Contents

Contents
Figures and Tablesix
Executive Summary xix
Acknowledgments
1 Introduction
1.1 History
1.2 Concerns Raised
1.3 Organizing the Research Project
1.3.1 Evaluate the Performance of Current Smoke Alarm Technology 4
1.3.2 Test Conditions Representative of Current Fatal Residential Fires 5
1.3.3 Evaluate the Efficacy of Current Requirements for Number and Location of
Smoke Alarms
1.3.4 Develop Standard Nuisance Alarm Sources to Be Included in the Test Program
1.3.5 Examine Other Fire Detection Technologies in Combination with Smoke Alarms
1.3.6 Obtain Data on the Potential for Improvements in Performance by New Technologies
1.3.7 Include Fuel Items That Incorporate Materials and Constructions Representative of Current Residential Furnishings
1.3.8 Fully Characterize Test Detectors and Alarms in a Consistent Manner to Facilitate Comparisons
1.3.9 Utilize Fire Models to Extend the Applicability of the Test Arrangements and Maximize the Test Instrumentation
1.3.10 Make All of the Data Collected as Widely Accessible as Possible 8
1.3.11 Provide Opportunities to Enhance Public Fire Safety Education
1.4 Project Oversight
1.4 Project Oversight
2 Residential Fire Alarms, Sensor Response and Calibration in the FE/DE
2.1 Residential Alarms Included in the Study
2.2 The fire emulator/detector evaluator
2.3 Smoke Aerosols
2.4 Calibration of Smoke and CO alarms

	2.5	Alarm Identification	. 24
	2.6	Evaluation of Unmodified Alarm Response	. 28
		Effect of Sensor Board Location on Response	
	2.8	Thresholds for Modified Alarms	. 62
3	Fire Sou	rce Test Scenarios and Geometries	. 65
	3.1	Scenario Development	. 65
	3.2	Material Selection	. 67
		3.2.1 Upholstered Furniture	. 67
		3.2.2 Mattress	. 69
		3.2.3 Cooking Materials	. 69
	3.3	Ignition Methodology	. 70
		3.3.1 Flaming Ignition	. 70
		3.3.2 Smoldering Ignition	. 71
		3.3.3 Cooking Ignition	. 72
	3.4	Test Geometry	. 72
		3.4.1 Manufactured Home	. 72
		3.4.2 Two-story Home	. 73
4	Fire Sou	rce Testing Instrumentation	. 77
	4.1	Temperature	. 77
	4.2	Sample Mass	. 82
	4.3	Primary Gases – CO, CO_2 , and O_2	. 83
	4.4	FTIR Gas Analysis	. 84
		Optical Density	
		Smoke Properties	
	4.7	Smoke and CO Alarm Response	. 89
		Sprinkler Response	
	4.9	Mechanical Heat Alarm Response	. 91
5		rce Test Results and Calculations	
	5.1	Tests Conducted	
		Test Data	
		Calculation of Alarm Times	
	5.4 (Calculation of Time to Untenable Conditions	
		5.4.1 Tenability Limits	
		5.4.2 Tenability Times	
		Assessment of Overall Alarm Performance	
	5.6	Aerosol Concentration and Size Measurements	
		5.6.1 Mass and Number Concentration	
		5.6.2 Particle Size Analysis	
	571	Measurement Uncertainty	147

