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1.  INTRODUCTION  

The Terminal Area Forecast (TAF) is the official FAA forecast of aviation activity for U.S. airports. It contains 
active airports in the National Plan of Integrated Airport Systems (NPIAS) including FAA-towered airports, federal 
contract-towered airports, nonfederal towered airports, and non-towered airports. The TAF is comprised of TAF-M 
(Modernization) and TAF-L (Legacy). In 2015, TAF-M covered the forecasts of enplanements and commercial 
operations for the 223 airports with more than 100,000 enplanements in FY2014. TAF-L covered the forecasts for 
all other airports. The TAF-M model represents an enhancement in comparison to TAF-L by generating 
enplanement and commercial operation forecasts at the segment level.  

2.  MODELING  ORIGIN  AND  DESTINATION  (O&D)  PASSENGER  DEMAND FLOW 

The origin and destination model applied in TAF-M provides insight into the flow of passengers from origin point i 
to destination point j, instead of only considering passenger count at a static specific location, as in TAF-L. The 
accounting of passengers via the flow takes into explicit account the network and is particularly helpful when there 
are multiple airports serving a single metropolitan area at both origin and destination locations. The O&D passenger 
demand forecast at the airport-pair level involves two steps: coefficient estimation and forecast generation with a 
dynamic log-log approximation process. 
 

2.1  COEFFICIENT  ESTIMATION   IN  STATA  

A passenger demand model is used to obtain coefficient estimates based on the historical airline data (2000:Q1 to 
2014:Q4; or 60 quarters at present; this sample is rolling as new data are added and updated): 

log	ሺ	ܲ ௜ି௝,௧ሻݎ݁݃݊݁ݏݏܽ
ൌ ଴ߚ ൅ ௜ି௝,௧ሻ݁ݎܽܨሺ	ଵlogߚ ൅ ௜ି௝,௧ሻ݁ݐݑ݋ሺܴ	ଶlogߚ ൅ ௜ି௝ሻ݁ܿ݊ܽݐݏ݅ܦሺ	ଷlogߚ 	
൅ ௜௧ሻ݊݅݃݅ݎܱ	݁݉݋ܿ݊ܫሺ	ସlogߚ ൅ ௝௧ሻݐݏ݁ܦ	݁݉݋ܿ݊ܫሺ	ହlogߚ ൅ ܽ௜ି௝ ൅  ௜ି௝,௧ሺ1ሻݑ

where i-j indexes airport-pair between origin i and destination j and t indexes quarter. ܽ௜ି௝  is the airport-pair 
heterogeneity for a given airport-pair i-j, which can be understood as the unobserved airport-pair effect. The airport-
pair unobserved effect contains things such as the underlying business model, managerial ability, or the cost 
structure, things that are roughly constant over time during the sample periods. The error ݑ௜ି௝,௧ is the idiosyncratic 
error. It represents unobserved factors that change over time and affect log	ሺ	ܲ    .௜ି௝,௧ሻݎ݁݃݊݁ݏݏܽ

log	ሺܲܽݎ݁݃݊݁ݏݏ௜ି௝,௧ሻ is the log of sum of the O&D passengers flying on airport-pair i-j at quarter t. O&D passenger 
refers to the passengers in airline O&D survey ticket data (or, 10% sample) flying from an origination airport i to a 
destination airport j. There can be intermediate stops between airport i and airport j. Passengers on either non-stop 
flights or multiple-stop flights are included.  

log	ሺ݁ݎܽܨ௜ି௝,௧ሻ is the log of the average market fares paid by the O&D passengers flying on airport-pair i-j at quarter 
t. Average fare is reported in the ticket portion of the O&D or 10% sample data. 

log	ሺܴ݁ݐݑ݋௜ି௝,௧ሻ is the log of the total number of routes provided by the airlines flying on airport-pair i-j at quarter t. 
For example, there are various ways to fly from DCA to RDU, such as, in addition to direct, from DCA to CLT to 
RDU or from DCA to ATL to RDU. We count the number of unique routes for each directional market and add up 
all the unique combinations serving a given i-j airport-pair at quarter t. 

log	ሺ݁ܿ݊ܽݐݏ݅ܦ௜ି௝ሻ is the log of non-stop market miles for airport-pair i-j. It does not vary with time. 

log	ሺ݁݉݋ܿ݊ܫ	݊݅݃݅ݎܱ௜௧ሻ is the total real personal income (millions 2000$) at the MSA level for the origination 
beginning point on airport-pair i-j at quarter t. Similarly, log	ሺ݁݉݋ܿ݊ܫ	ݐݏ݁ܦ௝௧ሻ is the total real personal income 
(millions 2000$) of the MSA associated with the destination airport, j.  
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Starting in the fall of 2015, we estimated equation (1) with correlated random effects (CRE). In contrast, equation 
(1) was estimated with OLS without intercept in the past. CRE is an econometric technique designed for panel data 
sets. It combines features in RE (random effects) and FE (fixed effects), both of which are well known panel data 
models in econometrics.  CRE unifies RE and FE in that the RE estimates of the time-varying covariates are the FE 
estimates given that the average across time for a given airport-pair is included.  

In empirical panel data literature, FE is often chosen over RE as RE imposes a strict assumption of zero correlation 
between the heterogeneity and all the covariates, which is rarely true in the empirical data. On the contrary, such 
correlation is allowed to be non-zero under the FE framework. However, FE model has an unfortunate property that 
the time-invariant variables are removed during the estimation, which can be problematic if the variable of interest 
does not vary with time. Furthermore, among the time varying variables, those with very little time series variation 
will not be accurately estimated with the FE approach.  

Consequently, CRE is chosen to preserve the coefficient on the variable that stays constant over time like 
௜ି௝݁ܿ݊ܽݐݏ݅ܦ , and to improve the accuracy of the coefficients on the variables that have very little time series 
variation such as ݁݉݋ܿ݊ܫ	݊݅݃݅ݎܱ௜௧ and ݁݉݋ܿ݊ܫ	ݐݏ݁ܦ௝௧. The FE estimates of ሺߚସ,  ହሻ in equation (1) seem grosslyߚ
inflated due to the lack of time series variation. Under the CRE framework, we use the RE estimates to calculate 
ሺߚଷ, ,ସߚ   .ହሻ, while the FE estimates are used for the rest of the variablesߚ

In the previous years, equation (1) was estimated separately for each quarter to better capture the seasonal effect. For 
each quarter, the estimation was further divided into thick and thin markets. Thick markets refer to airport-pairs with 
quarterly O&D passengers greater than 500 in the 10% survey. Airport-pairs with 500 or less O&D passengers 
quarterly in the 10% survey are defined as thin markets. Consequently we used to run eight regressions to estimate 
equation (1): four regressions for thick markets (one regression for each quarter) and four regressions for thin 
markets.  

