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Abstract 

This paper presents a very preliminary attempt to analyze international trade data with neural networks. 
We use a dataset assembled for an international trade gravity model, which has bilateral trade as the 
dependent variable, and the distance between countries; the exporter’s GDP; the importer’s GDP; 
dummy variables indicating whether the countries share a language, border, colonial relationship, or 
trade agreement; and country or country-year fixed effects as independent variables. The paper 
provides a brief overview of gravity models, explains neural networks, discusses the difference between 
hypothesis testing and prediction, and presents the results of our analysis. We divide the data randomly 
into a training set and a test set; use the training set data to create an OLS estimator, a Poisson pseudo-
maximum likelihood estimator, and a neural network; and then use the test data to measure how well 
the different methods generalize to new data. We compare a baseline model, a model with country 
fixed effects, and a model with country-year fixed effects. The estimator that yields the most accurate 
out-of-sample estimates is the neural network with country fixed effects, as seen in a comparison of 
root mean squared errors. We then compare neural network predictions with actual trade between the 
United States and its major trading partners outside of the sample period. Finally we suggest directions 
in future research. 
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Introduction 
Large sets of economic data are increasingly available, and machine learning tools, including neural 
networks, offer effective and interesting ways to model complex relationships in these datasets.1 Neural 
networks are “black box” models in that their parameters cannot always be easily interpreted, for 
example the way coefficients in some regressions can be interpreted as elasticities. However, they are 
good at combining variables in complex non-linear ways that can generate fairly accurate predictions. 

This paper applies neural networks to international trade data. It does not break new ground in 
designing neural networks or constructing gravity model datasets; it simply applies one to the other. The 
goal is to examine whether trade between countries can be accurately predicted with a limited amount 
of data. 

This paper is organized as follows: it gives an overview of gravity models, discusses neural networks, 
compares hypothesis testing with prediction, explains the methods used in this analysis, presents the 
results, compares neural network predictions with actual trade between the United States and its major 
trading partners, and proposes directions for future research. 

Gravity models 
Gravity models are a workhorse tool of international trade analysis. Their basic insight is that trade 
between two countries is expected to be correlated with their respective sizes (measured by their GDPs) 
and the distance between them. This model is intuitive, flexible, has strong theoretical foundations, and 
can make reasonably accurate predictions of international trade.2 

A simple gravity model can be augmented in various ways. Gravity models often include dummy 
variables that indicate whether the trade partners share a border, a language, a colonial relationship, or 
a regional trade agreement. Anderson and van Wincoop noted that gravity models should account for 
multilateral resistance, because relative trade costs—not just absolute costs—matter.3 Gravity models 
can capture multilateral resistance, as well as other country-specific historical, cultural, and geographic 
factors, by using country fixed effects: dummy variables for each country exporter and each country 
importer.4 Some gravity models use country-year fixed effects, country-pair fixed effects, or both. 

  

                                                           
1 Varian, “Big Data,” 2014. 
2 Gravity models have faced various criticisms. For example, most gravity model estimations have found a 
persistently strong negative effect of distance on international trade since the 1950s, contrary to empirical 
evidence on falling transport costs and globalization. However, a 2012 paper by Yotov finds that gravity models do 
show a declining effect of distance on trade over time when they account for internal trade costs. Yotov, “A Simple 
Solution to the Distance Puzzle in International Trade,” 2012. 
3 Anderson and van Wincoop, “Gravity with Gravitas,” March 2003. For example, Australia and New Zealand would 
be expected to trade more with each other than the absolute distance between them would indicate, because 
both countries are geographically distant from other trading partners. 
4 However, one disadvantage of this method is that country fixed effects will absorb any time-invariant country-
specific factor of interest. Baier and Bergstrand, “Bonus Vetus OLS,” February 2009. 
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Gravity models can take the form of Ordinary Least Squares (OLS) estimators, such as: 

, 0 1 2 , 3 , 4 5 6 7 ,ln ln ln lnij t ij i t j t ij ij ij ij ij tY DIST GDP GDP CNTG LANG CLNY RTAβ β β β β β β β ε= + + + + + + + +
 

…or, with the addition of exporter and importer fixed effects: 

, 0 1 2 , 3 , 4 5 6 7 ,ln ln ln lnij t ij i t j t ij ij ij ij i j ij tY DIST GDP GDP CNTG LANG CLNY RTAβ β β β β β β β π χ ε= + + + + + + + + + +
 

…or, with exporter-year and importer-year fixed effects: 

 , 0 1 2 3 4 5 , , ,ln lnij t ij ij ij ij ij i t j t ij tY DIST CNTG LANG CLNY RTAβ β β β β β π χ ε= + + + + + + + +  

This last equation uses a large number of variables but avoids the assumption that country-specific 
factors are constant over time. The exporter GDP and importer GDP variables are absorbed by the 
country-year dummies and are therefore dropped. 

