
Gene expression arrays (gene chips) have
enabled researchers to simultaneously
monitor the approximate level of mRNA
expression for a large number of genes.
These mRNA expression levels are one
component of the machinery that controls
the function and survival of cells; the other
components constitute the other major
biochemical constituents of a cell such as
the actual DNA sequence, protein levels,
and cellular substructures. Signal transduc-
tion pathways have long been used to
describe the sequence of biochemical events
that control cellular function and generally
include all aspects of the biochemistry of a
cell. In the absence of full proteomic data
(both primary proteins and modified pro-
teins), it is valuable to understand the
quantitative relationship between genes,
which we will refer to as gene expression
networks. The rates derived from the quan-
tification of gene expression networks pro-
vide crude estimates for the overall rates
linking genes through complicated signal-
ing pathways. In addition, hypothesized
linkages between genes will aid in focusing
research efforts in other areas such as
proteomics, metabolomics, and toxicologic
assays.

We recently used toxicogenomic analy-
sis to examine the response of human
peripheral lung epithelial cells to 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD,
dioxin) in vitro (Martinez et al. 2002).
Exposure to this persistent environmental
pollutant has been associated in human

populations with increased risk of lung
cancer and chronic obstructive pulmonary
disease; therefore, understanding its mecha-
nism of action may provide insights into
the risk of persistent human exposure not
only to TCDD but to other ligands of the
aryl hydrocarbon receptor (AhR). In this
study we showed a variety of cell-signaling
pathways that exhibited a dose-dependent
alteration by TCDD. One observation in
this study was an alteration in retinoic acid
(RA)-responsive genes. Alterations in RA
homeostasis have been observed previously
in rodents, leading to a retinoid-deficient
state. In addition TCDD exposure in rats
has been associated with increased inci-
dence of squamous neoplastic and nonneo-
plastic lesions including squamous cell
carcinoma of the lung and hard palate
region the oral mucosa (Kociba et al.
1978). Given that alterations in retinoid
signaling can affect the differentiation of
squamous epithelia, it is possible that the
increase in these squamous lesions may be
due to a retinoid-deficient state induced by
the alteration in retinoid homeostasis.

Identification of the retinoid-responsive
genes in the TCDD microarray analyses
suggested a functional relationship between
AhR activation and retinoid homeostasis
and/or signaling in the human lung epithe-
lial cells. Although such relationships can
be tested empirically, invariably a large
number of functional relationships are pos-
sible within a given microarray data set;
therefore, priority setting for functional

validation studies is often a challenge. In
this article we develop a computational
approach for evaluating the likelihood that
observed changes in gene expression are
due to hypothesized functional relation-
ships. We then test the AhR–retinoid inter-
action using this method.

Several methods have already been pro-
posed for the analysis of gene expression
data. The most commonly used methods
rely on description of simple fold increases
in expression, phylogenetic tree analyses,
clustering methods, classification methods,
or combinations of these. Methods have
also been proposed to develop gene expres-
sion networks using dynamical systems
defined by ordinary differential equations
(Chen et al. 1999), modified linear regres-
sion methods (Gardner et al. 2003),
Boolean networks (Akutsu et al. 2000)
where gene expression data are converted
to two states (ON and OFF), discrete net-
works (Hartemink et al. 2002), and many
others. Bayesian networks (Friedman et al.
2000; Pe’er et al. 2001) have been pro-
posed as a means of identifying gene inter-
action networks (Imoto et al. 2002;
Tamayo et al. 1999) and for predicting
protein–protein interactions using a com-
bination of different types of genomic data
(Jansen 2003). Many of the available meth-
ods are discussed in a recent review article
(Lockhart and Winzeler 2000). Few meth-
ods exist that combine careful statistical
estimation and hypothesis testing with
quantitative gene interaction models to
provide a systems biology–based approach
for the analysis of microarray data. 

In this article, a Bayesian network
approach (Friedman et al. 2000; Imoto
et al. 2002) previously suggested is modi-
fied to provide direct quantification of gene
expression networks using microarray data
for a known network. This analytical
approach provides a model that can be
used for mechanism-based mathematical
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models and for formal analyses of biological
hypotheses.

Materials and Methods

Definition of Gene Expression
Network

The basic concept for Bayesian networks in
the analysis of gene expression data has
been described previously (Friedman et al.
2000; Imoto et al. 2002; Tamada et al.
2003). A gene expression network consists
of a collection of P genes, denoted by X1,
X2,…XP, linked by weighting functions,
wi(θi) ( i = 1,2,…P ), where the subscript i
denotes that this weighting function per-
tains to the control of gene Xi by all genes
linked to it and θi denotes the vector of
parameters defining the functional relation-
ship. In cases where the relationship
between individual genes is monotonic
(i.e., Xi either stimulates or inhibits Xj but
cannot have mixed effect), such a network
can be easily represented graphically as in
Figure 1. Figure 1 is a simple gene expres-
sion network consisting of four genes
(squares) and four weighting functions (cir-
cles), with lines linking the genes and the
weighting functions. Two kinds of lines
appear in the model. A line with a bar
implies inhibition (e.g., gene X3 inhibits
gene X4 in Figure 1), and a line with no bar
implies stimulation (e.g., gene X1 stimu-
lates gene X4). No line between genes
implies these genes have no direct relation-
ship to each other (X2 and X4 are not
directly linked). The weighting function
combining the effects of genes X1 and X3
on gene X4 is denoted by w4(θ4) in
Figure 1.