Starting in October 2015, we eliminated the distinction between thick and thin markets and opted for weighted 
regression approach. This removes the somewhat arbitrary assumption on the definitions of thick and thin routes. It 
also reduces total number of regressions from eight to four, one for each quarter. While we believe that elasticities 
like air fare differ between large and small routes, it is unclear to us whether income elasticity should be different 
based on the traffic volume of the routes. Therefore, we decide to apply the same model to all various sized routes.  

However, because smaller routes significantly outnumbers larger routes in our sample, a regression without weights 
and without separate grouping in the data will generate coefficients that are more representative of the results for the 
smaller routes. Weights, measured by average O&D passengers at the airport-pair level, are added to properly scale 
the estimators so that data from heavily traveled routes will receive more attention during the estimation process.  

At the end, a weighted CRE approach was used to estimate equation (1). The corresponding Stata code is xtreg, pa 
corr(exchangeable) vce(robust) with a frequency weight ( [fw=] ) option. The standard CRE estimation is done in 
Stata using xtreg with the re option, which implements the panel data random-effects model. However, xtreg with re 
option does not have the option to add weights. The population averaged panel data regression (xtreg with the pa 
option) with the correlation of ݑ௜௧  and ݑ௜௦  set to a constant is asymptotically equivalent to the random-effects 
estimator, and it allows the frequency weight option. Lastly, the option vce(robust) is added to calculate cluster 
robust standard errors. 

2.2  DYNAMIC  LOG‐LOG  APPROXIMATION   IN  SQL  

It is well known that the first-order derivative of the dependent variable with respect to covariates in (1) represents 
elasticity, or percentage change in dependent variable with respect to changes in independent variables. Thus, a 
dynamic equation, developed from log-log approximation may be used to forecast future O&D passengers as 
follows: 
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௜ି௝,௧ାଵݎ݁݃݊݁ݏݏܽܲ
ൌ ௜ି௝,௧ݎ݁݃݊݁ݏݏܽܲ

∗ ቆ1 ൅ መଵߚ ቆ
௜ି௝,௧ାଵ݁ݎܽܨ
௜ି௝,௧݁ݎܽܨ

െ 1ቇ ൅ መଶߚ ቆ
௜ି௝,௧ାଵ݁ݐݑ݋ܴ
௜ି௝,௧݁ݐݑ݋ܴ

െ 1ቇ

൅	ߚመଷ ቆ
௜ି௝,௧ାଵ݁ܿ݊ܽݐݏ݅ܦ
௜ି௝,௧݁ܿ݊ܽݐݏ݅ܦ

െ 1ቇ ൅ መସߚ ቆ
௜,௧ାଵ݊݅݃݅ݎܱ	݁݉݋ܿ݊ܫ
௜,௧݊݅݃݅ݎܱ	݁݉݋ܿ݊ܫ

െ 1ቇ

൅ መହߚ ቆ
௝,௧ାଵݐݏ݁ܦ	݁݉݋ܿ݊ܫ
௝,௧ݐݏ݁ܦ	݁݉݋ܿ݊ܫ

െ 1ቇ൱		ሺ2ሻ 

All variables in (2) are in their original form rather than the logarithm form. Equation (2) can be derived from (1) 
through the following transformation (i.e., a Cobb-Douglas type transformation). The transformation is 
demonstrated with only one covariate, ݔ௜௧, on the right hand side: 

log ௜௧ݕ ൌ ߙ ൅ ߚ log ௜௧ݔ ൅ ܽ௜ ൅  ௜௧ݑ

→
݀ logݕ௜௧
௜௧ݕ݀

∗ ௜௧ݕ݀ ൌ ߚ
݀ log ௜௧ݔ
௜௧ݔ݀

∗ ௜௧ݔ݀ ൅
݀ܽ௜
݀ܽ௜

∗ ݀ܽ௜ ൅
௜௧ݑ݀
௜௧ݑ݀

∗  ௜௧ݑ݀

→
1
௜௧ݕ

∗ ௜௧ݕ݀ ൌ ߚ
1
௜௧ݔ

∗ ௜௧ݔ݀ ൅ ݀ܽ௜ ൅  ௜௧ݑ݀

→
Δݕ௜௧
௜௧ݕ

ൌ ߚ
Δݔ௜௧
௜௧ݔ

൅ ∆ܽ௜ ൅  ௜௧ݑ∆

→
௜,௧ାଵݕ െ ௜௧ݕ

௜௧ݕ
ൌ ߚ ൬

௜,௧ାଵݔ
௜௧ݔ

െ 1൰ ൅ ൫ݑ௜,௧ାଵ െ ௜ܽ∆	ݐ݄ܽݐ	݊݁ݒ݅݃	௜௧൯ݑ ൌ 0 

→ ௜,௧ାଵݕ െ ௜௧ݕ ൌ ௜௧ݕ ∗ ൤ߚ ൬
௜,௧ାଵݔ
௜௧ݔ

െ 1൰ ൅ ௜,௧ାଵݑ െ  ௜௧൨ݑ

→ ௜,௧ାଵݕ ൌ ௜௧ݕ ൤1 ൅ ߚ ൬
௜,௧ାଵݔ
௜௧ݔ

െ 1൰ ൅ ௜,௧ାଵݑ െ  ௜௧൨ݑ

→ ො௜,௧ାଵݕ ൌ ௜௧ݕ ൤1 ൅ መߚ ൬
௜,௧ାଵݔ
௜௧ݔ

െ 1൰൨ ௜ሻݔ|௜௧ݑሺܧ	݃݊݅݉ݑݏݏܽ	 ൌ 0 

Because we do not have forecast values on the time-varying covariates in equation (2) other than ݁݉݋ܿ݊ܫ	݊݅݃݅ݎܱ௜௧ 

and ݁݉݋ܿ݊ܫ	ݐݏ݁ܦ௝௧ , ൬
ி௔௥௘೔షೕ,೟శభ
ி௔௥௘೔షೕ,೟

െ 1൰ ൌ 0  and ൬
ோ௢௨௧௘೔షೕ,೟శభ
ோ௢௨௧௘೔షೕ,೟

െ 1൰ ൌ 0  for all t in the forecast years given that 

௜ି௝,௧݁ݎܽܨ ൌ ௜ି௝,௧݁ݐݑ݋ܴ ௜ି௝,௧ାଵ and݁ݎܽܨ ൌ ௜ି௝,௧ାଵ for all t in the future. Additionally, ൬݁ݐݑ݋ܴ
஽௜௦௧௔௡௖௘೔షೕ,೟శభ
஽௜௦௧௔௡௖௘೔షೕ,೟

െ 1൰ ൌ 0 

in the forecast periods as well because distance at any given airport-pair i-j stays constant at all t.   