One challenge is that when trade flows are transformed into logarithmic form, observations with zero 
trade flows are dropped.5 One way to handle this (following Eichengreen and Irwin) is to transform 
trade between country 𝑖 and country 𝑗 into ln (𝑌𝑖𝑗 + 1), so that zero trade flows become slightly 
positive, and use that as the dependent variable in an OLS estimator.6 This approach makes it a little 
more difficult to interpret the coefficients, but avoids the loss of observations.7 

Another approach, proposed by Santos Silva and Tenreyro, is to use Poisson pseudo maximum likelihood 
(PPML), a non-linear estimator that does not rely on a log transformation of trade flows.8 The PPML 
estimator is recommended by Piermartini and Yotov among others as a best practice for estimating 
gravity equations, because it provides unbiased and consistent estimates even with significant 
heteroscedasticity in the data and a large proportion of zero trade values.9 

Neural networks 
Neural networks are statistical models that can find and test relationships in large datasets.10 They are 
analogous to a set of brain neurons: each neuron receives inputs from some neurons and provides 
outputs to other neurons. Neural networks involve an input layer of data (i.e., a set of independent 
variables), “hidden layers” of nodes, and an output layer that computes final values. The strength of 
each connection is quantified with a weight, or coefficient. Each node is a function of weighted inputs, 
and then is itself weighted and used in a function that calculates the output. “Forward propagation” is 
the process of computing a final value from initial data using these weights. The hidden layers let neural 
networks combine inputs in complex nonlinear ways, allowing computations that would not be possible 
                                                           
5 Piermartini and Yotov, “Estimating Trade Policy Effects with Structural Gravity,” 2016. 
6 Eichengreen and Irwin, “Trade Blocs, Currency Blocs and the Reorientation of World Trade in the 1930s,” July 
1995. 
7 Head and Mayer, “Gravity Equations,” September 2013. 
8 Santos Silva and Tenreyro, “The Log of Gravity,” November 2006. 
9 Piermartini and Yotov, “Estimating Trade Policy Effects with Structural Gravity,” 2016. 
10 The discussion in this section follows Ng, Machine Learning, 2016. 
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with a single layer.11 A neural network with just one hidden layer can approximate any continuous 
function, no matter how complicated.12 

Neural networks “learn” by comparing the outputs they generate to the true values of the dependent 
variable, and then adjusting their weights to minimize the errors. They are not given a stipulated 
relationship between variables or a set of rules for producing the output; they are just provided with the 
inputs, the desired output, and a network architecture. In backpropagation networks, the network starts 
with random weights, produces an output, compares that output with the desired output, and passes an 
error signal back through the network. The weights are changed, a new output is produced with the new 
weights, and the new error is assessed. This cycle is repeated, adjusting the weights each time, so the 
model makes better and better predictions and the average error approaches zero. These adjustments 
are made by an iterative algorithm that converges at an optimum.13 

Figure 1 illustrates forward propagation in a neural network with a single hidden layer: 

