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ABSTRACT 
The increasing popularity of specialized Internet-connected 
devices and appliances, dubbed the Internet-of-Things (IoT), 
promises both new conveniences and new privacy concerns. 
Unlike traditional web browsers, many IoT devices have al­
ways-on sensors that constantly monitor fine-grained details 
of users’ physical environments and influence the devices’ 
network communications. Passive network observers, such 
as Internet service providers, could potentially analyze IoT 
network traffic to infer sensitive details about users. Here, 
we examine four IoT smart home devices (a Sense sleep 
monitor, a Nest Cam Indoor security camera, a WeMo switch, 
and an Amazon Echo) and find that their network traffic rates 
can reveal potentially sensitive user interactions even when 
the traffic is encrypted. These results indicate that a techno­
logical solution is needed to protect IoT device owner pri­
vacy, and that IoT-specific concerns must be considered in 
the ongoing policy debate around ISP data collection and 
usage. 

1. INTRODUCTION 
The rapidly expanding availability and diversity of 

Internet of Things (IoT) devices for consumer smart 
homes promises to revolutionize how we interact with 
our living spaces. However, smart homes containing 
many Internet-connected devices raise substantial pri­
vacy concerns. 

The contents, patterns, and metadata of network traf­
fic can all reveal sensitive information about a user’s on-
line activity. In the past, online activity was primarily 
limited to web browsing. Unlike web browsers, smart 
home devices’ always-on sensors transmit information 
about a user’s offline activities on the Internet. This 
detailed data could be valuable in many contexts, in­
cluding advertising and business intelligence. 
We define a “smart home device” as any single-purpose 

Internet-connected device intended for home use (e.g. 
a thermostat, outlet, or blood-pressure monitor) or a 
hub-like device that connects and controls multiple single-
purpose devices (e.g. a Samsung SmartThings hub or 
Amazon Echo). Interacting with a smart home device 
– or even simply living within the range of a smart home 

device’s environmental sensors – changes how the device 
communicates with remote servers. It would be a pri­
vacy concern if a passive network observer, such as an 
Internet service provider (ISP), were able to infer user 
behavior from these changes in Internet traffic. 

Concerns over the abilities of network observers have 
led regulators to institute new rules on ISP data col­
lection and usage [4, 5]. Some opponents argue that 
stronger regulation is unnecessary, because the increas­
ing pervasiveness of encryption prevents ISPs from ob­
serving sensitive data in traffic content [9]. Privacy ad­
vocates, however, argue that metadata and traffic pat­
terns can reveal sensitive information even when traffic 
content is unavailable [3]. Further research detailing 
privacy vulnerabilities of encrypted traffic and meta-
data from IoT devices can help inform future regulation 
as IoT devices become more prevalent. 
In this paper, we develop a strategy that a passive 

network observer could use to infer consumer behavior 
from rates of IoT device traffic, even when the traffic is 
encrypted. This strategy relies on the limited-purpose 
nature of IoT devices to map traffic patterns to device 
states. We set up a smart home laboratory with a pas­
sive network tap to model how a real-life observer could 
collect traffic from an actual smart home. 
We examine four commercially available smart home 

devices: a Sense sleep monitor [8], a Nest Cam Indoor 
security camera [7], a Belkin WeMo switch [10], and 
an Amazon Echo [1]. Using traffic from the Sense, a 
network observer could infer a user’s sleeping patterns. 
Using traffic from the Nest Cam, an observer can infer 
when a user is actively monitoring the camera feed or 
when the camera detects motion in its field of vision. 
Using traffic from the WeMo switch, an observer can 
detect when a physical appliance in a smart home is 
turned on or off. Using traffic from the Echo, an ob­
server can detect when a user is interacting with an 
intelligent personal assistant. 
In light of these results, we are working to develop 

solutions that allow users to protect themselves from 
smart home privacy vulnerabilities. While additional 
research is necessary, the case studies we have performed 
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motivate components of a general solution. Traffic shap­
ing will be required to mask the true rate of devices’ 
network traffic. VPN tunneling or another method of 
obfuscating packet headers would make it more difficult 
to identify individual devices. The challenge will be 
in combining multiple defensive strategies into a user-
friendly and easily-deployable solution for smart homes. 