6	Residen	tial Smoke Alarm Nuisance Source Testing	149
	6.1	Nuisance Scenario Tests	150
	6.2	Instrumentation	150
		6.2.1 Aerosol Instruments	151
		6.2.2 Temperature and Humidity	153
		6.2.3 Flow Velocity	153
		6.2.4 Analog Output Photoelectric, Ionization and Sensors	154
	6.3	Results	155
		6.3.1 Toasting Scenarios	155
		6.3.2 Frying Bacon	
		6.3.3 Frying Butter and Margarine	170
		6.3.4 Frying Hamburgers	
		6.3.5 Deep-frying Tortillas and French-fried Potatoes	
		6.3.6 Broiled and Baked/Broiled Pizza	
		6.3.7 Broiling Hamburgers	
		6.3.8 Boiling Spaghetti Pasta	
		6.3.9 Candle Burning	
		6.3.10 Cigarette Smoking	
	6.4	Controlled Incipient Fire Sources	
		6.4.1 Cotton Smolder	
		6.4.2 Wood Smolder	
		6.4.3 Polyurethane Foam Smolder	
	6.5	FE/DE Emulation of Nuisance Sources	
		6.5.1 Cotton Wick Calibration	
		6.5.2 Cotton Smolder Smoke Fire Scenario	
		6.5.3 Wood Smolder Smoke Fire Scenario	
		6.5.4 Candle Flame Nuisance Scenario	
		6.5.5 Heated Margarine or Butter Nuisance Scenario	
		6.5.6 Toasting Bread Nuisance Scenario	221
_	D: :		001
7		on	
		Smoke Alarm Activation Time	
		Tenability Times	
	1.3	Time Needed for Escape	
		7.3.1 Movement Speed	
		7.3.2 Premovement Activities	
	7.4	7.3.3 Escape Times	
		Smoke Alarm Performance	
	1.5	Other Alarm Technologies	
		7.5.1 Carbon Monoxide Alarms	
		752 Heat Alarms	246

7.5.3 Tell-tale Sprinklers	246
7.6 Comparison with Earlier Tests	247
7.7 Nuisance Alarms	250
8 Summary	253
9 Conclusions	259
10 References	261
Appendix A: Alarm Activation and Time to Untenable Conditions During Tests of Residential Smoke Alarms Included in the Study	A-1
Appendix B: FTIR Gas Measurement in Home Smoke Alarm Tests	B-1

Figures and Tables

Figures

Figure 1. Sample sensor test board used during tests of residential smoke alarms	11
Figure 2. Schematic of the FE/DE (all units in cm)	13
Figure 3. Propene smoke generator	14
Figure 4. Propene smoke calibration run	15
Figure 5. Smolder source, staged wick ignition device	15
Figure 6. Smolder smoke calibration run	16
Figure 7. Smolder smoke CO calibration run	
Figure 8. UL grey smoke (smolder smoke) sensitivity limits and FE/DE data	17
Figure 9. UL black smoke sensitivity limits and corresponding FE/DE data	17
Figure 10. Alarm identification coding	24
Figure 11. Calibration runs for Ion-1 alarm	25
Figure 12. Calibration runs for Ion-3 alarm	
Figure 13. Calibration runs for Ion-4 alarm	26
Figure 14. Calibration runs for Photo-1 alarm	26
Figure 15. Calibration runs for Photo-2 alarm	27
Figure 16. Calibration runs for ASP alarm	27
Figure 17. Calibration runs for CO alarms	28
Figure 18. Photo-1, eight wicks – 12 s delay, Disp 1 and Disp 7 alarms	30
Figure 19. Photo-1, 16 wicks – 12 s delay, Disp 1 and Disp 7 alarms	30
Figure 20. Photo-1, eight wicks – 12 s delay, Disp 1 and Disp 7 alarms	31
Figure 21. Photo-1, eight wicks – 30 s delay, Disp 4 and Disp 10 alarms	
Figure 22. Photo-1, eight wicks – 12 s delay, Disp 37 and Disp 40 alarms	32
Figure 23. Photo-1, eight wicks, 12 s delay, Disp 46 and Disp 55 alarms	
Figure 24. Photo-1, eight wicks – 12 s delay, Disp 52 and Disp 58 alarms	33
Figure 25. Photo-1, eight wicks – 12 s delay, Disp 61 and Disp 64 alarms	
Figure 26. Photo-1, eight wicks – 12 s delay, Disp 10 and Disp 55 alarms	
Figure 27. Photo-1, 16 wicks – 12 s delay, Disp 10 and Disp 55 alarms	
Figure 28. Ion-1, three wicks - 30 s delay, Disp 11 and Disp 38 alarms	
Figure 29. Ion-1, four wicks - 30 s delay, Disp 11 and Disp 38 alarms	
Figure 30. Ion-1, four wicks - 30 s delay, Disp 2 and Disp 5 alarms	
Figure 31. Ion-1, six wicks 12 s delay, Disp 2 and Disp 5 alarms	
Figure 32. Ion-1, four wicks 30 s delay, Disp 8 and Disp 44 alarms	
Figure 33. Ion-1, six wicks 12 s delay, Disp 8 and Disp 44 alarms	
Figure 34. Ion-1, six wicks 12 s delay, Disp 41 and Disp 51 alarms	
Figure 35. Ion-1, three wicks 12 s delay, Disp 53 and Disp 44 alarms	
Figure 36. Ion-1, six wicks 12 s delay, Disp 60 and Disp 63 alarms	40

