
Using Numerical Grid Generation to Facilitate 3D

Visualization of Complicated Mathematical Functions

Bonita Saunders, Qiming Wang

Abstract

Although virtually unchanged since its initial publication in 1964, the National Bureau of Standards (NBS)
Handbook of Mathematical Functions continues to be widely used by the mathematical and scientific com-
munity. As a result, the National Institute of Standards and Technology (NIST), the successor organization
to NBS, is engaged in a large scale project to update and expand the handbook and disseminate it on
the World Wide Web as the NIST Digital Library of Mathematical Functions (DLMF). A key feature of
the DLMF will be 3D graphics and visualization capabilities that allow a user to interactively examine the
unique features of complicated mathematical functions. The authors have discovered that many commercial
packages produce adequate surface plots of functions, but improperly clip the surface when the plot must
be rescaled to emphasize interesting features. This paper discusses some initial results in using a “contour”
fitted mesh to generate an appropriately clipped surface plot and examines some of the issues involved in
extending the technique to more complicated surfaces.

Keywords: grid generation, 3D clipping, special functions, scientific visualization, virtual re-
ality modeling language

1 Introduction

The Handbook of Mathematical Functions [1] is a
well known publication of the National Bureau of
Standards, the predecessor organization of the Na-
tional Institute of Standards and Technology (NIST).
Although there have been no major revisions since its
initial publication in 1964, it continues to be widely
sold by the US Government Printing Office, Dover,
and many other commercial publishers. The contin-
ued interest in the handbook plus such factors as

• the clear advantages of electronic media for
the construction and communication of ideas
in technical fields;

• advances in basic mathematical and computa-
tional techniques associated with the classical
special functions of the mathematical and phys-
ical sciences; and

• the identification of new functions having
widespread importance in emerging applica-
tions

have led NIST to embark on a massive project to
update and expand the current handbook and dis-
seminate it in digital format on the World Wide
Web; see Lozier [2] for an early description and
http://dlmf.nist.gov/ for current information on
this new project. The new entity, which is being
called the Digital Library of Mathematical

1

http://dlmf.nist.gov/

Functions (DLMF), will make full use of advanced
communications and computational resources. A key
feature of the DLMF will be dynamic 3D visualiza-
tions of special functions that allow a user to conduct
interactive explorations of the relationship between a
function’s mathematical or numerical properties and
its graphical representations.

While constructing 3D graphical representations for
a sample chapter of a mockup version of the DLMF,
the authors discovered that problems may arise when
graphs must be rescaled to emphasize peaks, zeros,
poles and other interesting features. Many packages
fail to clip the surfaces properly. Some produce ragged
uneven edges and others create a misleading “shelf”
effect. To address this problem, the authors are study-
ing the feasibility of obtaining clipped surfaces by
computing complicated mathematical functions over
“contour fitted” meshes. This paper examines the
clipping problem, looks at some of the results ob-
tained to date for the prototype chapter, and offers
some suggestions on what might be done for multi-
connected and more complicated domains.

2 3D Visualization in a Web-
Based Digital Library

Like the original handbook, the DLMF is designed
primarily for the use of scientists. A secondary, but
important goal is to reach a much broader audience
by making aspects of the DLMF accessible to educa-
tors and students. An obvious way to support these
dual goals is to create 3D visualizations that are both
exciting and informative. Fortunately, the graphical
representations of many special functions are so com-
plex and interesting that by designing visualizations
that illustrate the features of interest to scientists we
automatically produce displays that grab the atten-
tion of less technically oriented viewers.

2.1 Static and Dynamic Visualizations
of Special Functions

For both the still images and interactive visualiza-
tions in the DLMF we begin with a preprocessing
stage, using available packages such as MATLAB and
MATHEMATICA to plot the data so that we can
examine the graphical representation and adjust the
scaling to bring out interesting features. While the
still images are stored in GIF or POSTSCRIPT for-
mat, dynamic visualizations are obtained by convert-
ing the data to VRML (Virtual Reality Modeling

Language) format. VRML [3] is a standard 3D file
format for describing the behavior and geometry of
a 3D virtual world, or scene. Its accessibility on the
Internet and interactive capabilities make it an ideal
candidate for this development work. Since all as-
pects of the DLMF will be designed to be accessible
to as large an audience as possible, users must not
be required to purchase proprietary software in order
to use any of its features. VRML browser plugins
are available by free download for a variety of plat-
forms. Still, it is not a foregone conclusion that the
final version of the DLMF will use VRML. This may
depend on whether VRML browsers continue to be
readily available. Also, we are looking at alternatives
to VRML such as JAVA 3D which would not require
the download of a browser, but still would require the
user to obtain the graphics package. In our mockup
DLMF we give the user the option of viewing a still
3D image if a VRML browser is not available.