Figure 1: Neural network with one hidden layer 

                                                           
11 A classic example with logical functions is the “exclusive or” problem. A one-layer network using simple logical 
operators (like “and,” “or,” and “not and”) cannot compute the function “either A or B, but not both.” However, 
this function can be computed with a hidden layer. The first layer can determine whether (1) “at least one element 
is true,” and (2) “not all elements are true.” The second layer can determine whether “both (1) and (2) are true.” 
12 Cybenko, “Approximations by Superpositions of Sigmoidal Functions,” 1989. 
13 A typical application of neural networks is handwriting recognition. Computers can scan handwritten numbers 
and encode their greyscale pixel values, but because of the wide variety of handwriting styles it is difficult to come 
up with a comprehensive set of steps and rules for recognizing numbers (e.g., “the number 8 consists of two circles 
stacked vertically”). A different approach is not to stipulate any rules at all, but instead to use the pixel values as 
inputs, restrict outputs to digits 0 through 9, and train the neural network. “Training” means letting the neural 
network assign weights to the inputs and produce one of the ten outputs, then telling the network whether it got 
the answer right or wrong. In response, the neural network will adjust its weights. By training a neural network 
algorithm over millions of examples, it can arrive at a set of weights that increase its accuracy to nearly 100%. 
Commercial neural networks are commonly used for handwriting recognition by banks and post offices. Friedman, 
Ribshirani, and Hastie, The Elements of Statistical Learning, 2001, 4. 



Neural Network Analysis of International Trade 

8 | www.usitc.gov 

Each node in the hidden layer receives weighted inputs from each node in the input layer, and the 
output receives weighted inputs from the hidden layer. The number of input nodes reflects the number 
of independent variables in the dataset. (Most networks also include “bias units,” 𝑥0 and 𝑎0, that are 
always equal to one, and are not connected to previous layers but do contribute to the network’s 
output. They are analogous to constant terms in linear functions; they give the network the flexibility to 
shift, and not just reshape, the function.) Figure 1 shows a neural network with one hidden layer 
comprising three nodes (four including the bias unit), but neural networks can include many hidden 
layers with many nodes. The output ℎΘ is the final value of the network. 

Here, each node in the hidden layer is a function of weighted inputs: 

 

(1) (1) (1) (1)
1 1,0 0 1,1 1 1,2 2 1,3 3

(1) (1) (1) (1)
2 2,0 0 2,1 1 2,2 2 2,3 3

(1) (1) (1) (1)
3 3,0 0 3,1 1 3,2 2 3,3 3

( )

( )

( )

a g x x x x

a g x x x x

a g x x x x

= Θ +Θ +Θ +Θ

= Θ +Θ +Θ +Θ

= Θ +Θ +Θ +Θ

 

…and the output is a function of weighted nodes: 

 (2) (2) (2) (2)
1,0 0 1,1 1 1,2 2 1,3 3( )h g a a a aΘ = Θ +Θ +Θ +Θ  

…where Θ(𝑗) is a matrix of weights (or parameters) mapping from layer 𝑗 to layer 𝑗 + 1, and 𝑔(𝑥) is the 
“activation function” that operates from one layer to another. Neural networks often use a sigmoid (or 
logistic) activation function (figure 2): 

 
1( )

1 xg x
e−=

+
 

Figure 2: Sigmoid function 
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Without a hidden layer, the neural network would simply be a logistic regression, mapping the weighted 
𝑥 inputs to the ℎΘ output. Here, though, the output is a logistic regression using the hidden layer nodes 
as inputs, and each hidden layer node is itself a logistic regression of the previous layer’s inputs, with 
each regression using a different set of Θ parameters. 

The network “learns its own features” in that it generates 𝑎1, 𝑎2, and 𝑎3. That is, it generates the 
parameters (Θ) that map the inputs (𝑥) to the hidden nodes (𝑎). It learns these features with a cost 
function, which measures the error of the neural network’s output as compared to the given values of 
𝑦. These errors are calculated “right to left” by using the error terms in the last layer to compute the 
error terms in the next-to-last layer.14 An optimization function, such as the Limited-memory Broyden-
Fletcher-Goldfarb-Shanno algorithm (L-BFGS), tries to minimize the cost function. Intuitively, this 
resembles the way OLS estimators measure, and try to minimize, the residual between the estimated 
value and the actual value. 

In this paper, we use standard gravity model variables (distance, GDP, border, language, colonial 
relationship, and trade agreement) as inputs. The hidden nodes are functions of these weighted inputs. 
And the output is a function of the weighted hidden nodes. The neural network adjusts these weights so 
that the calculated outputs approach the actual values of bilateral trade. 