Figure 37. Ion-1, six wicks 12 s delay, Disp 57 and Disp 60 alarms	. 40
Figure 38. Ion-3, six wicks - 12 s delay, Disp 39 and Disp 48 alarms	. 41
Figure 39. Ion-3, four wicks - 30 s delay, Disp 39 and Disp 48 alarms	. 41
Figure 40. Ion-3, three wicks 30 s delay, Disp 39 and Disp 48 alarms	. 42
Figure 41. Ion-3, three wicks 30 s delay, Disp 39 and Disp 48 alarms	. 42
Figure 42. Ion-3, three wicks 30 s delay, Disp 3 and Disp 6 alarms	. 43
Figure 43. Ion-3, three wicks 30 s delay, Disp 9 and Disp 12 alarms	. 43
Figure 44. Ion-3, three wicks 30 s delay, Disp 30 and Disp 45 alarms	. 44
Figure 45. Ion-3, three wicks 30 s delay, Disp 54 and Disp 56 alarms	. 44
Figure 46. Ion-3, three wicks 30 s delay, Disp 59 and Disp 62 alarms	. 45
Figure 47. Ion-3, three wicks 30 s delay, Disp 53 and Disp 50 alarms	. 45
Figure 48. UL grey smoke (smolder smoke) sensitivity limits and FE/DE data	. 46
Figure 49. Test board layout	. 47
Figure 50. Axial velocity at a fan speed of 5 Hz	. 48
Figure 51. Axial velocity at a fan speed of 7 Hz	. 48
Figure 52. Axial velocity at a fan speed of 12 Hz	. 49
Figure 53. Ion-1 response, fan speed 5 Hz (see table 4)	. 50
Figure 54. Ion-1 response, fan speed 7 Hz	. 50
Figure 55. Ion-1 response, fan speed 12 Hz	. 51
Figure 56. Ion-1 response, fan speed 5 Hz - repeat test	. 51
Figure 57. Ion-1 response, fan speed 7 Hz - repeat test	. 52
Figure 58. Ion-1 response, fan speed 12 Hz - repeat test	. 52
Figure 59. Ion-3 response, fan speed 5 Hz	. 53
Figure 60. Ion-3 response, fan speed 7 Hz	. 53
Figure 61. Ion-3 response, fan speed 12 Hz	. 54
Figure 62. Ion-3 response, fan speed 5 Hz - repeat test	. 54
Figure 63. Ion-3 response, fan speed 7 Hz - repeat test	. 55
Figure 64. Ion-3 response, fan speed 12 Hz - repeat test	. 55
Figure 65. Ion-4 response, fan speed 5 Hz	
Figure 66. Ion-4 response, fan speed 7 Hz	. 56
Figure 67. Ion-4 response, fan speed 12 Hz	
Figure 68. Ion-4 response, fan speed 5 Hz - repeat test	
Figure 69. Ion-4 response, fan speed 7 Hz - repeat test	. 58
Figure 70. Ion-4 response, fan speed 12 Hz - repeat test	
Figure 71. Photo-3 response, fan speed 5 Hz	
Figure 72. Photo-3 response, fan speed 7 Hz	
Figure 73. Photo-3 response, fan speed 12 Hz	
Figure 74. Photo-3 response, fan speed 5 Hz - repeat test	
Figure 75. Photo-3 response, fan speed 7 Hz - repeat test	
Figure 76. Photo-3 response, fan speed 7 Hz - repeat test	
Figure 77. Measurements of upholstered chair used for smoldering experiments	
Figure 78. Upholstered chair used for smoldering experiments	. 67