The vector W(θθ) = [ w1(θ1) w2(θ2)…
wP(θP)] fully characterizes the functional
relationships between genes in a gene
expression network and is the target of any
estimation effort to identify and quantify a
network. The functional form that can be
used for any individual wi(θ i) is not
restricted. One example is the log-linear
gene expression network.

Log-Linear Gene Expression
Network
One of the simplest types of weighting
function used to describe a gene expression
network is the log-linear weighting func-
tion given by the following form:

[1]

where xj is the observed level of expression
(or ratios of expression) of gene Xj, βji is the
magnitude by which a change in one log
unit of gene Xj will affect the level of
expression of gene Xi, and Iji is an indicator
variable describing the direction of the
change denoted by βji, where Iji = 1 for
stimulation, Iji = –1 for inhibition, and Iji =
0 for no effect. For simplicity of notation,
we define B = [β j i] j=1,2…p ,  i=1,2…p, T =
[Iji] j=1,2…p ,  i=1,2…p ,  and A = [log(x1),
log(x2),…log(xp)], where we refer to T as
the transition matrix and B as the parame-
ter matrix. It is then possible to rewrite
Equation 1 in its matrix form given by

[2]

where θθ = [ β11 β12…βpp], and the dot rep-
resents element-by-element multiplication
of B and T. In the example given by
Figure 1, the matrices B and T are 4 × 4
matrices and have only 4 nonzero elements
each [(1,3), (1,4), (2,3), and (3,4)], so the
vector of parameters is θθ = [β13 β14 β23
β34]. Tamada et al. (2003) used a non-
parametric B-spline for wi (θi ). Such a
method could be used in this context as
well, where the breakpoints in the splines
are at individual doses or times used for an
experimental design.

The transition matrix provides the
qualitative structure of the gene expression
network, and the parameter matrix quanti-
fies the strength of the relationship between
the genes. In the following we use Np (θθ) to
represent a general gene expression network
with P genes and NTP (θθ) to specifically
represent a log-linear gene expression
network with P genes.

Bayesian Network Estimation
Procedure
Like any other biological measurement, it
can be presumed that two observations
taken from seemingly identical examples
may differ because of uncontrolled vari-
ables or simple random fluctuation; this
difference is traditionally defined as ran-
dom variation about the mean behavior in
a model. With random variation, x = [x1,
x2…xp] is an observation from a random
matrix X = [X1, X2…XP]. The simplest
method by which random variation can be

included in a gene interaction network is to
assume that Xi is conditional on knowledge
of the other X’s and θθ follows a prescribed
probability density function. Define Xi =
[X1, X2,…Xi–1, Xi+1,…XP] and define
fi (Xi|

—
Xi, θθ) to be the conditional density of

Xi. If a gene has a regulatory effect on gene
Xi, that gene is referred to as a “parent of
gene Xi”; in other words, it belongs to the
set referred to by Pa(Xi). Hence, for exam-
ple, in the model depicted by Figure 1,
Pa(X3) = [X1, X2]. This notation has been
used in other cases and in the context of
this modeling, the distribution could then
be written as fi (Xi |Pa(Xi),θθ). A greater level
of statistical complexity is possible by also
presuming that the parameters have proba-
bility density functions; hi(θi) is referred to
as the prior distribution of θi. This formu-
lation places the network defined by NP(θθ)
and the data into the context of classical
Bayesian networks (Jensen 1996).

Suppose that we have m sets of
microarray data [x1j, x2j,…xPj]j = 1,2,…m
from gene expression network NP(θθ),
where individual arrays are independent
random samples from the joint density
function for the genes. The joint density
function for the parameters given the gene
expression data, denoted g (θθ| X ), is
referred to as the posterior distribution and
can be estimated using the Markov chain
Monte Carlo (MCMC) method (Hastings
1970). In the examples given in this article,
the Metropolis algorithm (Andrec and
Prestegard 1998) is used to sample from
the MCMC to generate samples from the
joint density.

Specific Cases Used in This Analysis
In all analyses that follow, the gene expres-
sion network is presumed to be a log-linear
network defined by NTP(θθ) in Equations 1
and 2. It is assumed that data arise from
microarrays using a relative comparison
between two samples (no change results in
a value of 1, increased expression > 1,
decreased expression < 1), and the distribu-
tions for the log of the individual relative
gene expression levels conditional on
knowledge of T,θθ and the other X’s,
fi (Xi |

—
Xi,θθ), are assumed to be normal, with

mean defined as the exponent of e in
Equation 1 and with standard deviation
(SD) σ. All parameters in θθ = (B,S ), where
S = [σ1, σ2,…σP] are assumed to have
prior distributions (normal for the ele-
ments of B and uniform for the elements
of S ).