Consequently, the effective dynamic equation used to forecast future passenger demand becomes: 

 

௜ି௝,௧ାଵݎ݁݃݊݁ݏݏܽܲ ൌ ௜ି௝,௧ݎ݁݃݊݁ݏݏܽܲ ∗ ൭1 ൅ መସߚ ቆ
௜,௧ାଵ݊݅݃݅ݎܱ	݁݉݋ܿ݊ܫ
௜,௧݊݅݃݅ݎܱ	݁݉݋ܿ݊ܫ

െ 1ቇ ൅ መହߚ ቆ
௝,௧ାଵݐݏ݁ܦ	݁݉݋ܿ݊ܫ
௝,௧ݐݏ݁ܦ	݁݉݋ܿ݊ܫ

െ 1ቇ൱			ሺ3ሻ 

 
 

One can alternatively understand this as ݁ݎܽܨ௜ି௝,௧  is held constant at the nominal level observed at the last period, 
i.e., the latest quarter for which information is available; while number of routes between i and j at quarter t, 
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 ௜ି௝,௧, is constant at the last observed period as well. Constant fare and a fixed network at the observed quarter݁ݐݑ݋ܴ
are features of the forecasting passengers. Notice, however, both ݁ݎܽܨ௜ି௝,௧	and  ܴ݁ݐݑ݋௜ି௝,௧ will change as the t=1 
changes to t=2, 3 and 4 as route pairs and fares are often season dependent.  

Estimated coefficients that were used to generate 2015 TAF-M forecasts are given in Table 1. Quarter column 
represents four quarters for which data have been aggregated. The rest of the columns display fare, route 
frequencies, distance, origin income and destination income elasticities, respectively. All estimated coefficients are 
significant and have the right signs and magnitudes [see for example, Bhadra and Kee (2008); “Structure and 
Dynamics of the Core US Air Travel Markets:  An Empirical Analysis of Domestic Passenger Demand”, Journal of 
Air Transport Management, Vol. 14(2008), pp. 27-39].  
 

Table 1: Weighted CRE Estimates of Parameters or Elasticities by Quarter 

Quarter 
Fare 

Elasticity 
RouteFreq 
Elasticity 

Distance 
Elasticity 

OriginIncome 
Elasticity 

DestIncome 
Elasticity 

1  ‐0.682  0.541  ‐0.505  0.331  0.331 

2  ‐0.748  0.542  ‐0.570  0.342  0.338 

3  ‐0.794  0.537  ‐0.558  0.348  0.348 

4  ‐0.755  0.519  ‐0.553  0.336  0.335 

 
 

Based on equation (3), to generate passenger demand forecast for Q1 from 2015:Q1 through 2040:Q1 for a given 
airport-pair i-j, we start with generating 2015:Q1 forecast based on 2014:Q1 historical data: 

௜ି௝,ଶ଴ଵହ:ொଵݎ݁݃݊݁ݏݏܽܲ
ൌ ௜ି௝,ଶ଴ଵସ:ொଵݎ݁݃݊݁ݏݏܽܲ

∗ ൭1 ൅ መସߚ ቆ
௜,ଶ଴ଵହ:ொଵ݊݅݃݅ݎܱ	݁݉݋ܿ݊ܫ
௜,ଶ଴ଵସ:ொଵ݊݅݃݅ݎܱ	݁݉݋ܿ݊ܫ

െ 1ቇ ൅ መହߚ ቆ
௝,ଶ଴ଵହ:ொଵݐݏ݁ܦ	݁݉݋ܿ݊ܫ
௝,ଶ଴ଵସ:ொଵݐݏ݁ܦ	݁݉݋ܿ݊ܫ

െ 1ቇ൱ 

where ߚመ௦ are taken from Table 1. Percentage change in incomes, for origin and destination, can be calculated from 
the forecasts of incomes for MSAs from Global Insight.   

Similarly, the 2016:Q1 forecast for a given airport-pair i-j can be generated based on the 2015:Q1 forecast: 

௜ି௝,ଶ଴ଵ଺:ொଵݎ݁݃݊݁ݏݏܽܲ
ൌ ௜ି௝,ଶ଴ଵହ:ொଵݎ݁݃݊݁ݏݏܽܲ

∗ ൭1 ൅ መସߚ ቆ
௜,ଶ଴ଵ଺:ொଵ݊݅݃݅ݎܱ	݁݉݋ܿ݊ܫ
௜,ଶ଴ଵହ:ொଵ݊݅݃݅ݎܱ	݁݉݋ܿ݊ܫ

െ 1ቇ ൅ መହߚ ቆ
௝,ଶ଴ଵ଺:ொଵݐݏ݁ܦ	݁݉݋ܿ݊ܫ
௝,ଶ଴ଵହ:ொଵݐݏ݁ܦ	݁݉݋ܿ݊ܫ

െ 1ቇ൱ 

The iteration process continues until 2040:Q1 or any point for which forecasts of origin and destination incomes are 
available: 

௜ି௝,ଶ଴ସ଴:ொଵݎ݁݃݊݁ݏݏܽܲ

ൌ ௜ି௝,ଶ଴ଷଽ:ொଵݏݏܽܲ ∗ ൭1 ൅ መସߚ ቆ
௜,ଶ଴ସ଴:ொଵ݊݅݃݅ݎܱ	݁݉݋ܿ݊ܫ
௜,ଶ଴ଷଽ:ொଵ݊݅݃݅ݎܱ	݁݉݋ܿ݊ܫ

െ 1ቇ ൅ መହߚ ቆ
௝,ଶ଴ସ଴:ொଵݐݏ݁ܦ	݁݉݋ܿ݊ܫ
௝,ଶ଴ଷଽ:ொଵݐݏ݁ܦ	݁݉݋ܿ݊ܫ

െ 1ቇ൱ 

The same process is repeated for Q2, Q3, and Q4 individually.  ߚመସ and ߚመହ are estimates based on historical data from 
2000 through 2014 or 60 quarters’ of data, at present. The values of  ߚመସ and ߚመହ  that go into equation (3) vary 
depending on the quarter in question. 
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Once passengers in a given airport pair i-j have been estimated and forecasted, there are multiple itineraries that can 
take the passenger from origin point i to destination point j. With the growing number of connections, segments, and 
market routes, it is imperative to consider the route that the passengers take in determining the impact of the 
passenger demand for the entire NAS network. 
 
