
Chapter 1
Schema Introduction

The XML technical specification identified a standard for writing a schema (i.e.,
an information model) for XML called a document type definition (DTD).1 DTDs
were a carryover from the SGML (ISO Standard 8879) and provided the ability to
define the structure of a document, but lacked the ability to add data typing to the
requirements placed on the XML document by the schema. Although DTDs work
well for document-centric XML, they are not ideal for data-centric XML because
they lack data typing. With a primary mission to add data typing to XML, the
W3C developed and maintains another specification, XML Schema. This
specification is now the Environmental Information Exchange Network standard
for developing new XML message exchanges.

DTD MIGRATION TO W3C SCHEMA
Some environmental implementations may already use DTDs. In those cases,
when updating a project or system, a migration from DTD to XML Schemas
should be strongly considered. In addition to the aspects of datatyping mentioned
above, additional technical aspects of XSD overpower DTDs such as the
namespace feature of XSDs. Although namespacing is possible within DTDs, it is
much easier to implement in XSD—details of namespaces in XSDs are discussed
in-depth later in this document. Another important aspect of XSD is its inherent
feature of providing object-oriented design features, whereas DTD allows for
creation of only relational structures. This feature allows you to create objects
(complexTypes) that can be both extended and restricted for other uses, providing
a much higher degree of reusability.

XSDs are written in XML, enabling vendors to take advantage of XML parsers.
As XSDs continue to gain further traction, vendor-supported tools are becoming
more readily available and more competitive. In addition, most new standard
vocabularies are based on W3C Schemas (e.g., the OASIS Universal Business
Language and the UN/CEFACT’s work in the Applied Technologies Group).
Thus, in accordance with this document, all future efforts should use XSD, and
when possible, current DTDs should be migrated to XSDs.

1 See <http://www.w3.org/TR/2000/REC-xml-20001006>.

 2.1-1 9/23/2003

DATA-CENTRIC AND DOCUMENT-CENTRIC XML
This guide separates the application of XML into two types: data centric and
document centric. Data-centric XML is used in data exchange environments;
document-centric XML is used in a content management environment. Data-
centric XML is geared toward machine processing; document-centric XML is
geared toward formatting and human consumption. An example of data-centric
XML is information passed between an order management system and an inventory
management system. An example of document-centric XML is information
formatted for inclusion in a book, brochure, or website.

Data-Centric XML

Developers use data-centric XML for the structured electronic exchange of data
across the Internet (for example, when information is sent from one database to
another or when a person inputs data into a web form and submits the data to a
database). Data-centric XML focuses on data types and, therefore, must be more
rigid than document-centric XML. Usually, in data-centric XML, the XML
instance generates automatically based on an XML schema and input into a back-
end database without human intervention.

The following are characteristics of data-centric XML:

 Has granular detail (numerous tags)

 Has nonvariable structure

 Is machine generated.

The Exchange Network wants to ensure consistency and interoperability for all
data-centric XML exchanges. As a result, the design rules for data-centric
applications are far stricter that those for document-centric applications.

Document-Centric XML

Document-centric XML is used primarily for presentations and often contains
graphics. Document-centric XML is far less rigid than data-centric XML, and
typically defines the structure at a higher level. In document-centric XML, an
author creates the XML instance based on an XML schema, which is combined
with a stylesheet that renders the information in a specified format.

The following are characteristics of document-centric XML:

 Has broad detail (few tags)

 Has free-form structure

 Is human generated (using XML authoring tools).

9/23/2003 2.1-2

Schema Introduction

FREQUENTLY USED TERMS
The terms “schema construct” and “construct visibility” are frequently used
throughout this document. Therefore, a detailed explanation of these terms and
examples of their use are provided below to clarify their meaning.

Schema Construct

The term “schema construct” (or simply “construct”) refers to an XML element,
attribute, or datatype whenever the same concept applies to all three. The term
“W3C Schema construct” is used to refer to schema constructs that are part of the
W3C Schema markup vocabulary (in other words, part of the W3C Schema
language). For example, in the declaration below, “element,” “name,” and “type”
are W3C Schema constructs:

<xsd:element name=“FirstName” type=“xsd:string”>

Construct Visibility

Construct visibility refers to the level at which a schema construct can be
accessed from multiple points in a schema (and, therefore, reused). More
specifically, this term is applied to elements and datatypes. “High element
visibility” means that an element in a schema can be accessed from multiple
places in the schema (and, therefore, reused). “Low element visibility” means that
an element in a schema cannot be accessed from any other place in the schema
(and, therefore, it cannot be reused). The same concept applies for the terms “high
datatype visibility” and “low datatype visibility.”

It is possible to reference one or more additional schemas from within a schema.
If a schema construct can be accessed from multiple points within a schema, it
can be accessed from other schemas as well. This is important for the Exchange
Network because the use of schema constructs across the network is closely
linked to their visibility. If a construct has high visibility, it can be made visible
across the network and integrated into multiple data flows. This means the
construct is a candidate for harmonization efforts. If a construct has low visibility,
it cannot be made visible across the network and cannot be integrated into
multiple data flows.

The Exchange Network should strive for high construct visibility in data-centric
schemas because high construct visibility ensures consistency and interoperability
in all data-centric XML exchanges. High construct visibility is not as important
in document-centric schemas because document-centric XML is used mainly for
presentation purposes.

 2.1-3 9/23/2003

9/23/2003 2.1-4

Chapter 2
Datatypes

One important advantage for the W3C Schema standard over DTDs is its
capability to define datatypes for elements and attributes. Datatypes represent the
kind of information elements and attributes can hold—character strings or dates,
for example. This chapter discusses datatypes and their use in schemas, and
provides guidance for the Exchange Network’s use of XML Schema.

SIMPLE DATATYPES
Simple datatypes include both built-in datatypes and user-defined datatypes.

Built-In Datatypes

Built-in datatypes are the datatypes that were defined by the W3C Schema team
and included in the W3C Schema standard. The small number of built-in
datatypes is believed to be so universal that they would need to be constantly
redefined by most schema developers.

Built-in datatypes cannot be user defined. The following are examples of the
W3C Schema standard simple datatypes:

 String

 anyURI—a standard Internet URI

 Boolean—a two-state true-or-false flag

 Decimal

 Date

 Integer

 negativeInteger—any integer with a value less than zero.

The following is an example of an element declaration that specifies a simple
datatype:

<xsd:element name=“SubmitterIdentificationCode” type=“xsd:integer”/>

Any XML processor that complies with the W3C Schema standard will
automatically validate built-in datatypes. That is to say, if an XML instance

 2.2-1 9/23/2003

document contained a string value instead of an integer value for the above
element, an XML processor would generate an error.

User-Defined Datatypes

One of the advantages of XML Schema is the ability to define your own
datatypes. User-defined datatypes are based on the existing built-in datatypes and
can also be further derived from existing user-defined datatypes. Datatypes can be
derived in one of three ways:

 By restriction. Restraints are placed on the built-in datatype’s limiting
facets.1 The integer datatype could be restricted to allow only a range of
integers.

 By list. The derived datatype is a list of values from the built-in datatype.
The string datatype could be restricted to allow only county names from a
single state.

 By union. The derived datatype is a combination of two or more built-in
datatypes.

Simple Datatypes
Pros and Cons

Advantages: Simple datatypes allow for specification of data requirements beyond what
is possible with DTDs.

Using simple datatypes increases interoperability between XML
applications.

Simple datatypes are validated by XML processors.

Disadvantages: A simple datatype may not always have the proper lexical format for use in
a system. For instance, the date simple datatype is formatted
YYYY-MM-DD, which may not be suitable for certain situations.

Rules and Guidelines

Data-centric: [SD2-1] Data-centric schemas MUST use simple datatypes to the
maximum extent possible.

Document-centric: [SD2-2] Document-centric schemas SHOULD use simple datatypes.

1 “The properties that define the characteristics of a value space are known as facets; facets

include equality, order, bounds, cardinality, and numeric/non-numeric.” Professional XML
Schemas, WROX Press Ltd, 2001.

 2.2-2 9/23/2003

Datatypes

Simple Datatypes

Justification

Simple datatypes are valuable because they allow stronger data validation capabilities than DTDs.
Use of simple datatypes increases data quality among XML applications because all applications
that use simple datatypes are subject to the same validations by XML processors.

When lexical format of a simple datatype is not suitable, schema developers can create their own
datatypes using the W3C Schema Regular Expression syntax.

Document-centric schemas often will include sections of text. These sections often will not require
high levels of validation because the text is meant for human rather than machine consumption.
Because of this factor, the less stringent guidance of “should” is recommended.

COMPLEX DATATYPES
Complex datatypes are user-defined datatypes that contain child elements or
attributes. Complex datatypes can be defined as either global complex datatypes
or local complex datatypes. Each is discussed below.

Global Complex Datatypes

Global complex datatypes are direct descendants of the root element of a schema.
They can be associated with any element in a schema. Global complex datatypes
are also known as named complex datatypes because they have an associated
name. The following is an example of a global complex datatype:

<xsd:complexType name=“FacilitySiteDetailsType”>
<xsd:sequence>

<xsd:element name=“FacilityIdentificationCode” type=“xsd:string”/>
<!—information removed for example purposes—>

</xsd:sequence>

</xsd:complexType>

The following is an example of an element associated with the global complex
datatype shown above:

<xsd:element name=“FacilitySiteDetails” type=“FacilitySiteDetailsType”>

This declaration means that, in an XML instance document, the FacilitySiteDetails
element will contain

 a subelement of FacilityIdentificationCode and

 any other elements declared within the FacilitySiteDetailsType global
complex datatype.

 2.2-3 9/23/2003

The main advantage of global complex datatypes is that a change to a global
complex datatype definition will propagate across all elements associated with
that datatype in a schema. For example, if an element were added to the
FacilitySiteDetailsType complex datatype definition, it would

 propagate to the declaration of the FacilitySiteDetails element and

 any other elements associated with FacilitySiteDetailsType datatype.

There may be situations when this is not desired. Continuing with the above
example, there may be one place in a schema where the added element cannot
appear. This may require two global complex datatypes—one that includes the
new element and another that excludes it. The appropriate “version” of the
datatype would then be used, as required.

Global Complex Datatypes
Pros and Cons

Advantages: Global complex datatypes can be associated with any element in a
schema.

A change to a global complex datatype definition will propagate across all
elements that are associated with that datatype in a schema. This allows
far-reaching changes to be made in a single location in a schema, thereby
lowering maintenance costs.

Disadvantages: A change to a global complex datatype definition may propagate across
elements whose datatype should not be changed. Additional schema
updates may be required in such cases, thereby increasing maintenance
costs.

Use of global complex datatypes places additional overhead on an XML
processor to resolve all references.

Rules and Guidelines

Data-centric: [SD2-3] Data-centric schemas that employ complex datatypes MUST
define the complex datatypes as global.

Document-centric: [SD2-4] Document-centric schemas that employ complex datatypes
SHOULD define the complex datatypes as global.

Justification

Global complex datatypes are valuable because they can be associated with any element in a
schema. This promotes high datatype visibility.

Although there is a potential requirement for additional schema updates in a propagation scenario,
the potential advantages for using global complex datatypes far outweigh the potential
disadvantages.