Figure 79. Measurements of upholstered chair used for flaming experiments	. 68
Figure 80. Upholstered chair used for flaming experiments	. 68
Figure 81. Mattress used for smoldering and flaming experiments	. 69
Figure 82. Corn oil used for kitchen cooking materials fire experiments	. 69
Figure 83. "Electric match" used for flaming ignitions	. 70
Figure 84. Location of "electric match" ignition source for flaming upholstered chair and	
mattress experiments	. 71
Figure 85. Rod used for smoldering ignitions	. 72
Figure 86. Heating ignition source with cooking oil	. 72
Figure 87. Layout of manufactured home used for test of smoke alarm performance	. 74
Figure 88. Layout of first floor of two-story home used for tests of smoke alarm performance	75
Figure 89. Layout of second floor of two-story home used for tests of smoke alarm	
performance	. 76
Figure 90. Sample instrumentation showing relative locations of temperature, primary gas	
analysis, smoke obscuration, and smoke alarm response measurements	. 77
Figure 91. Instrumentation in manufactured home during tests of smoke alarm performance .	. 79
Figure 92. Instrumentation in first floor of two-story home during tests of smoke alarm	
performance	. 80
Figure 93. Instrumentation in second floor of two-story home during tests of smoke alarm	
performance	
Figure 94. Example of mass loss measurement showing upholstered chair on load cell prior to	
one of the flaming ignition tests and load cell apparatus mounted beneath manufacture	
home	
Figure 95. Optical density instrument designs	. 84
Figure 96. Smoke properties measurement showing collection lines (foreground) and smoke	
velocity measurement (background)	
Figure 97. Calibration of residential ionization chamber	
Figure 98. Measurement station showing several alarms arranged for testing	
Figure 99. Measurement station showing unmodified smoke alarms arranged for testing	. 91
Figure 100. Mass loss of burning mattress during flaming ignition test of a mattress,	0.6
test SDC05	
Figure 101. Gas temperatures from ceiling to floor in remote bedroom during a flaming igniti	
test of a mattress, test SDC05	
Figure 102. Gas temperatures from ceiling to floor in main bedroom (ignition location) during	_
flaming ignition test of a mattress, test SDC05	. 98
Figure 103. Gas temperatures from ceiling to floor in hallway outside remote bedroom in a	00
flaming ignition test of a mattress, test SDC05	. 99
Figure 104. Gas temperatures from ceiling to floor in hallway outside main bedroom in a	100
flaming ignition test of a mattress, test SDC05	
Figure 105. Gas temperatures from ceiling to floor in living area during a flaming ignition test	
a mattress, test SDC05	101

Figure	106. Gas temperatures from ceiling to floor in front door hallway during a flaming	
	ignition test of a mattress, test SDC05	102
Figure	107. Gas temperature in closed bedroom during a flaming ignition test of a mattress,	
	test SDC05	103
Figure	108. Smoke obscuration at 20 mm and 900 mm below ceiling in remote bedroom duri	ng
	flaming ignition test of a mattress, test SDC05	105
Figure	109. Smoke obscuration at 20 mm and 900 mm below ceiling in main bedroom (ignition	on
	location) during flaming ignition test of a mattress, test SDC05	106
Figure	110. Smoke obscuration at 20 mm and 900 mm below ceiling in hallway outside remo	ote
	bedroom during flaming ignition test of a mattress, test SDC05	107
Figure	111. Smoke obscuration at 20 mm and 900 mm below ceiling in hallway outside main	
	bedroom during flaming ignition test of a mattress, test SDC05	108
Figure	112. Smoke obscuration at 20 mm and 900 mm below ceiling in living area during	
	flaming ignition test of a mattress, test SDC05	109
Figure	113. Smoke obscuration at 20 mm and 900 mm below ceiling in front door hallway	
	during flaming ignition test of a mattress, test SDC05	110
Figure	114. Smoke obscuration at 1520 mm below ceiling in closed bedroom during flaming	
	ignition test of a mattress, test SDC05	111
Figure	115. Carbon monoxide concentration 900 mm below ceiling at four locations during a	l
C	flaming ignition test of a mattress, test SDC05	
Figure	116. Carbon dioxide concentration 900 mm below ceiling at four locations during a	
	flaming ignition test of a mattress, test SDC05	113
Figure	117. Oxygen concentration 900 mm below ceiling at four locations during a flaming	
	ignition test of a mattress, test SDC05	114
Figure	118. Measured output for several analog-modified smoke alarms in hallway outside m	nain
C	bedroom during a flaming ignition test of a mattress, test SDC05	
Figure	119. Measured output for several analog-modified carbon monoxide alarms in hallway	7
	outside main bedroom during a flaming ignition test of a mattress, test SDC05	
Figure	120. Measured output for a heat alarm in hallway outside main bedroom during a flam	ing
	ignition test of a mattress, test SDC05	_
Figure	121. Measured output for a tell-tale residential sprinkler in hallway outside main	
	bedroom during a flaming ignition test of a mattress, test SDC05	118
Figure	122. Smoke properties for smoldering chair scenario SDC01	
	123. Smoke properties for flaming chair scenario SDC02	
_	124. Smoke properties for smoldering mattress scenario SDC06	
_	125. Smoke properties for flaming mattress scenario SDC07	
_	126. Smoke properties for smoldering mattress scenario SDC08	
_	127. Smoke properties for flaming chair scenario SDC10	
_	128. Smoke properties for smoldering chair scenario SDC11	
_	129. Smoke properties for cooking oil fire scenario SDC12	
_	130. Smoke properties for cooking oil fire scenario SDC13	
_	131. Smoke properties for smoldering mattress with burn room door closed SDC14	

