or ordinary high water mark) if they contribute flow, either directly or through another water to a water identified in paragraphs (a)(1) through (3) of this definition. A water that otherwise qualifies as a tributary under this definition does not lose its status as a tributary if, for any length, there are one or more man-made breaks (such as bridges, culverts, pipes, or dams), or one or more natural breaks (such as wetlands at the head of or along the run of a stream, debris piles, boulder fields, or a stream that flows underground) so long as a bed and banks and an ordinary high water mark can be identified upstream of the break.

- A tributary, including wetlands, can be a natural, man-altered, or man-made water and includes waters such as rivers, streams, lakes, ponds, impoundments, canals, and ditches not with the substitution of th this definition.

 (6) Wetlands. The term wetlands
- means those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs and similar areas.

 (7) Significant nexus. The term significant nexus means that a water, including wetlands, either alone or in combination with other similarly.
- combination with other similarly situated waters in the region (i.e., the watershed that drains to the nearest water identified in paragraphs (a)(1) through (3) of this definition), significantly affects the chemical, physical, or biological integrity of a water identified in paragraphs (a)(1) through (3) of this definition. For an effect to be significant, it must be more than speculative or insubstantial. Other waters, including wetlands, are similarly situated when they perform similar functions and are located sufficiently close together or sufficiently close to a "water of the United States" so that they can be evaluated as a single landscape unit with regard to their effect on the chemical, physical, or biological integrity of a water identified in paragraphs (a)(1) through (3) of this
- ¹At 45 FR 48620, July 21, 1980, the Environmental Protection Agency suspended until further notice in § 122.2, the last sentence, beginning "This exclusion applies . ." in the definition of "Waters of the United States." This revision (48 FR 14153, Apr. 1, 1983) continues that suspension.

PART 230—SECTION 404(b)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL

■ 13. The authority citation for part 230 continues to read as follows:

Authority: The Clean Water Act, 33 U.S.C. 1251 et seq.

■ 14. Section 230.3 is amended by revising paragraphs (s) and (t) and adding paragraph (u) to read as follows:

§ 230.3 Definitions.

(s) For purposes of all sections of the Clean Water Act, 33 U.S.C. 1251 et seq.

and its implementing regulations,

- and its implementing regulations, subject to the exclusions in paragraph (t) of this section, the term "waters of the United States" means:

 (1) All waters which are currently used, were used in the past, or may be susceptible to use in interstate or foreign compares, including all waters which commerce, including all waters which are subject to the ebb and flow of the
- tide; (2) All interstate waters, including
- interstate wetlands; (3) The territorial seas;
- (4) All impoundments of waters identified in paragraphs (s)(1) through (3) and (5) of this section;
 (5) All tributaries of waters identified
- in paragraphs (s)(1) through (4) of this
- (6) All waters, including wetlands, adjacent to a water identified in paragraphs (s)(1) through (5) of this section: and
- section; and
 (7) On a case-specific basis, other
 waters, including wetlands, provided
 that those waters alone, or in combination with other similarly situated waters, including wetlands, located in the same region, have a significant nexus to a water identified in paragraphs (s)(1) through (3) of this
- paragraphs (S)(1) turbugh (3) of this section.

 (t) The following are not "waters of the United States" notwithstanding whether they meet the terms of paragraphs (s)(1) through (7) of this
- section—
 (1) Waste treatment systems,
 including treatment ponds or lagoons,
 designed to meet the requirements of
 the Clean Water Act.
 (2) Prior converted cropland.
 Notwithstanding the determination of
 an area's status as prior converted.
- an area's status as prior converted cropland by any other Federal agency, for the purposes of the Clean Water Act the final authority regarding Clean Water Act jurisdiction remains with
- EPA.

 (3) Ditches that are excavated wholly
- (3) Ditches that are excavated whonly in uplands, drain only uplands, and have less than perennial flow.

 (4) Ditches that do not contribute flow, either directly or through another water, to a water identified in paragraphs (s)(1) through (4) of this
- (5) The following features:
 (i) Artificially irrigated areas that would revert to upland should application of irrigation water to that
- application of frigation water to mac area cease;

 (ii) Artificial lakes or ponds created by excavating and/or diking dry land and used exclusively for such purposes
- as stnck watering, irrigation, settling as suck watering, irrigation, setting basins, or rice growing; (iii) Artificial reflecting pools or swimming pools created by excavating and/or diking dry land;

- (iv) Small ornamental waters created by excavating and/or diking dry land for primarily aesthetic reasons; (v) Water-filled depressions created incidental to construction activity; (vi) Groundwater, including groundwater drained through

- subsurface drainage systems; and (vii) Gullies and rills and non-wetland
- swates.

 (u) Definitions—

 (1) Adjacent. The term adjacent means bordering, contiguous or neighboring. Waters, including wetlands, separated from other waters of the United States by man-made dikes or barriers, natural river herms, heach dunes and the like are "adjacent
- neighboring. The term (2) reignboring. In a term neighboring, for purposes of the term "adjacent" in this section, includes waters located within the riparian are or floodplain of a water identified in paragraphs (s)(1) through (5) of this paragraphs (s)(1) utrough (s) of this section, or waters with a shallow subsurface hydrologic connection or confined surface hydrologic connection to such a jurisdictional water.

 (3) Riparian area. The term riparian area means an area bordering a water where surface or subsurface hydrology directly influence the ecological
- directly influence the ecological processes and plant and animal community structure in that area. Riparian areas are transitional areas between aquatic and terrestrial ecosystems that influence the exchange of energy and materials between those
- ecosystems.
 (4) Floodplain. The term floodplain means an area bordering inland or coastal waters that was formed by sediment deposition from such water under present climatic conditions and is inundated during periods of moderate to
- high water flows.
 (5) Tributary. The term tributary means a water physically characterized by the presence of a bed and banks and ordinary high water mark, as defined at 33 CFR 328.3(e), which contributes flow, either directly or through another water, to a water identified in paragraphs (s)(1) through (4) of this section. In addition, wetlands, lakes section. In addition, wetlands, lakes, and ponds are tributaries (even if they lack a bed and banks or ordinary high water mark) if they contribute flow, either directly or through another water to a water identified in paragraphs [s][1] through [3] of this section. A water that otherwise qualifies as a tributary under this definition does not lose its status as a tributary if, for any length, there are one or more man-made breaks (such as bridges, culverts, pipes, or dams), or one or more natural breaks (such as wetlands at the head of or along the run

of a stream, debris piles, boulder fields, or a stream that flows underground) so long as a bed and banks and an ordinary high water mark can be identified upstream of the break. A tributary, including wetlands, can he a natural man-altered, or man-made water and includes waters such as rivers, streams, lakes, ponds, impoundments, canals, and ditches not excluded in paragraph (t)(3) or (4) of this section. (6) Wetlands. The term wetlands

means those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal support, and that under normal circumstances do support, a prevalence of vogetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs and similar areas. [7] Significant nexus. The term significant nexus means that a water, including wetlands, either alone or in combination with other similarly

situated waters in the region (i.e., the watershed that drains to the nearest watershed that drains to the nearest water identified in paragraphs (s)(1) through (3) of this section), significantly affects the chemical, physical, or biological integrity of a water identified in paragraphs (s)(1) through (3) of this section. For an effect to be significant, it must be more than speculative or insubstantial. Other waters, including wetlands, are infulled that the wetlands are infulled that the section. wetlands, are similarly situated when they perform similar functions and are located sufficiently close together or sufficiently close to a "water of the United States" so that they can be evaluated as a single landscape unit with regard to their effect on the chemical, physical, or biological integrity of a water identified in paragraphs (s)(1) through (3) of this

PART 232—404 PROGRAMS DEFINITIONS; EXEMPT ACTIVITIES NOT REQUIRING 404 PERMITS

- 15. The authority citation for part 232 continues to read as follows:
- Authority: The Clean Water Act, 33 U.S.C. 1251 et seq.
- 16. Section 232.2 is amended by revising the definition of "Waters of the United States" to read as follows:

§ 232.2 Definitions,

- Waters of the United States or waters
- means:
 (1) For purposes of all sections of the Clean Water Act, 33 U.S.C. 1251 et. seq. and its implementing regulations, subject to the exclusions in paragraph (2) of this definition, the term "waters of the United States" means:

- (i) All waters which are currently used, were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters which are subject to the ebb and flow of the
- tide; (ii) All interstate waters, including interstate wetlands; (iii) The territorial seas;
- (iv) All impoundments of waters identified in paragraphs (1)(i) through (iii) and (v) of this definition; (v) All tributaries of waters identified
- in paragraphs (1)(i) through (iv) of this section;
 (vi) All waters, including wetlands,
- (vi) All waters, including wedands, adjacent to a water identified in paragraphs (1)(i) through (v) of this definition; and (vii) On a case-specific basis, other waters, including wetlands, provided that those waters alone, or in combination with other similarly stituted waters including wetlands. situated waters, including wetlands, located in the same region, have a significant nexus to a water identified in
- significant nexus to a water identified in paragraphs (1)(i) through (iii) of this definition.

 (2) The following are not "waters of the United States" notwithstanding whether they meet the terms of paragraphs (1)(i) through (vii) of this definition—

 (i) Waste treatment systems, including treatment pands or leagues designed to
- treatment ponds or lagoons, designed to meet the requirements of the Clean Water Act.

 (ii) Prior converted cropland.
- Notwithstanding the determination of an area's status as prior converted cropland by any other Federal agency, for the purposes of the Clean Water Act the final authority regarding Clean Water Act jurisdiction remains with
- EPA.

 (iii) Ditches that are excavated wholly in uplands, drain only uplands, and have less than perennial flow. (iv) Ditches that do not contribute
- flow, either directly or through another water, to a water identified in paragraphs (1)(i) through (iv) of this
- section.