Because schema construct visibility is not as important for document-centric schemas as for data-
centric schemas, use of global complex datatypes is not required for document-centric schemas.

The potential overhead on an XML processor to resolve all references to global complex datatypes
is not a high enough concern to warrant not recommending their use.

 2.2-4 9/23/2003

Datatypes

Local Complex Datatypes

Local complex datatypes can appear anywhere in a schema. They are associated
with a single element, and their definition cannot be associated with any other
element in a schema. Local complex datatypes are also known as anonymous
complex datatypes because they do not have a name associated with them. The
following example is similar to the example given for global complex datatypes,
only the FacilitySiteDetailsType datatype is now represented as a local complex
datatype:

<xsd:element name=“FacilitySiteDetails”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=“FacilityIdentificationCode” type=“xsd:string”/>
<!—information removed for example purposes—>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

Although the above declaration uses a local complex datatype, the result in an
XML instance document will be the same as if the datatype were global; the
FacilitySiteDetails element will contain a subelement of FacilityIdentificationCode and
any other elements declared within the local complex datatype.

Because the complex datatype definition in the above declaration is associated
with only the FacilitySiteDetails element, a change to its definition will affect only
that element.

 2.2-5 9/23/2003

Local Complex Datatypes

Pros and Cons

Advantages: A change to a local complex datatype definition will affect only the element
with which it is associated, thereby allowing changes to be confined to a
single location in a schema. This may be desirable in some situations.

Disadvantages: Local complex datatypes can be associated only with a single element in a
schema.

If the same local complex datatype definition is used in the declaration of
multiple elements in a schema, and a change to the datatype is required, a
change will need to be made where the local complex datatype definition
exists. This can increase maintenance costs.

Rules and Guidelines

Data-centric: [SD2-5] Data-centric schemas SHOULD NOT use local complex datatypes.

Document-centric: [SD2-6] Document-centric schemas MAY use local complex datatypes.

Justification

Use of local complex datatypes is discouraged for data-centric schemas because they result in low
datatype visibility. However, because schema construct visibility is not as important for document-
centric schemas as for data-centric schemas, local complex datatypes may be used in document-
centric schemas.

Although there is a potential requirement for additional schema updates, the potential advantages
for using local elements in document-centric schemas far outweigh the potential disadvantages.

 2.2-6 9/23/2003

Chapter 3
Elements and Attributes

Elements are the basic building blocks of an XML instance document and are
represented by tags. Attributes are W3C Schema constructs associated with
elements that provide further information regarding elements. While elements can
be thought of as containing data, attributes can be thought of as containing
metadata. This chapter discusses the element and attribute constructs and their
potential uses, and provides guidance for the Exchange Network.

ELEMENTS
Elements are the basic building blocks of an XML document instance. An element
may contain one or more subelements, as shown in the following XML instance
document excerpt:

<AAREASubmission>
<FacilitySiteDetails>

<FacilityIdentificationCode>15849</FacilityIdentificationCode>
<FacilityAddressDetails>

<!—information removed for example purposes—>
</FacilityAddressDetails>

</FacilitySiteDetails>
</AAREASubmission>

In the above example, the FacilitySiteDetails element is a subelement of the
AAREASubmission element, while the FacilityIdentificationCode and
FacilityAddressDetails elements are subelements of the FacilitySiteDetails element.
Elements can be extended as necessary (i.e., a schema developer can add
subelements to an element if more information needs to be conveyed in an XML
instance document than is currently conveyed).

Element order is enforced by XML processors. An error will result if the element
order in an XML instance document is different than the declared order of the
elements in the schema. Elements can be declared as either global elements or local
elements. Each is discussed below.

 2.3-1 9/23/2003

Global Elements

Global elements are direct descendants of the root element of a schema. They can
be referenced within any complex datatype definition in a schema through the use
of a “ref” attribute. In the following example, the FacilityIdentificationCode element is
a global element:

<?xml version=“1.0” encoding=“UTF-8”?>
<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>

<xsd:element name=“FacilityIdentificationCode” type=“xsd:string”/>
<!—information removed for example purposes—>
<xsd:complexType name=“FacilitySiteDetailsType”>

<xsd:sequence>
<xsd:element ref=“FacilityIdentificationCode”>
<!—information removed for example purposes—>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Because the FacilityIdentificationCode element is a global element, a change to the
FacilityIdentificationCode element declaration (such as a change in datatype) will
propagate to the definition of the FacilitySiteDetailsType datatype, and all other
complex datatype definitions where the element is referenced; however, there may
be situations where this is not the desired result.

Continuing with the above example, there may be a reference to the
FacilityIdentificationCode element in a schema not applicable for the new datatype.
This may require the presence of two global elements—one associated with the new
datatype, and the other associated with the original datatype. The appropriate
“version” of the element would then be referenced, as needed.

A global element can serve as the root element of any XML instance document that
conforms to a schema. In the following example, there are two global elements—
AAREASubmission and AEVENTSubmission. Therefore, an XML instance document
that conforms to this schema can have either the AAREASubmission element or the
AEVENTSubmission element as its root:

<?xml version=“1.0” encoding=“UTF-8”?>
<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>

 <xsd:element name=“AAREASubmission” type=“AAREASubmissionType”/>
 <xsd:element name=“AEVENTSubmission” type=“AEVENTSubmissionType”/>
 <!—information removed for example purposes—>

</xsd:schema>

9/23/2003 2.3-2

Elements and Attributes

In the above scenario, an XML instance document can have only one of the global
elements in the schema as its root element. Therefore, it can include only that global
element and its subelements.

Continuing with the same example, if an XML instance document has the
AAREASubmission element as its root element, it can include the AAREASubmission
element and its subelements (specifically, the elements contained within the
AAREASubmissionType datatype). However, it cannot include the AEVENTSubmission
element or its subelements.

Global Elements
Pros and Cons

Advantages: Global elements can be referenced within any complex datatype definition
in a schema.
A change to a global element declaration will propagate to all complex
datatype definitions where the element is referenced. This allows a far-
reaching change to be made in a single location in a schema, thereby
lowering maintenance costs.
Global elements can serve as the root element of any XML instance
document that conforms to a schema, thereby increasing schema
versatility.

Disadvantages: A change to a global element declaration may propagate to elements for
which the change should not apply. Additional schema updates may be
required in such cases, thereby increasing maintenance costs.
If a global element does not contain any mandatory subelements, it is
possible to create an XML instance document with only a single empty
element representing that global element; therefore, the XML instance
document would contain no data.
Use of global elements places additional overhead on an XML processor
to resolve all references.

Rules and Guidelines

Data-centric: [SD3-1] Data-centric schemas MUST use global elements.
Document-centric: [SD3-2] Document-centric schemas SHOULD use global elements.

Justification

Global elements are valuable because they can be referenced within any complex datatype
definition in a schema. This promotes high element visibility.
Although there is a potential requirement for additional schema updates in a propagation scenario,
the potential advantages for using global elements far outweigh the potential disadvantages.
Because schema construct visibility is not as important for document-centric schemas as for data-
centric schemas, use of global elements is not required for document-centric schemas.
Although an XML instance document can be created with only a single empty element
representing a global element, the chances of this actually occurring in a real-world scenario are
not high enough to warrant not recommending the use of global elements.
The potential overhead on an XML processor to resolve all references to global elements is also
not of high enough concern to warrant not recommending its use.
Note: There is concern that the requirement for global datatypes will require a great deal of
revision of existing schema, and that the manageability of global datatypes will depend on the
namespace. Global elements could become unmanageable in a large namespace.

 2.3-3 9/23/2003

Local Elements

Local elements are not direct descendants of the root element of a schema. Rather,
they are nested inside the schema structure. Unlike global elements, local elements
cannot be referenced outside of the complex datatype definition where they are
declared. The following example is similar to the example shown above for global
elements, but the FacilityIdentificationCode element is now a local element:

<?xml version=“1.0” encoding=“UTF-8”?>
<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>
 <!—information removed for example purposes—>

<xsd:complexType name=“FacilitySiteDetailsType”>
<xsd:sequence>

<xsd:element name=“FacilityIdentificationCode” type=“xsd:string”/>
<!—information removed for example purposes—>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Because the FacilityIdentificationCode element is now a local element, a change to the
FacilityIdentificationCode element declaration will affect only the FacilitySiteDetailsType
datatype.

It is possible to declare a local element in multiple places in a schema with a
different datatype in each place. In the following example, the FacilityIdentificationCode
element is declared as a local element within two different datatypes, but it has a
different datatype in each declaration:

<?xml version=“1.0” encoding=“UTF-8”?>
<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>

<!—information removed for example purposes—>
<xsd:complexType name=“FacilitySiteDetailsType”>

<xsd:sequence>
<xsd:element name=“FacilityIdentificationCode” type=“xsd:string”/>
<!—information removed for example purposes—>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name=“StateReportingDetailsType”>

<xsd:sequence>
<xsd:element name=“FacilityIdentificationCode” type=“xsd:integer”/>
<!—information removed for example purposes—>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

9/23/2003 2.3-4

Elements and Attributes

Local Elements

Pros and Cons

Advantages: A change to a local element declaration will affect only that element,
thereby allowing changes to be confined to a single location in a schema.
This may be desirable in some situations.

Disadvantages: Local elements cannot be referenced within any complex datatype
definition for a schema outside of the complex datatype definition where
they are declared.
If a local element is declared in multiple places in a schema with the same
datatype, and a change to its datatype is required, a change will need to be
made where the local element is declared. This can increase maintenance
costs.
Local elements cannot serve as the root element of any XML instance
document that conforms to a schema.

Rules and Guidelines

Data-centric: [SD3-3] Data-centric schemas SHOULD NOT use local elements.
Document-centric: [SD3-4] Document-centric schemas MAY use global elements.

Justification

Use of local elements is discouraged for data-centric schemas because they result in low element
visibility; however, because schema construct visibility is not as important for document-centric
schemas as for data-centric schemas, local elements may be used in document-centric schemas.
Although there is a potential requirement for additional schema updates in a scenario where a local
element is declared in multiple places, the potential advantages for using local elements in
document-centric schemas far outweigh the potential disadvantages.

Cardinality of Elements

The term cardinality is defined as the number of elements in a set. When used in
reference to W3C Schema, this term refers to the number of times an element may
appear in a given content model in an XML instance document.

One important advancement for the W3C Schema standard over DTDs is the
capability to define specific cardinality values for elements. While DTDs allowed
for general declaration of cardinality (“1 or more”; “0 or 1”), the W3C Schema
standard allows for specification of the exact number of allowed occurrences of an
element.

Cardinality is indicated in a schema using the minOccurs and maxOccurs constraints
in an element declaration; these constraints are also known as occurrence indicators.
Occurrence indicators can appear only on local element declarations or references
to global elements. They cannot appear within global element declarations.

 2.3-5 9/23/2003

In the following example, the FacilitySiteDetails global element can occur a
minimum of zero times (meaning it is optional) and a maximum of five times:

<?xml version=“1.0” encoding=“UTF-8”?>
<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>

<!—information removed for example purposes—>
<xsd:complexType name=“AAREASubmissionType”>
 <xsd:sequence>

<xsd:element ref=“FacilitySiteDetails” minOccurs=“0” maxOccurs=“5”/>
<!—information removed for example purposes—>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

It is possible to specify a different occurrence indicator value for a global element
each time it is referenced in a schema. Therefore, the FacilitySiteDetails element in
the above example could be referenced in another global complex datatype in the
schema with a minOccurs value of 2, thereby requiring that the element appear at
least twice.

