Water Resources of North Dakota

Frequently Asked Questions

  1. How do I obtain streamflow data?
  2. What is stage and how does it relate to depth or discharge?
  3. During the winter when streams are ice covered, the stream discharge for my river is not shown on the real-time streamflow page. Why not?
  4. How are data collected at U.S. Geological Survey gaging stations transferred automatically to the USGS web site?
  5. How are floods predicted?
  6. Why is Devils Lake rising?
  7. What is the current level of Devils Lake and how do I find out more about Devils Lake?
  8. Why does the Red River flow north?
  9. What does a hydrologist do?
  10. How do I order a U.S. Geological Survey publication?
  11. How do I obtain information on projects and activities of the U.S. Geological Survey in North Dakota?
  12. I can't find the information I want on this web site.  What should I do?
  13. How do I purchase maps from the U.S. Geological Survey?
  14. How do I import USGS streamflow or stage data into a Microsoft Excel spreadsheet?


Click on the drop down box below and choose a category.   Netscape users need to press the Go button.
To use this form, visitors need a browser that is capable of processing VBScript or JavaScript.

 

Alternative Text-based List of FAQ's


1. How do I obtain streamflow data?

These data can be obtained from the USGS web site at http://waterdata.usgs.gov/nd/nwis/current/?type=flow.  Links are provided for each of the gaging stations in North Dakota.  If you have problems accessing these data, e-mail gs-w-nd_NWISWeb_Data_Inquiries@usgs.gov or call or write the North Dakota District Data Section Chief:

Steve Robinson
U.S. Geological Survey
821 E. Interstate Avenue
Bismarck, ND 58503-1199
Phone: (701) 250-7404
Fax: (701) 250-7492

Back to Top

2. What is stage and how does it relate to depth or discharge?

Stage is the elevation of the water surface of a river, stream, or lake and is measured from an arbitrary datum that usually is below the elevation of the lowest expected stage or near the stream bottom. Therefore, stage may be close to the depth of water at the gage, depending on where the arbitrary "zero" of the datum is placed. Mean sea level elevation of the water surface is calculated by adding the recorded stage at the gage to the elevation of the gage datum, where it has been determined.

A stage-discharge relation, which is used continuously to compute discharge, in cubic feet per second, from stage (gage height), is developed for each station. The relation is developed with time by correlating stage and discharge measurements made during a range of flows. The relation varies from station to station and from time to time and it can shift with shifting sediment in the channel, growth and decay of weeds in the water, or ice cover in the winter. If a logjam or icejam exists in the channel, the relation may not apply at all.

Back to Top

3. During the winter when streams are ice covered, the stream discharge for my river is not shown on the real-time streamflow page. Why not?

Because many North Dakota rivers and lakes are frozen during the winter,  the discharges computed from the stage-discharge relation (see Question 2) are meaningless. Therefore, discharges are not shown on our web site during the ice-affected period because the discharges are not correct and would be misleading. After the ice goes out in the spring, current discharge is again shown for these rivers and lakes.

Back to Top

4. How are data collected at USGS gaging stations transferred automatically to the USGS web site?

The gaging stations for which data appear on the Current Streamflow Conditions section of our web site have satellite telemetry that basically works like this--An electronic data logger, using a 12-volt battery supply, monitors and records gage heights at selected intervals (usually 15 minutes). The data are periodically transmitted to a satellite in geo-stationary orbit over the equator. The transmitter is called a GOES radio transmitter, and USGS stations typically transmit data every 4 hours. The data are relayed via the satellite to a groundstation in Maryland and then from Maryland via satellite to a USGS groundstation in Denver, Colorado.  The data are transmitted via landline to our computer system. USGS software decodes the data, which often (but not always) arrive in binary format, and puts the data in a format that our hydrologic-data processing software (ADAPS) can recognize. The gage-height data are stored and manipulated to provide streamflow in cubic feet per second.  USGS website software continuously accesses the various data files (site information, gage height, and discharge) and portrays the information graphically. Most of the data-logging systems use 12-volt power from a wet-cell battery with a solar panel recharging system. Data also can be transmitted via cellular and FM frequencies, but both require direct line of sight to a repeater.

Back to Top

5. How are floods predicted?

Several types of data can be collected to assist hydrologists in predicting when and where floods might occur. The first and most important is the amount of rainfall occurring on a realtime (actual) basis, and second is the rate of change in river stage on a realtime basis.  The rate of change can help indicate the severity and immediacy of the threat. Data about the type of storm producing the moisture, such as duration, intensity, and areal extent, are valuable for determining the possible severity of the flooding, and data about the characteristics of a river's drainage basin, such as soil-moisture conditions, ground temperature, snowpack, topography, vegetation cover, and impermeable land area, are valuable for predicting how extensive and damaging an impending flood might become.