Assume that the structure of T (transi-
tion matrix) is known without error. In this
situation, the qualitative relationship
between genes in the gene expression
network is known. Taking Figure 1 as an

   W eθθ( ) = •( )A B T ,

w ei i

I ji ji j
j

N

θ
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=
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Figure 1. A simple gene expression network con-
sisting of four genes and four nonzero functional
relationships.



example, expectation of each log (Xi ) (i =
1,2,3) becomes E [log(X1)|T,B,

—
X1] = 0,

E[log(X2)|T,B,
—
X2] = 0, E[log(X3)|T,B,

—
X3] = β13

log(X1) + β23 log(X2), and E[log(X4)|T,B,
—
X4] =

β14 log(X1) – β34 log(X3). The ultimate goal of
defining a Bayesian network is to derive the
posterior distribution for the parameters of
interest. To derive the posterior, we must
first calculate the conditional likelihood of
the data, denoted LN[X |NTP(θθ)]. The likeli-
hood is the product of the individual condi-
tional densities and is written

In the MCMC analysis, we must assume a
mean and variance for the prior normal
distributions for the β’s and bounds on the
prior uniform distributions for the σ’s.
Several options were chosen for the prior
means of the β’s and an uninformative SD
(10) was chosen for the prior variance. To
develop bounds on the prior uniform dis-
tributions for the σ’s, SDs were calculated
for each gene across replicates, and the
maximum SD observed was multiplied by
2 to set the upper bound, with 0 set as the
lower bound. Given these priors and the
data, MCMC iterations for each data set
analyzed are run until the estimates for the

posterior distributions for the β’s and the
σ’s are stabilized.

Other distributions and methods could
be used to define the priors and generate
the posterior distributions for the likeli-
hood and the parameters in the model. In
considering a more complicated functional
relationship between genes, Michaelis-
Menten–type equations could be used to
develop networks with restricted maximum
and minimum linkages. Such networks
would require substantially more data.

A user-friendly software package for
these analyses is available from the corre-
sponding author.

Application to Microarray Gene
Expression Data
Martinez et al. (2002) evaluated the change
in expression of 2,091 genes in triplicate
samples of HPL1A and A549 cells exposed
to differing levels (0, 0.1, 1.0, and 10 nM)
TCDD for 24 hr. Total RNA was
extracted and, using methods described by
Martinez et al., hybridized to NIEHS
Human ToxChip, version 1.0 (http://dir.
niehs.nih.gov/microarray/chips.htm) to
obtain changes in gene expression in
dioxin-treated cells (one channel) relative
to the controls (second channel). They
identified 68 genes that were altered in at

least one cell line and 15 genes that were
altered in both cell lines. Of these, they
identified 11 genes that appear to be
involved in the effects of TCDD on the
retinoid-signaling pathway. In this article
we hypothesize a gene interaction network
defining the quantitative role of TCDD in
altering retinoid signaling based on the cur-
rent available literature. The data for these
11 genes from the HPL1A cells and the
hypothesized network are analyzed using
the methods described above.

Results

Dioxin Analysis

2,3,7,8-Tetrachlorodibenzo-p-dioxin is a
known human carcinogen, a suspected ter-
atogen, and highly toxic in most mam-
malian species. There has been considerable
speculation that TCDD alters the retinoic
acid receptor (RAR)–dependent signaling
pathway via alteration of the synthesis and
metabolism of RA. Microarray data
(Martinez et al. 2002) on changes in gene
expression in HPL1A lung airway epithelial
cells after exposure to TCDD at levels of
0.1, 1.0, and 10.0 nM for 24 hr identified
11 genes with significant changes at the
99% confidence level. The gene identifiers
and data are given in Tables 1 and 2.

L | N f xN TP ij ,
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Table 1. Description of genes included in the gene interaction network shown in Figure 2.

Gene symbol (alternate symbols)a Accession no.a Gene namea Biological role

ALDH3 (ALDH3A1) AA069024 Aldehyde dehydrogenase 3 family, memberA1 May play a role in the oxidation of lipid aldehydes, especially
those generated by lipid peroxidation (Vasiliou et al. 2000); is
induced in rat liver by TCDD (Unkila et al. 1993)

ALDH6 (ALDH1A3) AA054748 Aldehyde dehydrogenase 1 family, member A3 Has ability to synthesize retinoic acid from both retinol 
and retinal (Rexer et al. 2001)

ALDH10 (ALDH3A2) H63779 Aldehyde dehydrogenase 3 family, member A2 Oxidizes long-chain aliphatic aldehydes to fatty acid
CYP1A1 AA418907 Cytochrome P450, subfamily I, polypeptide 1A Phase I enzyme; its expression is controlled by the AhR. 

Metabolically activates procarcinogens to genotoxic 
electrophilic intermediates (Nebert et al. 1996)

CRABP N23941 Cellular retinoic acid binding protein 1 Small intracellular protein that is a carrier for RA (vitamin A)
NCOA2 (SRC-2, TIF2, GRIP1) R77770 Nuclear receptor coactivator 2 Transcription coactivator of retinoid/thyroid receptors; a histone 

acetyltransferase that plays an important role in lipid
metabolism and energy balance (Picard et al. 2002; Xu and
Li 2003)

RARB W93713 Retinoic acid receptor, beta Hetero/homodimers associated with oncogenicity (Lin and Evans 
2000); overexpression in oral squamous carcinoma cell lines;
leads to growth arrest and apoptosis (Hayashi et al. 2001)

CDKN1A (p21, Cip1) N23941 Cyclin-dependent kinase inhibitor 1A Functions as a regulator of cell-cycle progression; overexpression
linked to carcinogenesis (Biankin et al. 2001)