A maxOccurs value of “unbounded” can be used to indicate that an element can
appear an unlimited number of times in a content model.

The default value for both occurrence indicators, minOccurs and maxOccurs, is 1.
Therefore, in the following example, the FacilitySiteDetails global element may occur
only once:

<?xml version=“1.0” encoding=“UTF-8”?>
<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>

<!—information removed for example purposes—>
<xsd:complexType name=“AAREASubmissionType”>

<xsd:sequence>
<xsd:element ref=“FacilitySiteDetails”>

</xsd:sequence>
</xsd:complexType>
</xsd:schema>

9/23/2003 2.3-6

Elements and Attributes

Occurrence Indicators

Pros and Cons

Advantages: Occurrence indicators allow an element to appear multiple times in a
content model.
It is possible to specify a different occurrence indicator value for a global
element in each place in a schema where it is referenced.

Disadvantages: There are no disadvantages to this technique.
Rules and Guidelines

Data-centric: [SD3-5] Data-centric schemas SHOULD use occurrence indicators.
[SD3-6] Data-centric schemas SHOULD NOT use occurrence indicators
when the required values are the default values.

Document-centric: [SD3-7] Document-centric schemas SHOULD use occurrence indicators.
[SD3-8] Document-centric schemas SHOULD NOT use occurrence
indicators when the required values are the default values.

Justification

The ability to define specific cardinality for an element is very valuable. It is recommended that
schema developers not specify default values for occurrence indicators (i.e., minOccurs=“1”;
maxOccurs=“1”) because doing so can unnecessarily clutter a schema.

ATTRIBUTES
Attributes are W3C Schema constructs associated with elements that provide
further information regarding elements. While elements can be thought of as
containing data, attributes can be thought of as containing metadata. Unlike
elements, attributes cannot be nested within each other—there are no “subattributes.”
Therefore, attributes cannot be extended as elements can. The following is an
example of an attribute in an XML instance document:

<FacilitySiteDetails informationFormatIndicator=“A”>

Attribute order is not enforced by XML processors—that is, if the attribute order in
an XML instance document is different than the order in which the attributes are
declared in the schema to which the XML instance document conforms, no error
will result. As with elements, attributes can be declared as either global attributes or
local attributes.

General guidance on attributes is given below, followed by a discussion of global
attributes and local attributes.

 2.3-7 9/23/2003

Attributes (General)

Pros and Cons

Advantages: Attributes are useful for conveying metadata for elements.

Disadvantages: Unlike elements, attributes cannot be extended.
Unlike elements, attribute order is not enforced by XML processors.

Rules and Guidelines

Data-centric: [SD3-9] Data-centric schemas MUST NOT use attributes in place of data
elements.
[SD3-10] Data-centric schemas MAY use attributes for metadata.

Document-centric: [SD3-11] Document-centric schemas MAY use attributes.
Justification

The use of attributes is prohibited for data-centric schemas because data-centric XML instance
documents contain data exclusively, as opposed to metadata. The fact that attributes cannot
contain other attributes and cannot be extended makes their usefulness very limited as well.
Attributes are useful in document-centric schemas to convey metadata, as in the following
example: <paragraph amended=“02-01-2002”>.
The order and extension of information is not as important for document-centric schemas as for
data-centric schemas because, in document-centric scenarios, data are not exchanged. Therefore,
attributes may be used in document-centric schemas.

Global Attributes

Global attributes are direct descendants of the root element schema. As with global
elements, global attributes can be referenced within any complex datatype definition
in a schema through the use of a “ref” attribute. In the following example, the
informationFormatIndicator attribute is a global attribute:

<?xml version=“1.0” encoding=“UTF-8”?>
<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>

<xsd:attribute name=“informationFormatIndicator” type=“xsd:string”/>
<!—information removed for example purposes—>
<xsd:complexType name=“FacilitySiteDetailsType”>

<xsd:sequence>
<xsd:element ref=“FacilityIdentificationCode”>

<!—information removed for example purposes—>
</xsd:sequence>
<xsd:attribute ref=“informationFormatIndicator”/>

</xsd:complexType>
</xsd:schema>

Because the informationFormatIndicator attribute is a global attribute, a change to the
informationFormatIndicator attribute declaration (such as a change in datatype) will
propagate to the definition of the FacilitySiteDetailsType datatype and to all other

9/23/2003 2.3-8

Elements and Attributes

complex datatype definitions where the attribute is referenced. As with global
elements, there may be situations where this is not the desired result.

Global Attributes

Pros and Cons

Advantages: Global attributes can be referenced within any complex datatype definition
in a schema.
A change to a global attribute declaration will propagate to all complex
datatype definitions where the attribute is referenced. This allows a broad-
reaching change to be made in a single location in a schema, thereby
lowering maintenance costs.

Disadvantages: A change to a global attribute declaration may propagate to complex
datatype definitions for which the change should not apply. Additional
schema updates may be required in such cases, thereby increasing
maintenance costs.
Use of global attributes places additional overhead on an XML processor to
resolve all references.

Rules and Guidelines

Data-centric: [SD3-12] Data-centric schemas MUST NOT use global attributes in place
of data elements.
[SD3-13] Data-centric schemas MAY use global attributes for metadata.

Document-centric: [SD3-14] Document-centric schemas MAY use global attributes.
Justification

Global attributes are valuable for document-centric schemas because they can be referenced
within any complex datatype definition in a schema.
Although there is a potential requirement for additional schema updates in the propagation scenario
discussed above, the potential advantages for using global attributes in document-centric schemas
far outweigh the potential disadvantages.
The potential overhead on an XML processor to resolve all references to global attributes is not of
high enough concern to warrant not recommending their use for document-centric schemas.

Local Attributes

Local attributes are not direct descendants of the root element of a schema. Rather,
they are nested inside the schema structure. Unlike global attributes, local attributes
cannot be referenced within any complex datatype definition in a schema outside of
the complex datatype definition where they are declared. The following example is
similar to the example shown above for global elements, but the
informationFormatIndicator attribute is now a local attribute:

<?xml version=“1.0” encoding=“UTF-8”?>
<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>

<!—information removed for example purposes—>
<xsd:complexType name=“FacilitySiteDetailsType”>

<xsd:sequence>
<xsd:element ref=“FacilityIdentificationCode”>

 2.3-9 9/23/2003

<!—information removed for example purposes—>
</xsd:sequence>
<xsd:attribute name=“informationFormatIndicator” type=“xsd:string”/>

</xsd:complexType>
</xsd:schema>

Because the informationFormatIndicator attribute is now a local attribute, a change to
the informationFormatIndicator attribute declaration will affect only the
FacilitySiteDetailsType datatype.

As with local elements, it is possible to declare a local attribute in multiple places
within a schema, with a different datatype in each place. This technique may be
desirable in some situations.

Local Attributes

Pros and Cons

Advantages: A change to a local attribute declaration will affect only that attribute,
thereby allowing changes to be confined to a single location in a schema.
This may be desirable in some situations.

Disadvantages: Local attributes cannot be referenced within any complex datatype
definition in a schema outside of the complex datatype definition where
they are declared.
If a local attribute is declared in multiple places in a schema with the same
datatype and a change to its datatype is required, a change will need to be
made wherever the local attribute is declared. This can increase
maintenance costs.

Rules and Guidelines

Data-centric: [SD3-15] Data-centric schemas MUST NOT use local attributes in place of
data elements.
[SD3-16] Data-centric schemas MAY use local attributes for metadata.

Document-centric: [SD3-17] Document-centric schemas MAY use local attributes.
Justification

Although there is a potential requirement for additional schema updates for a scenario where local
attributes are declared in multiple places, the potential advantages for using local attributes in
document-centric schemas far outweigh the potential disadvantages.

Cardinality of Attributes

Cardinality for attributes differs from cardinality for elements; an attribute cannot
occur more than once on a given element. Therefore, there are no minOccurs or
maxOccurs occurrence indicators for attributes. Instead, a “use” indicator can be
specified for an attribute with one of the following values:

 Required. The attribute must appear in an XML instance document.
For example:

<xsd:attribute name=“informationFormatIndicator” type=“xsd:string” use=“required”/>

9/23/2003 2.3-10

Elements and Attributes

 Optional. The attribute may or may not appear in an XML instance

document. This is the default value. For example:

<xsd:attribute name=“informationFormatIndicator” type=“xsd:string” use=“optional”/>

 Prohibited. The attribute must not appear in an XML instance document.
For example:

<xsd:attribute name=“informationFormatIndicator” type=“xsd:string” use=“prohibited”/>

A “use” indicator can appear only on local attribute declarations or references to
global attributes, not on global attribute declarations. It is also possible to specify a
different “use” indicator value for a global attribute each place within a schema
where it is referenced.

For example, a “prohibited” value may be used if an attribute is added to a schema,
but the schema developer wants to prohibit the use of the attribute until a later time
because of some system dependency (perhaps a database field with which the
attribute is associated does not yet exist).

“use” Indicator

Pros and Cons

Advantages: The “use” indicator allows the appearance of an attribute to be enforced.
Disadvantages: There are no disadvantages to this technique.

Rules and Guidelines

Data-centric: [SD3-18] Data-centric schemas SHOULD use the “use” indicator.
[SD3-19] Data-centric schemas SHOULD NOT use the “use” indicator
when the required value is the default value.

Document-centric: [SD3-20] Document-centric schemas SHOULD use the “use” indicator.
[SD3-21] Document-centric schemas SHOULD NOT use the “use” indicator
when the required value is the default value.

Justification

The ability to enforce the appearance of an attribute is very valuable.
It is recommended that schema developers not specify a default value for a “use” indicator (i.e.,
use=“optional”) because doing so can unnecessarily clutter a schema.
Use of the “prohibited” value can unnecessarily complicate a schema. It is preferable to use change
control techniques for situations such as the example above.

 2.3-11 9/23/2003

ELEMENT AND ATTRIBUTE GROUPING
The W3C Schema standard has various methods for grouping elements and
attributes together. This section discusses each of these methods.

Compositors

Compositors are W3C Schema constructs that group element declarations together.
There are three types of compositors in the W3C Schema standard:

 Sequence

 Choice

 All.

“SEQUENCE” COMPOSITOR

The “sequence” compositor has been used in several examples in this document. It
indicates that the elements declared inside it must appear in an XML instance
document in the order declared. For example:

<xsd:complexType name=“FacilitySiteDetailsType”>
<xsd:sequence>

<xsd:element ref=“FacilityIdentificationCode”>
<xsd:element ref=“FacilityName”>
<xsd:element ref=“FacilityAddressDetails”>
<!—information removed for example purposes—>

</xsd:sequence>
</xsd:complexType>

If the above elements appear under the FacilitySiteDetailsType element in an XML
instance document in an order other than that shown above, an XML processor will
generate an error.

“sequence” Compositor
Pros and Cons

Advantages: The “sequence” compositor allows element order enforcement.
Disadvantages: There are no disadvantages to this technique.

