Development and validation of a comprehensive model for flame spread and toxic products in full-scale scenarios

Stephen Welch FRS, BRE, UK

Topics

- Introduction
- Fundamentally-based flame spread model
 - finite thickness and finite rate
 - concurrent spread over PMMA in wind tunnel
- Simple flame spread model
 - critical net accumulated flux
 - model validation exercises
 - plume studies
 - half-scale ISO room
 - five large-scale test scenarios with 10 materials
 - plastic/cellulosic
 - with and without flame retardant

Introduction (1)

Prediction of fire growth and flame spread

- Goal: "Time to flashover"
- Realistic scenarios
- Simple models
 - few empirical parameters
 - bridge between small-scale tests and room predictions
 - which tests for these parameters?

Introduction (2)

- CFD based studies
 - comprehensive
 - fluid flow, turbulence, combustion, radiation and heat transfer
 - what level of detail is required in each sub-model?
 - appropriate balance of our effort
 - gas phase chemistry
 - solid phase pyrolysis
 - radiation
 - smoke
 - critical model components
 - "consistent level of crudeness"

Fundamentally-based flame spread model

- Implemented in SOFIE CFD code
 - Dr Xi Jiang (1999)
- Finite-thickness ablating solids
 - in-depth heat transfer
 - fuel consumption
- Volatilisation rate
 - surface vaporisation
 - in-depth solid pyrolysis

$$\dot{m}^{\prime\prime\prime} = A_s \rho_s e^{-E_s / (RT_s)} / L_s$$

• Di Blasi et al - 2nd IAFSS,1989

Model details

- Physical models
 - Transpiring wall functions
 - Low Reynolds number turbulence model (Lam and Bremhorst)
 - Eddy breakup combustion
 - Tesner soot model
 - Discrete transfer radiation model
- 2D simulations
 - 280 x 36 = 10k cells
 - 2 x 8 = 16 DT rays
 - 1 second timestep
 - 2 days run-time on 600 MHz machine

Model validation

- Chao & Fernandez-Pello CST,1983
 - wind-aided spread over PMMA
 - 0.6m x 0.076m
- 20 experiments
 - inflow turbulence
 - inflow velocity
 - inflow oxygen mass fraction
 - geometry (floor/ceiling)

u'/U=10%, m_{ox}=0.5, U=1.0m/s, floor

0.40

0.27

0.13

0.00

velocity and mixture fraction

(a)

u'/U=10%, m_{ox}=0.5, U=1.0m/s, floor

Effect of orientation

u'/U=5-20%, m_{ox}=0.5, U=1.0m/s, floor

Flame spread model for building fires

- "Department for Transport, Local Government & the Regions"
 - 1997-2001 project
- Large-scale scenarios
 - rooms
 - façades
 - whole buildings
- Realistic building products
 - with and without fire retardant
 - plastic and cellulosic
- Life safety
 - time to incapacitation (includes carbon monoxide, smoke)

Simple flame spread model

- Implemented in SOFIE CFD code
 - Dr I Aksit [Aksit et al 3rd FEH,2000]
- Time to ignition
 - critical accumulated net incident heat flux:

$$E_{critical} = \sum_{0}^{t_{ignition}} \max(\dot{q}_{net} - \dot{q}_{net}, 0) \Delta t$$

- Volatilisation rate
 - heat of gasification
 - function of the accumulated mass loss (hg1, hg2 parameters)
- Includes burnout but neglects deformation
- Applied "macroscopically" in large cells

Physical and numerical models

- Physical models
 - Flamelet combustion model
 - multiple radiative loss libraries
 - carbon monoxide
 - Flamelet soot model (Moss et al 22nd CS,1988)
 - Discrete transfer radiation model
- Numerical simulations (deliberately "coarse"!)
 - 20 x 20 x 15 = 60k cells
 - 2 x 4 = 8 DT rays
 - 1 second timestep
 - 2 hour run-time on 600 MHz machine

Non-adiabatic flamelets

- Flamelets
 - various fuels
 - methane, ethylene, MMA, heptane
 - Soot flamelet generated
 - constants from Moss & Stewart FSJ,1998
 - surface growth term scaled by soot yield [Tewarson SFPE, 1995]
 - Kinetic mechanism
 - Held et al CST,1997 41 species / 274 reactions
 - Seiser et al 28th CS,2000 160 species / 1540 reactions