ZNF42 (MZF1, MZF-1, MZF1B) R83364 Zinc finger protein 42 Transcription factor that belongs to the Kruppel family of zinc 
finger proteins; RA-responsive; plays a role in cell 
proliferation (Hromas et al. 1991)

ELF3 (ESX, ESE1) H27939 E74-like factor 3 (ets domain Transcription factor that transactivates genes involved in
transcription factor, epithelial-specific) epithelial differentiation and host defense and mediators of 

proinflammatory responses (e.g., Socs3, Cebp/delta, Bcl3, and
CC/CXC chemokines) (Mysorekar et al. 2002; Yoshida et al. 2000)

ACOX1 (ACOX, PALMCOX) AA040205 Human peroxisomal acyl-CoA oxidase First enzyme of the fatty acid β-oxidation pathway (Varanasi 
et al. 1994); changes in this gene are likely to affect endogenous
levels of fatty acids known to activate the retinoic X receptor,
thereby modulating gene expression (Issemann et al. 1993)

aFrom the NCBI (National Center for Biotechnology Information) Unigene database (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene).



Figure 2 hypothesizes a gene interaction
network linking the traditional TCDD-
induced genes and genes in the RAR-
dependent signaling pathway.

Vitamin A (retinol) is taken up from
blood and binds to the CRBP in the cyto-
plasm. Retinol and alcohol dehydrogenases
convert the sequestered retinol to retinal,
which is then converted to RA by retinal
dehydrogenases such as ALDH6 (Rexer
et al. 2001). It is also possible that
cytochrome P450s such as CYP1A1 may
also convert retinal to RA (Zhang et al.
2000). Once RA is synthesized, it binds to
cytosolic RA binding proteins (such as
CRABP). RA enters the nucleus, where it

binds to two types of ligand-activated
nuclear transcription factors, the RA recep-
tors (e.g., RARB) and the retinoid X recep-
tors. Several groups have hypothesized that
changes observed in RA levels from dioxin
exposures are mediated through increased
metabolism of retinal to RA through reti-
nal dehydrogenases or cytochrome P450s
or both (Schmidt et al. 2003). Using these
data together with the known AhR gene
battery, we developed a hypothetical gene
interaction network (Figure 2).

The predominant linkage to RAR is
through upregulation of ALDH6 and
CYP1A1, which synthesize RA. TCDD
alters the metabolism of all-trans-RA

(Schmidt et al. 2003), suggesting the link-
age between ALDH6 and RARB in
Figure 2. RARB has been shown to play a
role in the inhibition of cellular replication
(Sun et al. 2000). RARB is assumed to
modify the expression levels of four genes:
ELF3, NCOA2, ZNF42, and CDKN1A.
These genes have been shown to be parts of
the differentiation pathways of various cell
types and are hypothesized to be modified
by changes in the RA-signaling pathway.
ELF3 is an epithelial-specific transcrip-
tional regulator that may play a role in lung
carcinogenesis (Tymms et al. 1997).
NCOA2, also known as GRIP1, interacts
with the five steroid hormone receptor
types (Hong et al. 1997; Schmidt et al.
1998). ZNF42, also known as MZF-1, is a
putative transcriptional regulator induced
by RA in human myeloid cells (Hromas
et al. 1991). CDKN1A is induced by RA
through RARB in human neuroblastoma
tumors (Cheung et al. 1998; Liu et al.
1996). Both ALDH6 and RARB affect the
regulation of NCOA2, which in turn alters
the regulation of ZNF42 and CDKN1A.
ACOX1, the human peroxisomal acyl-
coenzyme A oxidase, is hypothesized in the
model to upregulate both RARB and
NCOA2. ACOX1 is the first enzyme of the
fatty acid beta-oxidation pathway (Varanasi
et al. 1994), and changes in this gene are
likely to affect endogenous levels of fatty
acids known to activate the retinoic X
receptor, thereby modulating gene expres-
sion (Issemann et al. 1993). The second
major linkage occurs between cytochrome
P4501A1, CYP1A1 , and RARB. An
inducer of CYP1A1 (β-naphthoflavone)
induced the metabolism of all-trans-RA in
human intestinal epithelial cells (Lampen
et al. 2000). CYP1A1 is upregulated by
TCDD (Portier et al. 1993), suggesting the
linkage between TCDD and genes in the
RAR-signaling pathway such as RARB,
NCOA2, and CRABP, a specific carrier
protein for vitamin A that influences
metabolism of RA and increases the sensi-
tivity of a cell to vitamin A signaling
(Boylan and Gudas 1992; Ong 1987). The
CRABP promoter contains an enhancer
region through which RA inhibits CRABP
transcription (Means et al. 2000).

The slope parameters for all the
linkages between genes (βij in Equation 1)
in Figure 2 were estimated using the
Bayesian gene interaction network approach
as described above. Prior probability
distributions for the log gene expression
values were assumed to be normally distrib-
uted with a mean of zero and a variance
of 1. The SDs (σ1, σ2, …σP) were assumed
to have uniform priors ranging from zero
to two times the largest SD observed for

Toxicogenomics | Toyoshiba et al.