2. THREAT MODEL 
Our privacy analysis assumes a passive network threat 

model with capabilities similar to an ISP. Specifically, 
an adversary in this model can observe and record all 
wide-area network traffic, including traffic to and from 
home gateway routers. The adversary cannot view local-
area network traffic between devices behind a gateway 
router. The adversary also cannot manipulate network 
traffic. We assume that ISPs are typically uninter­
ested in performing targeted active attacks on individ­
ual users. 
In this paper, we do not use packet contents. In fact, 

we note that all 4 tested IoT devices use TLS/SSL when 
communicating with 1st and 3rd party cloud servers. 
Our analysis relies entirely on metadata. IP packet 
headers, TCP packet headers, and send/receive rates 
are all available to the adversary. This sort of metadata 
is regularly collected by major ISPs for traffic analysis. 
Finally, we assume that the adversary can obtain 

and analyze IoT devices. For instance, using their own 
smart home laboratory, an adversary can collect traffic 
data to help identify devices in live consumer traffic. 
While we are only focused on the passive network 

threat model, other threat models (e.g. compromised 
home devices or Wi-fi eavesdroppers) could provide in­
teresting opportunities for future study. 

3. LABORATORY SMART HOME 
We have set up a laboratory smart home environment 

to examine the network behavior of several on-market 
IoT devices. 
We included the following popular IoT devices in 

our laboratory smart home, covering a range of device 
types, manufacturers, and privacy concerns: 1) Sense 
sleep monitor 2) Nest Cam Indoor security camera 3) 
WeMo switch (smart power outlet) 4) Amazon Echo 
We configured a Raspberry Pi 3 Model B as a 802.11n 

wireless access point for use as the laboratory smart 
home’s gateway router. The Raspberry Pi 3 has a 
built-in WiFi antenna, so no additional hardware was 
needed. The Raspberry Pi ran the Raspbian Jessie OS, 
a version of Debian Linux optimized for the Raspberry 
Pi platform. Hostapd (host access point daemon) en­
abled mac80211-compliant access point and authentica­
tion server services. Dnsmasq enabled DNS and DHCP 
services. An iptables NAT connected the Raspberry 
Pi’s wireless interface to the wired interface connected 

by Ethernet to the WAN. 
This setup allowed us to record all packets to and 

from IoT devices connected to the Raspberry Pi. We 
recorded traffic from all devices operating concurrently 
and performed several controlled experiments with indi­
vidual devices. The resulting packet capture files were 
the raw data used for analysis in Sections 4 & 5. 

4. IoT TRAFFIC ANALYSIS STRATEGY 
In this section we present a three step strategy that 

a passive network observer could use to identify devices 
in a smart home and infer user behavior. 

4.1 Separate traffic into packet streams 
An adversary must first divide recorded network traf­

fic into meaningful streams that can be used for fur­
ther analysis. In most standard consumer use cases, the 
home gateway router acts as a network address trans­
lator (NAT), rewriting local IP addresses of individual 
devices to a single public IP address given to the router 
by the ISP. This prevents an adversary from using IP 
addresses to divide traffic into per-device packet sets. 
Identifying and counting distinct clients behind a NAT 

is a known problem [2, 6]. However, it is always possi­
ble to separate network traffic into streams by the ex­
ternal IP address of the server communicating with the 
devices (“service IP”) and, in cases where multiple de­
vices use the same service IP, the TCP port rewritten 
by the NAT. While the devices we studied often com­
municate with multiple service IPs, we discovered that 
the adversary typically only needs to identify a single 
stream that encodes the device state. 