In TAF-L, only the static point of a specific airport location was considered, and as such the NAS network impact 
was not observed or considered in the forecast. The modeling of passenger demand by origin and destination and 
assignment of route to the passenger demand are detailed in Section 3.   

3.  ASSIGNING  O&D  PASSENGERS  TO  ROUTES  

3.1  PROCESS  OVERVIEW  

Assignment of passengers flow between i-j to various routes (i.e., i-j; i-k-j; i-k-l-j, etc.) within the NAS is necessary 
to obtain segment or route-level forecasts. This is accomplished using an assignment algorithm where the number of 
passengers (say, between i and j) is distributed across various routes (direct or i-j; or indirect possibilities such as i-
k-j (2-coupon or segments); or i-k-l-j (3-coupon or segments), etc.) are based on the historical information available 
for the same quarter last year. This ensures that the entire network is taken into consideration during route 
assignment.   

3.2  THE  ASSIGNMENT  PROCESS  

3.2.1  ROUTING PASSENGERS  IN  A METROPOLITAN  PAIR 

 
The assignment process begins by selecting an origin and a destination metropolitan area (i.e., MSAs). Once the 
areas are finalized for the assignment, the next step is to determine the number of routes that have been flown 
between the two metropolitan areas in the same quarter of the last observed year. The number of routes will include 
both non-stop (i-j) and multi-stop routes (or indirect routes). Once the number of routes is identified, historical data 
is overlaid to determine the number of passengers flying each specific route.   

The historical coupon data is pulled from the same quarter of the prior year to in order to minimize the impact of 
seasonality on route evolutions. Percent distribution of passengers by route is then applied to the passenger origin-
destination demand forecast to arrive at the number of passengers expected to travel each specific route segment.  
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Take, for example, the case of 100 passengers that are 
projected to fly between Austin (in this case, origin i) 
and Chicago (in this case, destination j) MSAs. Our first 
task is to identify valid routes that were flown between 
the pairs at present (i.e., same quarter last year or the 
reference point). Notice that the option of multiple 
airports within a single MSA, Chicago with two airports 
ORD and MDW in this example, is treated as part of the 
observed “route” choice. Choice of airport in a multi-
airport MSA is a research area that APO is presently 
exploring.  

We allocate passengers among existing route segments 
according to the current percentage distribution for that 
O&D market. Thus, 25% is observed to fly direct 
between AUS and MDW; while 45% takes AUS-DFW 
to ORD; and the remaining 30% takes AUS-ATL-
MDW.  

 
 
 

We currently do not attempt to predict new routes and keep these observed routes constant going forward. Evolution 
of new routes in the NAS is a research area that APO is exploring together with researchers in the community [for 
an application of route choice in limited context, see Bhadra and Hogan (2008): “Choice of Route Networks: A 
Qualitative Choice Model for Over-Land and Over-Water Routes”, Journal of Aircraft, Vol. 45(1), January-
February 2008, pp. 56-63].   

3.2.2  EXPANSIONS  TO  NAS 

 
The concept described above is then applied to an 
additional pair, say, for example, Austin to 
Minneapolis, of metropolitan markets to determine 
the passenger demand by route segment.  
 
The assignment process continues until the entire 
NAS is mapped and passengers are distributed 
across all routes within the NAS. The assignment 
process is accomplished using SQL, as manual 
calculation is not feasible for the over 35,000 O&D 
market pairs, and numerous routes often exceeding 
hundreds of thousands, serving the primary O&D 
markets in the NAS. 
 

 
 
Upon completing this process for all MSAs and associated routes, we compare and adjust routed passengers with 
T100 segment passengers (Form 41), a database where commercial airlines report all passengers that flew routed 
segments. The database also provides invaluable information regarding types of aircraft that were used to fly these 
passengers in the segments. This information is mined and used to allocate and project aircraft departures in the 
routed segment which we describe in the following section.   
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4.  DETERMINING  AIRCRAFT  DEPARTURES  AND  OPERATIONS  

After determining the distribution of passengers across various routes within the NAS, it is important to determine 
the type of aircraft that is flown on each specific route, as it will help determine the number of departures (and 
operations) on the specific route.   

4.1  PROCESS  OVERVIEW  

Generally speaking, determining number of aircraft departures on a specific route segment requires the information 
of the following variables. They include, but are not limited to: 
 

 Number of passengers in segments  
 Performance limits of A/C  
 Distance between segments  
 Operating costs per mile 
 Type of airport in both ends of the segments  

 
Notice that from the section described above, we have information about number of routed passengers, both history 
and forecast, distance, and types of airport (i.e., large, medium and small hub in the NAS). Performance limits of 
aircraft are determined by the types of aircraft while operating costs vary by types of aircraft and airlines and 
available from Form 41. At present, there are over 90 distinct aircraft types in the system. Because modeling over 90 
distinct types of aircraft is complex and computationally infeasible, the types are aggregated to reduce these 
complexities. This narrows down the number of distinct aircraft types to be used for modeling to a manageable 
level. Examples of the aircraft type groupings that can be used include seat type, number of engines, aircraft range, 
and other definitions of missions. At present, we use classification according to seats as specified by AEE and is 
defined in Table 2.  
 

Table 2: Seat Class Definition 

Aircraft  
ID Class 

Aircraft  
Seat Class 

Min Seats  Max Seats 

1  0  0  0 

2  19  1  19 

3  1  20  50 

4  2  51  100 

5  3  101  150 

6  4  151  210 

7  5  211  300 

8  6  301  400 

9  7  401  500 

10  8  501  600 

11  9  601  650 

12  999  651  999999999 

 
Groupings other than seats have been tried and tested in the past as well [see, for example, Bhadra (2005); “Choice 
of Aircraft Fleets in the US Domestic Scheduled Air Transportation System: Findings from a Multinomial Logit 
Analysis”, Journal of the Transportation Research Forum, Vol. 44(3), Fall, 2005, pp. 143-162].  
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4.2  SHORT‐RUN  ASSIGNMENT  OF  AIRCRAFT  TO  ROUTES  

Oftentimes, airlines’ choice of aircraft fleet, particularly in the short run of 4-5 years, is somewhat rigid.   This is so 
because once the airlines have aircraft in their fleet inventory and/or orders are firm, the choices to fly them are 
fixed due to both network and financial commitment. Of course, there are some limited flexibility that may still be 
available to airlines through arrangement with other airlines and/or leasing companies, but generally speaking, 
inventory and firm orders in the book generally guide airlines’ choice of routes and markets. Given that, we assume 
that aircraft serving the segments of the NAS within the first 5 years (or 20 quarters) of the forecast is same as they 
have been observed in the past. In other words, aircraft that have flown a particular segment will continue to do so in 
the first 5 years (or 20 quarters) of the forecast and there will be no change. We assign the same aircraft as observed 
in the last year of the same quarter on a particular segment and continue for 20 quarters. Beyond that, aircraft choice 
can be modeled as described next.  
 

