USGS Home
SOFIA Home

Evapotranspiration Measuring & Modeling in the Everglades

Metadata also available as - [Questions & Answers] - [Parseable text] - [XML]

Metadata:


Identification_Information:
Citation:
Citation_Information:
Originator:
Edward R. German

Sandra Kinnaman

Publication_Date: Unpublished Material
Title: Evapotranspiration Measuring & Modeling in the Everglades
Online_Linkage: <http://sofia.usgs.gov/projects/evapotrans/>
Description:
Abstract:
The overall objective is to develop a process-oriented appraisal of evapotranspiration within the Everglades drainage unit, excluding agricultural and brackish environments. Specific objectives include: 1) Field measurement of evapotranspiration at a variety of sites encompassing a regionally representative range of environmental factors.; 2) Integration of evapotranspiration estimates into a process-oriented model; 3) Verification and refinement of model using ET measurements at additional sites.
Purpose:
Everglades restoration efforts will rely heavily upon development of hydrologic flow models that will be used to help guide restoration and management decisions. Any hydrologic model requires an assessment of the water budget, including the amount of water removed from the system by evapotranspiration (ET). ET is a major part of the water budget in the Everglades, being similar in magnitude to rainfall. The Everglades ET project provides the necessary ET data, and methods of estimating ET throughout the Everglades system, that are required by all flow models.

The overall objective is to develop a process-oriented appraisal of evapotranspiration within the Everglades drainage unit, excluding agricultural and brackish environments. Specific objectives include: 1) Field measurement of evapotranspiration at a variety of sites encompassing a regionally representative range of environmental factors; 2) Integration of evapotranspiration estimates into a process-oriented model; 3) Verification and refinement of the model using ET measurements at additional sites.

Time_Period_of_Content:
Time_Period_Information:
Range_of_Dates/Times:
Beginning_Date: 199410
Ending_Date: 200409
Currentness_Reference: ground condition
Status:
Progress: In Work
Maintenance_and_Update_Frequency: As needed
Spatial_Domain:
Bounding_Coordinates:
West_Bounding_Coordinate: -80.824076
East_Bounding_Coordinate: -80.265669
North_Bounding_Coordinate: 26.757403
South_Bounding_Coordinate: 25.292099
Keywords:
Theme:
Theme_Keyword_Thesaurus: none
Theme_Keyword: hydrology
Theme_Keyword: water budget
Theme_Keyword: ET
Theme_Keyword: evapotranspiration
Theme_Keyword: model
Place:
Place_Keyword_Thesaurus:
Department of Commerce, 1995, Countries, Dependencies, Areas of Special Sovereignty, and Their Principal Administrative Divisions, Federal Information Processing Standard (FIPS) 10-4, Washington, D.C., National Institute of Standards and Technology
Place_Keyword: United States
Place_Keyword: US
Place:
Place_Keyword_Thesaurus:
U.S. Department of Commerce, 1987, Codes for the identification of the States, the District of Columbia and the outlying areas of the United States, and associated areas (Federal Information Processing Standard 5-2): Washington, D. C., NIST
Place_Keyword: Florida
Place_Keyword: FL
Place:
Place_Keyword_Thesaurus:
Department of Commerce, 1990, Counties and Equivalent Entities of the United States, Its Possessions, and Associated Areas, FIPS 6-3, Washington, DC, National Institute of Standards and Technology
Place_Keyword: Miami-Dade County
Place_Keyword: Monroe County
Place:
Place_Keyword_Thesaurus: none
Place_Keyword: Central Everglades
Place_Keyword: Everglades National Park
Place_Keyword: Loxahatchee National Wildlife Refuge
Place_Keyword: Shark River Slough
Place_Keyword: Taylor Slough
Place_Keyword: Water Conservation Area 1
Place_Keyword: Water Conservation Area 2
Place_Keyword: Water Conservation Area 3
Place_Keyword: WCA1
Place_Keyword: WCA2
Place_Keyword: WCA3
Access_Constraints: none
Use_Constraints:
These data are subject to change and are not citeable until reviewed and approved for official publication.
Point_of_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: Ed German
Contact_Organization: U.S. Geological Survey
Contact_Position: Project Chief
Contact_Address:
Address_Type: mailing address
Address:
224 West Central Parkway

