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How can a complex robotic vehicle get to where it needs to go, even if 
that means finding its way over big rocks, downed trees, or rubble? To 
do this, two major challenges must be solved: navigation and 
locomotion. That is, the vehicle needs to perceive its environment, 
and, it needs to send the right sequence of commands to its actuators 
so that it goes where it should. Today, I’ll tell you about ideas we 
have that will give us the leap in performance that’s needed so that 
robotic ground vehicles can both navigate and locomote through truly 
complex terrain.   

First, a little background: The task of establishing the current state 
of the art in autonomous navigation was the goal of the DARPA PerceptOR 
program which has just concluded. In PerceptOR, we sponsored research 
for improving autonomous navigation, and, we measured the effectiveness 
of the developed technologies. Tests were conducted off-road, in places 
that were full of obstacles. The tests were very hard. Here’s what we 
found: The vehicles did well in open environments, in woods, and even 
in tall grass. But when they had to traverse regions where there were 
thickets of large bushes or lots of fallen logs on the forest floor the 
vehicles often got into trouble. 

In PerceptOR, a vehicle first senses its environment using either 
stereo cameras, or ladar. Both the stereo and ladar systems provide 
range data that then yields a 3-D view of the region in front of the 
vehicle.  This 3-D view is then projected onto a 2-D cost map. Regions 
that are hard to cross, such as ditches or trees are colored pink. Safe 
regions are colored black. Using this map, a path planning algorithm 
decides where the vehicle should move next.  

The vehicle can get into trouble when it fails to identify an obstacle, 
like a ditch, or a big fallen log. Another failure mode is when the 
perception system identifies objects that it thinks are lethal 
obstacles, but in reality are not serious obstacles at all --- shallow 
puddles or tall weeds.  Researchers attempt to anticipate these 
circumstances by writing special software for the obstacles they think 
the vehicle will face. But there are so many different conditions that 
a vehicle can encounter, that relying on hand-tuning for every 
eventuality is not likely to get us the kind of performance we desire. 

There is another basic limitation in these perception methods. The 
ladar and the stereo systems can only get range information for objects 
that are within about 100 feet of the vehicle. This means that the 
vehicles are effectively near-sighted. The result is that they can 
become trapped in cul-de-sacs. We can help them out of these kinds of 
jams by providing terrain data from some other source, such as detailed 
topo maps. But this fix is not always practical. 

Thus, there are two basic problems in the current approach to 
autonomous navigation.  Hand-tuning, and near-sighted range-finding.  

Let me show you a system that doesn’t suffer from these shortcomings. 
It’s my dog Ben. He can run about 5 times faster than our robots. You 
can’t catch him.  Ben’s eyes are only about 2 inches apart, so he can’t 
get much distance information from stereo vision. Still, he doesn’t get 
caught in the same kinds of cul-de-sacs that trip up our robots.  I am 
not sure how Ben does his autonomous navigation, but I am absolutely 



sure he doesn’t use ladar. Ben provides an existence proof that high 
performance navigation systems can be made just using visual cues. 

Here’s a photo that I took on a hike in Colorado. It’s not hard for you 
to see the trail in this picture. You can do this with no stereo 
information. What you do have is an ability to understand images. To 
get a navigation system that really meets our needs I believe we need 
to break new ground in the task of image understanding. This doesn’t 
mean that we need to label every object in a scene. It just means that 
we need to be able to analyze an image and find a path.  

And, we must avoid hand-tuning and we must use our sensors to do more 
than range-finding.  
Here’s a possible approach to this challenge. Suppose we teleoperate a 
vehicle by looking at images transmitted from the cameras on the 
vehicle, and then send steering commands back to the vehicle. We can 
have the human drive the vehicle through all kinds of terrain. We keep 
a log of the video along with the associated human-generated steering 
commands. We can then use a machine learning method, called “learning 
from example” to teach a navigation system to emulate the human driver. 

Computer scientists have used this kind of learning procedure before on 
many different kinds of pattern recognition problems, often with great 
success. While the vehicle navigation task requires a massive amount  
to be learned, the good news is that with advances in computing power, 
a learning problem this complex might now be tractable.  In fact, in 
some recent experiments, a company called Net-Scale Technologies took a 
breadbox-size radio controlled monster truck and fitted it with a pair 
of small cameras. Using recorded videos and the associated commands 
from human teleoperators they trained a “convolutional neural net.”  

A convolutional neural net is not an ordinary multi-layer Perceptron. 
The network architecture is specifically designed to develop feature 
extractors for a task in machine vision. The architecture explicitly 
incorporates the 2-D nature of the task.  Weights are grouped to form 
convolution kernels and the weights are learned from the training data.  
After the neural net was trained, the vehicle was placed in a backyard 
in New Jersey and it had to find its way through an alley full of junk.   
In this video you see the images from the stereo cameras on the truck. 
Below these images, you can see a bar that represents the steering 
angle command that is sent to the steering actuator. The researcher who 
made this video says that the vehicle did a better job steering through 
these close quarters than he was able to do if he tried to control the 
vehicle himself. 