 (v) The following features:

 (A) Artificially irrigated areas that would revert to upland should application of irrigation water to that
- area cease;
 (B) Artificial lakes or ponds created by excavating and/or diking dry land and used exclusively for such purposes as stock watering, irrigation, settling
- as stock watering, irrigation, settling basins, or rice growing;

 (C) Artificial reflecting pools or swimming pools created by excavating and/or diking dry land;

 (D) Small ornamental waters created by excavating and/or diking dry land for primarily aesthetic reasons;

- (E) Water-filled depressions created
- incidental to construction activity;
 (F) Groundwater, including
 groundwater drained through
- subsurface drainage systems; and (G) Gullies and rills and non-wetland
- swales.
 (3) Definitions—
 (i) Adjacent. The term adjacent means bordering, contiguous or neighboring. Waters, including wetlands, separated from other waters of the United States by man-made dikes or barriers, natural river berms, beach dunes and the like are "adjacent waters".
- are "adjacent waters."
 (ii) Neighboring. The term
 neighboring, for purposes of the term
 "adjacent" in this section, includes waters located within the riparian area or floodplain of a water identified in paragraphs (1)(i) through (v) of this definition, or waters with a shallow
- deniment, or waters with a snahow subsurface hydrologic connection or confined surface hydrologic connection to such a jurisdictional water. (iii) Riparian area. The term riparian area means an area hordering a water where surface or subsurface hydrology directly influence the ecological purcesses and plant and animal processes and plant and animal community structure in that area. Riparian areas are transitional areas between aquatic and terrestrial ecosystems that influence the exchange of energy and materials between thos
- ecosystems.
 (iv) Floodplain. The term floodplain means an area bordering inland or coastal waters that was formed by sediment deposition from such water under present climatic conditions and is inundated during periods of moderate to high water flows.

 (v) Tributary. The term tributary
- means a water physically characterized by the presence of a bed and banks and ordinary high water mark, as defined at 33 CFR 328.3(e), which contributes flow, either directly or through another water, to a water identified in paragraphs (1)(i) through (iv) of this paragrapus (1)01 frough (1)07 of this definition. In addition, wetlands, lakes, and ponds are tributaries (even if they lack a hed and banks or ordinary high water mark) if they contribute flow, either directly or through another water to a water identified in paragraphs (1)(i) through (iii) of this definition. A water that otherwise multifes e.a. tributary. that otherwise qualifies as a tributary under this definition does not lose its status as a tributary if, for any length, there are one or more man-made breaks (such as bridges, culverts, pipes, or dams), or one or more natural breaks (such as wetlands at the head of or along the run of a stream, debris piles, boulder fields, or a stream that flows underground) so long as a bed and hanks and an ordinary high water mark

- can be identified upstream of the break. A tributary, including wetlands, can be a natural, man-altered, or man-made water and includes waters such as rivers, streams, lakes, ponds, impoundments, canals, and ditches not excluded in paragraph (2)(iii) or (iv) of this definition.
- (vi) Wetlands. The term wetlands means those areas that are inundated or saturated by surface or groundwater at saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs and similar areas.
- (vii) Significant nexus. The term significant nexus means that a water, including wetlands, either alone or in combination with other similarly situated waters in the region (i.e., the watershed that drains to the nearest water identified in paragraphs (1)(i) through (iii) of this definition), through (iii) of this definition), significantly affects the chemical, physical, or biological integrity of a water identified in paragraphs (1)(i) through (iii) of this definition. For an effect to he significant, it must be more effect to he significant, it must be more than speculative or insubstantial. Other waters, including wetlands, are similarly situated when they perform similar functions and are located sufficiently close together or sufficiently close to a "water of the United States" close to a "water of the United States" so that they can be evaluated as a single landscape unit with regard to their effect on the chemical, physical, or biological integrity of a water identified in paragraphs (1)(i) through (iii) of this definition.

PART 300—NATIONAL OIL AND HAZARDOUS SUBSTANCES POLLUTION CONTINGENCY PLAN

- 17. The authority citation for part 300 continues to read as follows:
- Authority: The Clean Water Act, 33 U.S.C. 1251 et seq.
- 18. Section 300.5 is amended by revising the definition of "navigable waters" to read as follows:

§ 300.5 Definitions.

Navigable waters as defined by 40 CFR 110.1, means the waters of the United States, including the territorial

(1) For purposes of all sections of the Clean Water Act, 33 U.S.C. 1251 et seq. and its implementing regulations, subject to the exclusions in paragraph (2) of this definition, the term "waters of the United States" means:

- (i) All waters which are currently u) An waters which are currently used, were used in the past, or may he susceptible to use in interstate or foreign commerce, including all waters which are subject to the ebb and flow of the

- in paragraphs (1)(i) through (iv) of this definition;
 (vi) All waters, including wetlands,
- (vi) All waters, including wetlands, adjacent to a water identified in paragraphs (1)(i) through (v) of this definition; and (vii) On a case-specific basis, other waters, including wetlands, provided that those waters alone, or in combination with other similarly situated waters including wetlands. situated waters, including wetlands, located in the same region, have a significant nexus to a water identified in paragraphs (1)(i) through (iii) of this definition.
- uenntion.

 (2) The following are not "waters of the United States" notwithstanding whether they meet the terms of paragraphs (1)(i) through (vii) of this definition—
- efinition— (i) Waste treatment systems, including treatment ponds or lagoons, designed to meet the requirements of the Clean Water Act.

 (ii) Prior converted cropland.
- Notwithstanding the determination of an area's status as prior converted cropland by any other Federal agency, for the purposes of the Clean Water Act the final authority regarding Clean Water Act jurisdiction remains with
- EPA.
 (iii) Ditches that are excavated wholly in uplands, drain only uplands, and have less than perennial flow. (iv) Ditches that do not contribute
- flow, either directly or through another water, to a water identified in
- water, to a water identified in paragraphs (1)(i) through (iv) of this definition. (v) The following features: (A) Artificially irrigated areas that would revert to upland should application of irrigation water to that
- area cease; (B) Artificial lakes or ponds created by excavating and/or diking dry land and used exclusively for such purposes
- and used exclusively for such purposes as stock watering, irrigation, settling basins, or rice growing;
 (C) Artificial reflecting pools or swimming pools created by excavating and/or diking dry land;
 (D) Small ornamental waters created by excavating and/or diking dry land for primarily aesthetic reasons;

- (E) Water-filled depressions created
- incidental to construction activity;
 (F) Groundwater, including
 groundwater drained through
- subsurface drainage systems; and (G) Gullies and rills and non-wetland
- (3) Definitions-(i) Adjacent Th Adjacent. The term adjacent means (1) Adjacent. The term adjacent mean bordering, contiguous or neighboring. Waters, including wetlands, separated from other waters of the United States by man-made dikes or barriers, natural river berms, beach dunes and the like
- river berms, beach dunes and the like are "adjacent waters."

 (ii) Neighboring. The term neighboring, for purposes of the term "adjacent" in this section, includes waters located within the riparian area or floodplain of a water identified in paragraphs [1](i) through (v) of this definition, or waters with a shallow when for a burden or section or when for a burden or section or section. subsurface bydrologic connection or
- subsurface bydrologic connection or confined surface hydrologic connection to such a jurisdictional water.

 (iii) Riparian area. The term riparian area means an area bordering a water where surface or subsurface hydrology directly influence the ecological processes and plant and animal community structure in that area. Riparian areas are transitional areas between aquatic and terrestrial ecosystems that influence the exchange of energy and materials hetween those
- ecosystems.
 (iv) Floodplain. The term floodplain means an area bordering inland or coastal waters that was formed by sediment deposition from such water under present climatic conditions and is inundated during periods of moderate to high water flows.
 (v) Tributary. The term tributary
- (v) Tributary. The term tributary means a water physically characterized by the presence of a bed and banks and ordinary high water mark, as defined at 3a CFR 326.3(e), which contributes flow, either directly or through another water, to a water identified in paragraphs (1)(i) through (iv) of this definition. In addition, wetlands, lakes, and ponds are tributaries (even if they lack a bed and banks or ordinary high water mark) if they contribute flow, either directly or through another water to a water identified in paragraphs (1)(i) through (iii) of this definition. A water that otherwise qualifies as a tributary that otherwise qualifies as a tributary under this definition does not lose its status as a tributary if, for any length, there are one or more man-made breaks (such as bridges, culverts, pipes, or dams), or one or more natural breaks (such as wetlands at the head of or along the run of a stream, debris piles, boulder fields, or a stream that flows underground) so long as a bed and banks and an ordinary high water mark

- can be identified upstream of the hreak. A tributary, including wetlands, can be a natural, man-altered, or man-made water and includes waters such as rivers, streams, lakes, ponds, impoundments, canals, and ditches not excluded in paragraph (2)(iii) or (iv) of this definition.
- (vi) Wetlands. The term wetlands means those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands geuerally include swamps, marshes, bogs and similar areas.
- (vii) Significant nexus. The term significant nexus means that a water, including wetlands, either alone or in combination with other similarly situated waters in the region (i.e., the watershed that drains to the nearest water identified in paragraphs (1)(i) through (iii) of this definition), significantly affects the chemical. physical, or biological integrity of a water identified in paragraphs (1)(i) through (iii) of this definition. For an effect to be significant, it must be more than speculative or insubstantial. Other waters, including wetlands, are similarly situated when they perform similar functions and are located sufficiently close together or sufficiently close to a "water of the United States" close to a "water of the United States" so that they can be evaluated as a single landscape unit with regard to their effect on the chemical, physical, or biological integrity of a water identified in paragraphs (1)(i) through (iii) of this definition.
- 19. In appendix E to part 300, section 1.5 Definitions is amended by revising the definition of "navigable waters" to read as follows:

Appendix E to Part 300—Oil Spill Response.

1.5 Definitions. *

- 1.5 Definitions. * * *
 Navigable waters as defined by 40 CFR
 110.1, means the waters of the United States, including the territorial seas.
 (1) For purposes of all sections of the Clean Water Act, 33 U.S.C. 1251 et seq. and its implementing regulations, subject to the exclusions in paragraph (2) of this definition, the term "waters of the United States"
- (i) All waters which are currently used (i) All waters which are currently used, were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters which are subject to the ebb and flow of the tide;
 (ii) All interstate waters, including interstate wetlands;
 (iii) The territorial seas;

- (iv) All impoundments of waters identified a paragraphs (1)(i) through (iii) and (v) of
- in paragraphs (1)(i) through (iii) and (v) of this definition; (v) All tributaries of waters identified in paragraphs (1)(i) through (iv) of this definition;
- (v) All tributaries of waters identified in paragraphs (1)(i) through (iv) of this definition:
 (vi) All waters, including wetlands, adjacent to a water identified in paragraphs (1)(i) through (v) of this definition; and (vii) On a case-specific basis, other waters, including wetlands, provided that those waters alone, or in combination with other similarly situated waters, including wetlands, located in the same region, have a significant nexus to a water identified in paragraphs (1)(i) through (iii) of this definition.
 (2) The following are not "waters of the United States" notwithstanding whether they meet the terms of paragraphs (1)(i) through (vii) of this definition—
 (i) Waste treatment systems, including treatment ponds or lagoons, designed to meet the requirements of the Clean Water Act. (ii) Prior converted cropland. Notwithstanding the determination of an area's status as prior converted cropland by any other Federal agency, for the purposes of the Clean Water Act the final authority regarding Clean Water Act the final authority regarding Clean Water Act the final nuthority regarding Clean Water Act through another water, to a water identified in paragraphs (1)(ii) through (vi) of this definition.