There are two basic kinds of floods, flash floods and the more widespread river flooding. Flash floods generally cause greater loss of life, and river floods generally cause greater loss of property. A flash flood occurs when runoff from excessive rainfall causes a rapid rise in the stage of a stream or fills a normally dry channel. Flash floods are more common in areas that have a dry climate and rocky terrain because the lack of soil or vegetation allows torrential rains (typically from summer thunderstorms) to flow overland rather than infiltrate into the ground. River floods generally are more common for larger rivers in areas that have a wet climate and occur when excessive runoff from longer-lasting rainstorms (such as from a cold front) and sometimes from melting snow causes a slow water-level rise and occur over a large area. Floods also can be caused by ice jams on a river or high tides. Most floods can be linked to a storm of some kind.

The National Weather Service collects and interprets rainfall data throughout the United States and issues flood watches and warnings as appropriate. The National Weather Service uses statistical models and flood histories to predict the possible results of expected storms. 

The USGS maintains a network of streamflow-gaging stations throughout the country for which discharge and stage are monitored. Flood estimation maps generally are produced by estimating a flood with a certain recurrence interval or probability and simulating the inundation levels on the basis of flood-plain and channel characteristics.

More information on floods is available from the National Weather Service Hydrologic Information Center at http://www.nws.noaa.gov/oh/hic and from the USGS national home page at http://water.usgs.gov.  For more information on real-time flood monitoring, please see USGS Fact Sheet FS-209-95, which is available on-line at http://water.usgs.gov/public/wid/FS_209-95/mason-weiger.html.

Back to Top

6. Why is Devils Lake rising?

According to the U.S. Geological Survey Fact Sheet, Climatology and Potential Effects of an Emergency Outlet, Devils Lake Basin, North Dakota:

Since the end of glaciation about 10,000 years ago, Devils Lake has fluctuated between spilling and being dry. Research by the North Dakota Geological Survey indicates Devils Lake has overflowed into the Sheyenne River at least twice during the past 4,000 years and has spilled into the Stump Lakes several times (Bluemle, 1991; Murphy and others, 1997). John Bluemle, North Dakota State Geologist, concluded the natural condition for Devils Lake is either rising or falling, and the lake should not be expected to remain at any elevation for a long period of time.

Back to Top

7. What is the current level of Devils Lake and how do I find out more about Devils Lake?

Current gage height data for Devils Lake are available through the online National Water Information System (NWISWeb) at URL http://waterdata.usgs.gov/nd/nwis/uv/?site_no=05056500. The number of days displayed can be selected by changing the value in the text box labeled Days and clicking on the Get Data button. Data can be displayed for 1 to 31 days using this method.

To display data for more than 31 days, go to the blue bar with white text saying Available data for this site. Click on the down arrow to the right of the white textbox with the text Real-time in it. Choose Recent Daily and then, depending on your Internet browser, click on the Go button. Below the blue bar, you will have three boxes labeled, Available Parameters, Output Format, and Days. The number of days can be changed to any whole number 1 through 730. Click on the Get Data button to access the data.

Additional information for Devils Lake is summarized at http://nd.water.usgs.gov/devilslake/. This web page has links to the data in NWISWeb as well as links to the following:

The summary page also can be accessed by going to the main web page, http://nd.water.usgs.gov, clicking on More Hydrologic Data, and then clicking on Summary of Devils Lake Data.

Back to Top

8. Why does the Red River flow north?

Lake Agassiz, a lake formed by melting glaciers, covered much of what is today western Minnesota, eastern North Dakota, southern Manitoba, and southwestern Ontario from about 12,500 years ago to about 7,500 years ago. Lake Agassiz virtually disappeared, leaving a few remnants like Minnesota's Upper and Lower Red Lakes and Lake of the Woods and Canada's Lake Winnipeg, Lake Manitoba, and Lake Winnipegosis.  Lake Agassiz also left a fertile, flat plain that drains to the north, ultimately to Hudson Bay. The Red River flows north through this plain to Lake Winnipeg because, despite the plain being very flat, a difference in elevation exists along the route of the river, making the line between southeastern North Dakota and Lake Winnipeg slightly downhill. At the confluence of the Bois de Sioux and Otter Tail Rivers near Wahpeton, North Dakota, where the Red River begins, the elevation is 943 feet above mean sea level. The elevation of Lake Winnipeg is 714 feet above mean sea level.  CLICK HERE TO SEE A MAP OF THE ELEVATION CHANGE.

This web site has a page at http://nd.water.usgs.gov/pubs/key/redriver.html with links to U.S. Geological Survey information about the Red River and its basin, including publications, hydrographs, and pictures.

Back to Top

9. What does a hydrologist do?

Hydrologists study all aspects of water and its relation to geography, geology, biology, and chemistry. Of great interest to many hydrologists is finding new water resources and keeping those water resources viable for current and future use.  Interest also is focused on how to keep our streams, lakes, reservoirs, and subsurface water supplies from being polluted and on how to clean up the water that already has been contaminated. As scientists, hydrologists are very interested in how water moves through the hydrologic cycle and where in the cycle water is most vulnerable to degradation. Hydrologists use many tools, from buckets to mass spectrometers, to do their work, and new tools are being developed every day. Computers undoubtedly are the most used tool. A description of hydrology and what hydrologists do can be found at http://ut.water.usgs.gov/infores/hydrology.primer.html.

