

Association of American State Geologists

United States Geological Survey

National Cooperative Geologic Mapping Program

STATEMAP Component: States compete for federal matching funds for geologic mapping

ALABAMA

Contact information

Geological Survey of Alabama

State Geologist: Berry H. (Nick) Tew, Jr. (205/247-3679) STATEMAP Contact: W. Edward Osborne (205/247-3540) http://www.gsa.state.al.us/ U.S.G.S Geologic Mapping Program Office Program Coordinator: Peter T. Lyttle (703/648-6943) Associate Program Coordinator: Randall C. Orndorff (703/648-4316) http://ncgmp.usgs.gov/

SUMMARY OF STATEMAP GEOLOGIC MAPPING PROGRAM IN ALABAMA

Federal Fiscal Year	Project Title and Scale	State Dollars	Federal Dollars	Total Project Dollars
93	Leeds quadrangle, 1:24,000	\$20,000	\$20,000	\$40,000
94	Helena quadrangle, 1:24,000	\$17,608	\$17,608	\$35,216
95	Alabaster and Anniston quadrangles, 1:24,000	\$30,000	\$30,000	\$60,000
96	Anniston area, 1:24,000	\$66,293	\$66,293	\$132,586
97	Tuscaloosa-Birmingham corridor, 1:24,000	\$75,053	\$75,053	\$150,106
98	North Birmingham, Year 1, 1:24,000	\$51,456	\$51,456	\$102,912
99	North Birmingham, Year 2, 1:24,000	\$106,762	\$106,762	\$213,524
00	Shelby County, 1:24,000	\$102,870	\$102,870	\$205,740
01	Honda Plant site and Decatur area, Year 1, 1:24,000	\$127,550	\$127,550	\$255,100
02	Honda Plant site and Decatur area, Year 2, 1:24,000	\$144,853	\$144,853	\$289,706
03	Honda Plant site, Year 3 and Tuscaloosa, 1:24,000	\$85,176	\$85,176	\$170,352
04	I-459 and Fort Payne, 1:24,000	\$92,119	\$92,119	\$184,238
TOTALS		\$919,740	\$919,740	\$1,839,480

The STATEMAP part of the National Cooperative Geologic Mapping Program has significantly enhanced the Geological Survey of Alabama's (GSA) ability to produce new 1:24,000-scale geologic maps in Alabama. During the last twelve years, STATEMAP has supported geologic mapping in areas of rapid urbanization and development in the State. Areas to be mapped are prioritized by the GSA Geologic Mapping Advisory Committee, which includes geologic professionals representing State government (GSA, Alabama Department of Environmental Management, Department of Transportation), engineering firms, the aggregate industry, energy companies, consultants, and academia. Priority areas mapped or currently being mapped include the Birmingham-Shelby County area, Anniston area, Birmingham-Tuscaloosa Corridor, North Birmingham Corridor, the Honda Plant area, the Huntsville-Decatur area, the Tuscaloosa area, the I-459 Corridor, and the Fort Payne area. This new geologic map information is being used in a variety of ways in these rapidly urbanizing parts of the state. For example, geologic mapping aids in the identification of supplies of non-metallic mineral resources (sand, gravel, crushed stone, dimension stone) that support urban and infrastructure construction. In addition, the information will be incorporated into decision making on a variety of issues that include protecting groundwater, locating new municipal wells, siting waste-disposal facilities, and addressing a broad spectrum of land-use concerns. Of particular interest in many of these areas is the increase in the development of sinkholes associated with recent ground-water fluctuations. The geologic maps document the distribution of geologic formations most prone to sinkhole development, allowing more informed planning and development.