Suite 1006

City: Altamonte Springs
State_or_Province: FL
Postal_Code: 32714
Country: USA
Contact_Voice_Telephone: 407 865-7575
Contact_Facsimile_Telephone: 407 865-6733
Contact_Electronic_Mail_Address: egerman@usgs.gov
Browse_Graphic:
Browse_Graphic_File_Name: <http://sofia.usgs.gov/publications/fs/168-96/>
Browse_Graphic_File_Description: location of original eight ET measurement sites
Browse_Graphic_File_Type: GIF
Data_Set_Credit:
Dave Stannard, USGS NRP, Denver, has provided project operation and data analysis during the project. Eddie Simonds has also helped on the project.
Cross_Reference:
Citation_Information:
Originator: Edward R. German
Publication_Date: 2000
Title:
Regional Evaluation of Evapotranspiration in the Everglades (2000)
Series_Information:
Series_Name: Water Resources investigations Report
Issue_Identification: WRIR 00-4217
Publication_Information:
Publication_Place: Tallahassee, FL
Publisher: U.S. Geological Survey
Online_Linkage: <http://fl.water.usgs.gov/Abstracts/wri00_4217_german.html>
Cross_Reference:
Citation_Information:
Originator: German, E. R.
Publication_Date: 1999
Title:
Regional Evaluation of Evapotranspiration in the Everglades (1999)
Series_Information:
Series_Name: Proceedings of the 3rd International Symposium on Ecohydraulics
Issue_Identification: none
Publication_Information:
Publication_Place: Salt Lake City, UT
Publisher: International Association for Hydraulic Research
Online_Linkage: <http://sofia.usgs.gov/publications/papers/evalET/ET.pdf>
Online_Linkage: ><http://time.er.usgs.gov/bib/abstracts/regneval.pdf>
Cross_Reference:
Citation_Information:
Originator: German, E. R.
Publication_Date: 2002
Title:
Evapotranspiration rates from two different sawgrass communities in South Florida during drought conditions
Series_Information:
Series_Name: Proceedings
Issue_Identification: Second Federal Interagency Hydrologic Modeling Conference
Publication_Information:
Publication_Place: Las Vegas, NV
Publisher:
Subcommittee on Hydrology, of the Advisory Committee on Water Information
Cross_Reference:
Citation_Information:
Originator: Ohmura, A.
Publication_Date: 1982
Title:
Objective criteria for rejecting data for Bowen ratio flux calculations
Series_Information:
Series_Name: Journal of Applied Meteorology
Issue_Identification: v. 21
Publication_Information:
Publication_Place: Boston, MA
Publisher: American Meteorological Society

Data_Quality_Information:
Logical_Consistency_Report: not applicable
Completeness_Report: Not all sites have data for the 13 parameters collected.
Lineage:
Process_Step:
Process_Description:
A network of ET-measurement sites was established in the Everglades in 1996, representing the various types of hydrologic and vegetative environments. Eight sites were operated in 1996 and nine sites were operated in 1997. Data from these sites were used to characterize ET and other meteorological conditions in the Everglades, and to develop models of ET as a function of solar radiation and water level. A report describing these findings was published in 2000. Data collection continued at selected sites during 1998-2000 to provide data for other studies involved with understanding water levels and flows in the Everglades.

In 2000, new sites were established in Shark Valley Slough, to test transferability of models developed using 1996-97 data, and to refine the understanding of factors related to ET. As of January 2003 there are five continuous ET sites in the Everglades National Park.