Hypothesis testing versus prediction 
OLS and similar estimators let us test hypotheses about the significance of different variables. For 
example, a gravity model tests the null hypothesis that a change in distance has no correlation with a 
change in exports, holding other factors constant. Gravity models usually reject this hypothesis: distance 
typically has a negative coefficient with an extremely negative t-score, meaning that if the null 
hypothesis was true, and distance has no correlation with trade, the probability of obtaining a 
coefficient as large as the one observed purely by random sampling variation is less than 5 percent (and 
generally less than 1 percent). It is interesting that distance is significantly correlated with trade when 
holding countries constant over time (country fixed effects), and even when holding countries constant 
in each year (country-year fixed effects). It is also interesting that distance is significantly correlated with 
trade in services that incur no shipment costs.15 Here, a theory about international trade specifies a 
relationship between variables, and data is then collected and analyzed through the lens of that theory. 

Prediction asks a different kind of question: what is going to happen, not how will it happen. Prediction 
techniques estimate the conditional value of a dependent variable given a set of independent variables. 
They do not necessarily make assumptions about the structure of the relationship or the chain of 
causality, and neural networks in particular allow for complex nonlinear relationships between 
dependent and independent variables (for example, by running combinations of inputs through 
activation functions, and then combining those outputs and running them through another layer of 
activation functions). A neural network is optimized by altering parameters and assessing the effect of 
such alterations using the sole criteria of whether it makes the predicted value of the dependent 
variable more or less accurate. For that reason it is difficult to use neural networks to formally test 
                                                           
14 In the above example, the output error 𝛿(𝑜𝑢𝑡𝑝𝑢𝑡) = 𝑦 − ℎΘ could be used to calculate the errors in the hidden 
layers using the Θ matrix and the derivative of the activation function: 𝛿(2) = �Θ(2)�

𝑇
𝛿(𝑜𝑢𝑡𝑝𝑢𝑡).∗ 𝑔′�Θ(1)𝑥�. 

15 Anderson et al., “Dark Costs, Missing Data,” October 2015. This paper finds that the effects of distance on 
services trade vary widely across sectors and are highly nonlinear. 
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hypotheses about the significance of variables: the complex combination of the neural networks’ inputs 
means that the relationships between the variables are not easily interpretable. In this respect neural 
networks are something of a black box. In cases where the research question is to predict an outcome, 
however, we can compare the predictive abilities of neural networks against those of different analytical 
methods. The accuracy of predictions can be measured by the gap between the estimated value and the 
actual value, for example by calculating the root mean squared error. 

There is a risk of developing complex estimators that fit sample data very well but are not very good at 
making out-of-sample predictions. This generalization problem can be ameliorated by dividing datasets 
randomly into training sets and test sets. Parameters are established using training datasets, and then 
the estimators and neural networks are applied to the test datasets. This lets us measure how well the 
model predicts the test data outputs. 

Analysis 
Our international trade dataset combines World Bank data16 with trade and gravity model data that was 
assembled and kindly provided by Yotov (2016) using data from COMTRADE17 and CEPII.18 It includes 
aggregate bilateral manufacturing trade data by year and the standard gravity variables of GDP, 
distance, border, language, colonial ties, and trade agreements. For exporter 𝑖, importer 𝑗, and year 𝑡, 

 
, , , ,

, ,

[ ; ; ; ; ; ; ]ij t ij i t j t ij ij ij ij t

ij t ij t

x DIST GDP GDP CNTG LANG CLNY RTA
y exports

=

=
 

For example, the observation for Argentina’s exports to Australia in 1986 is rendered as 

 ,1986 [12,045 ;$215,000,000,000;$524,000,000,000;0;0;0;0]ARG AUSx km− =  

…and 

 ,1986 [$27,764,870]ARG AUSy − =  

Here, Argentina and Australia are 12,045km apart (using the Great Circle Distance formula); their GDPs 
in 1986 were $215b and $524b respectively; they don’t share a border, language, or colonial 
relationship, and had no trade agreement as of 1986; and the value of Argentina’s exports to Australia 
that year was $28m. Our dataset comprises 91,094 observations of trade between 68 partners from 
1986 to 2006.19 

We divide the dataset randomly into training observations (70 percent of the dataset) and test 
observations (30 percent of the dataset). We use the training dataset to develop the estimators, then 
feed the independent variables from the test dataset into those estimators to generate predicted trade 
values for the out-of-sample observations. 