 (iv) Ditches that are excavated wholly in uplands, drain only uplands, and have less than perennial flow.

 (iv) Ditches that are excavated in the directly or through another water, to a water identified in paragraphs (1)(ii) through (vi) of this definition.

 (iv) The following features:

 (a) Artificial lake so ronds created by excavating and/or diking dry land and used exclusively for such purposes as stock watering, irrigation, settling basins, or rice growing:

 (C) Artificial reflecting pol

- growing;
 (C) Artificial reflecting pools or swimming
 pools created by excavating and/or diking
 dry land;
- ry tanu; (D) Small ornamental waters created by
- (D) Small ornamental waters created by excavating and/or diking dry land for primarily aesthetic reasons; (E) Water-filled depressions created incidental to construction activity; (F) Groundwater, including groundwater drained through subsurface drainage systems; and
- (G) Gullies and rills and non-wetland
- (a) Definitions—
 (i) Adjacent. The term adjocent means (i) Adjucent. The term adjocent means bordering, contiguous or neighboring. Waters, including wetlands, separated from other waters of the United States by manimade dikes or barriers, natural river herms, beach dunes and the like are "adjacent waters".
- waters."
 (ii) Neighboring. The term neighboring, for purposes of the term "adjacent" in this section, includes waters located within the riparian area or floodplain of a water identified in paragraphs (1)(i) through (v) of this definition, or waters with a shallow subsurface hydrologic connection or confined surface hydrologic connection to such a jurisdictional water.

- (iii) Riparion area. The term riparian area means an area bordering a water where surface or subsurface hydrology directly influence the ecological processes and plant and animal community structure in that area. Riparian areas are transitional areas between aquotic and terrestrial ecosystems that influence the exchange of energy and materials between those ecosystems.

 (iv) Floodplain. The term floodplain means an area bordering inland or coastal waters
- an area bordering inland or coastal waters that was formed by sediment deposition from such water under present climatic conditions and is inundated during periods of moderate
- such water under present climatic conditions and is inundated during periods of moderate to high water flows.

 (v) Tributary. The term tributary means a water physically characterized by the presence of a bed and banks and ordinary high water mark, as defined at 33 CFR 328.3(e), which contributes flow, either directly or through another water, to a water identified in paragraphs (1)(i) through (iv) of this definition. In addition, wetlands, lakes, and ponds are tributaries (even if they lack a bed and banks or ordinary high water mark) if they contribute flow, either directly or through another water to a water identified in paragraphs (1)(i) through (iii) of this definition. A water that otherwise qualifies as a tributary tif, for any length, there are one or more man-made breaks (such as bridges, culverts, pipes, or dams), or one more natural breaks (such as wetlands at the head of or along the run of a stream, debris piles, boulder fields, or a stream that flows underground) so long as a bed and banks and an ordinary high water mark can be identified upstream of the break. A tributary, including wetlands, can be a natural, man-altered, or man-made water and includes waters such as trivers, stream, lakes, natural, man-altered, or man-made water and includes waters such as rivers, streams, lakes, ponds, impoundments, canals, and ditches not excluded in paragraph (2)(iii) or (iv) of this definition.

 (vi) Wetlands. The term wetlands means
- (VI) wettands. The term wetlands means those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs and
- generally include swamps, marshes, bogs and similar areas. (vii) Significant nexus. The term significant nexus means that a water, including wotlands, either alone or in combination with other similarly situated waters in the region (i.e., the watershed that drains to the nearest water identified in paragraphs (1)(i) through (iii) of this definition), significantly affects the chemical, physical, or biological integrity of a water identified in paragraphs (1)(i) through (iii) of this definition. For an effect to be significant, it must be more than speculative or insubstantial. Other waters, including wetlands, are similarly situated when they perform similar functions and are including wetlands, are similarly situated when they perform similar functions and are located sufficiently close together or sufficiently close to a "water of the United States" so that they can be evaluated as a single landscape unit with regard to their effect on the chemical, physical, or biological integrity of a water identified in paragraphs (1)(i) through (iii) of this definition.

PART 302—DESIGNATION, REPORTABLE QUANTITIES, AND NOTIFICATION

- 20. The authority citation for part 302 continues to read as follows:
- Authority: The Clean Water Act, 33 U.S.C. 1251 et seq.
- 21. Section 302.3 is amended by revising the definition of "navigable waters" to read as follows:

§ 302.3 Definitions.

- Navigable waters means the waters of the United States, including the territorial seas.
- (1) For purposes of all sections of the Clean Water Act, 33 U.S.C. 1251 et. seq. and its implementing regulations, subject to the exclusions in paragraph (2) of this definition, the term "waters of the United States" means:
- (i) All waters which are currently used, were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters which are subject to the ehb and flow of the
- (ii) All interstate waters, including interstate wetlands; (iii) The territorial seas;
- (iv) All impoundments of waters identified in paragraphs (1)(i) through (iii) and (v) of this definition;
- (v) All tributaries of waters identified in paragraphs (1)(i) through (iv) of this definition;
- (vi) All waters, including wetlands, adjacent to a water identified in paragraphs (1)(i) through (v) of this definition; and
- (vii) On a case-specific basis, other vaters, including wetlands, provided that those waters alone, or in combination with other similarly situated waters, including wetlands, located in the same region, have a significant nexus to a water identified in paragraphs (1)(i) through (iii) of this definition.

 (2) The following are not "waters of
- the United States" notwithstanding whether they meet the terms of paragraphs (1)(i) through (vii) of this definition-
- (i) Waste treatment systems, including treatment ponds or lagoons, designed to meet the requirements of the Clean Water Act.
- (ii) Prior converted cropland. Notwithstanding the determination of an area's status as prior converted cropland by any other Federal agency, for the purposes of the Clean Water Act the final authority regarding Clean Water Act jurisdiction remains with

- (iii) Ditches that are excavated wholly in uplands, drain only uplands, and have less than perennial flow. (iv) Ditches that do not contribute
- flow, either directly or through another water, to a water identified in
- water, to a water identified in paragraphs (1)(i) through (iv) of this definition. (v) The following features: (A) Artificially irrigated areas that would revert to upland should application of irrigation water to that
- area cease; (B) Artificial lakes or ponds created by excavating and/or diking dry land and used exclusively for such purposes
- and use declaratively for such purposes as stock watering, irrigation, settling basins, or rice growing. (C) Artificial reflecting pools or swimming pools created by excavating and/or diking dry land:
 (D) Small ornamental waters created
- (U) Small ornamental waters created by excavating and/or diking dry land for primarily aesthetic reasons;
 (E) Water-filled depressions created incidental to construction activity;
 (F) Groundwater, including groundwater drained through

- subsurface drainage systems; and (G) Gullies and rills and non-wetland swales.
 (3) Definitions—
 (i) Adjacent. The term adjacent means
- bordering, contiguous or neighboring. Waters, including wetlands, separated from other waters of the United States by man-made dikes or barriers, natural river berms, beach dunes and the like
- river berms, beach dunes and the like are "adjacent waters." (ii) Neighboring. The term neighboring, for purposes of the term "adjacent" in this section, includes waters located within the riparian area or floodplain of a water identified in paragraphs (1)(i) through (v) of this definition or water with a shallow
- paragraphs (1)(i) through (v) of this definition, or waters with a shallow subsurface hydrologic connection or confined surface hydrologic connection to such a jurisdictional water.

 (iii) Riparian area. The term riparian area means an area bordering a water where surface or subsurface hydrology directly influence the ecological processes and plant and animal. processes and plant and animal community structure in that area. Riparian areas are transitional areas between aquatic and terrestrial ecosystems that influence the exchange of energy and materials between those
- (iv) Floodplain. The term floodplain means an area bordering inland or coastal waters that was formed by sediment deposition from such water under present climatic conditions and is inundated during periods of moderate to
- high water flows.
 (v) Tributary. The term tributary means a water physically characterized

by the presence of a bed and banks and ordinary high water mark, as defined at 33 CFR 328.3(e), which contributes flow, either directly or through another water, to a water identified in water to a water identified in paragraphs (1)(i) through (iv) of this definition. In addition, wetlands, lakes, and ponds are tributaries (even if they lack a bed and banks or ordinary high water mark) if they contribute flow, either directly or through another water to a water identified in paragraphs (1)(i) through (iii) of this definition. A water that otherwise qualifies as a tributary under this definition does not lose its status as a trihutary if, for any length, there are one or more man-made breaks (such as bridges, culverts, pipes, or dams), or one or more natural breaks (such as wetlands at the head of or along the run of a stream, debris piles, boulder the run of a stream, neuris pies, bounder, fields, or a stream that flows underground) so long as a bed and banks and an ordinary high water mark can be identified upstream of the break. A tributary, including wetlands, can be a natural, man-altered, or man-made water and includes waters such as rivers streams lakes ponds. rivers, streams, lakes, ponds, impoundments, canals, and ditches not excluded in paragraph (2)(iii) or (iv) of this definition.

this definition.

(vi) Wetlands. The term wetlands
means those areas that are inundated or
saturated by surface or groundwater at
a frequency and duration sufficient to
support, and that under normal
circumstances do support, a prevalence
of vegetation typically adapted for life
in saturated soil conditions. Wetlands
generally include swamps, marshes,
bogs and similar areas.

(vii) Significant nexus. The term

loogs and similar areas.

(vii) Significant nexus. The term significant nexus means that a water, including wetlands, either alone or in including wetlands, either alone or in combination with other similarly situated waters in the region (i.e., the watershed that drains to the nearest water identified in paragraphs (1)(i) through (iii) of this definition), significantly affects the chemical, physical, or biological integrity of a water identified in paragraphs (1)(i) through (iii) of this definition. For an effect to be significant, it must be more than speculative or insubstantial. Other waters, including wetlands, are similarly situated when they perform similar functions and are located sufficiently close together or sufficiently sufficiently close together or sufficiently close to a "water of the United States" so that they can he evaluated as a single landscape unit with regard to their effect on the chemical, physical, or biological integrity of a water identified in paragraphs (1)(i) through (iii) of this in para₅..., definition.