We have not yet tackled the nasty terrain that the PerceptOR vehicles 
had to deal with. But achieving and then surpassing PerceptOR 
performance will be a goal of a new joint program in DARPA’s IPTO and 
TTO. This new program will focus on learning navigation. Look for a new 
BAA on the IPTO and TTO websites later this month. In this new program 
learning algorithms will be developed on small, surrogate robotics 
vehicles and will then be ported to a vehicle we call “Spinner”. (Show 
Spinner-short video) 

 

Spinner was built by a team led by CMU in DARPA’s Unmanned Ground 
Combat Vehicle Program that is just now concluding. This program’s goal 



was to create robotic ground vehicles that have the physical ability to 
go over obstacles that would stop other vehicles in their weight class. 
Spinner has relatively simple locomotion control and as you can see in 
this video Spinner can readily deal with obstacles that would stop 
other vehicles. We think that leaned navigation, running on Spinner 
will give us a system with truly incredible autonomous mobility. 

Of course there are many cases where we might need a more subtle 
approach, where we pick our way through obstacles instead of crunching 
them. As an example, take a look at Retiarius.  Like Spinner, Retiarius 
was also built as part of DARPA’s Unmanned Ground Combat Vehicle 
program.  

Retiarius is about the size of a typical desk. It can get where it 
needs to go by careful use of its six wheels. As you can see, each 
wheel is at the end of an arm. Each arm can rotate through a full 360 
degrees. Retiarius is like a giant six-legged bug. Retiarius is 
representative of a whole class of vehicles that require simultaneous, 
independent adjustment of numerous actuator controls. Other vehicles of 
this sort include slithering robotic snakes, and robotic walking 
machines. If we had proper control mechanisms we could have vehicles 
that squeeze through tunnels like ferrets or rats, or run through tight 
spaces on four legs like dogs or even on two legs like people.  

Having so many controls gives these robots great potential but it makes 
them hard to operate.  Here, Retiarius appears to be high on a ridge in 
the White Mountains of New Hampshire, climbing across boulders. This is 
the kind of behavior we need from an autonomous vehicle.  But, I have 
to admit that I faked this image. I used Photoshop to paste an image of 
Retiarius onto one of my family vacation snapshots. I did it to show 
what we would like Retiarius to be able to do.  Retiarius has the 
physical capability to climb like this, but the control system is too 
primitive to allow us to do sustained climbing at any acceptable speed.   

As example of what Retiarius can do, here  is a sequence of photos 
showing how a surrogate Retiarius with the same geometry as the real 
vehicle can climb over a concrete barrier while controlled by a human 
operator.   

Thus, you can see that Retiarius has the physical ability to go over 
big obstacles. What it’s lacking is the smarts.  So we need to find a 
way for vehicles like Retiarius to locomote automatically.  This is a 
really exciting problem, and it will likely take a new DARPA program to 
find solutions. 

In nature, advanced animals learn to control their bodies. Our plan is 
to find ways to have robots learn control.  Here’s an illustration of 
what we want to do. We want to create a vehicle control function that 
takes as part of its input the current state of the vehicle including 
the position of all the arms, and the location and orientation of the 
chassis.  As output, our vehicle control function has commands that 
tell each individual vehicle actuator what to do.  

After each step, we evaluate its new position and configuration, and 
compare them to the desired position and then repeat the process, 
issuing a new set of commands.  We keep doing this until we get to 
where we want to go.  This kind of adaptive process works as long as 
each step usually moves us to our goal.  



What’s inside the vehicle control function box? Basically the system 
consists of some sort of huge function approximater that takes all 
different combinations of the input state variables, including general 
information about where the vehicle should go, and generates the output 
commands. The approximater has lots of adjustable parameters, or 
weights that determine what the function actually does. Imagine a high 
degree polynomial in a high dimensional space. The weights are like the 
coefficients of the polynomial. Our task now reduces to tuning the 
weights so that the output commands are the right ones to move our 
vehicle in the direction we want to go. 

To control complex vehicles like the ones we have been talking about we 
may need to set tens of thousands of weights. What method can we use to 
tune these weights? I think a promising method is “reinforcement 
learning.”  Simply speaking, in reinforcement learning a weight is 
adjusted so that its value increased if it effective in moving the 
vehicle to the goal, and decreased if it is not effective.  

Is there any reason to think that reinforcement learning can possibly 
work? Stanford University working with Lockheed Martin showed in 
simulation that a Retiarius like vehicle can use this method to learn 
how to cross a barrier. In this simulation the team placed the vehicle 
at the right of the barrier. They then used reinforcement learning to 
guide the vehicle guide the vehicle across the barrier. First we see 
results after some initial learning. The vehicle gets to the barrier, 
but then progress stops. With more learning we start to cross the 
barrier. Finally, with plenty of learning, we make our way across the 
barrier. 

And finally, the results of learning how to cross the barrier at an 
oblique angle.  I doubt that a person could hand program such a 
maneuver.  

Let’s step back for minute and think about what we will have achieved 
if we can develop complex vehicles that have both learned navigation 
and learned locomotion. We will have robots that will be able to 
venture forth into new environments and find their way to a goal. They 
will be able to explore and then report back what they have found. 
These robots will adapt as they move along, becoming more capable with 
every move. They will learn to squeeze through narrow spaces and they 
will learn to move efficiently at speed. 

Today, I have told you about challenging problems, that when solved, 
will enable autonomous robots to navigate and locomote through rough 
terrain. We have a very long way to go before we have mastered these 
challenges, but we think we see a path to their solution. We look for 
your participation to help make our dream a reality. 