Rules and Guidelines

Data-centric: [SD3-22] Data-centric schemas SHOULD use the “sequence” compositor.
Document-centric: [SD3-23] Document-centric schemas SHOULD use the “sequence”

compositor.
Justification

The ability to enforce element order is very valuable, especially in data-centric scenarios where the
order of the information is important.

9/23/2003 2.3-12

Elements and Attributes

“CHOICE” COMPOSITOR

The “choice” compositor indicates that only one of the elements declared within it
can appear in an XML instance document. For example:

<xsd:complexType name=“FacilitySiteDetailsType”>
<xsd:choice>

<xsd:element ref=“FacilityIdentificationCode”>
<xsd:element ref=“FacilityName”>
<xsd:element ref=“FacilityAddressDetails”>
<!—information removed for example purposes—>

</xsd:choice>
</xsd:complexType>

If more than one of the above elements appear under the FacilitySiteDetailsType
element in an XML instance document, an XML processor will generate an error.

“choice” Compositor

Pros and Cons

Advantages: The “choice” compositor allows single element choices to be enforced.
Disadvantages: There are no disadvantages to this technique.

Rules and Guidelines

Data-centric: [SD3-24] Data-centric schemas SHOULD use the “choice” compositor.
Document-centric: [SD3-25] Document-centric schemas SHOULD use the “choice”

compositor.
Justification

As its name implies, the “choice” compositor is very useful in scenarios where only one choice can
be made among a list of elements—for instance, elements that represent a series of menu choices.

“ALL” COMPOSITOR

The “all” compositor indicates that the elements declared within it can appear in an
XML instance document, in any order. For example:

<xsd:complexType name=“FacilitySiteDetailsType”>
<xsd:all>

<xsd:element ref=“FacilityIdentificationCode”>
<xsd:element ref=“FacilityName”>
<xsd:element ref=“FacilityAddressDetails”>
<!—information removed for example purposes—>

</xsd:all>
</xsd:complexType>

The above elements can appear under the FacilitySiteDetailsType element in any
order, and an XML processor will not generate an error. However, with the all

 2.3-13 9/23/2003

compositor, no element within it can appear more than once. It is therefore illegal to
specify a minOccurs or maxOccurs value greater than one for any element declared
within an “all” compositor.

“all” Compositor

Pros and Cons

Advantages: The “all” compositor allows for flexible element ordering.
Disadvantages: No element within an “all” compositor can appear more than once.

Rules and Guidelines

Data-centric: [SD3-26] Data-centric schemas MUST NOT use the “all” compositor.
Document-centric: [SD3-27] Document-centric schemas SHOULD use the “all” compositor.

Justification

The ability to allow elements to appear in any order is very valuable in document-centric scenarios.
However, because data-centric scenarios are more structured than document-centric scenarios, it
is important that order be enforced in data-centric scenarios. The use of the “all” compositor is
therefore prohibited for data-centric schemas.
Although no element within an “all” compositor can appear more than once, the potential
advantages for using the “all” compositor far outweigh the potential disadvantages.

Model Groups

Up to this point, all element groupings have used compositors in this document.
There is another type of element grouping—a model group—that allows elements to
be referenced within multiple complex datatypes using a single name.

Model groups must be globally defined with a group element, as shown in the
following example:

<xsd:group name=“LocationCodes”>
<xsd:sequence>

<xsd:element name=“LocationCode1” type=“xsd:string”>
<xsd:element name=“LocationCode2” type=“xsd:string”>
<xsd:element name=“LocationCode3” type=“xsd:string”>

</xsd:sequence>
</xsd:group>

9/23/2003 2.3-14

Elements and Attributes

As with global elements, the three elements grouped together in the above example
can be referenced within any complex datatype definition within a schema using a
“ref” attribute. For example:

<?xml version=“1.0” encoding=“UTF-8”?>
<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>

<xsd:element name=“FacilitySiteDetails” type=“FacilitySiteDetailsType”/>
<xsd:element name=“SampleLocationDetails” type=“SampleLocationDetailsType”/>
<xsd:complexType name=“FacilitySiteDetailsType”>

<xsd:sequence>
<xsd:element ref=“FacilityIdentificationCode”>
<xsd:group ref=“LocationCodes”>
<!—information removed for example purposes—>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name=“SampleLocationDetailsType”>

<xsd:sequence>
<xsd:element ref=“SampleIdentificationCode”>
<xsd:group ref=“LocationCodes”>
<!—information removed for example purposes—>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

As noted in an earlier chapter, the global complex datatypes are advantageous
mostly because a change to a global complex datatype definition will propagate to
all elements associated with that datatype within a schema. Model groups are
similarly advantageous because a change to a model group declaration will
propagate to all global complex datatype definitions where the model group is
referenced—which in turn will propagate to all elements that are associated with
those global complex datatypes.

Continuing with the above example, if an element named LocationCode4 were added
to the LocationCodes model group, it would be reflected within both the
FacilitySiteDetails and SampleSiteDetails content models because the LocationCode4
element would now become a subelement of both the FacilitySiteDetails and
SampleSiteDetails elements.

Cardinality can also be indicated for model groups using the minOccurs and
maxOccurs constraints in the same way they are used with global element
references.

 2.3-15 9/23/2003

Model Groups
Pros and Cons

Advantages: Model groups can be referenced in any complex datatype definition within
a schema.
A change to a model group declaration will propagate to all complex
datatype definitions where the model group is referenced, which in turn
propagate to elements. This allows a far-reaching change to be made in a
single location in a schema, thereby lowering maintenance costs.

Disadvantages: As with global elements, a change to model group declaration may
propagate to datatypes and elements for which the change should not
apply. Additional schema updates may be required in such cases, thereby
increasing maintenance costs.
Use of model groups places additional overhead on an XML processor to
resolve all references.

Rules and Guidelines

Data-centric: [SD3-28] Data-centric schemas MAY use model groups.

Document-centric: [SD3-29] Document-centric schemas MAY use model groups.
Justification

Model groups allow elements to be referenced within multiple complex datatypes using a single
name.
Although there is a potential requirement for additional schema updates in the propagation scenario
discussed above, the potential advantages for using model groups far outweigh the potential
disadvantages.
The potential overhead on an XML processor to resolve all references to model groups is also not
of high enough concern to warrant not recommending their use.

Attribute Groups

In the same way that model groups allow grouping of elements, attribute groups
allow grouping of attributes. Attribute groups are useful when the same set of
attributes is associated with multiple elements in a schema. Attribute groups must
be globally defined with an attributeGroup element, as shown in the following
example:

<xsd:attributeGroup name=“sourceInformation”>
<xsd:attribute name=“authorName” type=“xsd:string”>

<xsd:attribute name=“creationDate” type=“xsd:date”>
<xsd:attribute name=“lastModificationDate” type=“xsd:date”>

</xsd:attributeGroup>

9/23/2003 2.3-16

Elements and Attributes

The attribute group in the above example can be associated with any element in a
schema, as follows:

<?xml version=“1.0” encoding=“UTF-8”?>
<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>

<xsd:element name=“BrochureInformation” type=“BrochureInformationType”/>
<xsd:element name=“NewletterInformation” type=“NewsletterInformationType”/>
<!—information removed for example purposes—>
<xsd:complexType name=“BrochureInformationType”>

<xsd:sequence>
<xsd:element ref=“BrochureTitle”>
<!—information removed for example purposes—>

</xsd:sequence>
<xsd:attributeGroup ref=“sourceInformation”/>

</xsd:complexType>
<xsd:complexType name=“NewsletterInformationType”>

<xsd:sequence>
<xsd:element ref=“NewsletterTitle”>
<!—information removed for example purposes—>

</xsd:sequence>
<xsd:attributeGroup ref=“sourceInformation”/>

</xsd:complexType>
</xsd:schema>

As with model groups, the main advantage of attribute groups is that a change to an
attribute group declaration will propagate to all elements with which the attribute
group is associated. Continuing with the above example, if an attribute named
authorEMailAddress were added to the sourceInformation attribute group, it would be
reflected within both the BrochureInformation and NewsletterInformation content
models because the authorEMailAddress attribute would now become associated with
both the BrochureInformation and NewsletterInformation elements.

Attribute Groups

Pros and Cons

Advantages: Attribute groups can be associated within any element in a schema.
A change to an attribute group declaration will propagate to all elements
with which the attribute group is associated. This allows a far-reaching
change to be made in a single location in a schema, thereby lowering
maintenance costs.

Disadvantages: A change to an attribute group declaration may propagate to elements for
which the change should not apply. Additional schema updates may be
required in such cases, thereby increasing maintenance costs.
Use of attribute groups places additional overhead on an XML processor to
resolve all references.

 2.3-17 9/23/2003

Attribute Groups

Rules and Guidelines

Data-centric: [SD3-30] Data-centric schemas MUST NOT use attribute groups in place of
data elements.
[SD3-31] Data-centric schemas MAY use attribute groups for metadata.

Document-centric: [SD3-32] Document-centric schemas MAY use attribute groups.
Justification

Model groups allow attributes to be associated with multiple elements using a single name.
Although there is a potential requirement for additional schema updates in the propagation scenario
discussed above, the potential advantages for using attribute groups in document-centric schemas
far outweigh the potential disadvantages.
The potential overhead on an XML processor to resolve all references to attribute groups is also
not of high enough concern to warrant not recommending its use.

9/23/2003 2.3-18

Chapter 4
Namespaces

Namespaces associate schema constructs with a conceptual space that defines a
markup vocabulary.1 This chapter discusses namespaces and their potential uses,
and it provides guidance for the Exchange Network. It is divided into two
sections:

 Namespaces and how they are used within schemas

 Namespaces and how they are used within XML instance documents.

NAMESPACES AND SCHEMAS
The following concepts are covered in this section:

 Namespace declaration and qualification—the declaration of namespaces
in schemas and designation of constructs belonging to those namespaces

 W3C Schema namespaces—a set of namespaces specific to the W3C
Schema standard

 Target namespaces—the mechanism used to declare constructs in a
schema that can be identified as a single set of constructs associated with
that schema

 External Schema references—the referencing of one or more additional
schemas within a schema

 Default namespaces—an efficient way to associate schema constructs with
a specific namespace without namespace prefixing

 Namespaces and attributes—the special treatment of attributes in
namespaces.

Namespace Declaration and Qualification

A namespace is declared in the root element of a schema using a namespace
identifier. Schema constructs are associated with a namespace identifier through a
user-defined namespace prefix, making the constructs “namespace qualified.”

1 Department of the Navy, XML Developer’s Guide, October 29, 2001.

 2.4-1 9/23/2003

In the following example, the namespace identifier is “urn:us:net:exchangenetwork”
and the namespace prefix is “ExchangeNetwork”:

<schema xmlns:ExchangeNetwork=“urn:us:net:exchangenetwork”>

This means that any construct in the schema with a name prefix of “Exchange
Network” belongs to the Exchange Network namespace, as in the following
example:

<element name=“ExchangeNetwork:FacilityIdentificationCode” type=“string”/>

A namespace identifier must be a uniform resource identifier (URI). There are
two kinds of URIs: a uniform resource locator (URL) and a uniform resource
name (URN). Therefore, a namespace identifier must be either a URL or a URN.
If a namespace identifier is a URL, it is not required to be a resolvable World
Wide Web address.