1220 VOLUME 112 | NUMBER 12 | August 2004 • Environmental Health Perspectives

Table 2. Relative expression level (to control) of genes in the HPL1A cells exposed in replicate to three
different concentrations of TCDD.a

Genes

ALDH10 1.56 1.33 1.24 1.42 1.56 1.40 1.69 1.47 1.25
ALDH3 2.10 2.09 2.34 3.88 2.94 4.09 3.11 3.91 3.76
ALDH6 2.42 2.00 1.77 3.40 4.12 3.37 3.76 4.60 3.66
CRABP 0.63 0.69 0.74 0.51 0.48 0.47 0.29 0.46 0.41
CDKN1A 1.56 1.16 1.49 1.30 1.34 1.58 1.51 1.49 1.63
CYP1A1 3.07 2.63 1.31 14.45 6.85 6.09 15.35 14.91 8.08
ELF3 1.56 1.37 1.18 2.19 1.70 1.91 3.15 2.00 2.02
NCOA2 1.42 1.41 0.82 1.34 1.07 0.92 1.42 1.22 0.82
RARB 1.64 1.42 0.93 1.77 1.56 1.21 1.48 1.63 1.15
ZNF42 1.88 1.47 1.11 1.62 1.43 1.32 1.60 1.45 1.22
ACOX1 1.94 1.50 0.78 1.93 1.03 0.84 10.87 1.22 0.59
TCDDb 0.10 0.10 0.10 1.00 1.00 1.00 10.0 10.0 10.0
aData from Martinez et al. (2002). bTCDD dose unit is measured in nanomolars. Actual doses are used for TCDD in the
analysis. 
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any one gene (an uninformative prior). A
total of 100,000 MCMC samples were
obtained, and the last 80% (80,000) were
used to estimate the posterior density of
the parameters. Although no formal
MCMC stopping rule was used, analyses of
the last 80,000 MCMC samples clearly
supported convergence.

Figure 2 also illustrates the type of
results routinely obtained in Bayesian
analyses. The four histograms shown in
Figure 2 are the empirical posterior densi-
ties for 4 of the 19 linkages. The linkage
between TCDD and CYP1A1 (A) has a
distribution for which there are virtually no
values below zero, indicating a strong sta-
tistical relationship in these data. The mean
value, 0.269, indicates the degree of change
in CYP1A1 expression as a function of the
change in TCDD concentration. The
means, SDs, and percentages of values
below zero are summarized for all 19 link-
ages in Table 3. The distributions for the
variances are presented in Table 4. Other
uninformative priors were tried with no
significant alteration in the results pre-
sented in Table 3. In our Bayesian analysis
we estimate the posterior distributions for
each parameter given the data. If a distribu-
tion for a given parameter has a small prob-
ability of being < 0 (such as ≤ 0.1), that
parameter supports a linkage between
genes.

The network depicted in Figure 2 was
developed to test the hypothesis of a link-
age between dioxin-responsive genes
CYP1A1 and ALDH6, and the RAR-sig-
naling gene RARB. The distribution for
βCYP1A1 → RARB had a substantial mass less
than zero (26% < 0, Table 3), suggesting a
lack of support for the linkage between
changes in message for these two genes.

Similar results were seen for βALDH6 → RARB
(20% < 0, Table 3). Examination of the
joint density for βCYP1A1 → RARB and
βALDH6 → RARB suggested a negative correla-
tion, indicating that the data may not sup-
port both linkages simultaneously. This is
not surprising, as they are both acting upon
the same component of RA synthesis. By
forcing βCYP1A1 → RARB = 0 and again esti-
mating the remaining parameters, we can
examine the distribution of βALDH6 → RARB
under the condition that the other linkage
is not present; in this case, βALDH6 → RARB
had no estimates less than zero (0%) and
there was no change in the posterior distri-
bution for the log-likelihood, suggesting
almost no change in the fit of the network
to the data, even though we dropped the
linkage between CYP1A1 and RARB .
Conversely, we can set βALDH6 → RARB
= 0 and examine the distribution of
βCYP1A1 → RARB; here also we see 0% < 0
and no change in the log-likelihood. These
two analyses support the hypothesized link-
age between TCDD-responsive genes and
RARB-responsive genes, but only through
either ALDH6 or CYP1A1 , not both.
Finally, setting both βCYP1A1 → RARB = 0
and βALDH6 → RARB = 0 significantly shifts
the distribution of the posterior log-
likelihood to smaller values (10% reduc-
tion overall), suggesting that at least one of
these linkages is needed to explain
these data.

The only other linkage that did not
appear to be supported by these data
was the hypothesized linkage between
NCOA2 and ZNF42. The distribution for
βNCOA2 → ZNF42 had a mean estimate of
zero, with 48.5% of the estimates less than
zero. Assuming βNCOA2 → ZNF42 = 0 had no
impact on the log-likelihood, suggesting

this linkage was not needed in the model
and that there was no correlation offset
with other parameters. Given the sample
size and the number of genes in the net-
work, it is surprising that all other linkages
appeared to be supported by these data,
with the percentage of β values less than
zero ranging from 0% for several pairs
(βTCDD → CYP1A1 , βRARB → CDKN1A ,
βRARB → ELF3, βRARB- → NCOA2, βRARB →

ZNF42, and βACOX1 → NCOA2) to 9.4%
(βACOX1 → RARB).

