Workshop on Fire Growth and Spread on Objects National Institute of Standards and Technology March 4-6,2002

Detailed Modeling of Flame Spread Processes Over Solid: Progress and Prospect

James S. T'ien Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland, Ohio 44106

Outline

-Types of flame spreading models
-Example results from detailed models
-Current capability of detailed models
-Potential application of current models
-Longer-term research needs

concurrent flow

- Flame stabilization zone-upstream
- Controlling zone for spread-downstream (pyrolysis and preheat)
- Size of stabilization
 zone
 << size of pyrolysis
 and preheat zones in
 high-speed flows

Types of Flame Spreading Models:

- Correlations/Dimensional Consideration
- Heat transfer model
- Thermal/diffusive model
- Model with fluid mechanics (including momentum equations)
- Model with finite-rate chemistry
- Model including detailed solid processes

More details

MODELING LOW-SPEED CONCURRENT-FLOW FLAME SPREAD OVER A THIN SOLID

.

- Conservation equations
 - Mass
 - Momentum
 - Energy
 - Species
- Including flame stabilization zone
- Including flame radiation

RADIATION TREATMENT

- Surface and gas
- No soot, no soot radiation Why? Justification! (limited range of applicability)
- Theoretical computation in multi-dimensional flame is difficult
- A gray gas model will be used here (need calibration)

Flame structures at $U_{\infty} = 5$ cm/s, 15% O, (a) nondimensional gas temperature (1 unit = 300 K) (b) fuel vapor consumption rate (c) mass fractions of fuel and oxygen (d) local fuel/oxygen equivalence ratio.

2-D Solid, Low-speed Pure Forced Flow (Laminar)

Solid-phase profiles including solid temperature T_s (normalized by 300 K), solid thickness h (normalized by $\tau = 3.8 \text{ x } 10^{s_3} \text{ cm}$) and blowing velocity, v_w (normalized by U_R = 4.53 cm/s).

•

ŧ

Heat fluxes along the solid including conduction q_c , incoming radiation, $(q_r)_{in}$, outgoing radiation $(q_r)_{out}$, net radiation $(q_r)_{net}$ and total net heat flux q_{net} .

. The extinction boundary using oxygen concentration and free stream velocity **as** coordinates.

¢,

The visible flame shapes at 15% O, at different flow velocities, from $U_{\infty} = 2.1$ cm/s (quenching limit) to 29 cm/s (blow-off limit)

The velocity profiles around the visible flames at different tunnel heights, XO, =15%, $U_{\infty} = 5$ cm/s.

Velocity streamlines and velocity vectors around the flame (depicted by fuel reaction rate 10^4 g/cm³/s) (a) Forced flow case, $U_{\infty} = 5$ cm/s (b) buoyant case, $g = 0.01g_e$, XO, = 15%.

Schematic of 3D flame and the flow tunnel

Tunnel dimension : 21 cm × 10 cm × 4 cm Temperature of side walls and top wall : 300 K Solid fuel (Y=0 plane) : 80% combustible fuel + 20% inert

(ɯɔ) Z

Flame spread rate , V_F (cm/s)

- * 4-cm solid (80% Kimwipes, 20% inert) + 1-cm inert strips The thermal inertia of strip is 100 times of the fuel

X(cm)

Flame structure on the centerline plane

Solid thickness and solid temperature profiles

Current Capability of Detailed Models

Fluid mechanics: Laminar Steady and unsteady 2-D and 3-D Forced, buoyant and mixed flows

Heat transfer:

Radiation Gas species: Spectral (1-D only) Gray gas (2-D) Soot: need capability to model formation Interaction with solid surface: Solution of radiation transfer equation and solid radiation properties

Gas-phase chemistry:

One-step overall finite rate kinetics (empirical)

Solid thermal decomposition: One or two steps

Solid in-depth processes: Heat conduction only

Possible Application of Current Models: (With minor amendment)

- (1) Mechanism(s) of flame growth limit
- (2) Solid flame spread in an atmosphere with fuel vapor and transition to flashback
- (3) Suppression of incipient fires

Longer-term Research Needs to Improve Model Capabilities:

- (1) Detailed gas-phase kinetic data and their implementation into the model
- (2) Solid thermal decomposition processes including char formation and oxidation
- (3) Efficient multi-dimensional computation scheme for flame radiation and flame-radiation coupling. Radiative properties of solids.
- (4) Turbulent flame over solid? (enough!)

Detailed models can be very useful contributors to the fire safety research effort!