4.2 Label streams by type of device 
Once individual streams have been separated, the ad­

versary next identifies what IoT device most likely is 
responsible for each stream. Knowing what devices a 
consumer owns can be a serious privacy violation by it­
self. For example, a consumer might not want an ISP 
knowing they own an IoT blood sugar monitor or pace­
maker. 
In our case studies, the DNS queries associated with 

each stream could be mapped to a particular device 
(Figure 1). For example, the Nest Cam queried do­
mains from dropcam.com (the predecessor to the Nest 
Cam), while the Sense sleep monitor queried domains 
from hello.is (the company that makes the Sense). An 
adversary could use a laboratory setup like our own to 
learn these mappings or perform reverse DNS lookups to 
pair service IPs with device-identifying domain names. 
However, multiple devices from the same manufac­

turer might communicate with the same service IPs, 
making device identification using DNS more difficult. 
For example, the Belkin WeMo switch queried domains 
that could have been used by any type of Belkin de­
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Device DNS Queries 
Sense Sleep Monitor hello-audio.s3.amazonaws.com 

hello-firmware.s3.amazonaws.com 
messeji.hello.is 
ntp.hello.is 
sense-in.hello.is 
time.hello.is 

Nest Security Camera nexus.dropcam.com 
oculus519-vir.dropcam.com 
pool.ntp.org 

WeMo Switch prod1-fs-xbcs-net-1101221371. 
us-east-1.elb.amazonaws.com 

prod1-api-xbcs-net-889336557. 
us-east-1.elb.amazonaws.com 

Amazon Echo ash2-accesspoint-a92.ap.spotify.com 
audio-ec.spotify.com 
device-metrics-us.amazon.com 
ntp.amazon.com 
pindorama.amazon.com 
softwareupdates.amazon.com 

Figure 1: DNS queries made by tested IoT de­
vices during a representative packet capture. 
Many queries can be easily mapped to a specific 
device or manufacturer. 

vice. Measuring the extent of this problem and finding 
solutions will be the subject of future study. 

4.3 Examine traffic rates 
Once an adversary identifies packet streams for a par­

ticular device, one or more of the streams are likely to 
encode device state. Simply plotting send/receive rates 
of the streams (bytes per second) revealed potentially 
private user interactions for each device we tested. 
An adversary with a laboratory smart home of their 

own can easily correlate variations in traffic rates with 
known user interactions. They can then map similar 
variations from live traffic to user behavior. 
Even without a laboratory smart home, an adversary 

can still infer user interactions from traffic variations 
if they have identified the device and know its limited 
purpose. For example, the Sense sleep monitor was both 
easily identified from DNS queries, and has a limited 
purpose. A traffic spike from the monitor in the late 
evening, for instance, likely corresponds to when the 
user went to sleep. 

5. DEVICE CASE STUDIES 
For all tested IoT devices, send/receive rates were suf­

ficient for identifying user behaviors and interactions. 
Though all of the devices encrypted their traffic, en­
cryption alone did not prevent privacy vulnerabilities. 

5.1 Sense sleep monitor 
Traffic to and from the Sense sleep monitor was easy 

to identify from DNS queries because all of the domains 
contain “sense” or “hello.” Figure 2A shows send/receive 

rates from the Sense over an approximately 12 hour pe­
riod from 10:40pm to 10:40am. Notably, the send/receive 
rate peaked at times corresponding with user activity. 
The user shut off the light in the laboratory smart home 
and went to bed at 12:30am, temporarily got out of bed 
at 6:30am, and got out of bed in the morning at 9:15am. 
The traffic peaks correlated with these activities were 
not coincidental to this recording. Additional overnight 
traffic recordings also contained easily noticeable peaks 
when the user got into and out of bed. 
We believe that the ability of an network observer 

to tell when a user is sleeping, or at least in bed, from 
network send/receive rates constitutes a significant pri­
vacy vulnerability. ISPs can already guess when users 
are sleeping when network traffic from smartphones or 
PC web browsers decreases at night; however, this re­
lies on many assumptions, e.g. that users only stop us­
ing their other devices immediately prior to sleeping, 
that everyone in the home sleeps at the same time and 
does not share other devices, and that users do not 
leave their other devices running to perform network-
intensive tasks or updates while they sleep. The single-
purpose IoT nature of the Sense sleep monitor makes 
none of these assumptions necessary to infer users’ sleep­
ing patterns from Sense traffic. 