4.3  LONG‐RUN  ASSIGNMENT:  APPLYING  THE  ECONOMETRIC  MODEL  

The multinomial choice model [described in Bhadra (2005) in detail] is applied to the aircraft choices to arrive at 
departure forecasts for the years following the first five years of the forecast. Without going into technical detail, 
figure below illustrates the process of forecasting aircraft operations. Using routed passengers, performance limits, 
distance and types of airports, number of departures between two segment pairs are determined. The result of 
applying multinomial choice model is the number of aircraft that can be flown on a particular route or segment 
based on the passenger demand is described in below.  
 
Types of aircraft departures associated with segments 
result from the multinomial choice models where 
aircraft types are aggregated according to number of 
seats. Once that assignment is complete, we now can 
determine number of departures between two 
segments, for example, LAX to ORD where four 
aircraft (with 51-100 seats) are required. Similarly, 
two aircraft (with 21-50 seats) are needed to fly non-
stop between ORD to DCA. This process continues 
until all segments have been exhausted.   

 
 

 
 
Since performance limits, distance and types of airports do not change over time, therefore, numbers of departure 
are driven primarily by routed passengers and seasons (i.e., different quarters). These counts, multiplied by 2, 
provide us the number of operations accounting for both landings (i.e., arrivals) and take-offs (i.e., departures).   

5.  SUMMARY  OF TAF‐M  PROCESS  IN  THE  DOMESTIC  NAS  
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The TAF-M process, as described above, can be 
summarized in the diagram on the right side of the 
panel: first, we estimate and forecast O&D passenger 
demand between airport-pairs, i-j and seasonality (i.e., 
quarters 1 through 4) across samples (at present, 2000-
2014); second, using those forecasts and combining 
them with observed routes, we determine segment or 
routed passenger flows by airport pairs.  

Finally, using those routed passengers and combining 
them with performance limits of types of aircraft, 
distance and types of airports, we estimate and forecast 
departures and operations by types of aircraft for the 
years beyond year five into the forecast. For short-run, 
we assign the observed aircraft into the routes.  

 

This network and aircraft-integrated process is carried through all segments of the commercial service airports 
within the United States in order to forecast passengers and departures. When these segments are aggregated at the 
level of origin airports, they produce passenger and operation activities at the airport, equivalent to TAF-L from 
before. Aggregation of segments at the destination level airports may provide landing activities but that is not 
presently done. This is what is known as Terminal Area Forecast-Modernized (TAF-M) version.   

6.  ADDITIONAL  DETAILS  

Once we have output from the TAF-M process described above, we process it for a few more steps before it can 
become ready for FAA’s official terminal area forecast.  In Section 6, we briefly describe these processes as they are 
stand-alone pieces for most part.  

6.1  TREATMENT  OF  DOMESTIC  CARGO  

Within the domestic NAS, cargo departures account for approximately a little less than 5%. In some airports, for 
example, MEM (Memphis, TN) and SDF (Louisville, KY), their numbers are higher; but in many of the commercial 
airports, cargo operations are fairly large.  
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As the panel on the right shows that although MEM 
far surpassed, by a magnitude of 8 on average, annual 
cargo departures in other large airports are significant 
as well. Ranging somewhere between 1000-6500 
annual departures, these airports facilitate air cargo 
transportation that has been growing quite 
substantially over the last two decades.  

From TAF-M process, we can easily identify these 
departures. For departures that are associated with 
zero passengers are identified, by the DOT, as cargo 
departures. Based on the estimate and forecast of 
departures demand described above in TAF-M 
process above, we account for cargo departures for 
which associated passengers is zero.   

We report these departures, by both segment routes and aggregated at the airport, as cargo departures. Multiplying 
these departures by two yields cargo operations at a particular airport.  

 

6.2  ESTIMATION  AND  FORECAST  OF   INTERNATIONAL  PASSENGER  AND  CARGO  

Originally developed by the MITRE Corporation, estimation and forecast of international passenger, departures and 
cargo departures are presently done outside the integrated TAF-M. In order to undertake this step, we first process 
T100International segment data by all carriers. At present, data covering the period of 2000-2014 are used. T100 
international segment data provide the number of passengers and other details by flown segments.  

Passengers in many international segments are relatively low. For this reason, we define thick segments or markets 
in international module as sum of passengers in the last 4 quarters >= 10,000. Thin segments/markets are defined as 
those that have passengers less than 10,000 as sum in the last 4 quarters. Like in case of domestic markets, there are 
many thin international segments. On average, thin international markets/segments number around 4.500 while thick 
markets/segments are around 2,000. While numbering over double the number of thick markets, thin markets 
account for less than 10% of total international passengers.  Thick markets, on the other hand, carry over 90% of all 
international passengers. To put it differently, , thick segments accounting for only 1/3rd of total number of segments 
account for over 90% of passengers while 2/3rd of total segments are relatively thin and account for only 10% of 
passengers.  

Segment passengers, both thick and thin, are modeled and forecasted using ESM procedure researched, tested and 
developed by the MITRE Corporation. Time series specification using Winters’ method in SAS is the procedure by 
which international passengers are estimated and forecasted by segment pairs. Assuming segment load factors and 
average seat factors (i.e., fixed aircraft type) being fixed at the observed levels, departures are then calculated using 
passenger forecasts. Both passenger and departures, and operations, in turn, then added onto the main TAF-M 
databases.  