PART 401—GENERAL PROVISIONS

- 22. The authority citation for part 401 continues to read as follows:
- Authority: The Clean Water Act, 33 U.S.C. 1251 et seq.
- 23. Section 401.11 is amended by revising paragraph (l) to read as follows:

§ 401.11 General definitions.

- (l) The term navigable waters means
- the waters of the United States, including the territorial seas.
 (1) For purposes of all sections of the Clean Water Act, 33 U.S.C. 1251 et. seq. and its implementing regulations, subject to the exclusions in paragraph (1)(2) of this section, the term "waters of
- (i) All waters which are currently used, were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters which are subject to the ebb and flow of the
- tide;
 (ii) All interstate waters, including interstate wetlands; (iii) The territorial seas;
- (iii) The territorial seas; (iv) All impoundments of waters identified in paragraphs (l)(1)(i) through (iii) and (v) of this section; (v) All tributaries of waters identified
- in paragraphs (l)(1)(i) through (iv) of this
- section; (vi) All waters, including wetlands,
- (vi) All waters, including wetlands, adjacent to a water identified in paragraphs (l)(1)(i) through (v) of this section: and (vii) On a case-specific basis, other waters, including wetlands, provided that those waters alone, or in combination with other similarly situated waters, including wetlands, located in the same region, have a significant nexus to a water identified in paragraphs (l)(1)(i) through (iii) of this section.
- section.

 (2) The following are not "waters of the United States" notwithstanding whether they meet the terms of paragraphs (1)(1)(i) through (vii) of this continuous continuou
- (i) Waste treatment systems, including treatment ponds or lagoons, designed to meet the requirements of the Clean Water Act.
 (ii) Prior converted cropland.
- (ii) Prior converted cropiana.
 Notwithstanding the determination of
 an area's status as prior converted
 cropland by any other Federal agency,
 for the purposes of the Clean Water Act
 the final authority regarding Clean
 Water Act inrisdiction remains with
 FPA
- (iii) Ditches that are excavated wholly (in) Ditches that are excavated whom in uplands, drain only uplands, and have less than perennial flow. (iv) Ditches that do not contribute flow, either directly or through another

water, to a water identified in paragraphs (I)(1)(i) through (iv) of this section.

(v) The following features:

(A) Artificially irrigated areas that would revert to upland should explications of irrigation water to that application of irrigation water to that

area cease;
(B) Artificial lakes or ponds created by excavating and/or diking dry land and used exclusively for such purposes

and used excusively for such purposes as stock watering, irrigation, settling basins, or rice growing. (C) Artificial reflecting pools or swimming pools created by excavating and/or diking dry land; (D) Small ornamental waters created by excavating and/or diking dry land for mirmarily assethetic reasons:

ry excavating and of the first primarily aesthetic reasons;
(E) Water-filled depressions created incidental to construction activity;
(F) Groundwater, including groundwater drained through

subsurface drainage systems; and (G) Gullies and rills and non-wetland

(3) Definitions— (i) *Adjacent*. The term *adjacent* means (1) Adjacent. The term adjacent meta-bordering, contiguous or neighboring. Waters, including wetlands, separated from other waters of the United States by man-made dikes or barriers, natural river berns, beach dunes and the like

river berns, beach dunes and the like are "adjacent waters."

(ii) Neighboring. The term neighboring, for purposes of the term "adjacent" in this section, includes waters located within the riparian area or floodplain of a water identified in paragraphs ([1/10]) (through (v) of this section, or waters with a shallow subsurface hydrologic connection or confined surface hydrologic connection to such a jurisdictional water.
(iii) Riparian area. The term riparian

area means an area bordering a water

where surface or subsurface hydrology directly influence the ecological processes and plant and animal community structure in that are Riparian areas are transitional areas between aquatic and terrestrial ecosystems that influence the exchange of energy and materials between those

ecosystems.
(iv) Floodplain. The term floodplain means an area bordering inland or coastal waters that was formed by sediment deposition from such water under present climatic conditions and is immdated during periods of moderate to

high water flows.
(v) Tributary. The term tributary means a water physically characterized by the presence of a hed and banks and ordinary high water mark, as defined at 33 CFR 328.3(e), which contributes flow, either directly or through another water, to a water identified in water, to a water identified in paragraphs (1)(1)(i) through (iv) of this section. In addition, wetlands, lakes, and ponds are tributaries (even if they lack a bed and banks or ordinary high water mark) if they contribute flow, either directly or through another water to a water identified in paragraphs (I)(1)(i) through (iii) of this section. A water that otherwise qualifies as a tributary under this definition does not lose its status as a tributary if, for any length, there are one or more man-made breaks (such as bridges, culverts, pipes, or dams), or one or more natural breaks (such as wetlands at the head of or along the run of a stream, dehris piles, boulder fields, or a stream that flows underground) so long as a bed and banks and an ordinary high water mark can be identified upstream of the break. A tributary, including wetlands, can be a natural, man-altered, or man-made

water and includes waters such as rivers, streams, lakes, ponds, impoundments, canals, and ditches not excluded in paragraph (1)(2)(iii) or (iv) of this section.

(vi) Wetlands. The term wetlands means those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, ogs and similar areas.

(vii) Significant nexus. The term significant nexus means that a water, including wetlands, either alone or in combination with other similarly situated waters in the region (i.e., the watershed that drains to the nearest water identified in paragraphs (l)(1)(i) through (iii) of this section), through (11) of this section), significantly affects the chemical, physical, or hiological integrity of a water identified in paragraphs (1)(1)(i) through (iii) of this section. For an effect to be significant, it must be more than speculative or insubstantial. Other waters, including wetlands, are similarly situated when they perform similar functions and are located sufficiently close together or sufficiently close to a "water of the United States" close to a "water of the United States" so that they can be evaluated as a single landscape unit with regard to their effect on the chemical, physical, or biological integrity of a water identified in paragraphs (I)(1)(i) through (iii) of this section.

FR Doc. 2014-07142 Filed 4-18-14; 8:45 aml BILLING CODE 6580-50-P

EXHIBIT C

J.G. ANDRE MONETTE BIOGRAPHY

Andre Monette is an associate in the Environmental Law & Natural Resources practice group of Bast Best & Krieger LLP. Mr. Monette works with both public and private clients in matters involving water quality, water rights, wetlands, and state and federal hazardous and solid waste issues. Mr. Monette works extensively with water districts, cities, counties, and school districts on matters involving the Federal Clean Water Act and California's Porter Cologne Water Quality Control Act.

Mr. Monette's representative matters include: assisting in the development and use of recycled water, including ownership issues, in compliance with California and Federal law; assisting with the implementation of pretreatment standards in compliance with Clean Water Act Regulations; defending clients before the State and Regional Water Quality Control Boards; and participation in the development and subsequent litigation of Total Maximum Daily Loads applicable to wastewater treatment facilities, municipalities, and other dischargers.

Mr. Monette received his bachelor of science in geology, with an emphasis in marine geology and a minor in political science, from San Diego State University in 2002. He received his law degree from Case Western Reserve School of Law in Cleveland, Ohio. While in law school, Mr. Monette was a member of the Case Western Reserve School of Law ABA Moot Court Tearn. His law school honors include the Class of 1940 Scholarship, the 2005 Adelstein Environmental Law Award - "Outstanding Note," the 2004 Saul S. Biskind Public Interest Law Fellowship and the California Bar Association Wiley W. Manual Pro Bono Service Award.

San Diego 655 West Broadway 15th Floor San Diego, CA 92101

P: (619) 525-1374 F: (619) 233-6118 Andre.Monette@bbklaw.com

Education
Case Western Reserve University,
J.D. (2006)
San Diego State University, B.S.
(2002)

Admissions California, 2007

Indian Wells (760) 568-2611 Irvine (949) 263-2600 Los Angeles (213) 617-8100 Ontario (909) 989-8584

BEST BEST & KRIEGER

855 West Broadway, 15th Floor, San Diego, CA 92101 Phone: (619) 525-1300 | Fax: (619) 233-6118 | www.bbklaw.com Riverside (951) 688-1450 Secramento (916) 325-4000 Walnut Creek (925) 977-3300 Washington, DC (202) 785-0600

J. G. Andre Monette (619) 525-1374 andre.monette@bbklaw.com

June 19, 2014

Honorable Senator Barbara Boxer Chairman, Senate Committee on Environment and Public Works 410 Dirksen Senate Office Bldg. Washington, DC 20510-6175 Honorable Senator David Vitter Ranking Member, Senate Committee on Environment and Public Works 456 Dirksen Senate Office Bldg. Washington, DC 20510-6175

Re: Response to Committee Questions on Impact of Waters of the United States Proposed Rulemaking

Dear Chairman Boxer and Ranking Member Vitter:

On behalf of my local government clients, I thank you for your leadership in holding a hearing on the Waters of the United States, for the honor of testifying before the Senate Subcommittee on Water and Wildlife this past Tuesday, May 13, 2014, and now for the opportunity to submit additional clarifications on my testimony. Stormwater pollution is one of the most significant water quality challenges facing the nation and its local governments. Finding the correct balance between regulatory controls, cost burdens for local government entities, and most importantly protecting the environment is not an easy task. Your leadership in navigating the nation along that path has been and continues to be critical to finding workable solutions.

A key issue raised during the May 13, 2014 hearing is the extent of the Environmental Protection Agency's ("EPA") recently issued proposed revision to the definition on the term Waters of the United States for the purposes of Clean Water Act jurisdiction ("Proposed Rule"). A specific area of concern for my clients is the extent to which man-made ditches, channels, or other features would be considered Waters of the United States under the Proposed Rule. This is an issue that is of the utmost importance to my local government clients because so many man-made conveyances to provide drinking water to their residents, keep streets free of flood waters, and develop new uses for recycled water.

We believe your leadership on this issue can help EPA craft a rule that fully protects the Waters of the United States but at the same time avoids regulatory inconsistencies or quagmires where compliance with inappropriately designated requirements is not attainable.

My answers to the questions posed by Senators Cardin and Vitter follow. I would be more than happy to discuss any of the questions or my responses with you or your staff. Again, I

IBBX BEST BEST & KRIEGER S ATTORNEYS AT LAW

Honorable Senator Barbara Boxer Honorable Senator David Vitter June 19, 2014 Page 2

thank you for your leadership on this important issue and look forward to working with your offices on the Proposed Rule.