5.2 Nest Cam Indoor security camera 
Our observations of the Nest camera indicate that 

it has at least two primary modes of operation: a live 
streaming mode and a motion detection mode. In the 
live streaming mode, the camera’s video feed is either 
being actively viewed by the user through the Nest 
web/mobile application or the feed is being uploaded 
in real time to be stored on the cloud (for users with 
paid accounts). In the motion detection mode, the video 
stream is not being uploaded, but the camera is mon­
itoring the stream locally for movement. If movement 
is observed, the camera records a snapshot of the video 
and alerts the user. 
Nearly all TCP traffic to and from the Nest camera is 

with dropcam.com domains, making it easy to identify 
from DNS queries. Figure 2B shows send/receive rates 
from the Nest camera alternating between live stream­
ing and motion detection mode every 2 minutes. The 
traffic rate is orders of magnitude higher in live stream­
ing mode (and a short time afterward until the camera is 
notified that the user has stopped viewing the stream), 
allowing an adversary to easily determine whether or 
not the camera’s live feed is being actively viewed or 
recorded. 
Figure 2C shows that an adversary could also easily 

determine when a Nest camera detects movement when 
it is in motion detection mode. The camera was pointed 
at a white screen with a black square that changed loca­
tion every two minutes. These simulated motion events 
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triggered clearly observable spikes in network traffic. 
This predictable variability in network send/receive rates 
would allow an adversary to observe the presence and 
frequency of motion inside a smart home. 
These issues are significant privacy vulnerabilities and 

physical security risks even though the content of the 
video stream remains protected by encryption. It should 
not be possible for a third party to be able to determine 
when a security camera detects movement or is being 
actively monitored. 

5.3 WeMo switch 
The WeMo switch is an smart outlet controlled by 

a physical button on the device or through the WeMo 
smartphone app. WeMo switch traffic was more difficult 
to distinguish using DNS queries because all resolved 
addresses were from —xbcs—.amazonaws.com domains 
generic to Belkin. Nevertheless, the Belkin switch traffic 
was unique amongst the devices we tested for its regu­
larity. The switch only has two states, on and off, and 
the network send/receive rates reflect this binarity. Fig­
ure 2D shows WeMo network behavior when the switch 
is turned alternatively on and off every 2 minutes us­
ing the WeMo smartphone app. The spike in traffic 
every time the switch changes state clearly reveals user 
interactions with the device to an network observer. 
Additional recordings performed while the switch was 

turned on and off with the physical button on the de­
vice were effectively equivalent to Figure 2D. This was 
initially surprising because there is no need for the de­
vice to contact the cloud in order to turn on or off in 
response to a physical button press. However, we real­
ized that the state change is still communicated so the 
smartphone app can display the correct “on” or “off” 
icon for the device. 
While the WeMo switch send receive rates reveal user 

interactions with the device, they do not by themselves 
indicate whether the switch is on or off. The seriousness 
of this privacy vulnerability is debatable; however, it 
is a case where a network observer can learn that a 
human has turned power on or off to physical appliance. 
If combined with techniques of learning what type of 
appliance is plugged into the switch, this could have 
serious privacy implications. 