6.3  REALLOCATION  OF  AIRCRAFT  BY  TYPES  

It is evident from the aircraft orders, both delivered and those in order book, that the US, in particular and the world 
in general, is at a point of another evolution in aircraft fleet. Aircraft that were introduced in 1990s to facilitate the 
evolution and expansion of hub-and-spoke network are beginning to go out of circulation. Generally speaking, these 
are smaller jets and are of types of ERJ135, ERJ145 and CRJ100, CRJ200, etc. These are being gradually replaced 
by larger variants of ERJ170/190s, and CRJ700/900s.  
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One shortcoming of TAF-M is that it is not capable of predicting the evolution of new aircraft in the system. Both 
during the short-run (i.e., less than 5 years) and in the long-run, aircraft we assigned as per last observed in the 
segment as in the case of former or aircraft is assigned via estimation based on history data as in the case of the 
latter. In either cases, new aircraft that had never been observed before cannot be assigned during the forecast 
periods.  

In order to bridge the gap between what aircraft has been assigned in the TAF-M and what is anticipated, we 
formulate algorithms that reflect these reallocations of aircraft. Aircraft that are assigned or modeled to be of smaller 
sizes (i.e., earlier generation) are to be replaced, irrespective of the types of segments in the NAS, by newer and 
larger aircraft (i.e., next generation). Thus, for example, an older version of ERJ145, typically with 50 seats, will be 
replaced by 0.71 of ERJ170 with a typical seat configuration of 70. This is explained in detail in Section 7.  

Combined with the assumption of fixed (and observed) load factors in segments, this would result in recalculation of 
seats available in that segment. Recalculated seats combined with fixed load factor would result in reduced number 
of departures and operations. It will also lead to recalculation of passengers in the segment. We impose these 
reallocations on a macro basis. When macro algorithms are carried through taking into account types of aircraft and 
their substitutions, seats, departures, and passengers from TAF-M are recalculated and aggregated at the segment 
levels. These numbers are then put forward as the final output of the TAF-M. These recalculated numbers are what 
reported in the final TAF-M.   

6.4  CALIBRATION  TO  SHORT‐TERM  PASSENGER  AND  OPERATIONS  USING  AIRLINE  SCHEDULE      

By the time TAF-M is put into use, typically in the beginning of the calendar year (i.e., 2016 for the present cycle), a 
year is already past (2015) from the time actual data were available (i.e., 2000-2014). Furthermore, a lot is already 
known, from airlines’ schedule data, for about half of the year of 2016 in addition to the past year, 2015. In other 
words, by the time forecast data are finalized and ready for public use, a further need arises to calibrate it with what 
is known already (i.e, 2015-2016 first half).  

Notice, however, with a lag of 2-3 quarters, primary data corresponding to TAF-M (i.e., O&D) are not readily 
available from the DOT and only partial information for the period known from T100 data which have a slightly 
faster publication (with one quarter lag). Therefore, we need to combine available T100 data with airline schedule 
data in order to update the first part of the forecast (i.e., 6 quarters). We account for this and calibrate the forecasts, 
for core 30 airports at present, by the available T100 and airline schedule data. Oftentimes, adjustments are minor 
but we make sure that trends in the forecasts correspond to what we observe from the newer data from T100 and 
available airline schedule.  

6.5  CALIBRATION  TO  OPSNET  DATA  

Although the entire process is exercised using DOT data and the airline data that are available from schedule, we 
need to calibrate the final data by the FAA’s official count. Known as OPSNET, this is the repository of the 
Agency’s accounting of departures and take-offs as counted by the controllers and now more mechanically (known 
as CountOps).  

In order to carry out these calibrations for departures, we take the latest observed numbers from CountOps and 
calculate the ratios that translate them onto TAF-M generated actual data for the corresponding periods. At that 
point, we also compare the rates of growth for departures between these two data sources. Once we have established 
these correspondences for departures at the airport levels for which CountOps are available, we allow the TAF-M 
generated growth rates (for the forecast periods) to drive the actual CountOps departure data into forecasts. In other 
words, CountOps generated actuals are driven by TAF-M generated departures growth rates during the forecast 
periods. Data related to passengers and other details remain unaltered.  

6.6  TREATMENT OF  EXCEPTION  AIRPORTS  

Once we generated these forecasts and compared them against the actuals and published forecasts from last year’s 
TAF, we output these forecasts at the FAA’s final forecasts for most airports. Some airports require additional 
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treatments and they can be categorized, at present, into two: (a) constrained airports; and (b) demand scenarios 
affected by additional forces or supply-induced demand.   

It is evident from the discussion above that TAF-M and the additional steps that we outlined above represent 
demand for aviation activities that are unconstrained. In other words, no constraints in airports are taken into 
account. In reality, however, there are a couple of airports in the NAS, La Guardia (LGA) and Reagan National 
(DCA), which are restricted by slots. These may change in the future but at present, these are the only two airports 
for which slots are binding; i.e., slot restricts the unconstrained forecasts sometimes in the future. In order to take 
these slot restrictions and their impact on departures and, in turn, on the passengers, we further calibrate forecast 
data. Depending upon the time at which these slots restrict departures, we calibrate both departure mixes and 
passengers to arrive at the final forecasts for these two airports. LGA and DCA are the only two airports with (a) in 
place requiring some further calibration.   In TAF-M, demand is estimated and forecasted using the history data. 
History of activities at airports for which restrictions have been in place will necessarily undermine the actual 
potential. The case of Dallas Love (DAL) airport is a case in point. As the Wright Amendment expired in Oct, 2014, 
DAL experienced a surge of airlines scheduling new departures that have not been seen and/or supported by the past 
passenger flows. These are supply-induced demand that are, generally speaking, results of the removal of 
restrictions. Airlines scheduling new flights from DAL represent a mix of many factors: passenger traffic at DAL; 
competitive factors between DAL and DFW and airlines’ anticipation of spill-overs from DFW and so on. Supply 
side factors, i.e., airport competition, tend to influence many of these decisions and resultant passenger traffic often 
far surpasses the historical trends. In order to account for these surges, particularly in the short run, we calibrate 
forecast output of DAL to reflect this new reality of (b).  

6.7  SUMMARY  OF  TAF‐M  PROCESS   IN  THE  DOMESTIC  NAS  AND  BEYOND  

The process map in the right hand panel thus concludes 
the entire forecasting process. In addition to the 
processes outlined and discussed in Sections 2, 3, and 4, 
now we add domestic cargo, international passengers, 
departures and cargo into TAF-M as add-ons onto main 
TAF-M database.  

Two further calibrations are performed in the forecast 
data: first, by short-run airlines schedule and T100 data 
to account for the changes we observed (from T100) or 
sure to observe (from airline schedules) during the first 
6 quarters; and second, by Agency’s OPSNET or 
CountOps data. Finally, two algorithms, one taking into 
account effect of slot restrictions and the other taking 
into account supply-induced demand, are applied to 
LGA, DCA; and DAL respectively.  