Figure 1 shows a VRML display from the prototype
chapter on Airy functions in our mockup Web site.
The Airy functions, Ai and Bi, occur in quantum me-
chanics, in the study of wave diffraction, electromag-
netism, and other areas of physics and engineering,
and arise as solutions of the second order differential
equation

d2w

dz2
= zw

where z is complex. The display shows |Ai(z)|. The
browser controls allow the user to rotate the figure,
zoom in and out, and move the figure in an arbitrary
direction.

Figure 1: VRML display on CosmoPlayer.

2

The preprocessing of the data mentioned earlier is
necessary because VRML is not designed to do ex-
tensive computations. Therefore, any adjustments
to the range, rescaling, and clipping are done before
the data is transformed to VRML format. However,
VRML does allow one to add custom designed fea-
tures to the browser. One such feature we have added
is a cutting plane control panel which gives the user
the capability to generate cutting planes through the
surface. By clicking on the buttons on the control
panel the user can move the plane in sync with the
projected intersection curve, displayed on opposite
faces of the bounding box as shown in Figure 2. Com-
puting a surface over a structured grid nicely orders
the data points so that it is easier to design efficient
software that computes the intersection of the surface
with a plane.

Figure 2: VRML display with Y direction cutting
plane.

2.2 3D Clipping

In general, commercial packages, such as MATLAB
and MATHEMATICA, produce a default scaling of a
surface that is designed to give the best overall view.
However, when the function values vary widely over
the plotting domain, the default view may fail to show
interesting features such as zeros, poles, or saddle
points. In many cases adjusting the plotting domain
and rescaling the graph may be enough to empha-
size points of interest and produce an aesthetically
pleasing plot. This was true for most of the graphs
designed for our sample chapter on Airy functions
in the mockup DLMF. However, sometimes rescal-
ing the graph may cause some points to fall outside

the plotting range. In such a case the surface should
be clipped so that the outside points do not appear.
Commercial packages handle this situation in a va-
riety of ways. MATLAB performs 2D clipping well,
but has problems with 3D clipping. In some cases it
does not clip the surface at all, allowing it to extend
beyond the plotting range. MATHEMATICA clips
in a variety of ways depending on whether you use
Graphics3D, SurfaceGraphics, or the extra Extend-
Graphics packages [4]. SurfaceGraphics is designed
for surfaces that do not fold over, while Graphics3D
can be used to represent any 3D object. In both
cases the default method of clipping is to reset val-
ues outside the plotting range to the same constant.
This produces the misleading shelf effect seen in the
plot of |Bi(z)| over an equally spaced rectangular do-
main in Figure 3. This technique is extensively used
by William J. Thompson in Atlas for Computing
Mathematical Functions [5]. The user has the

-2

0

2
-4

-2

0

2

4

0

1

2

3

4

5

-2

0

2

Out[1]= � SurfaceGraphics �

mathshelf.nb 1

Figure 3: Clipped version of |Bi(z)| using Mathemat-
ica.

option of leaving out the clipped areas, but that pro-
duces jagged edges that are equally misleading as seen
in Figure 4.

By resetting the plotting range after drawing the sur-
face, we obtained the smoothly clipped surface in Fig-
ure 5 using Graphics3D, but not SurfaceGraphics. A
similar result can be obtained by using the Clip3D
routine in the ExtendGraphics package. Although
the clipped surface looks very good, Figure 6 shows
that when the data is converted to VRML format the

3

-2

0

2
-4

-2

0

2

4

0

1

2

3

4

5

-2

0

2

Out[2]= � SurfaceGraphics �

mathshelf.nb 2

Figure 4: Clipped version of |Bi(z)| with shelf deleted.

shading appears unsmooth with harsh shadows. The
surface shading is based on the height of the surface
at that grid point. The grid lines in Figure 4 rise at
sharp angles toward the top of the surface. When the
data is converted to VRML, the scaling used makes
the angles even sharper. If the grid lines were shown
on the VRML surface, one would see that the col-
ors associated with the grid points change quickly as
one traces a grid line to the top of the surface. This
is probably the reason for the “ugly” shading. We
will show that plotting the function over our contour
fitted grid decreases this problem significantly.