Figure	132. Smoke properties for smoldering chair scenario SDC23	136
Figure	133. Smoke properties for cooking oil fire scenario SDC24	138
Figure	134. Smoke properties for flaming chair scenario SDC25	139
Figure	135. Smoke properties for flaming chair scenario SDC26	139
Figure	136. Smoke properties for smoldering chair scenario with air conditioning SDC27	140
Figure	137. Cascade impactor results for flaming chair scenario SDC02	143
Figure	138. Cascade impactor results for flaming chair scenario SDC10	143
Figure	139. Cascade impactor results for cooking oil fire scenarios SDC12 and SDC13	144
Figure	140. Cascade impactor results for smoldering chair fire scenarios SDC23 and SDC27	145
Figure	141. Schematic of the manufactured home for nuisance testing	151
Figure	142. Ion chamber schematic	152
Figure	143. Response of the ion chamber and MIC to cotton smolder smoke	152
Figure	144. Thermocouple and sampling line placement	153
Figure	145. Photo, Ion, CO and thermistor unit	154
Figure	146. Velocity and speed components for toasting bread nuisance source with and with	out
	forced ventilation	157
Figure	147. Toasting bread scenario - toaster on at t=0, off at 240 s. No forced flow	158
Figure	148. Toasting bread scenario – toaster on at t=0, off at 255 s. No forced flow, remote	
	bedroom window open	160
Figure	149. Toasting bread scenario - toaster on at t=0, off at 255 s. Room fan turned on	161
Figure	150. Toasting bread scenario - toaster on at t=0, off at 270 s. Room fan turned on	162
Figure	151. Toasting frozen bagel scenario – toaster on at t=0, off at 300 s.	
	Room fan turned off	163
Figure	152. Toasting frozen bagel scenario – toaster on at t=0, off at 300 s.	
	Room fan turned on	164
Figure	153. Frying bacon scenario - cast-iron pan, LPG hot plate, no forced flow, burner lit at	
	t=0, bacon in pan at 60 s	166
Figure	154. Frying bacon scenario - cast-iron pan, LPG hot plate, no forced flow, burner lit at	
	t=0, bacon in pan at 60 s	
Figure	155. Frying bacon scenario - aluminum pan, electric range, no forced flow, bacon in pa	an
	at 120 s	
Figure	156. Frying bacon scenario - aluminum pan, electric range, floor fan on, bacon in pan a	
	120 s	
Figure	157. Frying butter scenario - aluminum pan, electric range, floor fan off, butter in pan a	
	t=0	
Figure	158. Frying butter scenario - aluminum pan, electric range, floor fan off, butter in par	
	t=0	
Figure	159. Frying butter scenario - cast iron pan, electric range, floor fan off, butter in pan at	
	t=0	
Figure	160. Frying butter scenario - cast iron pan, electric range, floor fan on, butter in pan at	
	t=0	174