The original sites were selected to provide a network representative of the non-forested portion of the Everglades ecosystem in terms of plant communities, duration of water inundation (hydroperiod), and geographic coverage. Other factors in site selections were security and logistics. Sites in areas open to hunting and air boating were located in relatively remote locations and not on major air boat trails. Each site was located at the center of a circle of relatively uniform vegetative cover with a radius of at least 100 times the height of the upper air temperature/humidity sensor.

Stations were instrumented to provide data for: determination of total energy available for ET (latent heat flux) and convection (sensible heat flux); determination of the Bowen ratio (the ratio sensible heat flux/ latent heat flux), so that the amount of the total available energy that was utilized for ET could be determined; and characterization of meteorological conditions and ET-model development using ancillary data.

The array and arrangement of data sensors at the sites were dependent on whether the site was in open water or in dense, emergent vegetation. The major difference between open-water sites and vegetated sites is the method of determining the air-temperature and humidity differential with height, which is necessary for computation of the Bowen ratio. At the two open-water sites (sites 2 and 3), the air temperature and humidity differentials were measured from the water surface to a point 3-4 feet above the water surface. At the seven vegetated sites (sites 1, 4-9) the differentials were measured between two points in air, 3-5 feet apart.

At each site, sensor measurements were made automatically every 30-seconds and these measurements were averaged and stored onsite at 15- or 30- minute intervals. These data were then transmitted daily by cellular telephone to computer storage in the office. Data were reviewed on a daily basis to detect equipment breakdown and sensor malfunction. Site visits were made at approximately monthly intervals for routine scheduled maintenance and cleaning, or more frequently when malfunctions occurred.

Data were collected from January 1996 through December 1997 for sites 1-8. Site 9, however, was installed in January 1997 to increase representation of drier parts of the Everglades; site 9 furnished data from January 1997 through December 1997. Only data that passed screening tests for accuracy were used to develop the models of ET. The screening tests were based on range limits, visual inspection of plotted net radiation, temperature and humidity readings to eliminate periods when sensors were obviously malfunctioning, and on criteria given by Ohmura (1982). These criteria specified that flux calculations are inappropriate if the calculated latent heat flux is in the opposite direction from the observed vapor-pressure vertical difference. Such a situation would indicate an error in determination of either the energy budget or the vapor-pressure or temperature vertical differences. Ohmura also recommended that Bowen-ratio calculations be rejected if temperature or vapor-pressure vertical differences are at or less than sensor resolution limits. Resolution limits for this study are 0.013 degree Celsius for vertical temperature differences and 0.003 kilopascal (kPa) for vapor-pressure differences. These screening criteria eliminated about one-half of the available data from model development, mostly because of sensor failure and resolution limits. Most of the data rejected because of resolution limits or flux directions were for night-time hours, when energy inputs, air-temperature vertical differences, and vapor-pressure vertical differences are all relatively low.

Sites were visited at 4-6 week intervals for inspection and maintenance. Maintenance generally included the following items:

Ventilator fans - Clean and replace, if not operating Net radiometer domes - Clean and replace, if damaged. Replace radiometer if water damaged Radiation shields (air temperature and humidity) - Clean Air temperature and humidity sensors - Clean, replace sensors, if necessary Water-level sensor - Raise float and check for proper response Rain gage - Check for obstructions, clear if necessary Water temperature sensors - Check for proper position and reading Net radiometers and pyranometer - Check for level, adjust if necessary Sensor exchange mechanism - Check for smooth operation, replace as necessary

The net radiometer domes required the most frequent maintenance. These domes, made of soft transparent polyethylene, shield the sensors from moisture, wind, or debris that could affect sensor performance. Problems encountered included crushing by hail, pecking by birds, and gradual deterioration of the polyethylene. Domes were changed at 3-month intervals, or sooner if damage occurred. If the domes were cracked, punctured, or there was evidence of water penetration into the sensor, the entire net radiometer was replaced.