RESPONSES TO QUESTIONS

You stated that "most ditches across the country are going to have perennial flow;" what is the factual basis for that conclusion?

Thank you for the opportunity to respond to this question and clarify my testimony. I was unaware that I stated during my oral testimony that "most ditches are going to have perennial flow." It was not in my written testimony and was a misstatement. My statement should have been that "many ditches across the country have perennial flow." My testimony on this point is based on personal experience viewing municipal storm drain systems, agricultural drains, and roadside ditches across the nation.

Are you aware that the EPA/Corps jurisdiction guidelines issued by the prior administration in 2008 say that they will "generally" not treat upland ditches with "relatively permanent" flow as waters of the U.S., and that those guidelines also make clear that "relatively permanent" means seasonal flow (typically at least three months of the year)?

Given those guidelines, and the fact that the proposed rule would exempt upland ditches unless they have perennial flow, isn't it accurate to say, as EPA has, that "[t]he rule actually proposes to reduce jurisdiction and exclude certain ephemeral and intermittent ditches"?

We would be very pleased if the EPA was correct and the Proposed Rule actually excluded upland ditches that are part of a local government flood control or water supply system. These ditches serve as conveyances and in some cases treatment systems. If they are designated as Waters of the United States, they can no longer be used for treatment and compliance must be attained in-stream. Additional requirements will also apply including Total Maximum Daily Loads ("TMDLs"). These requirements will apply not at the "end of the pipe," but within the system.

Designation internal infrastructure as a Water of the United States can therefore be extremely problematic for local government agencies attempting to provide critical services while being stewards of the environment. Any relief EPA could give on this issue would be welcomed. Unfortunately the Proposed Rule is written so broadly that it will capture these conveyance systems.

BEST BEST & KRIEGER S

Honorable Senator Barbara Boxer Honorable Senator David Vitter June 19, 2014 Page 3

The 2008 Guidance indeed provides that the EPA and the Corps will generally not treat upland ditches with only "relatively permanent" flow as Waters of the U.S. The Guidance also made clear that in the semi-arid west, many waters that are rightfully considered Waters of the United States only have relatively permanent flow. These waters were not excluded from CWA jurisdiction. Moreover, many waters that had only "relatively permanent" flow were still considered Waters of the U.S. This is because the Guidance provided that "The agencies will decide jurisdiction over the following waters based on a fact-specific analysis to determine whether they have a significant nexus with a traditional navigable water." (EPA, Clean Water Act Jurisdiction Following the U.S. Supreme Court's Decision in Rapanos v. United States & Carabell v. United States, 1 (2008).) The Proposed Rule does not change that requirement. (79 F.R. 22264.)

It is therefore not accurate to say that the Proposed Rule will reduce jurisdiction. The Congressional Research Service agrees. The CRS produced a report following the EPA's publication of the Proposed Rule. The CRS Report states that the Proposed Rule will reach an additional 3% to 17% of the nation's waters. (Copeland, Claudia, EPA and the Army Corps' Proposed Rule to Define "Waters of the United States" (April 21, 2014).)

Thus the Proposed Rule will unquestionably expand the reach of the Clean Water Act by expanding the number of waters that are classified as Waters of the United States.

3) Isn't it true that the Clean Water Act includes permitting exemptions for: (1) irrigation return flows; (2) agricultural stormwater; (3) discharges of dredged or fill material associated with "normal farming" (including, but not limited to, the 56 conservation practices identified by EPA and the Corps in the interpretive rule); (4) discharges of dredged or fill material associated with "construction or maintenance of farm or stock ponds or irrigation ditches, or the maintenance of drainage ditches"; and (5) discharges of dredged or fill material associated with "construction or maintenance of farm roads"?

This question raises the very important distinction between CWA permitting requirements and whether a particular water body is a Water of the U.S. and must meet applicable Water Quality Standards. Even though a particular discharge or activity may not require a Clean Water Act permit, other regulatory restrictions apply to Waters of the United States that will impact use of the water body.

¹ As noted in the question, the Clean Water Act includes a list of exclusions from its dredge and fill permitting requirements. But, Section 404(f)(2) includes an important caveat: new uses, agricultural or otherwise will still require a permit. Federal Regulations at 40 C.F.R. section 323.4 place additional limitations on the exemptions.

BEST BEST & KRIEGER S

Honorable Senator Barbara Boxer Honorable Senator David Vitter June 19, 2014 Page 4

The Clean Water Act provides several mechanisms for restoring and maintaining the quality of the Nation's waters. One such mechanism is the requirement that states identify "designated uses" for each body of water within their borders, as well as "water quality criteria" sufficient to support those uses. (33 U.S.C. § 1313(c)(2)(A).) These criteria, known as Water Quality Standards, consist of the "designated uses of the navigable waters involved and the water quality criteria for such waters based upon such uses." (33 U.S.C. §1313(c)(2)(A).) In all cases, the states must adopt standards that include full body contact recreation and fishing as designated uses, or demonstrate through the Use Attainability Analysis process that such uses are not possible. (See 33 U.S.C. §§1251(a); 1313(c).)

Where a Water of the US is not attaining its designated Water Quality Standards, the states or EPA are required by Clean Water Act section 303(d) to adopt a TMDL for the pollutant causing nonattainment. TMDLs are like a pie divided into three parts: the Waste Load Allocation that imposes limits on discharges with Clean Water Act permits; the Load Allocation that imposes limits on discharges that do not require Clean Water Act permits; and a margin of safety. States are required to impose limits on activities that do not require Clean Water Act permits to ensure that the Load Allocation of any applicable TMDL is attained.

The Ninth Circuit Court of Appeals' decision in *Pronsolino v. Nastri*, 291 F.3d 1123 (2002) is instructive. In that case, the EPA imposed TMDLs on a river that was polluted only by nonpoint sources of pollution. The landowners, who owned land in the river's watershed, applied for a harvesting permit, which was granted along with certain restrictions to comply with the EPA's TMDL. The landowners, along with others, sued the EPA, contending that it did not have the authority under § 303(d) of the CWA to impose TMDLs on rivers that were polluted only by nonpoint sources of pollution. The trial court granted the EPA summary judgment, upholding its interpretation of § 303(d). On appeal, the Ninth Circuit affirmed, holding that the CWA's 303(d) listing and TMDLs requirements apply to Waters of the United States impaired only by nonpoint sources of pollution.

Thus the idea that it doesn't matter whether a water is designated a Water of the US if you don't need a Clean Water Act permit is a red herring. Other requirements apply and impose restrictions that are outside the scope of the Clean Water Act's permitting process. For some water bodies that is entirely appropriate. For man-made ditches, aqueducts, and flood control systems the designation can be extremely problematic and will have a negative impact on public agencies across the United States.

4) Because the proposed rule would not protect as many waters as had been protected prior to 2001, do you expect that activities on agricultural lands would be permitted more or less frequently if the proposed rule is adopted, compared with the pre-2001 period?

Honorable Senator Barbara Boxer Honorable Senator David Vitter June 19, 2014 Page 5

If more, what specifically in the proposed rule leads you to that conclusion?

If less, isn't it true that, even before 2001, activities on agricultural land rarely required permitting?

We respectfully disagree with the assessment that if adopted in its current form, the Proposed Rule would protect fewer waters than had been protected before 2001. All fifty states have their own water quality laws and programs that apply to waters that are outside the definition of Waters of the United States. Many states, including but certainly not limited to California, Oregon, Washington, Maryland, and Virginia have what can only be described as extremely robust water quality laws and programs that protect all waters within their boundaries.

A myriad of other laws including the Federal Endangered Species Act and the Federal Insecticide, Fungicide, and Rodenticide Act ("FIFRA") provide federal protection to waters that otherwise would not be Waters of the U.S. subject to the Clean Water Act. These laws have not changed, and continue to protect waters in the same manner as they did prior to 2001.

Lastly, as described above, just because an activity does not require a Clean Water Act permit, does not mean that designation of a water as a Water of the United States will not have an impact on operations. States have non-point source obligations to ensure that all Waters of the United States attain a fishable, swimmable standard. Under the Proposed Rule, many manmade ditches will be defined as Waters of the United States, including portions of municipal storm drain systems and other infrastructure that is internal to the nation's drainage and water supply systems. Because these conveyances are tools that we all rely on for modern society to operate, and they are man-made, they are best treated as point sources rather than as Waters of the United States.

5) Your written testimony discusses the federal district court's decision in Virginia Dep't of Transportation v. EPA, 2013 U.S. Dist. LEXIS 981,43 ELR 20002 (E.D. Va. 2013). As you indicated, the court in VDOT determined that Environmental Protection Agency (EPA) has no authority under the Clean Water Act (CWA) to regulate the flow of stormwater into a creek.

During this month's hearing, there was some discussion as to whether the court's analysis in VDOT is limited to cases involving total maximum daily loads (TMDLs). Do you believe that the principle behind the court's decision is limited to the TMDL setting? Or does the VDOT case stand for something broader, meaning that EPA has no authority to regulate stormwater flow in other CWA contexts as well, such as the National Pollutant Discharge Elimination System permitting process?

BEST BEST & KRIEGER S

Honorable Senator Barbara Boxer Honorable Senator David Vitter June 19, 2014 Page 6

The VDOT decision is not limited to the TMDL setting. It applies to any requirement in the Clean Water Act that relies on the term "Pollutant." As a result, the VDOT case also applies to the Clean Water Act's National <u>Pollutant</u> Discharge Elimination System ("NPDES") program.

The term "Pollutant" is a defined term. (33 U.S.C. §1365.) Section 502 of the Clean Water Act defines it to mean:

[D]redged spoil, solid waste, incinerator residue, sewage, garbage, sewage sludge, munitions, chemical wastes, biological materials, radioactive materials, heat, wrecked or discarded equipment, rock, sand, cellar dirt and industrial, municipal, and agricultural waste discharged into water...

(33 U.S.C. § 1362(6).)

The VDOT case dealt on its face with whether a TMDL could regulate the flow of volume of stormwater discharged into Accotink creek. However, the case turned on whether the EPA could regulate stormwater flow as a surrogate for other pollutants. The District Court held that EPA has no such authority stating: "EPA is authorized to set TMDLs to regulate pollutants, and pollutants are carefully defined. Stormwater runoff is not a pollutant, so EPA is not authorized to regulate it via TMDL." (Virginia Department of Transportation v. EPA (2013) U.S. Dist, Lexis 981, *14-15, (E.D. Va.).)