Namespaces allow constructs with the same name but from different markup
vocabularies to be used in the same schema with no adverse effects. In the
following example, two “state” elements are used in the same schema, but they
are associated with two different namespaces. One element represents a U.S. state
abbreviation (e.g., AK, AL, AR), while the other represents the state of water
quality (e.g., acidic, basic, high turbidity):

<?xml version=“1.0” encoding=“UTF-8”?>
<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”

xmlns:ExchangeNetwork=“urn:us:net:exchangenetwork”
xmlns:vadeq=“http://www.state.va.us/xml”>

<xsd:element name=“ExchangeNetwork:State” type=“ExchangeNetwork:StatePostalCodeType”/>
<xsd:element name=“vadeq:State” type=“vadeq:WaterQualityIndicatorType”/>
<!—information removed for example purposes—>

</xsd:schema>

If the state elements declared above were not in separate namespaces, an XML
processor would generate an error. This condition is known as name collision.

9/23/2003 2.4-2

Namespaces

Namespace Declaration and Qualification—Schemas

Pros and Cons

Advantages: Namespaces associate schema constructs with a conceptual space.
Namespace qualification of schema constructs identifies the namespace
where the constructs belong.
Namespaces allow constructs with the same name but from different
markup vocabularies to be used in the same schema with no adverse
effects.

Disadvantages: Namespace qualification of schema constructs can increase verbosity in a
schema and hinder readability.

Rules and Guidelines

Data-centric: [SD4-1] Data-centric schemas MUST use namespaces.
[SD4-2] Data-centric schemas MUST use namespace qualification for all
schema constructs.

Document-centric: [SD4-3] Document-centric schemas MUST use namespaces.
[SD4-4] Document-centric schemas MUST use namespace qualification for
all schema constructs.

Justification

Use of namespaces will be very valuable for the Exchange Network because it will allow constructs
developed in different areas to be associated with their own unique conceptual space.
Although namespace qualification of schema constructs can increase verbosity, the ability to easily
identify the namespace where a construct belongs (visually or automatically) is very valuable.

The W3C Schema Namespaces

The W3C Schema standard has three namespaces that contain W3C Schema
constructs. Two of these namespaces contain constructs used in schemas, while
the third contains constructs used in XML instance documents. The two schema
construct namespaces are discussed below, and the third is discussed in a later
section.

W3C SCHEMA NAMESPACE

The W3C Schema standard has its own namespace that contains all W3C Schema
constructs used in schemas. This namespace is referred to as the W3C Schema
namespace. To use W3C Schema constructs in a schema, the W3C Schema
namespace must be declared in the root element using the namespace identifier
“http://www.w3.org/2001/XMLSchema,” as follows:

<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>

This namespace declaration indicates to an XML processor that any construct in a
schema with a namespace prefix “xsd” is a W3C Schema construct, as in the
following example:

<xsd:element name=“ExchangeNetwork:FacilityIdentificationCode” type=“xsd:string”/>

 2.4-3 9/23/2003

Although user-defined, the prefix “xsd” is most often used in W3C Schema
literature and references as the namespace prefix for W3C Schema constructs.

W3C Schema Namespace

Pros and Cons

Advantages: Declaring the W3C Schema namespace in a schema allows use of W3C
Schema constructs.

Disadvantages: There are no disadvantages to this technique.
Rules and Guidelines

Data-centric: [SD4-5] Data-centric schemas MUST declare the W3C Schema
namespace.
[SD4-6] Data-centric schemas MUST use namespace qualification for all
W3C Schema constructs.
[SD4-7] Data-centric schemas SHOULD use “xsd” as a namespace prefix
for all W3C Schema constructs.

Document-centric: [SD4-8] Document-centric schemas MUST declare the W3C Schema
namespace.
[SD4-9] Document-centric schemas MUST use namespace qualification for
all W3C Schema constructs.
[SD4-10] Document-centric schemas SHOULD use “xsd” as a namespace
prefix for all W3C Schema constructs.

Justification

The W3C Schema namespace must be declared in order to use W3C Schema constructs.
Although namespace qualification of W3C Schema constructs can increase verbosity, the ability to
easily differentiate between a W3C Schema construct and a user-defined schema construct is very
valuable.
Consistent use of a single namespace prefix makes it easy to identify a W3C Schema construct
when viewing a schema, and promotes a common look and feel of schemas across the Exchange
Network.

W3C SCHEMA DATATYPES NAMESPACE

In addition to the W3C Schema namespace, there is a separate namespace—the
W3C Schema Datatypes namespace—that contains only the W3C Schema built-in
datatypes (i.e., it is a subset of the W3C Schema namespace). Its required
namespace identifier is “http://www.w3.org/2001/XMLSchema-datatypes.”

If the W3C Schema Datatypes namespace is declared (but not the W3C Schema
namespace), that schema can include only W3C Schema built-in datatypes and no
other W3C Schema constructs.

The W3C Schema Datatypes namespace gives product developers an opportunity
to include W3C Schema datatypes in their product without supporting the full
range of the W3C Schema markup vocabulary (e.g., Schematron & Relax NG).

9/23/2003 2.4-4

Namespaces

The W3C Schema Datatypes Namespace

Pros and Cons

Advantages: The W3C Schema Datatypes namespace gives product developers an
opportunity to include W3C Schema datatypes in their product without
requiring them to support the full range of the W3C Schema markup
vocabulary.

Disadvantages: There are no disadvantages to this technique.
Rules and Guidelines

Data-centric: [SD4-11] Data-centric schemas SHOULD NOT declare the W3C Schema
Datatypes namespace.

Document-centric: [SD4-12] Document-centric schemas SHOULD NOT declare the W3C
Schema Datatypes namespace.

Justification

Because the W3C Schema Datatypes namespace is a subset of the W3C Schema namespace,
there is no need to declare the W3C Schema Datatypes namespace in a schema.

Target Namespaces

Declaration of a target namespace in a schema indicates that the schema is acting
as a “collector” of constructs declared within it. While a schema may have more
than one declared namespace, only one namespace can be designated as the target
namespace. It is not required that a target namespace be declared in a schema.

A target namespace is declared using the namespace identifier of the selected
namespace. In the following example, the “urn:us:net:exchangenetwork” namespace
is declared as the target namespace:

<?xml version=“1.0” encoding=“UTF-8”?>
<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”

xmlns:ExchangeNetwork=“urn:us:net:exchangenetwork”
targetNamespace=“http://www.epa.gov/exchangenetwork”

This means that any local element or datatype in the schema with a namespace
prefix “Exchange Network” belongs to the schema’s target namespace. Global
elements and datatypes are always included in the target namespace and,
therefore, are not namespace qualified.

 2.4-5 9/23/2003

Target Namespaces

Pros and Cons

Advantages: Declaration of a target namespace in a schema indicates that the schema
is acting as a “collector” of constructs declared within it.

Disadvantages: There are no disadvantages to this technique.
Rules and Guidelines

Data-centric: [SD4-13] Data-centric schemas MUST use target namespaces.
Document-centric: [SD4-14] Document-centric schemas MUST use target namespaces.

Justification

Target namespaces are valuable because they allow a set of schema constructs to be collected
into a single conceptual space. This allows the constructs to be identified as a single set of
constructs.

External Schema References

It is possible to reference one or more additional schemas from within a schema,
thereby creating a modular schema configuration. This technique is valuable
because it allows constructs to be used in schemas other than the schema in which
they are declared. In this section, the term “including schema” refers to the
schema that includes an external schema, while the term “included schema” refers
to the external schema.

Two W3C Schema constructs are used for external schema references:

 Include

 Import.

The “include” construct must be used when the including and included schemas
have the same target namespace. In the following example, the target namespace
of both the schema shown (the including schema) and the FacilityIdentification.xsd
schema (the included schema) is the “urn:us:net:exchangenetwork” namespace:

<?xml version=“1.0” encoding=“UTF-8”?>
<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”
xmlns:ExchangeNetwork=“urn:us:net:exchangenetwork”
targetNamespace=“urn:us:net:exchangenetwork”>

<xsd:include schemaLocation=“FacilityIdentification.xsd”/>
<!—information removed for example purposes—>

</xsd:schema>

This means any constructs within the FacilityIdentification.xsd schema can be used
in the above schema. This technique can be beneficial if an organization wants to
confine the use of constructs within schemas to those that belong to a particular
namespace—perhaps for configuration management purposes.

9/23/2003 2.4-6

Namespaces

The “import” construct must be used when the including and included schemas
have different target namespaces. In the following example, the target namespace
of the NEISchema.xsd schema (the included schema) is “urn:us:gov:epa”:

<?xml version=“1.0” encoding=“UTF-8”?>
<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”
xmlns:ExchangeNetwork=“urn:us:net:exchangenetwork” xmlns:epa=“urn:us:gov:epa”
targetNamespace=“urn:us:net:exchangenetwork”>

<xsd:import schemaLocation= “NEISchema.xsd” namespace=“urn:us:gov:epa”/>
<!—information removed for example purposes—>

</xsd:schema>

Any constructs within the NEISchema.xsd schema can be used in the above
schema; however, because these schemas have different target namespaces, the
target namespace of the NEISchema.xsd schema must be declared in the root
element of the including schema. This technique can be useful if an organization
does not need to confine the use of constructs within schemas to only those that
belong to a particular namespace.

External Schema References

Pros and Cons

Advantages: External schema references enable the creation of a modular schema
configuration.

Disadvantages: An XML processor may have a limit on the number of schemas that can be
externally referenced within a single schema. Therefore, there is a risk that
the number of externally referenced schemas may exceed that limit.

Rules and Guidelines

Data-centric: [SD4-15] Data-centric schemas SHOULD reference external schemas.
[SD4-16] Data-centric schemas MAY use the include construct.
[SD4-17] Data-centric schemas MAY use the import construct.

Document-centric: [SD4-18] Document-centric schemas MAY reference external schemas.
[SD4-19] Document-centric schemas MAY use the include construct.
[SD4-20] Document-centric schemas MAY use the import construct.

Justification

The rules regarding external schema references are consistent with the guidance provided in the
section on schema configuration and documentation.
It is not anticipated that the number of externally referenced schemas used by the Exchange
Network will exceed the limit for any given XML processor.

 2.4-7 9/23/2003

Single or Multiple Namespaces

In an organization, it is possible to have a single namespace that is used as the
target namespace for all schemas within that organization (referred to as a single-
namespace configuration) or to have multiple namespaces (referred to as a
multiple- namespace configuration). The example for the include construct above
demonstrates a single-namespace configuration, while the example for the import
construct demonstrates a multiple-namespace configuration.

Single/Multiple Namespaces

Pros and Cons—Single-Namespace Configuration

Advantages: A single-namespace configuration is very simple.
A single-namespace configuration ensures consistent use of the include
construct for external schema references.

Disadvantages: A single-namespace configuration increases the risk of name collision. This
requires more work on the part of schema developers to ensure this does
not occur.
It is not possible to represent the structure or organization of a markup
vocabulary with a single-namespace configuration.
Pros and Cons—Multiple-Namespace Configuration

Advantages: A multiple-namespace configuration decreases the risk of name collision.
A multiple-namespace configuration allows the structure or organization of
a markup vocabulary to be easily represented.

