Radiant Ignition of Adjacent Upholstered Furniture - A Simple Approach

By Charley Fleischmann

Acknowledgements

- Flora Chen Radiant Ignition of Upholstered Furniture conducted over 900 ignition experiments
- Simon Weaver Spent hours staring at video tapes for the flame height.
- Tony Enright Looked after the furniture experiments

Radiant Ignition of Adjacent Upholstered Furniture - A Simple Approach

- Introduction
- Radiation from the Source
 - > Experiments
 - Radiation Modeling
 - ➢ Results
- Radiant Ignition of Upholstered Furniture
 - > Experiments
 - > Results
 - > Analysis
- Conclusions
- Future Research

Radiant Ignition of Adjacent Upholstered Furniture - A Simple Approach

- NZ CBUF Combustion Behavior of Upholstered Furniture
- Flame radiation side benefit
- Previous research
 - > Heskestad
 - > Will the second item ignite? Babrauskas
 - SFPE Engineering guide Assessing Flame Radiation to External targets from Pool Fires, Beyler et. al.

Furniture Styles

 $=\frac{Q_c}{A_{sphere}}=\frac{0.45Q_T}{4\pi R^2}$

Cylindrical Model

 $\dot{\mathbf{Q}}'' = \mathbf{F} \cdot \boldsymbol{\varepsilon} \cdot \boldsymbol{\sigma} \cdot \mathbf{T}_{\text{Flame}}^4$

$F_{d1-2} = \frac{1}{\pi H} \tan^{-1} \frac{L}{\sqrt{H^2 - 1}} + \frac{L}{\pi} \left[\frac{X - 2H}{H\sqrt{XY}} \tan^{-1} \sqrt{\frac{X(H - 1)}{Y(H + 1)}} - \frac{1}{H} \tan^{-1} \sqrt{\frac{H - 1}{H + 1}} \right]$ $\varepsilon = 1 - exp(-\kappa D)$

$$T_{Flame} = 800^{\circ}C$$

Heskestad's Correlation $H_f = -1.02D + 0.235 Q^{.2/5}$

Where:

$$D = \sqrt{\frac{4A}{\pi}}$$
$$A = \frac{\dot{Q}}{\dot{Q}''_{\text{cone}}}$$

 \dot{Q} = measured by ODC \dot{Q}''_{cone} = peak RHR Cone calorimeter H_F = height of the flame

Equivalent Diameter

Flame Height Data Versus Correlation

Comparison of all experiments

Emissivity of Flame

$$\varepsilon = \left(1 - e^{-kD}\right)$$

UNIVERSITY OF

Flame Temperature Data

Single Seater Results

Two Seater Results

Furniture Flames

30 s after ignition to 360 s after ignition

Radiant Ignition of Upholstered Furniture

Experiments
Results
Analysis

Ignition Apparatus

Radiant Ignition of Upholstered Furniture

- > 14 NZ Fabrics
- > 3 NZ Polyurethane Foam (Domestic, Commercial, Aviation)
- >ISO Ignitability Apparatus w/electric arc
- $P q_e = 40, 35, 30, 25, 20, 15, 10 \text{ kW/m}^2$ + minimum heat flux levels
- ➤ 5 replicate samples at each heat flux
- > Over 900 experiments were conducted

Fabric Matrix

Color Code	Polypro- pylene	Polyester	Acrylic	Cotton	Olefin	Viscose	Nylon pile	Total
Pacific	100							100
Cement		100						100
Saffron			100					100
Azure					100			100
Gold							100	100
Dark red				100				100
Cadet		42	58			5.2		100
Blue		51		49				100
Sage		50			50			100
Navy		51				49		100
Forest	60	40						100
Denim		31	21	48				100
Spring		43	41		16	5.4		100
Taupe		39		40		21		100

* Fabric 28 is a fabric treated with fire retardant additive.