The court was clear that no matter the intentions of EPA, regulation of "Pollutants" under the Clean Water Act does not allow for the regulation of stormwater flow holding that the Clean Water Act "only gives EPA the power to regulate pollutants as that term is defined by Congress." (*Id.*, at 10.) Thus the District Court's holding from the VDOT case applies equally to any aspect of the Clean Water Act that regulates "Pollutants." It would therefore also apply to the NPDES permits that regulate discharges from point sources into Waters of the United States. (See 33 U.S.C. § 1342.)

In Solid Waste Agency of Northern Cook County v. U.S. Army Corps of Engineers, 531 U.S. 159 (2001), the Supreme Court determined that the Army Corps of Engineers does not have authority to regulate water bodies isolated from navigable waters. Yet, in your written testimony, you state that under the proposed "waters of the United States" rule, "the waters at issue in the SWANCC decision would be waters of the United States." This seems to challenge the veracity of claims recently made by the EPA Administrator. In your opinion, does the proposed Clean Water Act rule ignore the regulatory limits established by Congress and recognized by the Supreme Court?

BEST BEST & KRIEGER

Honorable Senator Barbara Boxer Honorable Senator David Vitter June 19, 2014 Page 7

Public agencies across the country would welcome an interpretation of the Proposed Rule that categorically excluded man-made, isolated waters like those at issue in *Solid Waste Agency of Northern Cook County v. U.S. Army Corps of Engineers*, 531 U.S. 159 (2001) ("SWANCC"). In that case, the Supreme Court overturned an attempt by the Army Corps of Engineers to regulate as Waters of the United States, certain "isolated" waters with no surface connection to traditional navigable waters. Unfortunately, we read the Proposed Rule as reaching waters like those at issue in SWANCC.

The Proposed Rule provides that all waters, including wetlands, "adjacent to" a Water of the US will be considered a Water of the US. The Proposed Rule defines "adjacent" as follows:

- (1) Adjacent. The term adjacent means bordering, contiguous or neighboring. . .
- (2) Neighboring. The term neighboring, for purposes of the term "adjacent" in this section, includes waters located within the riparian area or floodplain of a water identified in paragraphs (a)(1) through (5) of this section, or waters with a shallow subsurface hydrologic connection or confined surface hydrologic connection to such a jurisdictional water.

(79 FR 22264 [emphasis added].)

The wetlands at issue in the SWANCC case were connected to groundwater underlying the proposed project site. (SWANCC v. U.S. Army Corps of Eng'rs, Brief for Respondents Village of Bartlett and Citizens Against the Balefill, 1999 U.S. Briefs 1178 at 8-9 (2000).) In fact it was a major issue for the surrounding community. (See id.)² Groundwater in the same geologic formation has a documented connection to the nearby Fox River. (Dey, William S. et al, Kane County Water Resources Investigations: Final Report on Geologic Investigations (2007) [describing the connection between the St. Charles Aquifer and the Fox River].)

Additionally, EPA investigations into the nearby Elgin Landfill site show a connection between shallow groundwater and surface streams. (EPA, Record of Decision, Tri-County/Elgin Landfill, 9-10 (1992).) Shallow and deep groundwater connections to the Fox River are well documented in the vicinity of the SWANCC site. (See id.; Dey, supra; and Locke, Randall A. et al., Kane County Water Resources Investigations: Final Report on Shallow Aquifer Potentiometric Surface Mapping (2007) at 34 ["the shallow bedrock aquifer primarily discharges to the Fox River except in areas of significant pumping"].)

² Copies of the cited documents and additional news articles supporting this statement are available upon request.

ISISK BEST BEST & KRIEGER ATTORNEYS AT LAW

Honorable Senator Barbara Boxer Honorable Senator David Vitter June 19, 2014 Page 8

As a result, the sections of the Proposed Rule that would make a groundwater connection to Waters of the United States sufficient to make wetlands and other isolated waters Waters of the United States would appear to capture the SWANCC project site.

CONCLUSION

On behalf of my public agency clients, I again thank you for your leadership on this important issue. Water quality is an area of great concern for public agencies across the United States. We remain very concerned about the implications of EPA's Proposed Rule and look forward to working with your offices to refine the current draft.

Sincerely,

J.G. Andre Monette for BEST & KRIEGER LLP

cc: Hon. Senator Benjamin Cardin

Senator Cardin. Well, let me thank all seven of you for your testimony. I thought it was extremely helpful in trying to get a handle on the issues. I am going to start with Ms. Coble in that the importance of dealing with the pollutants that you mentioned, the nitrogen levels, the phosphorus, and the sediment from the major sources that go into the Chesapeake Bay watershed. We have had programs to deal with our farmers; we certainly are dealing with the treatment of waste; and we have storm runoff, which are the three largest sources of identified pollutants going into the Bay. You indicate that as much as one-third in certain areas come from storm runoff. If we did not include storm runoff as one of the regulated pollutants going into the Bay, the burdens on the other sectors would be much greater, making it much more challenging for farming operations or for our municipal water managers.

So how important is it, as you see it, from the Chesapeake Bay management that storm runoff be a major part of the strategy to

deal with the Chesapeake Bay?

Ms. Coble. It is critically important that it be included in the equation. The Chesapeake Bay watershed is under a TMDL to reduce nitrogen, phosphorus, and sediment pollution because the Chesapeake Bay is an impaired waterway. The quality of it is such that it doesn't sustain life in part of its volume each summer and there are requirements to reduce those pollutants. And there is not one of us that lives in the watershed that isn't part of the problem and, therefore, part of the solution; nor is there one sector that is not part of the problem and part of the solution.

As I said, in some States, such as Maryland, up to a third of the pollution is coming from urban areas, and in some watersheds around D.C., for example, it is even far more than that. If we don't include stormwater in the reduction strategy, the burden gets higher and higher on every other sector if we want to stay committed to a goal of clean water. If we want to compromise on that goal, then we can let stormwater go. I would argue that would be the

wrong approach, though.

Senator CARDÍN. Mr. Cuccinelli, in regards to that Northern Virginia case, I have looked at it very closely and it did deal with the authority under TMDL, no question about that, but did not deal with the authority under Clean Water Act to deal with pollutants that come from stormwater under the NPDES, as was pointed out,

I think, by Mr. Monette.

I do very much appreciate Mr. Medina's comments and would love to get further clarification on that. You are indicating that it actually could be cost-effective to incorporate storm runoff in transportation designs from the beginning. If I heard you correctly, I thought you said in some cases might even be less expensive, so it would not be a choice between more road building or dealing with storm runoff.

Mr. Medina. Well, that has been the experience in other countries. Like I mentioned in my testimony, the UK, that has been the lesson that has been learned as far as constructing the systems, mostly because they have been planned from the beginning with that in mind. When it comes to a retrofit situation, it is a different story, because we already made an investment and now we have to rip it all up and build something new.

Another thing to keep in mind is that when we calculate cost, we do it in a very localized way; this is how much it is going to cost to build this highway. But we never factor the cost, what the municipalities that have to deal with the problems when something, not just a roadway, but any particular development cost us probably in the waterways. So when we look at those things holistically, when we look at the benefits that are achieved by, say, green infrastructure in terms of esthetics and the creation, things that are very hard to monetize but are no less real, if we looked at all those things together, we will find a much better picture when it comes to building sustainable infrastructure.

Senator CARDIN. Thank you.

To Mr. Mather and Mr. Gibson, Mr. Gibson, I am sorry that the photos that you had in your written testimony were not displayed, because they are pretty shocking, and the type of damage that you all have to confront. Now, from a local government's point of view, a State government's point of view, once the damage is done, you have to deal with that. So you may have been able to build more roads, but now you have the problem how you are going to fix the roads. So from a cost-effective basis, wouldn't it be better to deal with the costs of runoff up front than having to deal with the maintenance, repair, and damage cost that you confront as you move forward?

Mr. GIBSON. Correct. That is the one thing we do see. If we don't manage these systems up front, then you have the other utilities, stormwater utilities, you have gas and electric companies. You have the transportation departments themselves have to fix these damages that occurred at prior times when they were build.

Senator CARDIN. I will just make one comment. As we have been dealing with the reauthorization of surface transportation, I have been advocating for our committee to put attention on maintaining our existing transportation infrastructure and less attention on building new infrastructure. I want new infrastructure, don't get me wrong, but things are falling apart. And if you neglect that you currently have, you are not doing a service by building additional roads that may lead to unsafe conditions and unmanageable transportation systems.

With that, I will turn to Senator Vitter.

Senator VITTER. Thank you, Mr. Chairman, and thanks to all our witnesses.

Mr. Cuccinelli, I wanted to ask you, because I thought your testimony was very striking in the context of EPA's recent proposals to expand its authority under the Clean Water Act. I know you follow this. I am sure you have heard the statements from the administrator, which basically are saying this is clarification of existing law, this is no big deal. I am curious, what is your gut reaction of that, having lived through the Accotink experience and litigation and the sort of position EPA took in that instance?

Mr. CUCCINELLI. Well, I don't think by any means it is limited to that instance. One of the institutional problems you have is that the EPA, whatever grant of authority is provided, always overreaches it. I don't know of an example, and I don't think a person in this room could name an example, where Congress set out some grant of authority to the EPA and they didn't actively, at some

point thereafter, look to push the outer envelope of that, and to do it. I mean, Judge O'Grady's ruling in our case was not appealed, which is rather unusual for EPA. They are tenacious fighters, and

to not appeal tells you just how swamping that ruling was.

In about 20 years of litigating—and I was the lead attorney on that case, I argued the case, litigated alongside the board of supervisors of Fairfax—I can't remember a judge's order where I wouldn't change a sentence; and it was that powerful. The judge was so overwhelmed with what EPA was trying to do, and they clearly stated this is experimental, and if we can do it here we are

going to take it everywhere.

Now, understand the Accotink has been around a long time. We are the oldest part of America here in Virginia, and I brought with me one sentence from George Washington's diary from 1772: Set off for Williamsburg, but not able to cross Accotink, which was much swelled by the late rains. I was obliged to return home again. That was when he was a member of the House of Burgesses, now the House of Delegates. And this isn't a new problem in our part of the

My cautionary warning to you all is that when you don't already have control, and by you I mean the legislative branch, over the aggressiveness and extent of the reach of this rogue agency, to grant it more power and authority is an extremely dangerous thing. And I will just use one example from other testimony; it was glossed over a little bit. The cost difference between taking greater care to deal with stormwater as you build new facilities versus the radically dramatic impacts and costs of retrofitting, the order of magnitude is extraordinary, and the impacts on jobs are not positive,

they are negative.