Simulation Studies
Although the TCDD example is illustrative
of the method, it does not address how
well this method works under diverse con-
ditions; this is best addressed by Monte
Carlo simulations. One thousand (1,000)
simulated experiments from the simple
four-gene network in Figure 1 were gener-
ated by the computer using sample sizes of
50, 25, and 10 gene chips in each experi-
ment. Twenty-two combinations of the
model parameters (θ = [β13, β14, β23, β34,
σ1,σ2,σ3,σ4]) were considered. For each
simulation, posterior distributions were cal-
culated and summarized by their means,
medians, and SDs. The MCMC process
used was identical to that used for the
dioxin example, with the exception that
only 8,000 iterations of the Metropolis
algorithm were performed, and the last
20% (1,600) values were used to calculate
the summary statistics. Multiple runs with
different starting points were used, with no
difference in the final results (not shown).

Table 5 provides representative results
from two of the simulation studies. The
results indicate that, when sample sizes are
sufficiently large, Bayes estimates of the
model parameters appear to be close to the
assumed value. When sample size is
reduced, SDs of the β’s become larger,
going from 0.2 to 0.45 as the sample size
drops from 50 to 10. However, estimation
itself seems to be unbiased, even in the case
of only 10 replicates. In the second example
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Table 3. Type of linkage, mean, SD, and percentage of the posterior distribution below zero for all
gene–gene relationships in Figure 2.

From To Type Mean SD % < 0

TCDD ALDH3 A 0.140 0.037 0.03
ALDH6 A 0.150 0.035 0.01
ALDH10 A 0.041 0.013 0.23
CYP1A1 A 0.269 0.056 0.003

ALDH6 CRABP R 0.348 0.152 1.27
NCOA2 R 0.132 0.062 2.10
RARB A 0.149 0.191 19.81

CYP1A1 CRABP R 0.235 0.099 1.03
NCOA2 R 0.046 0.038 11.40
RARB A 0.072 0.120 26.34

NCOA2 CDKN1A R 0.847 0.298 0.50
ZNF42 A 0.000 0.168 48.53

RARB CRABP A 0.418 0.234 3.13
CDKN1A A 1.186 0.199 0.00
ELF3 A 1.423 0.220 0.00
NCOA2 A 0.912 0.085 0.00
ZNF42 A 0.975 0.113 0.00

ACOX1 NCOA2 A 0.125 0.021 0.00
RARB A 0.081 0.065 9.38

Abbreviations: A, activate; R, repress.

Table 4. Estimated mean and median SD (σ) for
genes included in the gene interaction network
shown in Figure 2.

Posterior distribution for σ
Genes Mean (median) SD

ALDH10 0.22 (0.22) 0.04
ALDH3 0.63 (0.61) 0.12
ALDH6 0.62 (0.61) 0.12
CRABP 0.11 (0.11) 0.02
CDKN1A 0.15 (0.14) 0.03
CYP1A1 0.94 (0.92) 0.17
ELF3 0.25 (0.24) 0.05
NCOA2 0.04 (0.04) 0.01
RARB 0.13 (0.12) 0.03
ZNF42 0.08 (0.08) 0.02
ACOX1 0.86 (0.82) 0.20



in Table 5, one parameter was set to zero,
providing a case where there is no linkage
from gene 1 to gene 3. In this case, we see
that the estimation for a nonexistent link is
approximately zero, and one could discard
this link. Similar results were seen for all the
cases studied.

To further challenge the estimation
procedure, an eight-gene network was sim-
ulated and estimated. This network had
18 parameters and was a greater challenge
to the Bayesian method. Because of the
increase in the number of parameters, SDs
were substantially larger than in the four-
gene model, but the estimation was still
effectively unbiased. 

Discussion

Many methods have been developed for
the analysis of gene expression microarray
data, but few methods exist for using these
data to quantify the interrelated behavior
of genes within gene interaction networks.
Most network-based methods are focused
on network identification, not quantifica-
tion. Given a hypothesized gene interaction
network, this article develops and demon-
strates the use of Bayesian network models
as a tool for the analysis of a network using
microarray data. The method allows for
evaluating the strength of relationships
within a hypothesized network and could
also be used to test for additional linkages
within the network.

There were two key points raised by
these analyses. First, the application of this
quantitative approach to the experimental
data on TCDD effects in human lung
epithelial cells clearly identified two sub-
networks as significantly related to the AhR
battery and the retinoid signaling. This
indicates that the observed gene expression
changes are consistent with the underlying
hypothesized mechanism of action. In one
sense this represents an alternate validation
step in a tiered approach to evaluating
microarray analyses. For example, ZNF42,
although annotated as a retinoid-responsive
gene, has not been previously validated as a

retinoid-responsive gene in this cell system.
The quantitative modeling suggests a
highly significant relationship between
ZNF42 expression and other genes in the
retinoid-signaling subnetwork, which pro-
vides confidence that its alteration was
indeed due to activation of the retinoid-
signaling pathway. The testing of other
subnetworks within a given data set can
further serve to increase confidence that
inferences on relationships between genes
obtained from other types of analyses (eval-
uation of gene annotation, clustering, path-
way analysis, informatic-based network
mapping, literature searches) are real.