3 Contour Fitted Grid Genera-
tion

The basic idea behind 3D visualization using contour
fitted grid generation is to compute the function over
a grid bounded by a contour of the function rather
than over a uniform rectangular grid. The idea is
simple, but the ease or difficulty of implementing the
technique depends on several factors. The contour
map of the function may be very complex. In gen-
eral, contours representing the same height may not
be connected. Therefore a decision has to be made as
to the best way to connect the curves so that a con-
tinuous boundary is formed. Also, the domain may
be quite complicated. For example, the domain of the
gamma function in the complex plane contains sev-

-2

0

2 -4

-2

0

2

4

0

1

2

3

4

5

-2

0

2

Out[4]= � Graphics3D �

mathclip2.nb 2

Figure 5: Clipped version of |Bi(z)| using Mathemat-
ica Graphics3D object.

eral holes where poles are located. Other functions
have zeros whose exact locations must be plotted, or
a domain of disconnected parts. Still others may have
a combination of complicated features. It is clear that
the grid generation problem may be quite simple or
extremely complex. Hence, it would be difficult to
design techniques that cover all situations. In this
section we describe the technique used to clip sur-
faces in the prototype chapter and discuss the results
obtained.

3.1 Technique

The first step is to determine what features should
be emphasized and what plotting range and domain
size are needed to bring out the features. For the
DLMF this may actually be a very time consuming
process, requiring close collaboration with the author
of the chapter for which the visualizations are being
designed. The authors of the DLMF will be world
renowned specialists in the field of special functions
located both inside and outside the US. Most com-
munication will have to be done electronically, but it
is expected that at some point the authors will spend
some time at NIST working on the project.

The next step is to compute a contour map of the
function based on the endpoints of the plotting range
chosen. A continuous outer boundary and interior
boundaries, if necessary, are then designed with the

4

Figure 6: VRML display of |Bi(z)| using Mathemat-
ica data.

contour curves as the major components.

At this point the problem is choosing a method to
generate a boundary fitted grid. For extremely com-
plicated domains, an unstructured method may be re-
quired, but for simpler domains, structured methods
are desirable. The reason is that nicely ordered grid
lines will produce a smoothly shaded surface when
the VRML conversion is done. Also, with structured
grids more efficient code can be designed for the com-
putation and movement of cutting planes. The next
section examines the specific results obtained for the
sample chapter.

3.2 Results

Fortunately, in the sample chapter developed for the
mockup DLMF only Airy functions |Bi(z)| and |Bi′(z)|
needed clipping. Suitable plots of the other ten sur-
faces were obtained by adjusting the plotting range
and size of the rectangular computational domain.
Since the contour map and features of the two func-
tions are quite similar, only the results for |Bi′(z)|
are discussed. Figure 7 shows a plot of |Bi′(z)| with
the default plotting range selected by MATLAB. The
range is so large that the key features of the function
are essentially damped out. After conferring with the
author of the Airy function chapter and experiment-
ing with various plotting ranges and mesh sizes, it was
determined that a plotting range of 0 ≤ Z ≤ 5 was
sufficient if the computational mesh was restricted to
−4.5 ≤ X ≤ 2.5,−3.5 ≤ Y ≤ 3.5.

Figure 8 shows the Z = 5 contour curves for the

−20
−15

−10
−5

0
5

−1.5

−1

−0.5

0

0.5

1

1.5
0

200

400

600

800

1000

XY

Z

Figure 7: Default plot of |Bi′(z)| using MATLAB.

function. After the contours were connected to the

−4 −3 −2 −1 0 1 2

−3

−2

−1

0

1

2

3

Figure 8: Contour curves where Z=5.

sides of a rectangle to form a continuous boundary,
a simple transfinite interpolation map was used to
create the boundary fitted mesh shown in Figure 9.
Although computing |Bi′(z)| over the mesh would
produce a smoothly clipped surface, there would still
be no guarantee that the zeros of the function would
fall on the grid lines. On the contour fitted domain
|Bi′(z)| has two real zeros and two complex conju-
gate pairs of zeros. The transfinite mapping would
map some point on the square to each zero loca-
tion, but determining which points is not a simple
task. One possibility would be to design a routine
that searches for the grid cell containing the zero
and then use interpolation to construct grid lines
through the point. Instead, a more exact technique
was used. After drawing rough curves through the
zeros, cardinal spline blending functions [6]were used

5

-4

-3

-2

-1

0

1

2

3

4

-5 -4 -3 -2 -1 0 1 2 3

Figure 9: Contour mesh.

to construct a transfinite mapping that interpolates
not only the outer contour boundary, but also the
curves that pass through the zeros. Using this tech-
nique one can choose which points on the square will
be mapped to a particular zero. Figure 10 shows the
contour mesh obtained with this mapping. An advan-
tage of using a transfinite mapping is that the number
of meshpoints can be easily decreased or increased
by changing the number of points evaluated on the
square. The only requirement is that the mapping
always include an evaluation at points known to map
to zeros. Of course this may effect the smoothness of
the grid as seen in Figure 10, but for this application
grid smoothness is not as critical as it would be for a
grid being used to compute the numerical solution of
partial differential equations.