Back to Top

10. How do I order a USGS publication?

The publications section of our web site explains how to order publications.  Please visit that page at http://nd.water.usgs.gov/pubs/getpub.html.

Back to Top

11. How do I obtain information on projects and activities of the U.S. Geological Survey in North Dakota?

We have an online publication detailing U.S. Geological Survey programs in North Dakota.  The publication is available at http://nd.water.usgs.gov/pubs/fs/fs03599/index.html.  You may also search our web site for subjects related to your specific interests by going to http://nd.water.usgs.gov/index/search.html.  That page also has an option which will allow you to search all U.S. Geological Survey web sites.

Back to Top

12. I can't find the information I want on this web site.  What should I do?

First, visit our sitemap at http://nd.water.usgs.gov/index/sitemap.html.  The sitemap outlines what is on this web site.  If you do not find the subject of interest there, try searching our web site at http://nd.water.usgs.gov/index/search.html.  At any time during your search for information, please feel free to contact our office for help:

U.S. Geological Survey
821 E. Interstate Avenue
Bismarck, ND 58503-1199
Phone: (701) 250-7400
Fax: (701) 250-7492
Office Hours: 8:00 a.m. to 4:30 p.m. CST

Back to Top

13. How do I purchase maps from the U.S. Geological Survey?

Visit the web page Ordering U.S. Geological Survey Products for a list of the many options for obtaining maps or call 1-888-ASK-USGS (1-888-275-8747).

Back to Top

14. How do I import USGS streamflow or stage data into a Microsoft Excel spreadsheet?

Note: The following instructions are based on Microsoft Internet Explorer 6 and Microsoft Excel 2000. Commands may vary for other browsers and versions of Excel.

There are many ways to import data into an Excel spreadsheet. One method is to use an Excel web query. The web query instructions refer to a sample file called SampleWebQuery.xls that may be downloaded.

To download the sample file, right click on the underlined filename to the right, choose “Save Target As…”, select the directory on your computer system where you would like to save the file, and click save.

SampleWebQuery.xls

The sample file contains 7 days of data for the Souris River near Sherwood, North Dakota.  There are two worksheets in the file.  One worksheet is titled Web Query Tab Separated Data and the other is titled Web Query Table Data.  Both worksheets are explained below.

Go to the desired station in the online National Water Information System (NWISWeb).  For example, for the Souris River near Sherwood, go to http://nwis.waterdata.usgs.gov/nd/nwis/uv/?site_no=05114000.  Change the drop down box labeled Output Format to Tab-Separated.  Change the days value to the desired number of days.  Click the Get Data button to the right.  You will then get a page such as http://nwis.waterdata.usgs.gov/nd/nwis/uv?format=rdb&period=7&site_no=05114000.

Open a new Excel document.  Click on Data on the main menu, then choose Get External Data..., and click on New Web Query.  Copy the URL, such as http://nwis.waterdata.usgs.gov/nd/nwis/uv?format=rdb&period=7&site_no=05114000, from the Internet data page into the box under step 1 in the New Web Query dialog box.  Then click OK at the bottom of the dialog box.  Excel then asks where you want to put the data.  Click in cell A1 or in any other desired cell.  Click OK.  It may take a few seconds to connect and download the data.  Excel will display the data including all the header information.  You will need to scroll down to see the actual data, but the data will be separated into columns that can be used for Excel calculations.

A nice feature of the web query is that it can be rerun to get updated data.  For example, to update the data in the sample file, click on Data on the main menu of Excel, then click on Refresh Data.  This refreshes the page with the most recent data for the time period specified.  Note, this does not add another day's data to the file.  Rather, it replaces the data with the new data set.

The tab-separated method works well but includes a great deal of header information.  Therefore, another method is to retrieve the data from an NWISWeb table rather than an NWISWeb text file.  To use this method, go to the desired station in NWISWeb.  Change the box labeled Output Format to Table, change the number of days if necessary, and click the Get Data button.  A page such as the following is displayed: http://nwis.waterdata.usgs.gov/nd/nwis/uv?format=html&period=7&site_no=05114000.

Open a new Excel document.  Click on Data on the main menu, choose Get External Data..., then click on New Web Query.  Copy the URL from the Internet data page into the box under step 1 in the New Web Query dialog box.  Under step 2, select One or more specific tables on the page and in the box below type in the number 5.  Then click OK.  Excel will ask where to put the data.  Click in cell A1 or in any other desired cell.  Click OK.  Again, it may take a few seconds to connect and download the data.  Excel will display the data including headers from the table.  These data can be refreshed as in the previous web query.

Back to Top

 

Return to North Dakota Home




U.S. Department of the Interior || U.S. Geological Survey
Maintainer: Webmaster
Last update: Wednesday, 08-Sep-2004 11:29:51 EDT
Privacy || Disclaimer|| Accessibility || FOIA
URL: http://nd.water.usgs.gov/index/faqs.html
Menlo Park, CA
FirstGov, "Your First Click to the U.S. Government"