If they were positive, Milton Friedman's old comment about digging the Panama Canal with spoons would make sense because there would be a lot more jobs. We are talking about destroying businesses in the one single case that I talked to you about in Virginia and evicting families who had lived in their homes for decades. Even in a transient community like Northern Virginia, these were old middle class neighborhoods, so older folks lived there, inevitably, people more often displaced, and they are going to be not merely put out, but the economy around them is going to be

harmed.

This is an economic negative overall, and unless you categorically hermetically seal the EPA and only let them deal with this going forward on new projects, then you are going to have an agency that is going to run amuck and your local governments are going to be coming back to you and saying why is the EPA at the table for local land use.

Senator VITTER. Great point.

Mr. Medina, to come directly off that, because it does allude to your comment, I want to make sure I understood it and underscore it. It is true that in terms of cost-effectiveness it is a different planet whether you are talking about starting from scratch on a new project versus retrofitting existing infrastructure, would you agree with that?

Mr. Medina. That is correct, Senator, and that happens everywhere, in anything that we have to do. It is cheaper for us to eat healthy and maintain our bodies than have a quadruple bypass, right? So that is exactly what we are talking about here. However, one important thing that we need to keep in mind is that we can do things wisely and correctly if we wait for the right opportunity. We don't have to spend all these millions of dollars ripping up roads. Those roads will come up for rehabilitation at some point in their useful lives. That is the time when we can say we did things wrong; we have a second chance here to do it right; we are going to apply the principles that we know now are useful.

Senator VITTER. And you also mentioned the different experience in other countries. I think in many of those cases there is a big difference structurally between here and there because up there agencies with the authority to come up with these solutions are usually the ones paying for it. Here it is fundamentally different because the EPA is almost never paying for it and, therefore, has no practical limit in terms of the sort of mandates and solutions it tries to impose on either private owners or local jurisdictions. Isn't that

a big difference?

Mr. MEDINA. That may be so, but the cost still has to be borne by somebody. So if we have environmental degradation, somebody is going to have to pay for that, whether it is an agency or a private landowner. It just doesn't go away. If we don't do things right from the beginning, somebody is going to have to shell out the dol-

lars or the pound sterling to do that.

Senator VITTER. And to go back to the distinction between completely ripping up or retrofitting an existing infrastructure versus when you are building something new, certainly I think everybody would agree EPA is seeking more authority in this area across the board, not just new projects, not just brand new planning, is that correct?

Mr. MEDINA. I don't know the details of that. I know that from the point of view of a professional, what makes sense from the point of view of technical expertise and financial soundness is to wait for the right opportunity to do those things right.

Senator VITTER. Thank you.

Senator Cardin. Senator Fischer.

Senator FISCHER. Thank you, Mr. Chairman, and thank you to

the panel for being here today.

Mr. Cohen, roadside ditches not only preserve the quality of our Nation's roads, but they increase safety, and the chairman of our subcommittee referred to safety in his previous comments. We all know that those ditches prevent the pooling of stormwater on road surfaces; that helps with safety. We are not going to see as many accidents with them. In my discussions with the Nebraska Department of Roads, it has been brought to my attention that conforming to regulations under the proposed definition of waters of the United States may preclude these best design practices of ditches, and that would compromise safety. Can you expand on the impact that this regulation may have on public safety with regards to road construction?

Mr. Cohen. Sure, I would be happy to. In my testimony I provided one example, and that is when you are trying to engineer a road improvement and you want to add safety features to that road, say you have a rural road where there are a lot of accidents

or you have a bottleneck of some sort and you need to add additional safety shoulders or an intersection safety improvement, sometimes you have to impact a roadside ditch, and often these were manmade ditches that are not representative of the original

hydrology of the area.

But under the EPA's proposed rulemaking, they could basically claim jurisdiction over that work and stop you from doing that safety project until you developed an avoidance plan or a mitigation plan, including digging new ditches, which may not be necessary after you have added your safety shoulders. So that is an example of sort of an absurd outcome, but in my experience as an engineering working for the State Highway Administration, there are numerous absurd outcomes where you have projects that just can't be completed because of this very high bar. And there have been cases that I am personally involved in where people were getting killed on the road that you couldn't improve until you came up with alternatives that were so expensive that they basically caused the problem to be canceled or indefinitely delayed.

Senator Fischer. You also mentioned the I view it as a problem

in the delay in getting that Section 404 permit.

Mr. Cohen. Yes.

Senator FISCHER. If we are looking at expanding the definition of waters of the United States, how is that going to affect that permitting process?

Mr. Cohen. It will certainly make it a longer process and a more

expensive process.

Senator FISCHER. You say a more expensive process. That doesn't just apply to the permitting process itself; it also applies to road construction and the added costs that we are going to see our high-

ways and bridges costing, correct?
Mr. COHEN. Correct. Not only the extra cost of meeting the demands of the agencies, also the cost of the delay. Every project that is delayed for 10 years doubles in cost, approximately. And I work for the State of Maryland, which is certainly a very progressive, pro-environment State, and wants to do the right thing environmentally. As I indicated in my testimony, we want to do the right thing environmentally, but let's provide the flexibility and tools and the advice and the best practices without creating mandates for things that don't make sense or aren't the most cost-effective approach. So we can do the right thing, but we need to recognize the States are doing the best they can and that they want these good outcomes.

Senator Fischer. Right. And do you think allowances should be made for ditches that aren't contributing to the flow in any way of navigable waters, our traditional rivers that are out there? And, if

so, do you think that definition would pass judicial muster?

Mr. COHEN. I think that, as some of the other witnesses have said, that commented on this issue, there has been an effort here, in my opinion, to stretch the eligibility as far as possible to a level that does not meet the intent of the court in either of the two major Supreme Court cases on the 404 regulations. So I think ultimately it will not survive. Also, there are Members of Congress that attempted to do the same thing through legislation, but that did not have the support of Congress, so basically what is happening here is the Administration is trying to do it on their own, without congressional intent. It is sort of we are going to stretch this thing as far as we can, whether or not Congress agrees. So I don't think it will pass muster. But I am not a lawyer; these two men are lawyers.

Senator FISCHER. I hope we get a second round. I will ask them. Thank you, sir.

Mr. ČOHÉN. Thank you.

Senator CARDIN. We are going to have a second round.

Let me just make an acknowledgment. I think we all agree that we are better off if we can put into the design of our transportation systems the storm runoff management. It is less costly and that is when it should be done. The challenge is that we are where we are in pollutants going into our waters today, and there is a responsibility for clean water, so you need to deal with the realities that are on the ground, whether it is a farming operation or whether it is an old municipal wastewater treatment facility plant or whether it is a road that was built inappropriately for storm runoff. So it presents a challenge, but I think when you have the opportunity, as Mr. Medina said, to do the right thing, you should take advantage of that, because it is not only going to be good for our environment, it will also save us resources in the long run.

Let me also comment in regards to the definition of waters. There is a proposed regulation. Comments are being sought. Many thought it was important to have clarification after the Supreme Court decisions. There has been difficulty in getting bills passed here in the U.S. Congress. I would urge people to take advantage of the comment period, because it is my understanding that manmade ditches are exempt from this definition. But, again, if that needs clarification, let's talk about it, because I didn't think that was under the regulation.

Mr. Mather, I want to ask you, since Oregon has been successful politically in moving forward on many of these projects from the beginning, it seems to me that you have crossed the political hurdle of choosing to do things that are friendlier toward the environment, even though it may affect the timing of transportation projects in your State. How is the politics of trying to move forward in these

areas?

Mr. Mather. Chairman Cardin, I will probably not talk too much about the politics, but more talk about our agency and how we have implemented some of those projects. As I talked about, the legislature in our State passed actually two major funding bills in the last 10 years which have increased the amount of investment that we have made in transportation, and those have provided challenges for us, but also opportunities for us. One of those opportunities was to sit down with the regulatory agencies and really work on streamlining our processes to the benefit of both agencies, to them and for us. We are spending less money on the regulations, less money going through the process, and more money out on product on the ground. One of those programs our legislature passed was a \$1.3 billion investment in bridges, 365 bridges throughout the State. We are just completing that 10-year program on time and on budget. One of the keys to that was the permitting process that we developed. We estimated that if we had not used

our streamlining process, it would have cost us \$70 million more to go through the permitting process for those 365 bridges and we would not have completed the project on time. So those \$70 million are reinvested back into transportation, and that is really the win for us in transportation. The win on the environmental side is we have increased water quality.

Senator CARDIN. Very good. To Mr. Cohen and Mr. Monette, you made a very interesting suggestion, and that is that the funding sources for doing this, we should be a little more creative. You also made a point that I agree completely, about regional differences and the flexibility of doing what is most cost-effective based upon your local needs, and we have to build that into whatever system we have for either funding or for the regulatory system. I agree with you on both points.

It is very interesting. Talking about the Chesapeake Bay watershed for one moment, which I am pretty familiar with, we do have special funding to deal with the two other major sources of pollutants; we do for our farmers and we do for our treatment facility plants. We don't really for stormwater runoff. There is really no special program out there that helps deal with the unique needs of pollutants coming into the watershed through stormwater.

So do you have any further insight or suggestions as to how we could perhaps deal with the funding outside of the transportation

itself to deal with stormwater runoff?

Mr. Cohen. I guess, Mr. Chairman, that is exactly what my recommendation, my No. 1 option would be in my testimony. Sort of the discussion that just occurred between the ranking member and Dr. Medina, when you have to pay for these improvements, I think the desire to make them as cost-effective as possible makes a lot of sense. And if Congress were to authorize for appropriations some money to do these restoration projects, including coordinate with the transportation departments, say Maryland Department of Environment would coordinate with SHA using money authorized by Congress specifically for water restoration efforts, that would be a good thing. What I think would be a bad thing would be if you take it out of the highway funding, basically. The highway funding that comes from the Highway Trust Fund. What I would suggest is an authorization of appropriations for environmental agencies to do that. So they are both working toward important goals and they are not competing with each other for funding.

Senator CARDIN. Mr. Monette.

Mr. MONETTE. Thank you, Senator Cardin. I would agree with Mr. Cohen on the funding issue. I would just caution that we want to be very careful about any requirements coming from the Federal Government that would mandate specific practices or infiltration standards on an across-the-board manner because, again, the hydrologic conditions vary.