-4

-3

-2

-1

0

1

2

3

4

-5 -4 -3 -2 -1 0 1 2 3

Figure 10: Contour mesh with extra interpolated
curves.

Figures 11 and 12 show the effectiveness of the tech-
nique. In Figure 11, |Bi′(z)| was computed over an
equally spaced rectangular domain. The sharp cusps
were obtained by adding extra grid lines that inter-
sected the zeros of the function. The surface was

clipped by setting all points outside the plotting range
equal to 5, thus producing the shelf effect discussed
earlier. The surface suffers from the same angled grid
line problem seen in Figures 5 and 6 for |Bi(z)|, pro-
ducing non-smooth shading near the top of the sur-
face. Figure 12 was computed over the contour fitted
mesh in Figure 10. The surface is smoothly clipped
at Z = 5. The sharp cusps show that grid lines accu-
rately intersect the zeros. Also, the shading is much
smoother than what is seen in Figure 11, or even in
the clipped surface from Mathematica data shown in
Figure 6. This is probably because parts of the grid
lines roughly look like contours. Consequently, one
would expect that the projection of the grid onto the
surface would not show sharply angled grid lines.

Figure 11: |Bi′(z)|, Modulus of the derivative of
Bi(z).

Figure 12: Clipped version of |Bi′(z)|.

Figure 13 shows a view of the clipped surface from

6

the top. The darkened circles show the locations of
the zeros. Figure 14 shows a cutting plane moving

Figure 13: Top view of clipped |Bi′(z)|.

through |Bi′(z)| in the X direction. Currently, the
mockup Web site only allows the display of cutting
planes in the X or Y direction, but work is in progress
on the development of more general software allowing
cutting planes perpendicular to all coordinate direc-
tions.

Figure 14: VRML display with X direction cutting
plane.

Although we were able to use simple structured grids
for our functions, unstructured or multi-block grids
may be needed for complex multi-connected domains.
Also, whenever possible we want to use available pack-
ages. A package may produce an unsatisfactory clip-
ping of one function, but produce an acceptable one
of another.

4 Conclusions

The use of contour fitted meshes appears to be an ef-
fective technique for generating appropriately clipped
surface plots. The development of clear and informa-
tive 3D visualizations for the NIST DLMF project
will provide us with continued opportunities and mo-
tivation to explore the clipping problem. Also, after
looking at off-the-shelf packages, it appears that re-
search in this area would be of interest to commer-
cial developers of 3D graphics packages. The problem
is clearly a complex one, since the domains of com-
plicated functions can vary from the very simple to
multi-connected domains with holes. This makes it
difficult to design techniques that work for all cases.
Somewhat simple structured grids sufficed for the
functions in the sample chapter, but more than likely
unstructured grids will be needed when we move on
to more complex domains.

For the particular case of the DLMF project, the
work is further complicated because close collabora-
tion is required between DLMF project members de-
signing and implementing the visualizations and the
authors of the DLMF chapters in order to determine
the proper plotting range and the locations of zeros,
poles, saddle points and other features that should
be emphasized. Each chapter will produce new chal-
lenges, but the hope is that much of what we are
learning now can be easily applied to creating suit-
able visualizations for the other chapters.

Disclaimer

Identification of commercial products in this paper
does not imply recommendation or endorsement by
NIST.

References

[1] M. Abramowitz and I.A. Stegun, editors. Hand-
book of Mathematical Functions with For-
mulas, Graphs and Mathematical Tables,
Vol. 55, National Bureau of Standards Applied
Mathematics Series. U.S. Government Printing
Office, Washington, D.C., 1964.

[2] D.W. Lozier, “Toward a Revised NBS Handbook
of Mathematical Functions,” NISTIR 6072,
National Institute of Standards and Technology,
September 1997.

7

[3] VRML. The Virtual Reality Modeling Lan-
guage, International Standard ISO/IEC 14772-
1:1997.

[4] T. Wickham-Jones, Mathematica Graphics,
Springer-Verlag, New York, 1994.

[5] W.J. Thompson, Atlas for Computing
Mathematical Functions, John Wiley and
Sons, Inc., New York, 1997, pp. 414-432.

[6] G. Birkhoff, C. de Boor, “Error Bounds for
Spline Interpolation,” Journal of Mathematics
and Mechanics, Vol. 13, No. 5 (1964), pp. 827-
835.

8

	Introduction
	3D Visualization in a Web-Based Digital Library
	Static and Dynamic Visualizations of Special Functions
	3D Clipping

	Contour Fitted Grid Generation
	Technique
	Results

	Conclusions