Disadvantages: A multiple-namespace configuration can be very complex depending on the
number of namespaces used.
A multiple-namespace configuration requires use of both the include and
import constructs for external schema references. There is a risk that the
wrong construct may be used in an external schema reference, thereby
generating an XML processor error.

Rules and Guidelines

Data-centric: [SD4-21] Data-centric schemas SHOULD use a multiple-namespace
configuration.

Document-centric: [SD4-22] Document-centric schemas SHOULD use a multiple-namespace
configuration.

Justification

The potential advantages gained from the use of multiple namespaces outweigh the potential
complexities. Use of multiple namespaces allows the flexibility to address media, functional, and
jurisdictional areas. This will allow namespace managers to develop their own constructs that are
specific to their area, while still utilizing the higher level namespaces when necessary. This is
discussed further in the section on schema configuration and documentation.

9/23/2003 2.4-8

Namespaces

Default Namespaces

Declaration of a default namespace in a schema allows constructs that are not
namespace qualified to belong to a namespace. While a schema may have more
than one declared namespace, only one namespace can be designated as the
default namespace. It is not required that a default namespace be declared in a
schema.

A default namespace is declared simply by omitting the namespace prefix in a
namespace declaration, as follows:

<?xml version=“1.0” encoding=“UTF-8”?>
<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”
xmlns=“urn:us:net:exchangenetwork”>

In the following example, the FacilityIdentificationCode element belongs to the
default namespace (“urn:us:net:exchangenetwork”) because it is not namespace
qualified:

<xsd:element name=“FacilityIdentificationCode” type=“xsd:string”/>

“Namespace coercion” is a condition that occurs when all of the following
conditions are true:

 A schema that has no target namespace is included in a schema that has a
target namespace.

 Constructs in the including schema that belong to the schema’s target
namespace are not namespace qualified.

This condition is known as namespace coercion because the constructs in the
included schema are “coerced” to become part of the including schema’s
namespace. In the following example, the default namespace is the target
namespace. Therefore, if the FacilityIdentification.xsd schema does not have a target
namespace, all constructs included within it would become part of the
“urn:us:net:exchangenetwork” namespace by way of namespace coercion:

<?xml version=“1.0” encoding=“UTF-8”?>
<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”
xmlns=“urn:us:net:exchangenetwork”
targetNamespace=“urn:us:net:exchangenetwork”>

<xsd:include schemaLocation=“FacilityIdentification.xsd”/>

<!—information removed for example purposes—>
</xsd:schema>

 2.4-9 9/23/2003

With namespace coercion, it is impossible to visually discern the origin of schema
constructs by examining the including schema (further external research would be
required). For example, if multiple schemas were externally referenced in the above
example (meaning each had a target namespace of “urn:us:net:exchangenetwork” or
no target namespace), it would not be possible to differentiate between a construct
that came from an included schema that had a target namespace or one that had no
target namespace. All such constructs would not be namespace qualified.

Default Namespaces

Pros and Cons

Advantages: A default namespace reduces verbosity in a schema.
Disadvantages: Declaration of a default namespace in a schema increases ambiguity

because the omission of namespace prefixes makes it more difficult to
identify the namespace where a construct belongs.
Use of default namespaces can cause namespace coercion.

Rules and Guidelines

Data-centric: [SD4-23] Data-centric schemas MUST NOT use default namespaces.
Document-centric: [SD4-24] Document-centric schemas MUST NOT use default namespaces.

Justification

Although namespace qualification of schema constructs can increase verbosity, the ability to easily
identify the namespace where a construct belongs (visually or automatically) is very valuable.
Use of default namespaces can cause namespace coercion, making it impossible to discern the
origin of schema constructs by examining the including schema.
The recommendation that schemas must use namespace qualification for all constructs ensures
that namespace coercion can never occur.

Namespaces and Attributes

Attributes do not belong to a namespace unless they are explicitly namespace
qualified with a namespace prefix. Default namespaces do not apply to
attributes—an attribute will never be included in a default namespace, even if the
element with which the attribute is associated belongs to the default namespace of
the schema.

9/23/2003 2.4-10

Namespaces

In the following example the InformationFormatIndicator attribute does not belong to
the “urn:us:net:exchangenetwork” namespace, even though the FacilitySiteDetails
element belongs to that default namespace:

<?xml version=“1.0” encoding=“UTF-8”?>
<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”
xmlns=“http://www.epa.gov/exchangenetwork”>

<xsd:element name=“FacilitySiteDetails” type=“FacilitySiteDetailsType”/>

<xsd:complexType name=“FacilitySiteDetailsType”>
<xsd:sequence>

<xsd:element name=“FacilityIdentificationCode” type=“xsd:string”/>
<!—information removed for example purposes—>

</xsd:element>
</xsd:sequence>
<xsd:attribute name=“informationFormatIndicator” type=“xsd:string”/>

</xsd:complexType>
</xsd:schema>

Namespaces and Attributes

Pros and Cons

Advantages: Namespace qualification of attributes identifies the namespace to which
they belong.

Disadvantages: Namespace qualification of attributes can increase verbosity in a schema.
Rules and Guidelines

Data-centric: [SD4-25] Data-centric schemas MUST use namespace qualification for all
attributes.

Document-centric: [SD4-26] Document-centric schemas MUST use namespace qualification
for all attributes.

Justification

Although namespace qualification of attributes can increase verbosity, the ability to easily identify
the namespace where an attribute belongs (visually or automatically) is very valuable.

EXCHANGE NETWORK NAMESPACE CONFIGURATION
This section addresses the architectural namespace configuration for developing
Exchange Network XML namespaces under a common methodology.2 The
technical aspects namespaces are also addressed.

2 For a detailed discussion about and rationale for developing the EPA’s namespace and

versioning conventions, see Logistics Management Institute, XML Schema Namespace and
Versioning Strategy for the Environmental Information Exchange Network, LMI Report EP211L1,
Mark Crawford and Jessica Glace, December 2002.

 2.4-11 9/23/2003

The configuration of Exchange Network namespaces comprises multiple shared
namespaces where commonly used XML constructs will be housed.3 The
following namespaces will be part of this Exchange Network Schema
Configuration Architecture:

� An Enterprise Exchange Network namespace to hold message-level and
shared schemas

� One namespace for EPA message-level and functional area schemas

� The option for states to use one state-specific namespace.

Multiple Namespaces

Pros and Cons

Advantages: A multiple-namespace configuration decreases the risk of name collision.
A multiple-namespace configuration can call out a single enterprise
namespace to promote interoperability, while organization-specific
namespaces promote flexibility for rapid implementation.
The main advantage of this option is that it has greater interoperability and
reduces the complexity of allowing one namespace for each major data
group.
Allowing EPA only one namespace will promote harmonization within the
agency, resulting in overall efficiency for all network stakeholders.

Disadvantages: A multiple-namespace configuration becomes more complex as more
namespaces are used.
A multiple-namespace configuration does not enable the highest degree of
interoperability.
A multiple-namespace configuration requires the use of both the include
and import constructs for external schema references, increasing the
complexity of Exchange Network schemas.
Placing all major data groups in one namespace may be too cumbersome
an amount of data to have in one Exchange Network namespace, and
conflicts between XML construct names may become widespread.
Allowing EPA only one namespace initially may be resisted as a voluntary
guideline.

3 For a detailed discussion about and rationale for developing the EPA’s namespace and

versioning conventions, see Logistics Management Institute, XML Schema Namespace and
Versioning Strategy for the Environmental Information Exchange Network, LMI Report EP211L1,
Mark Crawford and Jessica Glace, December 2002.

9/23/2003 2.4-12

Namespaces

Multiple Namespaces

Rules and Guidelines

Data-centric: [SD4-27] Exchange Network schemas MAY use multiple namespaces.
[SD4-28] Exchange Network schemas MUST use
urn:us:net:exchangenetwork as the target namespace.
[SD4-29] EPA schemas MUST use urn:us:gov:epa as the target
namespace.
[SD4-30] Each state MAY have one unique namespace for use in Network
exchanges.

Document-centric: [SD4-31] Exchange Network schemas MAY use multiple namespaces.
[SD4-32] Exchange Network schemas MUST use
urn:us:net:exchangenetwork as the target namespace.
[SD4-33] EPA schemas MUST use urn:us:gov:epa as the target
namespace.
[SD4-34] Each state MAY have one unique namespace for use in Network
exchanges.

Justification

Creating a shared Exchange Network namespace where commonly used XML constructs will be
housed mitigates the risk of creating a lower level of interoperability. Allowing additional
namespaces (e.g., EPA and state namespaces) increases flexibility and reduces initial cost and
time by allowing organizations to individually develop within their own namespaces. Limiting the
number of additional possible namespaces (e.g., EPA and states are each allowed only one)
mitigates the risks of the configuration becoming too complex and lowering interoperability.
One EPA namespace promotes harmonization within the agency.
Although this solution is not optimal for complete interoperability in future systems, it is a
compromise solution that enables development to continue organizationally in less time and less
expense than a single namespace for all trading partners.

NAMESPACES AND XML INSTANCE DOCUMENTS
All discussion up to now has focused on the declaration and use of namespaces in
schemas. Namespaces are also declared and used in XML instance documents.
The following concepts are covered in this section:

 XML instance document validation—methods for validating an XML
instance document against a schema

 Namespace declaration and qualification—the declaration of namespaces
in XML instance documents and designation of constructs belonging to
those namespaces

 The W3C Schema Instance namespace—a set of namespaces specific to
the W3C Schema standard

 Namespace scope—the range of applicability of namespaces within XML
instance documents and methods for altering this range.

 2.4-13 9/23/2003

XML Instance Document Validation

There are several possible ways that an XML instance document can be
associated with a schema for validation purposes:

 The validating system (sending or receiving system) selects the schema
based on information that is external to the XML instance document, such
as a file name.

 The validating system selects the schema based on information contained
in the XML instance document, such as trading partner or transaction
version.

 The validating system selects the schema based on its exact location as
specified in the XML instance document.

The first and second approaches will not be discussed in this document because
they involve concepts that are more pertinent to processing applications than
schemas. In the third approach, the schema location (which may be a URL or file
path) can be listed in the root element of the XML instance document, as follows:

<?xml version=“1.0”?>
<ExchangeNetwork:RCRAInformation xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=“urn:us:net:exchangenetwork CorrectiveAction.xsd”>

The schemaLocation attribute is a W3C Schema construct that associates an XML
instance document with a schema. It is used only when a schema has a target
namespace. The “urn:us:net:exchangenetwork” namespace identifier is the target
namespace of the CorrectiveAction.xsd schema.

If a schema does not have a target namespace, the noNamespaceSchemaLocation
construct must be used:

<?xml version=“1.0”?>
<ExchangeNetwork:RCRAInformation xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=“CorrectiveAction.xsd”>

An XML processor is not required by the W3C Schema standard to recognize the
schemaLocation and noNamespaceSchemaLocation constructs. Therefore, an XML
processor can ignore the schema listed in an XML instance document and validate
the XML instance document against an entirely different schema while still
conforming to the W3C Schema standard.

9/23/2003 2.4-14

Namespaces

XML Instance Document Validation

Pros and Cons

Advantages: Validation of an XML instance document ensures that its contents satisfy
all requirements within the schema to which it validates.