Figure	pan at t=0	
Figure	162. Frying hamburgers - three hamburgers in non-stick frying pan, floor fan off.	, 0
1 18410	Hamburgers in pan at t=120 s	77
Figure	163. Frying hamburgers - three hamburgers in non-stick frying pan, floor fan on, living	
C	room window open. Hamburgers in pan at t=160 s	
Figure	164. Frying hamburgers - three hamburgers in non-stick frying pan, floor fan on.	
C	Hamburgers in pan at t=150 s	79
Figure	165. Deep-frying Tortillas scenario - steel wok, LPG hotplate, floor fan off, first tortilla	
C	in pan at t=360 s	
Figure	166. Deep-frying french fries scenario - steel wok, LPG hotplate, floor fan off, first	
	french fries in pan at t=360 s	82
Figure	167. Broiling Pizza - one frozen pizza in oven set on broil, floor fan off.	
	Oven on at t=0	83
Figure	168. Bake/ broil pizza - one frozen pizza in oven set on bake and pre-heated to 350 °F,	
	then set to broil 630 s later. Floor fan was off. Pizza in at t=0	85
Figure	169. Bake/ broil pizza - one frozen pizza in oven set on bake and pre-heated to 350 °F,	
	then set to broil 630 s later. Floor fan was on. Pizza in at t=0	86
Figure	170. Broiling hamburgers - four hamburgers in oven set on broil,	
	floor fan off. Oven on at t=0	88
Figure	171. Broiling hamburgers - four hamburgers in oven set on broil,	
	floor fan on. Oven on at t=0	89
Figure	172. Boiling spaghetti pasta - 1/3 package (150 g), floor fan off.	
	Pasta placed in pot at t=360 s	90
Figure	173. Boiling spaghetti pasta - 2/3 package (300 g), floor fan off.	
	1 1	91
Figure	174. Boiling spaghetti pasta - 1/2 package (225 g), lid on, floor fan off.	
	Pasta placed in pot at t=480 s	92
Figure	175. Candles burning - four tea candles burning on electric range top area.	
	Floor fan was off. Candles lit at t=0	93
Figure	176. Cigarette smoking - two smokers smoking one cigarette each in kitchen area.	~ -
. .	Floor fan was off. Cigarettes lit at t=0	95
Figure	177. Cigarette smoking – two smokers smoking one cigarette each in kitchen area.	0.0
ъ.	Floor fan was off. Cigarettes lit at t=0	96
Figure	178. Smoldering cotton wicks – eight sets of four wicks were ignited with a 12 s delay	
	using the staged wick ignition device, located on the living room floor at the chair burn	
E:-	location. Fan was off. Ignition sequence started at t=30 s	9/
rigure	179. Smoldering cotton wicks -eight sets of four wicks were ignited with a 12 s delay	
	using the staged wick ignition device, located on the living room floor at the chair burn	
	location. Fan was on. Ignition sequence started at t=30 s	.98

Figure	on the living room floor at the chair burn location. Fan was off. Power to hotplate on	at
		200
Figure	181. Smoldering wood blocks - eight beech wood blocks on an electric hotplate, located	
	on the living room floor at the chair burn location. Fan was on. Power to hotplate on	
		201
Figure	182. Smoldering foam - A polyurethane foam block, located on the living room floor a the chair burn location and ignited with an electrically powered nichrome wire heater imbedded in the block. Fan was off. Power to igniter on at t=0.	ıt
	Sample flamed at 798 s	203
Figure	183. Smoldering foam - a polyurethane foam block, located on the living room floor at	t
	the chair burn location and ignited with an electrically powered nichrome wire heater	
	imbedded in the block. Fan was off. Power to igniter on at t=0. Sample stopped	
	smoldering	204
Figure	184. Smoldering foam - a polyurethane foam block, located on the living room floor at	t
	the chair burn location and ignited with an electrically powered nichrome wire heater	
	imbedded in the block. Fan was on. Power to igniter on at t=0	205
Figure	185. Smoldering foam - a polyurethane foam block, located on the living room floor at	t
	the chair burn location and ignited with an electrically powered nichrome wire heater	
	imbedded in the block. Fan was on. Power to igniter on at t=0	206
Figure	186. Photoelectric sensor response to cotton smolder smoke calibration test.	
	A and B indicate repeated tests	208
Figure	187. Ionization sensor response to cotton smolder smoke calibration test.	
	A and B indicate repeated tests	209
Figure	188. Electrochemical cell CO sensor response to cotton smolder smoke calibration tes	st.
	A and B indicate repeated tests	210
Figure	189. Smoldering cotton fire scenario, fan speed 7 Hz	212
Figure	190. Smoldering cotton fire scenario, fan speed 7 Hz	213
Figure	191. Smoldering cotton fire scenario, fan speed 12Hz	214
Figure	192. Smoldering cotton fire scenario, fan speed 12 Hz	215
Figure	193. Smoldering wood fire scenario, fan speed 7 Hz	216
_	194. Smoldering wood fire scenario, fan speed 7 Hz	
Figure	195. Smoldering wood fire scenario, fan speed 12 Hz	218
Figure	196. Smoldering wood fire scenario, fan speed 12 Hz	219
Figure	197. Candle flame, fan speed 7 Hz	220
Figure	198. Margarine heated in a pan, fan speed 7 Hz	222
Figure	199. Margarine heated in a pan, fan speed 7 Hz	223
Figure	200. Butter heated in a pan, fan speed 7 Hz	224
_	201. Bread in a toaster, fan speed 7 Hz	
_	202. Bread in a toaster, fan speed 7 Hz	
_	203. Bread in a toaster, fan speed 7 Hz	227
Figuro	204 Rread in a toaster fan sneed 12 Hz	228