 

 

 

 

7.  AIRCRAFT  REALLOCATION  ROUTINE  IN  TAF‐M  

This section describes the aircraft reallocation process, outlined in Section 6.3 (Reallocation of Aircraft by Type), in 
greater details. Section 7.1 explains the main concept that guides the reallocation process. Section 7.2 lays out the 
substitution rate calculation. Section 7.3 lists the aircrafts that are being replaced and the aircrafts that are replacing 
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with. Since the aircraft reallocation process is done at the airport level, Section 7.4 shows an example of the 
reallocation algorithms at the Lafayette Regional Airport. Section 7.5 completes the example. 

 

7.1  ED  GREENSLET’S  AND  FAA’S  PROJECTIONS  OF  REGIONAL  JETS  (RJS)  

The main idea of substitution of smaller RJs (< 50 seats) comes from Ed Greenslet’s, and subsequently, FAA’s 
forecast of fleet. Ed’s study titled “Fleet Forecast – 2012 through 2033” provides the basic foundation of what has 
been implemented in TAF-M. In Section 7, we will describe the steps that integrate Ed/FAA’s analysis of RJs (i.e., 
stock of RJ aircraft and projections) into TAF-M (i.e., flow of departures by airports).  

Ed’s analysis of substitution of 50-seaters by 70&above (including 90-seaters) can be summarized in the following 
figure:  

 

 

 

Notice that the stock of smaller RJs has been going down and accelerates this trend around 2014-2016. The 
substitution into larger RJs is almost completed by 2028-2029. Beyond that point, it is safe to assume that RJs with 
70-seats and above are driven primarily by passengers.  

 

7.2  FROM  STOCKS  OF  RJS  TO  RATES  OF  SUBSTITUTION  IN  DEPARTURES  

Assuming fixed value/s of rates of utilization (i.e., in terms of hours and number of departures within an hour), the 
above stocks of aircraft can be translated into flow of departures. This substitution is captured by the following 
parameterization (i.e., essentially assumption) within the TAF-M:  
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hart  

 

The above parameterization is an excel file that we control at the macro level in order to slow down the substitution 
or accelerate it given Ed’s forecast and FAA’s annual national updates. In the present run of TAF-M, the above 
parameterization is in place where substitution begins slowly in 2015 and completed by 2023. The steps signify 
quarterly rates which do not change within a particular year (horizontal axis); it changes only annually. By 
construction, this parameterization was to follow the overall trend of the first graph. Table 3 summarizes the 
parameterization.  

Table 3: Parameterization Schedule 

Forecast ID  Year 
Percent of 70‐seat  
and above RJs 

Year 
Percent of 70‐seat 
and above RJs 

111  2015  7.5%  2028  100% 

111  2016  13.0%  2029  100% 

111  2017  20.7%  2030  100% 

111  2018  32.2%  2031  100% 

111  2019  44.3%  2032  100% 

111  2020  56.7%  2033  100% 

111  2021  71.9%  2034  100% 

111  2022  90.4%  2035  100% 

111  2023  100%  2036  100% 

111  2024  100%  2037  100% 

111  2025  100%  2038  100% 

111  2026  100%  2039  100% 

111  2027  100%  2040  100% 

111  2023  100%  2036  100% 

 

7.3  REPLACEMENT  OF  SMALLER  RJS  BY  NEWER,  LARGER  RJS  
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The replacement routine is applied to a specific group of RJs. At present, there are 7 types of RJs that are replaced 
by 4 larger counterparts (identified by DOT-specified 3-letter numeric). Table 4 lays out the guide for the RJ 
replacement. 

Table 4: Aircraft Replacement List 

 

 

First important thing to notice in Table 4 is that all smaller RJs, i.e., “replacement of A/C” are replaced larger RJs by 
using Ed’s assumptions (i.e., “Replaced with A/C”). Notice also that although aircraft type 628 is above the 50-seat 
cut-off range, we decided to put it together with the 50-seat and lower as they too are expected to go out of service. 
The above (rate of) substitution along with the types of A/Cs are imposed at the level of airport (and not at segment 
level) and form the macro statement defining aircraft reallocation routine in TAF-M.  

An important assumption for the reallocation process is that the passengers originating from any airport remain 
unchanged before and after the reallocation. If we further assume that load factor stays the same, the assumption 
implies that the capacity (available seats) remains the same. This is reasonable because the passenger growth driven 
by the market demand is already accounted for during the O&D passenger forecast stage (Section 1). Reallocation 
only changes the fleet mix so that the newly acquired 70 seat RJs, combined with the reduced fleet in the 50 seat 
RJs, can continue serving the same number of passengers.  

 

7.4  AN  EXAMPLE:  THE  CASE  OF  LAFAYETTE  REGIONAL  AIRPORT  (LFT)    

The example below, focusing on airport LFT in 2015:Q1, demonstrates in details the reallocation algorithm. Year 
2015 is the first year during the forecast periods for Forecast ID 111, the most current forecast. 

 

The table shows that departures performed is projected to be 413.9 operations for aircraft type 674 (Embraer 135), 
carrying 12,298.1 passengers with a total seat count of 15,313.6. In reality, the numbers should be integers. We keep 
the decimal points here to maintain a consistent level of precision.  

Replacement of A/C Replaced with A/C
seats seats

461,464 with 673 461 EMB‐120 BEMBRAER EMBRAER EMB‐120 30 673 EMBRAER‐EMBRAER EMBRAER ERJ‐175 86

461 EMB‐120 BEMBRAER EMBRAER EMB‐120 30 673 EMBRAER‐EMBRAER EMBRAER ERJ‐175 86

464 EMBRAER EMBRAER EMBRAER EMB‐110 30

464 EMBRAER EMBRAER EMBRAER EMB‐110 30

674,675, 676 with 677 674 EMBRAER‐EMBRAER EMBRAER‐EMB‐135 37 677 EMBRAER‐EMBRAER EMBRAER EMB‐170 88

674 EMBRAER‐EMBRAER EMBRAER‐EMB‐135 37 677 EMBRAER‐EMBRAER EMBRAER EMB‐170 88

675 EMBRAER‐EMBRAER EMBRAER‐EMB‐145 50

675 EMBRAER‐EMBRAER EMBRAER‐EMB‐145 50

676 EMBRAER‐EMBRAER EMBRAER‐EMB‐140 44

676 EMBRAER‐EMBRAER EMBRAER‐EMB‐140 44

629 with 631 629 RJ‐200ER/ BOMBARDCANADAIRCRJ‐2/4 50 631 CANADAIRCANADAIRCANADAIRRJ‐700 70

629 RJ‐200ER/ BOMBARDCANADAIRCRJ‐2/4 50 631 CANADAIRCANADAIRCANADAIRRJ‐700 70

628 with 638 628 CANADAIRCANADAIRCANADAIRRJ100/ER 56 638 CANADAIRBOMBARDCANADAIRCRJ‐900 86

628 CANADAIRCANADAIRCANADAIRRJ100/ER 56 638 CANADAIRBOMBARDCANADAIRCRJ‐900 86

forecastid year quarter origin aircrafttype Dep Pax Seat

111 2015 1 LFT 674 413.9 12,298.1 15,313.6
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7.5  INCORPORATING  REALLOCATION  