Air temperature and humidity sensors failed frequently during the first year of operation, due to corrosion of electrical contacts. A change in sensor design resulted in much-improved service life of these sensors during the second year of operation. The sensor exchange mechanisms were subject to occasional failure, generally due to mechanical wear or water penetration into the control circuitry.

Net radiation is measured directly by the net radiometers, but the measured value is affected by wind speed and must be corrected. The wind correction factor was calculated from wind measured at the sites using procedures described by C. Fritchen of REBS, Inc. in a personal communication. Soil heat flux was measured at all vegetated sites, but was not measured at the open-water sites because these sites were always covered by water, generally to a depth of more than 1 ft. At the vegetated sites the soil heat flux was determined from the sum of heat flux measured by a heat-flux plate buried 5 centimeters (cm) below the land surface and the change in heat stored in the soil profile above the plate. Water heat storage was calculated at all sites whenever water was standing on the water surface. At open-water sites with little or no emergent vegetation, the air-temperature and vapor-pressure differentials necessary for the Bowen-ratio determination are determined from measurements of water temperature at the water surface and air temperature and vapor pressure at a point 3 to 4 ft above the water surface. The water-surface temperature is measured by using a float -mounted thermocouple, and is assumed to represent the air temperature at the water-air interface. The vapor pressure at that point is assumed to be equivalent to 100 percent relative humidity. Because the differences between water surface and air are much greater than differences in the air over similar distances, the effect of air and vapor pressure sensor bias is negligible. Therefore, the sensor exchange mechanism is not required and only one air temperature /vapor pressure sensor is needed at such sites.

(See WRIR 00-4217 at (<http://fl.water.usgs.gov/PDF_files/wri00_4217_german.pdf>) for more detail and the formulas used in the calculations.)

Process_Date: Not complete
Process_Step:
Process_Description:
Work planned for FY 2004 includes:

1. Data collection ET station operation ended Sept. 30, 2003. All sites were removed by November 2003.

2. Data analysis and modeling Data processing will be completed for all sites, to provide actual ET data, together with related meteorological data. Models will be developed using data collected since 1997, and will be compared with models described in WRI00-4217 that were developed from the 9 original sites using data collected during 1996-97. The ability of the original regional models (WRI00-4217) to estimate ET during later time periods and at additional site locations will be assessed. Two additional techniques for regionalization of ET data in the natural Everglades will be assessed. One technique is based on use of vegetative density data from satellite imagery as a predictive tool for explaining differences in ET rate among the sites. Another technique is use of a modified Penman-Monteith model as an alternate to Priestley-Taylor model used in the original regionalization. A final report in the WRI series will be produced to present summary of all data and discussion of findings based on all data collected since the beginning of data collection in 1996.

3. Database maintenance Annual updates of all raw meteorological data and estimated ET will released. The reviewed and edited 15-minute raw data from the ET sites will be written onto CD-ROM in ASCII flat files for distribution and entry to SOFIA. Estimated hourly ET will be included, but will be subject to revision as more data are collected and models developed.

Process_Date: Not complete
Process_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: Ed German
Contact_Organization: U.S. Geological Survey
Contact_Position: Project Chief
Contact_Address:
Address_Type: mailing address
Address:
224 West Central Parkway

Suite 1006

City: Altamonte Springs
State_or_Province: FL
Postal_Code: 32714
Country: USA
Contact_Voice_Telephone: 407 865-7575
Contact_Facsimile_Telephone: 407 865-6733
Contact_Electronic_Mail_Address: egerman@usgs.gov

Spatial_Data_Organization_Information:
Indirect_Spatial_Reference: Everglades

Distribution_Information:
Distributor:
Contact_Information:
Contact_Person_Primary:
Contact_Person: Roy Sonenshein
Contact_Organization: U.S. Geological Survey
Contact_Position: Database Manager
Contact_Address:
Address_Type: mailing address
Address:
9100 NW 36th Street