The second point from these analyses is
that we were able to test the interaction
between the two subnetworks (AhR and
retinoid) and illustrated that a functional
relationship was likely real. Such an analysis
is useful in that it supports further testing of
this mechanism experimentally. It may be
that some fraction of the toxicity associated
with chronic exposure to TCDD could be
the direct result of TCDD-induced
increases in RA in the cells. The hypothe-
sized network clearly supports a significant
change in gene expression associated with
signaling through the RARB pathway. The
quantitative linkages observed in this exper-
iment are unlikely to hold for an in vivo sys-
tem but suggest that an experiment
exposing laboratory animals to TCDD,
which includes both TCDD and RA mea-
surements with gene expression measure-
ments, would be useful. Two recent
experiments address these issues to a limited
extent. Schmidt et al. (2003) examined RA
levels and changes in expression of CRBP1
in male Sprague-Dawley rats and saw signif-
icant changes in RA levels in kidney, liver,
and serum, and a marginal change in liver
CRBP1 after 28 days. They did not exam-
ine any of the genes in the network shown
in Figure 2, so it is difficult to compare
directly with our results. Johnson et al.
(2004) used in vitro data from three experi-
ments with AhR ligands activating genes in
the heart, kidney, and thoracic aorta of

mouse embryos. They used an exhaustive
search of three linkages for each gene to
identify the most likely gene–gene interac-
tions. They also identified linkages to genes
in the RA-signaling pathway (IGFBP-3 and
IGFBP-6), but again, not the specific genes
used in Figure 2.

The simulation experiments were dif-
ferent from the analysis of the TCDD
study. In the TCDD study, the network
linkages were perturbed to cause significant
quantitative changes in expression, which
then could be used to quantify the linkages
between genes. In contrast, the simulation
study used only the random variation in
expression levels to quantify the network.
The simulation studies indicate that the
proposed method appears to be unbiased
and, on average, produces the correct
results. However, sample size could be a
problem for small experiments with minor
changes in gene expression. When the sam-
ple size is only 10 microarrays, the SD can
be large relative to the expected value of the
linkage between two genes, suggesting one
might misinterpret a linkage as having little
statistical support. This problem gets worse
as the number of genes in the network
increases. In contrast, large sample sizes of
50 microarrays are unlikely to have this
problem. 

Directed changes in the network, as in
the dioxin experiment, can help overcome
this problem and allow the quantification
of significant linkages by as few as nine
microarrays. To address this question, two
additional simulations were conducted.
Using the network shown in Figure 2 and
the parameters estimated for the TCDD
network shown in Table 3, we simulated
500 data sets consisting of nine microar-
rays—three for each dioxin dose; that is,
we replicated the experiment 500 times
using the predicted model. On average the
resulting parameter estimates were identical
to those observed from fitting the original
data but appeared to have a slightly smaller
SD than that estimated in the model. This
decrease in SD could indicate a degree of
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Table 5. Mean, median, and SD from two simulation studies of the simple four-gene model (Figure 1).

Sample
Model size Estimation β14 β13 β23 β34 σ1 σ2 σ3 σ4

β14 = –2 50 Mean (SD) –1.98 (0.22) 0.81 (0.21) 0.83 (0.19) –1.32 (0.13) 1.01 (0.12) 1.00 (0.12) 1.03 (0.12) 1.03 (0.13)
β13 = 0.8 Median (SD) –1.97 (0.22) 0.81 (0.21) 0.82 (0.19) –1.33 (0.13) 1.01 (0.13) 1.00 (0.12) 1.02 (0.13) 1.02 (0.14)
β23 = 0.8 25 Mean (SD) –2.00 (0.29) 0.80 (0.25) 0.81 (0.23) –1.29 (0.19) 1.05 (0.15) 1.03 (0.15) 1.05 (0.16) 1.06 (0.16)
β34 = –1.3 Median (SD) –1.98 (0.29) 0.80 (0.26) 0.78 (0.24) –1.30 (0.19) 1.02 (0.15) 1.01 (0.15) 1.02 (0.16) 1.03 (0.17)
σi = 1, i = 1,2,3,4 10 Mean (SD) –1.97 (0.45) 0.79 (0.40) 0.80 (0.38) –1.29 (0.29) 1.13 (0.26) 1.10 (0.27) 1.15 (0.32) 1.19 (0.29)

Median (SD) –1.95 (0.45) 0.79 (0.40) 0.81 (0.37) –1.31 (0.29) 1.08 (0.24) 1.04 (0.26) 1.04 (0.31) 1.11 (0.28)
β14 = –2 50 Mean (SD) 2.00 (0.17) 0.01 (0.17) 0.80 (0.17) –1.30 (0.12) 1.02 (0.11) 1.03 (0.12) 1.04 (0.12) 1.01 (0.12)
β13 = 0 Median (SD) 2.0 (0.18) 0.01 (0.18) 0.81 (0.18) –1.31 (0.13) 1.01 (0.12) 1.03 (0.12) 1.04 (0.14) 1.00 (0.13)
β23 = 0.8 25 Mean (SD) 2.0 (0.22) 0.01 (0.22) 0.79 (0.21) –1.31 (0.16) 1.04 (0.15) 1.05 (0.15) 1.06 (0.16) 1.04 (0.17)
β34 = –1.3 Median (SD) 2.01 (0.23) 0.00 (0.23) 0.77 (0.21) –1.30 (0.16) 1.02 (0.15) 1.03 (0.15) 1.03 (0.16) 1.03 (0.17)
σi = 1, i = 1,2,3,4 10 Mean (SD) 2.02 (0.40) –0.02 (0.40) 0.83 (0.40) –1.30 (0.32) 1.14 (0.25) 1.13 (0.27) 1.16 (0.30) 1.18 (0.26)