The reallocation routine proceeds in the following order: identification of the substitution rate, calculation of the 
remaining operations that will be performed by the smaller RJs, calculation of the additional operations that will be 
performed by the newer, larger RJs, and finally consolidating all records. 

7.5.1.  IDENTIFY  THE  SUBSTITUTION  RATE 

Based on Table 4, we learn that aircraft 674 at LFT will be replaced by 677. The rate of substitution is 7.5% in 2015 
based on Table 3. We then conclude that only 92.5% of the 674 departures will be performed and the rest 7.5% will 
be replaced by 677. 

7.5.2  CALCULATE THE  REMAINING OPERATIONS  THAT  WILL  BE  PERFORMED  BY  THE  50‐

SEAT  RJS 

With the substitution rate of 7.5%, we can calculate how many departures, passengers, and seats will still be carried 
out by 674: 

 ݏ݁ݎݑݐݎܽ݌݁݀	674	ܴ݃݊݅݊݅ܽ݉݁
ൌ ݏ݁ݎݑݐݎܽ݌݁݀	674	݈ܽ݊݅݃݅ݎܱ ൈ ሺ1 െ  ሻ݁ݐܽݎ	݊݋݅ݐݑݐ݅ݐݏܾݑݏ
ൌ 413.9 ൈ ሺ1 െ 7.5%ሻ 
ൌ 382.8 

 ݏݎ݁݃݊݁ݏݏܽ݌	674	ܴ݃݊݅݊݅ܽ݉݁
ൌ ݏݎ݁݃݊݁ݏݏܽ݌	674	݈ܽ݊݅݃݅ݎܱ ൈ ሺ1 െ  ሻ݁ݐܽݎ	݊݋݅ݐݑݐ݅ݐݏܾݑݏ
ൌ 12,298.1 ൈ ሺ1 െ 7.5%ሻ 
ൌ 11,375.7 

 ݏݐܽ݁ݏ	674	ܴ݃݊݅݊݅ܽ݉݁
ൌ ݏݐܽ݁ݏ	674	݈ܽ݊݅݃݅ݎܱ ൈ ሺ1 െ  ሻ݁ݐܽݎ	݊݋݅ݐݑݐ݅ݐݏܾݑݏ
ൌ 15,313.6 ൈ ሺ1 െ 7.5%ሻ 
ൌ 14,165.1 

 

 

7.5.3  CALCULATE THE  ADDITIONAL  OPERATIONS  THAT  WILL  BE  PERFORMED  BY  THE  70‐

SEAT  RJS   

Based on the assumption that the total passengers and seats remain constant before and after the aircraft reallocation, 
the addition of 677 passengers and seats should be equivalent to the reduction of 674 passengers and seats.  

 ݏݎ݁݃݊݁ݏݏܽ݌	677	݄݁ݐ	݂݋	݊݋݅ݐ݅݀݀ܣ
ൌ  ݏݎ݁݃݊݁ݏݏܽ݌	674	݄݁ݐ	݂݋	݊݋݅ݐܿݑܴ݀݁

forecastid year quarter origin aircrafttype
Remainder_D

ep

Remainder_P

ax

Remainder_S

eat

111 2015 1 LFT 674 382.8 11,375.7 14,165.1



20 
 

ൌ 12,298.1 ൈ 7.5% 
ൌ 922.4 

 ݏݐܽ݁ݏ	677	݄݁ݐ	݂݋	݊݋݅ݐ݅݀݀ܣ
ൌ  ݏݐܽ݁ݏ	674	݄݁ݐ	݂݋	݊݋݅ݐܿݑܴ݀݁
ൌ 15,313.6 ൈ 7.5% 
ൌ 1,148.5 

 ݏ݁ݎݑݐݎܽ݌݁݀	677	݄݁ݐ	݂݋	݊݋݅ݐ݅݀݀ܣ
ൌ ݏݐܽ݁ݏ	677	݄݁ݐ	݂݋	݊݋݅ݐ݅݀݀ܣ ⁄ሻݏݐܽ݁ݏ	ሺ88	ݐ݂ܽݎܿݎ݅ܽ	677	݄݁ݐ	݂݋	ݕݐ݅ܿܽ݌ܽܿ	ݐܽ݁ݏ	݉ݑ݉݅ݔܽ݉  
ൌ 1,148.5 88⁄  
ൌ 13.1 

 

7.5.4  CONSOLIDATE  THE  RECORDS 

After consolidating the records between aircrafts 647 and 677, there are now two records for airport LFT at 2015:Q1 

 

Chances are there might been existing 677 operations for airport LFT in 2015:Q1. It is not the case in this particular 
example. However, if there were existing 677 operations, we would need to re-calculate 7.5.2 and 7.5.3 so that the 
final output table is grouped by year, quarter, origin, and aircraft type.  

To compare the pre-reallocation with the post-reallocation numbers, the table below shows that the number of 674 
operations in 2015:Q1 at LFT is 413.9 before reallocation and 382.8 afterwards. On the other hand, the number of 
677 operations at LFT is 0 versus 13.1 after reallocation.  

 

forecastid year quarter origin aircrafttype Added_Dep Added_Pax Added_Seat

111 2015 1 LFT 677 13.1 922.4 1,148.5

forecastid year quarter origin aircrafttype Dep Pax Seat

111 2015 1 LFT 674 382.8 11,375.7 14,165.1

111 2015 1 LFT 677 13.1 922.4 1,148.5

forecastid year quarter origin aircrafttype Dep Pax Seat Dep_recalc Pax_recalc Seat_recalc

111 2015 1 LFT 674 413.9 12,298.1 15,313.6 382.8 11,375.7 14,165.1

111 2015 1 LFT 677 0.0 0.0 0.0 13.1 922.4 1,148.5