- Selected from over 350 fabrics
- Color was not a variable
- Pure fabrics chosen when

possible CANTERBURY CHRISTCHURCH - NEW ZEALAND

Assumptions

- Ignition occurs when the surface reaches a material dependent temperature
- > The material is opaque and inert
- The material has uniform thermal properties independent of T
- Thermal decomposition and associated changes are neglected
- Heat flow into the solid is 1-dimensional
- Heat loss from the surface is both convective and radiative with a constant convection coefficient

Time to ignition - thin solid Approximate solution

$$\dot{q}_{net}'' = \dot{q}_e'' - \dot{q}_{rr}'' = \tau \rho c_P \frac{dT}{dt}$$

Initial conditiont:= 0 $T = T_{\infty}$

Solution to simplified form Material dependent specific to ignition

 $t_{ig} = \tau \rho c_p \frac{(T_{ig} - T_0)}{(\dot{q}_e'' - (\dot{q}_{cr}''))}$ Approximation of surface heat loss

Thermally Thick - Time to Ignition

Approximate solution:

 $t_{ig} = \frac{\pi}{4} k \rho c \frac{\eta_{ig}}{\dot{\alpha}''} = 0$

Approximation of Net heat absorbed

Material dependent

specific to ignition

Critical versus Minimum Heat Flux

- Minimum heat flux for ignition in the heat flux below which ignition under practical conditions (in bench scale test or a real fire) cannot occur.
- > Critical heat flux for ignition is an estimate of q''_{min} derived from a correlation of experimental data.

Estimating the Ignition Temperature

Components of Surface heat loss

Melting Fabric

25

Melting Fabric

Charring Fabric

Charring Fabric

Analysis

➤ Thermally Thin

$$t_{ig} = \rho \pi c \frac{\left(T_{ig} - T_{0}\right)}{\left(\dot{q}_{e}'' - \dot{q}_{crit}''\right)}$$

Thermally Thick

$$\frac{1}{\sqrt{t_{ig}}} = \left(\frac{\pi}{4} k \rho c\right)^{-1/2} \frac{(\dot{q}_{e}'' - \dot{q}_{crit}'')}{(T_{ig} - T_{o})}$$

Results 7kW/m²≤q″_e ≤40kW/m²

Results $15kW/m^2 \le q''_e \le 40kW/m^2$

Results $15kW/m^2 \le q''_e \le 40kW/m^2$

Fabric Effects

Conclusions Radiant Ignition of Upholstered Furniture

- The results presented here show that upholstered furniture composites present a complex ignition problem.
- The melting of the foam and behaviour of the fabrics further complicates the problem.
- Ignoring these complications, the results show that when the fabric-foam composite is exposed to external radiation of 15 kW/m² or more, the time to ignition correlates well as a thermally thin solid
- When the external radiant heat fluxes are below 15 kW/m², i.e. approaching the minimum heat flux levels, neither the thermally thin or thermally thick correlations fit the data well.

Conclusions - Radiation from the Source

- Due to the complex geometry of upholstered furniture flames it is difficult to model the radiation.
- Point source approximation give surprisingly accurate predictions for the flame radiation (At least at 1.5 m from burning chair)
- > More complex is not always accurate.

Further Research

- Improve the characterization of the flame shape using image processing of the video tape.
- Conduct additional experiments with more detailed heat flux measurements.
- Using the material properties from the steady state experiments to predict the ignition from a transient exposure and compare with new transient results.

Flame Analysis with Image Processing

Paul Mason

Furniture Flames

30 s after ignition to 360 s after ignition

Motivation

- To identify and quantify the shape of a flame
- To effectively model flame shape (cylinder, truncated cone, double cone, etc.)
- To correlate flame shape with energy release rate
- To use multiple cameras to establish flame shape (3D)

Extract blue color plane

Quantify

Maximal value: 255.00

Threshold

Image mask: from ROI

Remove small particles

Particle Analysis: Area (pixels)

Data

Future Efforts

- > Minimize reflections
- Investigate smoke effects & video compression effects
- > Average the flame 100%, 50%, etc.
- Measure flame height & width
- Convert length & area from pixels to m²
- Estimate flame volume (3D visualization)