                                                           
16http://databank.worldbank.org/wdi 
17http://comtrade.un.org 
18http://www.cepii.fr/CEPII/en/bdd_modele/presentation.asp?id=19 
19 Some years are missing for Hungary, Kuwait, Poland, Qatar, Romania, and Tanzania. 

http://databank.worldbank.org/wdi
http://comtrade.un.org/
http://www.cepii.fr/CEPII/en/bdd_modele/presentation.asp?id=19
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For the OLS estimator, we use the natural log of the continuous variables (distance, exporter’s GDP, and 
importer’s GDP). The dependent variable is the natural log of trade plus $1, to avoid the loss of 
observations. 

For the PPML estimator, we use the natural log of the continuous independent variables, and 
untransformed trade values as the dependent variable. We use the PPML command developed for Stata 
by Santos Silva and Tenreyro. 

For the neural network, we standardize the continuous variables (trade, distance, exporter’s GDP, and 
importer’s GDP), scaling them so that their means equal zero and their standard deviations equal one. 
(Neural networks are generally sensitive to scaling because the sigmoid function approaches a 
asymptote as values deviate from zero.) We use the multi-layer perceptron regressor in Python’s scikit-
learn package, with the sigmoid function as the activation function for the hidden layers and the L-BFGS 
solver for weight optimization. The regressor trains iteratively, computing the loss functions and 
updating its parameters. We use one hidden layer with 20 nodes.20 

We measure the accuracy of the out-of-sample predictions using the root mean square error (RMSE), 
which computes the square root of the average of squared errors between the predicted values and the 
actual values: 

 

2

1

ˆ( )
n

i i
i

y y
RMSE

n
=

−
=
∑

 

…where 𝑦�𝑖  is the predicted observation, 𝑦𝑖  is the actual observation, and 𝑛 is the number of 
observations. 

Results 
Table 1 shows the results. For the baseline dataset, the OLS estimator has an out-of-sample root mean 
squared error of $55.0 billion, the PPML estimator has an out-of-sample RMSE of $2.8 billion, and the 
neural network has an out-of-sample RMSE of $1.8 billion. For the dataset with country fixed effects, the 
OLS estimator has an out-of-sample RMSE of $50.8 billion, the PPML estimator has an out-of-sample 
RMSE of $1.6 billion, and the neural network has an out-of-sample RMSE of $744 million. For the 
dataset with country-year fixed effects, the OLS estimator has an out-of-sample RMSE of $50.3 billion, 
and the PPML estimator and neural network both have out-of-sample RMSEs of $2.3 billion. These 
analyses were repeated several times, allowing for variation in the random training-test division and in 
the development of the neural network, and these outcomes are representative. 

  

                                                           
20 Generally there is no straightforward way to determine the best number of hidden units. Adding units improves 
the performance of the neural network on the training data but can increase errors in test data as the network 
becomes less generalizable. Here we settled on one hidden layer with 20 nodes after experimentation, but our 
results are robust to other architectures. Comp.ai.neural-nets FAQ, “Section – How Many Hidden Units Should I 
Use?” 
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Table 1: Trade predictions using different estimators 

 OLS PPLM Neural network 
Adjustments and 
architecture 

Dependent variable: 
ln�1 + 𝑡𝑟𝑎𝑑𝑒𝑖𝑗� 
 
Natural log of distance 
and GDP 

Dependent variable: 
𝑡𝑟𝑎𝑑𝑒𝑖𝑗  
 
Natural log of distance 
and GDP 

Trade, distance, and GDP 
standardized (mean = 0, 
standard deviation = 1) 
 
1 hidden layer, 20 nodes 
 

    
Baseline model, 7 variables: 𝐷𝐼𝑆𝑇𝑖𝑗;  𝐺𝐷𝑃𝑖,𝑡;  𝐺𝐷𝑃𝑗,𝑡;  𝐶𝑁𝑇𝐺𝑖𝑗; 𝐿𝐴𝑁𝐺𝑖𝑗;  𝐶𝐿𝑁𝑌𝑖𝑗;  𝑅𝑇𝐴𝑖𝑗,𝑡 

 
Out-of-sample root mean 
squared error 
(million USD) 

$54,997 $2,846 $1,797 

    
Country fixed effects, 143 variables: 𝐷𝐼𝑆𝑇𝑖𝑗; 𝐺𝐷𝑃𝑖,𝑡;  𝐺𝐷𝑃𝑗,𝑡;  𝐶𝑁𝑇𝐺𝑖𝑗; 𝐿𝐴𝑁𝐺𝑖𝑗;  𝐶𝐿𝑁𝑌𝑖𝑗;  𝑅𝑇𝐴𝑖𝑗,𝑡; 𝜋𝑖;  𝜒𝑗  