Suite 107

City: Miami
State_or_Province: FL
Postal_Code: 33178
Country: USA
Contact_Voice_Telephone: 305 717-5824
Contact_Facsimile_Telephone: 305 717-5801
Contact_Electronic_Mail_Address: sunshine@usgs.gov
Resource_Description: Evapotranspiration Data
Distribution_Liability: The data have no implied or explicit guarantees
Standard_Order_Process:
Digital_Form:
Digital_Transfer_Information:
Format_Name: ASCII
Transfer_Size: 20.8
Digital_Transfer_Option:
Online_Option:
Computer_Contact_Information:
Network_Address:
Network_Resource_Name: <http://sofia.usgs.gov/exchange/german/germanet.html>
Access_Instructions: Log onto the SOFIA web site at <http://sofia.usgs.gov>
Fees: None

Distribution_Information:
Distributor:
Contact_Information:
Contact_Person_Primary:
Contact_Person: Roy Sonenshein
Contact_Organization: U.S. Geological Survey
Contact_Position: Database Manager
Contact_Address:
Address_Type: mailing address
Address:
9100 NW 36th Street

Suite 107

City: Miami
State_or_Province: FL
Postal_Code: 33178
Country: USA
Contact_Voice_Telephone: 305 717-5824
Contact_Facsimile_Telephone: 305 717-5801
Contact_Electronic_Mail_Address: sunshine@usgs.gov
Resource_Description: german - water budget data
Distribution_Liability: No warrantees are implied or explicit for the data
Standard_Order_Process:
Digital_Form:
Digital_Transfer_Information:
Format_Name: ASCII
Format_Information_Content: tab-delimited text files
Transfer_Size: 2.8
Digital_Transfer_Option:
Online_Option:
Computer_Contact_Information:
Network_Address:
Network_Resource_Name: <http://sofia.usgs.gov/exchange/german/germanwb.html>
Access_Instructions: Log onto the SOFIA web site at <http://sofia.usgs.gov>
Fees: none

Distribution_Information:
Distributor:
Contact_Information:
Contact_Person_Primary:
Contact_Person: Ed German
Contact_Organization: U.S. Geological Survey
Contact_Position: Project Chief
Contact_Address:
Address_Type: mailing address
Address:
224 West Central Parkway

Suite 1006

City: Altamonte Springs
State_or_Province: FL
Postal_Code: 32714
Country: USA
Contact_Voice_Telephone: 407 865-7575
Contact_Facsimile_Telephone: 407 865-6733
Contact_Electronic_Mail_Address: egerman@usgs.gov
Resource_Description: german - rainfall data
Distribution_Liability: No warrantees are implied or explicit for the data
Standard_Order_Process:
Non-digital_Form: unknown
Fees: none
Ordering_Instructions: For this data, please call Edward R. German (407) 865-7575

Metadata_Reference_Information:
Metadata_Date: 20040506
Metadata_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: Jo Anne Stapleton
Contact_Organization: U.S. Geological Survey
Contact_Address:
Address_Type: mailing address
Address: 521 National Center
City: Reston
State_or_Province: VA
Postal_Code: 20192
Country: USA
Contact_Voice_Telephone: 703 648-4592
Contact_Facsimile_Telephone: 703 648-4614
Contact_Electronic_Mail_Address: jastapleton@usgs.gov
Metadata_Standard_Name: Content Standard for Digital Geospatial Metadata
Metadata_Standard_Version: FGDC-STD-001-1998

This page is <http://sofia.usgs.gov/metadata/sflwww/german_et_04.html>

U.S. Department of the Interior, U.S. Geological Survey, Center for Coastal Geology
Comments and suggestions? Contact: Heather Henkel - Webmaster
Generated by mp version 2.7.33 on Thu May 13 09:35:35 2004