Disadvantages: Validation of an XML instance document introduces an additional level of
complexity to a process flow.
If the location of the schema to which an XML instance document validates
is listed in the root element of the XML instance document and the location
of the schema changes, all XML instance documents that validate to that
schema must be updated if they are to be processed in the future.
An XML processor is not required by the W3C Schema standard to
recognize the schemaLocation and noNamespaceSchemaLocation
constructs. In some situations, this may prevent an XML instance
document from being validated against a schema.

Rules and Guidelines

Data-centric: [SD4-35] Data-centric XML instance documents MUST be validated
against a schema during processing.
[SD4-36] Data-centric XML instance documents SHOULD list the storage
location of the schema where the XML instance document validates in the
root element.
[SD4-37] Data-centric XML instance documents MUST use the
schemaLocation construct when listing the storage location of the schema
to which the XML instance document validates.
[SD4-38] Data-centric XML instance documents MUST NOT use the
noNamespaceSchemaLocation construct when listing the storage location
of the schema to which the XML instance document validates.

Document-centric: [SD4-39] Document-centric XML instance documents SHOULD be
validated against a schema during processing.
[SD4-40] Document-centric XML instance documents SHOULD list the
storage location of the schema to which the XML instance document
validates in the root element.
[SD4-41] Document-centric XML instance documents MUST use the
schemaLocation construct when listing the storage location of the schema
to which the XML instance document validates.
[SD4-42] Document-centric XML instance documents MUST NOT use the
noNamespaceSchemaLocation construct when listing the storage location
of the schema to which the XML instance document validates.

Justification

Validation of XML instance documents will help ensure data integrity within process flows and data
storage.
The potential advantages gained from validation of XML instance documents outweigh the potential
increase in complexity.
Including the storage location of the schema to which an XML instance document validates in the
root element of the XML instance document makes the XML instance document and the schema
“tightly coupled.” Although this may be desirable in some situations (e.g., if the schema location is
not expected to change), it may be undesirable in others (e.g., if the schema location may change).
Because schema construct visibility is not as important for document-centric schemas as for data-
centric schemas, data integrity (and, therefore, XML instance document validation) is not as critical
for document-centric schemas.
The rules regarding the schemaLocation and noNamespaceSchemaLocation constructs are
consistent with the guidance provided in the section of this chapter on target namespaces of this
chapter.

 2.4-15 9/23/2003

Namespace Declaration and Qualification

Elements and attributes in XML instance documents can be namespace qualified.
As with schemas, a namespace is declared in the root element of an XML instance
document schema through the use of a namespace identifier along with a user-
defined namespace prefix. In the following example, all elements and attributes
that belong to the target namespace of the CorrectiveAction.xsd schema have a
namespace prefix of “ExchangeNetwork” in the XML instance document:

<?xml version=“1.0”?>
<ExchangeNetwork:RCRAInformation xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=“urn:us:net:exchangenetwork CorrectiveAction.xsd”
xmlns:ExchangeNetwork=“http://www.epa.gov/network”>
<ExchangeNetwork:FacilityIdentificationCode>15691</ExchangeNetwork:FacilityIdentificationCode>

<!—information removed for example purposes—>
</ExchangeNetwork:RCRAInformation>

It should be noted that

 the namespace identifier in an XML instance document must be the same
as the namespace identifier for the target namespace in the schema, and

 the namespace prefix in an XML instance document does not need to be
the same as the namespace prefix for the target namespace in the schema.

Elements and attributes in XML instance documents can be namespace qualified
only if they belong to the target namespace of the schema that validates the XML
instance document. Therefore, all global elements and attributes must be namespace
qualified. However, the requirement for local elements and attributes that belong
to the target namespace of the schema depends on the setting of a “switch
mechanism” in the schema that uses the following two indicators:

 elementFormDefault

 attributeFormDefault.

The elementFormDefault indicator controls the namespace qualification of local
elements, while the attributeFormDefault indicator controls the namespace qualification
of local attributes. Both of these indicators appear as attributes of the root element
of a schema, and each can have a value of “qualified” or “unqualified” (default).
For example:

<?xml version=“1.0” encoding=“UTF-8”?>
<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”
xmlns:ExchangeNetwork=“urn:us:net:exchangenetwork”
targetNamespace=“urn:us:net:exchangenetwork” elementFormDefault=“qualified”
attributeFormDefault=“qualified”>

9/23/2003 2.4-16

Namespaces

These declarations require that all local elements and attributes in the target
namespace of the schema be namespace qualified in an XML instance document.

Namespace Declaration and Qualification—
XML Instance Documents

Pros and Cons

Advantages: Namespace qualification of elements and attributes in XML instance
documents identifies the namespace where they belong.
Namespace qualification of elements and attributes in XML instance
documents allows elements or attributes with the same name but from
different markup vocabularies to be used in the same XML instance
document with no adverse effects.

Disadvantages: Namespace qualification of elements and attributes can increase verbosity
in an XML instance document.

Rules and Guidelines

Data-centric: [SD4-43] Data-centric XML instance documents MUST use namespace
qualification for all elements.

Document-centric: [SD4-44] Document-centric XML instance documents MUST use
namespace qualification for all elements and attributes.

Justification

Although namespace qualification of elements and attributes in an XML instance document can
increase verbosity, the ability to easily identify the namespace where an element or attribute
belongs (visually or automatically) is very valuable.

The W3C Schema Instance Namespace

The W3C Schema standard has its own namespace, referred to as the W3C
Schema Instance namespace, which contains all W3C Schema constructs used in
XML instance documents (schemaLocation, noNamespaceSchemaLocation, type,
and nil). To use such constructs, the W3C Schema Instance namespace must be
declared in the root element of an XML instance document using the namespace
identifier “http://www.w3.org/2001/XMLSchema-instance”:

<?xml version=“1.0”?>
<ExchangeNetwork:RCRAInformation xmlns:xsi=“http://www.w3.org/2001/XMLSchema-
instance” xmlns:ExchangeNetwork=“urn:us:net:exchangenetwork”>
<!—information removed for example purposes—>

</ExchangeNetwork:RCRAInformation>

Although user-defined, the prefix “xsi” is most often used in W3C Schema
literature and references as the namespace prefix for W3C Schema Instance
constructs.

 2.4-17 9/23/2003

The W3C Schema Instance Namespace

Pros and Cons

Advantages: Declaring the W3C Schema Instance namespace in an XML instance
document allows the use of W3C Schema Instance constructs.

Disadvantages: There are no disadvantages to this technique.
Rules and Guidelines

Data-centric: [SD4-45] Data-centric XML instance documents MUST declare the W3C
Schema Instance namespace when W3C Schema Instance constructs are
used.
[SD4-46] Data-centric XML instance documents SHOULD use “xsi” as a
namespace prefix for all W3C Schema Instance constructs.

Document-centric: [SD4-47] Document-centric XML instance documents MUST declare the
W3C Schema Instance namespace when W3C Schema Instance
constructs are used.
[SD4-48] Document-centric XML instance documents SHOULD use “xsi”
as a namespace prefix for all W3C Schema Instance constructs.

Justification

The W3C Schema Instance namespace must be declared in an XML instance document in order to
use W3C Schema Instance constructs.
Consistent use of a single namespace prefix makes it easy to identify a W3C Schema construct
when viewing an XML instance document, and promotes a common look and feel of XML instance
documents across the Exchange Network.

Namespace Scope

As with variables in programming languages, namespaces in XML instance
documents have a scope of applicability in an XML instance document. The
scope of a namespace applies to the declared element (which may be the root
element) and all content within that element. In the following example, the scope
of the “urn:us:net:exchangenetwork” namespace is the entire XML instance
document:

<?xml version=“1.0”?>
<ExchangeNetwork:RCRAInformation xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=“urn:us:net:exchangenetwork CorrectiveAction.xsd”
xmlns:ExchangeNetwork=“urn:us:net:exchangenetwork”>

9/23/2003 2.4-18

Namespaces

A namespace can also be declared on an element other than the root element; this
is known as a local namespace declaration. In the following example, the
namespace identifier “http://www.state.va.us/xml” represents a local namespace
identification:

<?xml version=“1.0”?>
<ExchangeNetwork:RCRAInformation xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=“urn:us:net:exchangenetwork CorrectiveAction.xsd”
xmlns:ExchangeNetwork=“urn:us:net:exchangenetwork”>
<!—information removed for example purposes—>

<ExchangeNetwork:State>VA</ExchangeNetwork:State>
<vadeq:State xmlns:vadeq=“http://www.state.va.us/xml”>Acidic</vadeq:State>

<!—information removed for example purposes—>
</ExchangeNetwork:RCRAInformation>

In this example, the scope of the “http://www.state.va.us/xml” namespace is the
vadeq:State element (along with its attributes and subelements, if it contained
any). Therefore, the following example would cause an XML processor to
generate an error because the vadeq:WaterExtractionDate element appears outside
of the scope of the “http://www.state.va.us/xml” namespace:

<?xml version=“1.0”?>
<ExchangeNetwork:RCRAInformation
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=“urn:us:net:exchangenetwork CorrectiveAction.xsd”
xmlns:ExchangeNetwork=“urn:us:net:exchangenetwork”>
<!—information removed for example purposes—>

<ExchangeNetwork:State>VA</ExchangeNetwork:State>
<vadeq:State xmlns:vadeq=“http://www.state.va.us/xml”>Acidic</vadeq:State>
<vadeq:WaterExtractionDate>02-02-2002</vadeq:WaterExtractionDate>

<!—information removed for example purposes—>
</ExchangeNetwork:RCRAInformation>

 2.4-19 9/23/2003

Local Namespace Declarations

Pros and Cons

Advantages: Local namespace declarations confine namespace declarations to the
smallest area possible in an XML instance document. This may translate
into more efficient processing by an XML processor.

Disadvantages: Local namespace declarations make it more difficult to visually identify all
namespaces declared in an XML instance document because the
namespace declarations are scattered throughout the XML instance
document.

Rules and Guidelines

Data-centric: [SD4-49] Data-centric XML instance documents MUST NOT use local
namespace declarations.

Document-centric: [SD4-50] Document-centric XML instance documents SHOULD NOT use
local namespace declarations.

Justification

Although processing efficiencies may be gained through the use of local namespace declarations,
the ability to visually identify all namespaces declared in an instance document by examining the
root element is more valuable.

9/23/2003 2.4-20

Chapter 5
Schema Configuration and Documentation

This chapter discusses the Exchange Network Schema Configuration
Architecture and two related concepts: nested includes and code lists. This chapter
also discusses Exchange Network schema versioning and documentation within
Exchange Network schemas.

EXCHANGE NETWORK SCHEMA CONFIGURATION
ARCHITECTURE

The Exchange Network Schema Configuration Architecture is a flexible modular
architecture that uses schemas both within and external to the Exchange Network.
Those schemas, each serving a specific purpose, are as follows:

 Message-level schemas

 Shared Exchange Network schemas

 Voluntary standards body schemas

 Functional Area Schema

 EPA schemas

 State agency schemas

 Other federal agency schemas.

The Exchange Network Schema Configuration Architecture is shown in
Figure 2.5-1. The following sections describe each type of schema in greater
detail and provide recommendations on their use. (Chapter 4 discusses the
multiple-namespace configuration for this architecture.)

This document does not address where schemas are stored, but ideally—and at a
minimum—the message-level schemas and the shared Exchange Network
schemas should reside in the Environmental Network Registry for optimal access
by all parties.