 
Out-of-sample root mean 
squared error 
(million USD) 

$50,834 $1,560 $744 

    
Country-year fixed effects, 2,791 variables: 𝐷𝐼𝑆𝑇𝑖𝑗; 𝐶𝑁𝑇𝐺𝑖𝑗; 𝐿𝐴𝑁𝐺𝑖𝑗;  𝐶𝐿𝑁𝑌𝑖𝑗;  𝑅𝑇𝐴𝑖𝑗,𝑡;  𝜋𝑖,𝑡;  𝜒𝑗,𝑡 

 
Out-of-sample root mean 
squared error 
(million USD) 

$50,327 $2,302 $2,328 

 

It is noteworthy that for PPML and neural network estimators the out-of-sample error is higher when 
using country-year fixed effects compared to country fixed effects. This suggests that using country-year 
fixed effects makes the models more specific to training data, and less generalizable to out-of-sample 
data. The matrix of country-year fixed effects is very sparse: there are only 182,188 nonzero elements 
and 253,605,696 zero elements, giving it a density (i.e., ratio of nonzero to zero elements) of 0.07 
percent. In contrast, the matrix of country fixed effects is less sparse, with a density of 1.4 percent. 
When using country-year fixed effects, the estimators are generating parameters for each dummy 
variable based on a very small sample. 

The neural network with country fixed effects has the greatest predictive accuracy among the models. It 
achieves a 52 percent reduction in out-of-sample RMSE compared to the PPML estimator on the same 
dataset, and a 99 percent reduction compared to the OLS estimator. It is expected that neural networks 
would have equal or better predictive accuracy than the other estimators, since neural networks with 
the right specifications can approximate any continuous function, linear or non-linear (see above). The 
size of the gap in predictive accuracy suggests that neural networks are capturing non-linear interactions 
of independent variables that affect trade in ways not captured by OLS or PPML models. One point of 
note is that the RMSE of the neural network without country fixed effects is close to the RMSE of the 
PPML estimator with country fixed effects: neural networks using only seven variables can generate 
predictions almost as accurate as PPML estimators using 143 variables. Neural networks can efficiently 
use a small number of economic, geographic, and historical variables to generate fairly accurate 
predictions about international trade. 
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Predictions 
To illustrate one forecasting application, we trained the neural network on the full dataset with country 
fixed effects from 1986 to 2006 and used it to predict trade between the United States and its major 
trading partners between 2007 and 2016. We provided the neural network with the actual GDPs of the 
United States and its trading partners during that period, without otherwise readjusting the model. 
Figure 3 shows the results. The neural network’s estimations are reasonably close to actual trade values 
even ten years beyond the training period. 
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Figure 3: Neural network predictions versus actual trade 
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Conclusions 
It is useful to understand why trade happens the way it happens, a theoretical inquiry that can be 
facilitated by gravity models with traditional specifications. It is also useful to be able to predict trade 
between two countries with a high degree of accuracy, a practical inquiry that can be facilitated by 
neural networks. Policymakers, researchers, and firms can all benefit from accurate forecasts about 
international trade.21 

One direction for future research is to use neural networks to predict the effects of trade agreements or 
other trade policies. Another is to further explore how changes in inputs and model architecture affect 
predictive accuracy. A third is to apply this same exercise to trade in specific commodities, 
manufactures, and services, instead of total trade. A fourth is to examine more closely why trade 
between some countries in some circumstances (such as U.S. imports from Mexico and Canada in figure 
3) deviate more from predictions than others. A final direction is to continuously train neural networks 
using past trade data, generate predictions of future trade, and track the accuracy of such predictions 
going forward. This can contribute to further improvement in predictions, and analyses that yield 
inaccurate predictions may lead to discoveries that the models themselves have shortcomings, or that 
something in the world has changed. 

  

                                                           
21 In one survey, 17 percent of manufacturing and supply chain companies said they are currently using predictive 
analysis in their business operations, and 79 percent said they will within the next five years. MHI, 2017 MHI 
Annual Industry Report, 2017. 
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