Model validation

- Plume heat loss study
 - empirical correlations for plume growth
 - empirical heat loss measurements
- Half-scale ISO room
 - Pierce & Moss 3rd FEH, 2000
 - Toxic product predictions (CO and smoke)
- Large-scale tests on building materials
 - Smith et al Interflam, 2000
 - detailed measurements flame spread (TC's, video)
 - duct measurements of HRR, temperature and toxic products
 - heat flux measurements

Plume heat loss

Half-scale ISO room

Flamelet sensitivities

Calibration/validation of flame spread model

• Full-scale tests

	 Corner faç 	ade 7.2 x	3.6 x 2.4	m, 500l	<w< th=""><th></th></w<>	
	 Shaft 	2.2 x	3.5 x 4.9	m, 500l	×W	
	Duct	7.2 x	1.2 x 0.3	m, 300l	<w< th=""><th></th></w<>	
	Corridor	7.2 x	1.2 x 2.4	m, 300	κW	
	Room	3.6 x	2.4 x 2.4	m, 100-	-300kW	
•	10 materials					
		"Cellulosic"		"Plastic"		
Non-fire retarded		Ordinary particleboard Ordinary plywood (birch) Low density fibreboard		PUR foam panels with Al foil faces (Steel-clad EPS sandwich panel)		
Fire-retarded		FR chipboard		FR extruded polystyrene boards FR PVC		
	- Paper-faced gypsum plasterboard					

Acoustic mineral fibre tiles

Calibration/validation of flame spread model

- Flame spread model parameters calibrated for corner façade
 - critical net accumulated heat flux
 - minimum flux
 - heat of gasification
 - scaling factors (function of accumulated mass loss)
 - material and char densities
 - char thickness
 - Model applied "predictively" to other scenarios
 - without changing any of the model constants!!!

Corner façade: particleboard

Corner façade: particleboard

Corner façade: particleboard

Corner façade: particleboard

Corner façade: PVC

Corner façade: Sandwich Panel

500s

Duct: transition to external flaming

Shaft: EPS

Room

Room: PIR post-test

Corridor: EPS

70s

the statement of the statement

Full-scale tests

Comparison of pyrolysis velocities in corner wall, corridor, duct & shaft

Soot effects

Effect of soot scaling on soot concentration 7 8 \rightarrow no soot 6 -A-soot x0.25 \rightarrow soot x1 5 F Ø - soot x5 Height (m) 4 đ 3 2 0 0 20 40 60 Soot concentration normalised by mixture fraction (-) Effect of soot scaling on local gas temperature 7 \rightarrow no soot 6 -A-soot x0.25 ----- soot x1 5 - soot x5 Height (m) 4 3 2 1 0 400 600 800 1000 1200 1400 Temperature (°C) Effect of soot scaling on total incident heat flux 7 \rightarrow no soot 6 -<u></u>∆- soot x0.25 -↔ soot x1 5 - soot x5 Height (m) 4 3 2 Ð 0 0 10 20 30 40 50 60 Total incident heat flux (kW/m2)

Predictive use of model - corridor

on soot concentration iso-surface (20% stoichiometric fuel carbon)

Predictive use of model - room

on soot concentration iso-surface (10% stoichiometric fuel carbon)

Further work

- Careful validation for whole set of tests
 - special consideration of more vitiated cases
- Sensitivity studies on numerical parameters (e.g. grid!)
- Need good representation of wood chemistry
 - would like to generate a new flamelet
- Development of a CFD treatment for multi-fuel problems!
 - currently treat everything as a single pure fuel

Conclusions (1)

- Comprehensive fire growth and toxic products model
 - predictive capability depends on comprehensive nature
 - simple flame spread model capitalises on detailed gas-phase info
 - fire growth behaviour intimately linked to gas-phase chemistry
 - strong sensitivity to soot predictions
- Flame spread model
 - very crude
 - but reproduces fire growth phenomena sufficiently accurately in some cases
- Flamelet model
 - can reproduce smoke concentrations in these cases
 - scale soot surface growth by measured yields
 - can reproduce carbon monoxide concentration for plastics in these cases
 - need another flamelet representing a typical "wood chemistry"

Conclusions (2)

- Requires material properties from tests
 - critical net accumulated heat flux
 - minimum flux
 - heat of gasification
 - scaling factors (function of accumulated mass loss)
 - material and char densities
 - char thickness
 - We don't really mind which tests you do!