5.4 Amazon Echo 
The Amazon Echo is the most feature-diverse of the 

IoT devices we tested, and it had the correspondingly 
most complex network traffic profile. DNS queries from 
the Echo requested domains from amazon.com and spo­
tify.com (for third-party service integration). This makes 
it difficult to assign all IP streams from the Echo to the 
correct device, but this turns out to be unnecessary for 
observing user interactions with the device. We tested 
the Echo by asking a a series of 3 questions (”what is 

the weather?” “what time is it?” and “what is the dis­
tance to Paris?”) repeated 3 times, one question every 
2 minutes. Figure 2E shows the send/receive rates of 
SSL traffic between the Echo and a single amazon.com 
IP address during the experiment. Although the Echo 
sent and received other TCP traffic to different domains 
during this time, only the shown SSL traffic was no­
ticeably correlated with the user interactions. As long 
as a network-level attacker can identify that particular 
IP stream as originating from an Echo, the SSL traffic 
spikes clearly indicate when user interactions occurred. 
To some, this may not seem to be a privacy vulner­

ability because the contents of the questions are en­
crypted. However, simply learning the times of day 
when customers interact with a particular device could 
have unwanted advertising implications. 

6. DISCUSSION 
We were surprised by how easy it would be for a pas­

sive network observer to infer user behavior from en­
crypted smart home traffic. ISPs already collect enough 
traffic rate information to perform the analysis we de­
scribed. Because IoT devices encode the physical world 
in network traffic, this presents a novel privacy threat to 
consumers. Regulatory agencies should keep this new 
context in mind when making rules governing ISP data 
collection and usage. 
Future research should make the distinction between 

IoT devices that sense and encode the physical world, 
versus devices that are essentially wrappers around tra­
ditional web browsers. For instance, when a user asks 
questions to the Amazon Echo, the Echo is just acting 
as an audio interface to a web search engine. While in­
ferring this use of the Echo from traffic is interesting in 
its own right, more privacy sensitive behaviors could be 
learned from more specialized classes of devices. This is 
especially true if those devices are related to healthcare 
or physical security. 
The user interactions we analyzed in our case stud­

ies are directly related to the limited purpose of the 
device. For example, we concluded that traffic from a 
sleep monitor correlates to when a user sleeps. Fur­
ther research could allow an adversary to infer higher 
order behaviors, such as whether the user has a sleep­
ing disorder. This would require larger curated datasets 
with controlled experiments representing a wider range 
of user behaviors. Machine learning and advanced sta­
tistical techniques could also play an important part in 
inferring higher order behaviors. More complex behav­
iors could also be inferred through the combination of 
traffic from multiple devices. 
We would like to reiterate that all of the analyses we 

performed required only send/receive rates of encrypted 
traffic to successfully identify user behavior. No deep 
packet inspection is necessary. A systematic solution for 
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Figure 2: Network traffic send/receive rates 
of selected IP streams from 4 commercially-
available IoT devices during controlled experi­
ments. Clearly visible increases in send/receive 
rates directly correspond with user interactions. 

preserving consumer privacy would therefore require ob­
fuscating or shaping all smart home traffic to mask vari­
ations that encode real world behavior. Incorporating 
VPN tunneling or another method of masking packet 
headers would also make device identification more dif­
ficult. Ideally a solution would not negatively impact 
IoT device performance, should respect data limits, and 
would not require modification of proprietary device 
software. Designing and implementing such a solution 
is a primary goal of our ongoing research. 

7. CONCLUSION 
IoT devices for smart homes are becoming increas­

ingly pervasive; however, the privacy concerns of owning 
many Internet connected devices with always-on envi­
ronmental sensors remain insufficiently addressed. 
We analyzed four commercially-available smart home 

devices and found that network traffic rates of all de­
vices revealed user activities, making it apparent that 
encryption alone does not provide adequate privacy pro­
tection for smart homes. Given the generality of our 
traffic analysis strategy and the limited-purpose nature 
of most IoT devices, we would not be surprised if many 
other currently available smart home devices suffer sim­
ilar privacy vulnerabilities. 
We hope that consumers will become better aware of 

these privacy vulnerabilities and that tools will be de­
veloped to protect smart homes from passive network 
observers. We are working toward a user-friendly so­
lution for smart home owners that will prevent traffic 
rates and other metadata from revealing offline user ac­
tivities. While we hope that a technological solution 
will be practical and sufficient, improved regulation of 
ISPs and other passive network observers may also be 
necessary to offset the unique privacy challenges posed 
by IoT devices. 
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