Also, I would like to reiterate the fact that if local governments are stuck with these costs, it is a tremendous burden for them. Many States have funding issues and funding restrictions that prevent local governments from imposing taxes or raising fees, and that doesn't seem to matter to certain Federal agencies, including the EPA, when they impose these restrictions. So it is very helpful if there could be block funding or basically the idea that if the Federal Government is going to impose these requirements, that it provides the funding to do so.

Senator CARDIN. Thank you.

Senator Fischer.

Senator Fischer. Thank you, Mr. Chairman.

Mr. Monette, in your testimony you talked about irrigation ditches, correct?

Mr. MONETTE. That is correct.

Senator FISCHER. And how would the proposed rule affect those irrigation ditches that are currently exempted under Section 404? Mr. Monette. Certain irrigation ditches are currently exempt, and some of those should remain exempt. What——

Senator Fischer. How about the ditches where farmers transport

water throughout their field?

Mr. Monette. And that is something that could fall under regulation under EPA's proposal, especially if the irrigation ditches conveyed more than just irrigation return flows; if there is septic discharges into the channel, things like that. Any other kind of waste discharge into that channel converts it from being an irrigation return flow into another kind of water body that is subject to regulation by EPA. And EPA is reaching with this rule not just to those kinds of ditches, but to any ditch that has perennial flow.

Senator Cardin, you mentioned your belief that ditches were exempt, and that is not the case. Ditches with perennial flow—and most ditches across the Country are going to have perennial flow. Even in Southern California there is a lot of return flows from irri-

gation from yards.

Senator CARDIN. I won't count this against Senator Fischer's time.

My understanding is if you construct the ditch as part of a road

construction, that is not part of the proposed regulation.

Mr. Monette. That is incorrect, Senator. Under the proposed rule, ditches that are constructed and have perennial flow that contribute to discharge downstream at some point to a traditional navigable water—

Senator CARDIN. We will check it out. My understanding is manmade ditches are excluded. So we will have to take a look at it, and

maybe we can join together in a comment.

Mr. MONETTE. Thank you.

Senator CARDIN. Senator Fischer.

Senator FISCHER. Thank you.

So when we look at these irrigation ditches and they are affected, I believe too, can you give me your opinion how that is going to affect the family farmer?

Mr. MONETTE. It could be a major impact.

Senator Fischer. How so?

Mr. Monette. First of all, if irrigation ditches and ditches on an individual property are considered waters of the United States, any kind of work or uses of the land adjacent to that ditch and the ditch are going to require a 404 permit from the Army Corps of Engineers.

Senator FISCHER. What would the cost be for a family farmer to get one of those permits who has a small, average farm? What would be the cost dollarwise? What would the cost time wise? I

know what it is for transportation and for our State Department of Roads. How does that affect an individual?

Mr. Monette. For an individual farmer, again, if it was falling under the jurisdiction, if the channel was a water of the United States, it could be tens of thousands of dollars and could take years to get that approval, and I think that is on the low end. We have seen them in hundreds of thousands of dollars for relatively small projects for parks, for instance. So that is not an unreasonable estimate by any means.

Senator FISCHER. Right. And road builders, they already operate

under construction stormwater permits, right?

Mr. Monette. That is correct.

Senator FISCHER. And that is Section 402 of the Clean Water Act, isn't that correct?

Mr. Monette. That is correct.

Senator FISCHER. So if ditches are going to be regulated as waters of the U.S., would you expect at some point that these ditches are going to have water quality issues?

Mr. MONETTE. Yes, I would.

Senator FISCHER. Are they going to have standards that they have to meet?

Mr. MONETTE. Yes, they will. They will have to meet the water quality standards that are designated for that State.

Senator FISCHER. And how costly is it going to be if roadside ditches are required to achieve the Clean Water Act's default standard, that it is fishable and swimmable?

Mr. MONETTE. I can't estimate. What I would refer the committee to are the estimates that were proposed for compliance with a bacteria standard for the Los Angeles area, and that was in the hundreds of billions of dollars.

Senator FISCHER. Do we see a lot of fishing in roadside ditches? We don't in Nebraska. Where are you from?

Mr. MONETTE. I am from Southern California, and, no, we typically don't see that.

Senator FISCHER. Do you see a lot of swimming?

Mr. MONETTE. No. Usually they are fenced and you are not supposed to go in there.

Senator FISCHER. Do you think maybe part of this rule is not a lot of common sense put into it?

Mr. Monette. It would seem to me that, yes, this is a little bit excessive and reaching the edges of EPA's authority under the Clean Water Act and the court decisions.

Senator FISCHER. OK, thank you.

May I ask another question? Thank you.

Mr. Cuccinelli, if we see that these ditches are treated as waters of the United States, what do you foresee are going to be the Federal regulatory hurdles to be for the States and for localities who wish to build roads?

Mr. CUCCINELLI. First of all, you need to understand the tactics they employ. They judge every project, good or bad, good or evil, from their perspective, and if it falls in the evil category, their tactic is to stall, it is to wait. And Mr. Monette's example of the family farmer, the tens of thousands of dollars hurt, but you hold them in place for years and you can literally wipe them out; and that is

their intent. That tactic is being used across the board. It is being used all over the place.

Senator Fischer. Well, I don't know——

Mr. CUCCINELLI. And it is awfully hard to fight the Federal Government.

Senator FISCHER. If I can interrupt you, I am not here to judge the intent of the agency, but I am just curious on any rules that you may see in the future that could impact a State or a locality

with regards to road building.

Mr. Cuccinelli. Well, one of the things that hasn't been mentioned is that if ditches start to not only get swept into this rule, but there is a question whether or not they may be swept into this rule, you will see local governments and State governments start to change and cancel projects. They will avoid this type of regulation in the way we do now. For instance, if \$500 million of Federal money is coming for roads, we pile it into as few projects as possible so that we are captured by as few Federal regulatory nets as possible, because they bring projects to a screeching halt, they drive budgets far beyond planning estimates, and they kill projects using regulatory means. Whether they intend to or not, that is the result.

Senator FISCHER. Thank you. Thank you all very much. Thank you, Mr. Chair.

Senator CARDIN. Let me thank all seven of you again and let me just point out what I think is the obvious. The Clean Water Act was passed by Democrats and Republicans in Congress because of the importance of clean water; clean water to our public health, clean water to our way of life, clean water to what we believe is a responsibility to future generations. And we have a responsibility to make sure that is carried out. EPA is the agency responsible to make sure that in fact occurs.

Just talking parochially once again about the Chesapeake Bay, it is not only iconically important to people who live in the watershed, it is a \$1 trillion economic impact, and if the health of the Bay suffers, the economic impact of our region suffers dramatically. And, yes, we want to make sure that we have the transportation infrastructure for the convenience of our public. We live in a very congested area of the Country here, in Washington particularly. I

experience it every day, twice a day.

So we certainly want to be mindful that we need to have decisions made, and we also have to have predictability. I enjoyed the exchange on the definitions of water. One thing is clear to me on any one I have talked to, whether it is someone who is strongly advocating for different types of regulations or less regulations, or those who want stronger regulations, they like to know what they are; and the Supreme Court decision has made some major question marks. So I think it is a responsibility of the Obama administration and a responsibility of Congress to give the proper direction so that you know what is expected so you can make those judgments as to whether this project makes sense or doesn't make sense with the conflicting interest of needs for transportation versus the responsibilities we have for clean water and the environment.

I think that is a reasonable request and the responsibility rests on the Members of Congress and the Administration. That is another reason why we need to work together. I found the exchange to be extremely helpful on all of these subjects, but it leads me to the clear conclusion that this committee that has responsibility for authorizing how we prioritize infrastructure in this Country, it is in our interest to do it early, rather than late, in the planning stages to deal with these problems and not to say, well, let's do it on the cheap and let a future Congress worry about the consequences of our decisions. So let's make our investments wisely, mindful of our responsibilities to both the environment and to our infrastructure.

With that, let me thank you once again, and with that the committee will stand adjourned.

[Whereupon, at 4:22 p.m. the committee was adjourned.]

STATEMENT OF HON. JOHN BOOZMAN, U.S. SENATOR FROM THE STATE OF ARKANSAS

Chairman Cardin, I enjoy serving with you on the Water and Wildlife Sub-committee, and I look forward to reviewing the testimony from today's hearing on highway stormwater runoff. Regretfully, I am unable to attend, as I am in Arkansas, recovering from a recent surgery. As always, I appreciate opportunities to work with you and all members of our Committee to find common ground and promote solutions to our country's challenges.

I also want to thank Senator Vitter for his assistance with today's hearing. And, as always, I appreciate the work of the EPW Committee staff, and in particular Laura Atcheson, Brandon Middleton, and Bryan Zumwalt, each of whom assisted in preparation for this hearing.

I share the view of our witnesses that thoughtful design and construction of roads can be used to mitigate environmental impacts or, in some cases, even produce environmental benefits. Without question, reducing the possible negative impacts of stormwater runoff is a worthwhile goal. At the same time, we must be smart and recognize the many other goals and priorities in highway construction, such as expanding economic opportunity, jobs, and commerce, improving citizens' quality of life, and reducing traffic-related deaths and injuries. Also, as the Federal Government continues to irresponsibly borrow more than a billion dollars each and every day—money that citizens will have to repay in high taxes—we must also be careful to set wise and appropriate priorities.

One of today's witnesses shared a general concern in written testimony about the "unintended consequences of exacerbating our highway funding challenges and slowing down project approvals." I agree, and that's why flexibility for states and communities is so important. Our states, county officials, and mayors must be able to build good projects quickly and affordably. Reducing the possible impacts of stormwater runoff is important, but local conditions and resources must be considered as the scope of such efforts is determined. A one-size-fits-all approach, dictated from Congress, would be a mistake.

I also share the concerns, voiced by some, regarding the EPA's recent water regulation power-grab proposal. This EPA power-grab will hurt our farmers, families, and small businesses. And today's hearing illustrates that this scheme, in an attempt to regulate water adjacent to roadways, could even reduce safety, increasing the risk of highway deaths and injuries. Specifically, I am concerned that as the EPA begins to regulate highway ditches, it will become more difficult for transportation departments to make safety-improvements on existing roads and highways.

We need to be thoughtful and cautious about our responsibilities related to these very important issues. There are constitutional and practical limits to the role that the Federal Government can and should play. We simply must ensure that important decisions impacting road construction, highway safety, and environmental protection are locally driven, where the voices of the people most directly impacted will be heard.

Again, I look forward to reviewing the testimony and the record of today's hearing. Thank you.

C