Figure 205. Bread in a toaster, fan speed 12 Hz	229
Figure 206. Average available egress time for several different alarm and fire types with a	larms
on every level for manufactured home tests	244
Figure 207. Average available egress time for several different alarm and fire types with a	larms
on every level + bedrooms for manufactured home tests	244
Figure 208. Average available egress time for several different alarm and fire types with a	larms
in every room for manufactured home tests	245
Figure 209. Test structure, sample interior room, and instrumentation in original 1975 Indi	
Dunes Experiments	247
Tablas	
Tables	
Table 1. Calibration of smoke and CO alarms	2.1
Table 2. Listed unmodified alarm sensitivities.	
Table 3. MIC output and obscuration during tests of two ionization alarms	
Table 4. Mean axial velocity 5 cm below ceiling	
Table 5. Threshold criteria for modified alarms	
Table 6. Top fire scenarios ranked by frequency of occurrence, 1992 – 1996	
Table 7. Locations for temperature measurement in tests of smoke alarm response	
Table 8. Locations for primary gas measurement in tests of smoke alarm response	
Table 9. Locations for primary optical density measurements in tests of smoke alarm	
response	86
Table 10. Alarm and sprinkler locations in tests of smoke and CO alarm response	
Table 11. Test conditions for tests conducted in a manufactured home	
Table 12. Test Conditions for tests conducted in a two-story home	95
Table 13. Alarm Times for Several Smoke Alarms in Hallway Outside Main Bedroom Du	ring
Flaming Ignition Test of a Mattress, Test SDC05	119
Table 14. Calculated tenability for a flaming ignition test of a mattress, test SDC05	122
Table 15. Activation times for several smoke alarms during a flaming ignition test of a ma	ttress,
test SDC05	
Table 16. Activation times for several alternative technologies during a flaming ignition te	st of a
mattress, test SDC05	
Table 17. Cascade impactor results	
Table 18. Estimated particle size from smoldering chair scenario	
Table 19. Estimated particle size from flaming sources	
Table 20. Estimated particle size from cooking oil fire scenario	
Table 21. Relative error for tenability time and alarm time during tests of residential smok	
alarms	
Table 22 Alarm sensitivity for photoelectric and ionization sensors	155

Table. 23. Average time to alarm (in seconds) for several smoke alarms and fire scenarios in	a
manufactured home	. 234
Table 24. Average time to alarm (in seconds) for several smoke alarms and fire scenarios in a	ı
two-story home	. 235
Table 25. Sample premovement activity time	. 238
Table 26. Estimates of required escape times for best and worst case scenarios	. 240
Table. 27. Available egress time (in seconds) for several different alarm technologies and fire	3
scenarios in a manufactured home	. 242
Table 28. Available egress time (in seconds) for several different alarm technologies and fire	
scenarios in a two-story home	. 243
Table. 29. Activation time (in seconds) for several different fire detection technologies and fi	ire
scenarios in a manufactured home.	. 246
Table 30. Comparison of alarm times and times to untenable conditions for 1975 and current	
studies	. 248
Table 31. Comparison of tenability criteria used in the 1975 and current studies	. 248
Table 32. Comparison of fire growth rates in the 1975 and current studies	. 248