Median (SD) 1.99 (0.40) –0.02 (0.39) 0.85 (0.39) –1.29 (0.31) 1.08 (0.24) 1.06 (0.27) 1.10 (0.30) 1.10 (0.25)



model misspecification, as the simulated
data appear to fit better than the observed
data. In addition, whereas the observed
data showed a nonsignificant linkage
between CYP1A1 to RARB, 48% of the
simulated data sets found this linkage to be
significant. Similarly, 54% found the link-
age between ALDH6 and RARB to be sig-
nificant. In contrast, the simulations found
a significant linkage between NCOA2 and
ZNF42 in only 6% of the cases (hence the
Type I error appears to be good) and
between TCDD and CYP1A1 in 100% of
the cases (power is high).

In a second simulation, the network
shown in Figure 2 was again simulated, this
time without TCDD included in the
experimental design and using just random
variation in the genes to produce the data.
Again, the results were unbiased, but the
SDs more than doubled. In addition, the
probability of observing a significant link-
age was reduced by about 20% for most
linkages. This illustrates the value of stimu-
lating the system when trying to identify
gene interaction networks.

Clearly, this type of modeling approach
is limited in terms of interpretation. First,
the model cannot be cyclic; hence, increases
in CRABP as a function of RARB that
might then result in greater binding of RA
in the cytosol, reducing RARB expression,
could not be included. Given time-course
data, it could be possible to explore this
linkage using a more complicated modeling
form or some other method of analysis such
as semicyclic Bayesian networks. Second,
the method is dependent on a parametric
model, and the choice of this model could
impact the overall findings from the analy-
sis. For example, if certain genes reached
their maximal expression at lower doses of
TCDD, the use of a log-linear model could
underestimate low-dose changes while over-
estimating high-dose changes. This, in turn,
could lead one to accept or reject a given
model incorrectly. It should be noted that
this type of criticism applies to all the other
network analysis methods as well. Finally,
although not seen in this analysis, it is pos-
sible that the resulting distributions for the
linkages between the genes could be sensi-
tive to the choice of prior distributions, and
one should be careful to evaluate if such an
impact might exist with the data.

Although the approach presented here
involves only gene expression data, it can
easily be expanded to include other data
relevant to the linkages between genes and
the quantification of signal transduction
pathways in cells. Data quantifying protein
levels in cells could easily be folded into a
general likelihood, linked via a similar
model, and analyzed to quantify the entire

network. Such an approach leads to
rational, mechanism-driven simultaneous
analyses of genomics, proteomics, and
metabolomics data. In addition, the net-
works identified through this type of analy-
sis can easily be combined with other
mechanism-based mathematical models
such as physiologically based pharmaco-
kinetic and pharmacodynamic models to
present a true, systems-biology approach
for the quantification of risks from expo-
sures to xenobiotics like dioxin. This analy-
sis would form one module of an overall
model for TCDD toxicity. For example, if
microarray data were available in rats
exposed to TCDD, existing models like
that of Kohn et al. (2001) could easily be
linked to the gene interaction network dis-
cussed above. These, in turn, could be
linked to cancer data using a mechanistic
model to test hypotheses regarding cancer
incidence and the mechanisms involved, as
shown by Brooks et al. (1999).

The method proposed here is not
restricted to the log-linear model used in
this analysis, nor is it linked to the statisti-
cal likelihood chosen for the analysis.
Other models such as dynamic models
(Chen et al. 1999) and other statistical like-
lihoods (Wolfinger et al. 2001) could easily
be incorporated into the analysis methods.

Bayesian networks have been used in a
number of settings to provide insight into
the complicated linkage between variables
that interact. Quantifying the distributions
linking genes into networks and expanding
this to include proteins and protein modifi-
cations will make it possible to quantify the
impact of a given chemical agent on the
signal transduction pathways in a cell.
Although many different methods could be
used for this, Bayesian networks have the
advantage of flexibility, which will make it
possible to build on existing knowledge
while bringing new data into the analysis.
For the dioxin study presented here, the
limitations of the sample size preclude an
overall conclusion concerning the validity
of the final model for predictions about the
role of dioxin in changes to the RAR-
signaling pathway. However, this analysis
has strengthened the underlying hypothesis
that changes in RAR signaling may play an
important role in dioxin-mediated toxicity
and suggest a number of experiments that
could lead to a better-characterized net-
work; this is left for future work.

In this article we used known scientific
inferences and gene annotation to develop
the initial tested network. This approach can
also be applied to evaluating the likelihood of
any hypothesized network developed by
other approaches. As such, it can be applied
to networks developed using other types of

analyses including Bayesian, Boolean, and
informatics-based approaches, as well as
other known networks in the scientific litera-
ture. The ability to test hypotheses in the
context of the network and to build modules
that can be quantitatively linked to toxicity
are first steps in a true systems-biology
approach to mechanism-based use of
genomics in risk assessment. This analysis is
unique in that it directly addresses these uses.
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