 2.5-1 9/23/2003

Figure 2.5-1. Exchange Network Schema Configuration Architecture

State Schemas

Voluntary Standards Body
Schemas

UBL.xsd
PIDX.xsd

GML.xsd

Air.xsd

Water.xsd

EPA Schemas

Other Federal Agency
Schemas

SomeGSA.xsd

SomeDOE.xsd

DETFlow1.xsd

DETFlow2.xsd

DETFlow3.xsd

Message-level Schemas
Shared Exchange Network

Schemas

Enforcement
Compliance.xsd

Permitting.xsd

Facility
Identification.xsd

Utah.xsd
Virginia .xsd

Notes: UBL = Universal Business Language; GML = Geography Markup Language;

PIDX = Petroleum Industry Data Exchange.

Message-Level Schemas

Message-level schemas act as central consolidators of other schemas. They
externally reference all other types of schemas listed above, but also may contain
construct definitions. Blueprint for a National Environmental Information
Exchange Network explains that data exchange templates (DETs) identify—
according to predefined standards—the kind of information that is required or
allowable for a particular type of data set. In the Exchange Network Schema
Configuration Architecture, message-level schemas are the equivalent of DETs.
Therefore, a message-level schema represents all the metadata necessary for a
functional data flow.

9/23/2003 2.5-2

Schema Configuration and Documentation

Message-Level Schema

Pros and Cons

Advantages: Use of message-level schemas promotes an efficient, modular
configuration architecture.

Disadvantages: Use of message-level schemas could be considered more complex and
more difficult to process due to multiple layers of included or imported
schemas.

Rules and Guidelines

Data-centric: [SD5-1] Message-level schemas SHOULD be used.
[SD5-2] Data-centric message-level schemas SHOULD use a target
namespace identifier as identified in the Exchange Network Namespace
architecture.

Document-centric: [SD5-3] Message-level schemas MAY be used.
Justification

A modular approach to schema configuration is consistent with long-standing software industry
best practices.

Following is the order in which the types of schemas should be selected for
optional inclusion in a message-level schema:

1. Voluntary standards body schemas

2. Shared Exchange Network schemas

3. Functional Area Schema: EPA, state and other federal agency schemas.

Voluntary standards body schemas should be examined first to identify candidates
for use in the Exchange Network. If no suitable constructs are found, existing
federal, state, EPA, and other individual other federal agency schema should be
reviewed as reusable sources material for Exchange Network Schema.

Only if all of these sources fail to yield reusable components should new schema
be developed. If these new constructs are beneficial for global use and produce no
redundancies, they should be added to a shared Exchange Network Schema.
Otherwise, they should be placed in an EPA schema.

Shared Exchange Network Schemas

Shared Exchange Network schemas contain constructs that correspond to the final
Environmental Data Registry (EDR) standards as well as constructs created by
EPAs. Shared Exchange Network schemas are meant to create standard constructs
that may be used by multiple message-level schemas. Shared Exchange Network
schemas promote interoperability across the Exchange Network and provide a
mechanism for program areas to leverage the schema constructs developed by
other program areas.

 2.5-3 9/23/2003

An example of a shared Exchange Network schema is a schema containing user-
defined simpleTypes. If all message-level schemas refer to the same shared
Exchange Network schema for simpleType reuse, name harmonization will
happen automatically. If a name change is made to a simpleType, the message-
level schema will inherit those changes.

Shared Exchange Network Schemas

Pros and Cons

Advantages: Use of shared Exchange Network schemas promotes reuse within the
Exchange Network, generating economies of scale for initial development
of data flows, future operations, and maintenance of the schema.

Disadvantages: A greater level of effort is initially required to develop shared Exchange
Network schemas than to develop schemas independently because of the
level of collaboration required between schema developers to create
consistent, useful schema constructs for Exchange Network use.

Rules and Guidelines

Data-centric: [SD5-4] Shared Exchange Network schemas MUST be used when
available.
[SD5-5] Data-centric shared Exchange Network schemas SHOULD use a
target namespace identifier of “urn:us:gov:epa”.

Document-centric: [SD5-6] Shared Exchange Network schemas MUST be used when
available.

Justification

Shared Exchange Network schemas move the Exchange Network toward the goal of harmonized,
interoperable DETs.
Although a greater level of effort is required initially to develop shared Exchange Network schemas,
the benefits of schema construct harmonization outweigh the costs of schema construct
duplication. Owners of specific data flows must remain continually aware of other schema
development efforts, which will require standard operating procedures for coordination of Exchange
Network-wide XML activity. The burden of this coordination has already been reduced through the
creation of the Exchange Network Technical Resources Group.

Voluntary Standards Body Schemas

Voluntary standards body schemas include schema constructs from a markup
vocabulary defined by a voluntary standards body. There are various voluntary
standards body efforts currently defining open libraries of schema constructs.
Examples of horizontal (cross-industry) efforts include

 OASIS Universal Business Language (UBL) and

 American National Standards Institute (ANSI) X12.

Examples of vertical (inter-industry) efforts include

 Petroleum Industry Data Exchange (PIDX) and

 Geography Markup Language (GML).

9/23/2003 2.5-4

Schema Configuration and Documentation

The Exchange Network Schema Configuration Architecture encourages the use of
voluntary standards body schemas from horizontal efforts. However, it is
impractical to mandate the use of such schemas at this time because, currently, no
such schemas are widely accepted.

Voluntary Standards Body Schemas

Pros and Cons

Advantages: Use of voluntary standards body schemas enables Exchange Network to
use open libraries of schema constructs.
Use of a voluntary standards body’s markup vocabulary in XML efforts can
increase interoperability between Exchange Network and industry trading
partners.

Disadvantages: Because various voluntary standards body efforts are taking place, it is
probable that the many different emerging markup vocabularies will create
a proliferation of semantically synonymous constructs. This can make data
harmonization more difficult.

Rules and Guidelines

Data-centric: [SD5-7] Appropriate voluntary standard body schemas SHOULD be
adopted, when appropriate.

Document-centric: [SD5-8] Appropriate voluntary standard body schemas SHOULD be
adopted, when appropriate.

Justification

“Data standards support the efficient and accurate exchange of data and help secondary users to
understand, interpret, and use data appropriately.” a The use of Voluntary Standard Body Schemas
is in accordance with OMB Circular A-119. b

a Interim Network Steering Group, Network Blueprint Amendment, February 12, 2002, p. 16.
b Office of Management and Budget, Circular A-119: Federal Participation in the Development

and Use of Voluntary Consensus Standards and in Conformity Assessment Activities, February 10,
1998. Available from <http://www.whitehouse.gov/omb/circulars/a119/a119.html#6>.

Functional Area Schemas

Functional area schemas are schemas developed by a specific organization to
meet to support a narrow functional area or a group of stakeholders less than the
total body of Exchange Network Participants. Such schemas should be considered
and perhaps revised to support the wider body.

EPA SCHEMAS

With EPA schemas (either agency-wide or program area specific), the EPA
(possibly in conjunction with selected states) can develop specific schema
constructs. Although it is recommended that constructs in shared Exchange
Network schemas be used to the greatest extent possible, there are times when it
is more appropriate to use EPA constructs because

 the constructs represent information specific to that state or EPA program,
or

 2.5-5 9/23/2003

 it may be unduly burdensome at times for a program area to harmonize
schema constructs across the Exchange Network.

Although specific functional areas are not defined in this guide, a finite number of
functional areas should be identified to ensure that EPA functional area schemas
do not proliferate.

EPA Schemas

Pros and Cons

Advantages: Use of EPA schemas allows program areas to develop functional area-
specific schema constructs.

Disadvantages: Use of functional area schemas may promote duplication of schema
constructs that are already available in another schema, such as a shared
Exchange Network schema.

Rules and Guidelines

Data-centric: [SD5-9] Functional area schemas MAY be used. a
[SD5-10] Data-centric Exchange Network schemas SHOULD use a target
namespace identifier as identified in the Exchange Network Namespace
architecture. a

Document-centric: [SD5-11] Functional area schemas MAY be used. a
Justification

While it would be preferable to use only shared Exchange Network schemas, use of functional area
schemas is necessary for the Exchange Network Schema Configuration Architecture. This
approach allows functional areas to create their own schema constructs that are not available
elsewhere. While duplication of schema constructs is a risk in allowing such flexibility, standard
operating procedures can help mitigate this risk.

a Logistics Management Institute, XML Schema Namespace and Versioning Strategy for the
Environmental Information Exchange Network, Report EP211L1, Mark Crawford and Jessica
Glace, December 2002.

STATE AND OTHER FEDERAL AGENCY SCHEMAS

It is anticipated that various individual federal agency and individual state
government schemas will be available in the future and may be appropriate for
use by the Exchange Network. There are also current efforts to guide XML
development at the federal level. The Federal CIO XML Working Group has
prepared Federal XML Developer’s Guide,1 based closely on the Department of
the Navy’s guide.2 Use of the Federal XML Developer’s Guide will ensure that
the Exchange Network’s schema development adheres to the emerging standards
of the federal government.

1 U.S. Federal CIO Council, Architecture and Infrastructure Committee XML Working

Group, Draft Federal XML Developer’s Guide, April 2002.
2 Department of the Navy, DON XML Working Group, DON XML Developer’s Guide,

Version 1.1, May 2002.

9/23/2003 2.5-6

Schema Configuration and Documentation

State and Other Federal Agency Schemas

Pros and Cons

Advantages: Use of federal and state government schemas promotes interoperability of
data exchange within the U.S. government.

Disadvantages: It is possible that federal and state government schemas may not follow the
guidelines for schema development, as set forth by the Federal CIO XML
Working Group or the guidelines set forth in this document. Therefore, use
of federal and state government schemas may introduce inconsistent
constructs in Exchange Network schemas.

Rules and Guidelines

Data-centric: [SD5-12] Federal and state government schemas MAY be used if they are
consistent with the guidelines for schema development as set forth by the
Federal CIO XML Working Group or those set forth in this document.

Document-centric: [SD5-13] Federal and state government schemas MAY be used if they are
consistent with the guidelines for schema development as set forth by the
Federal CIO XML Working Group or those set forth in this document.

Justification

Use of federal and state government schemas promotes interoperability of data exchange within
the U.S. government. By using federal and state government schemas that are consistent with the
guidelines noted above, the risk of introducing inconsistent constructs in Exchange Network
schemas is eliminated.

NESTED INCLUDES
To achieve the recommended Exchange Network Schema Configuration
Architecture, “nested includes” or “nested imports” may be necessary. A
discussion of nested includes follows.

Nested and Single Includes

Constructs are shared by schemas in the same namespace through the use of
inclusion. Inclusion allows one or more schemas to inherit the characteristics of a
construct by referencing the schema that contains the construct directly (“single
include”) or indirectly (“nested includes”). The result is similar to cutting and
pasting the construct into the calling schema, but it does not allow the construct to
be changed or overridden. It also provides the added benefit of inheritance.

Figure 2.5-2 illustrates a single include. In this example, the facility contact list
schema references a facility schema to get a facility’s contact name, street
address, telephone number, and Zip Code. It then references a Zip Code schema
to retrieve the city and state for the facility’s Zip Code.

 2.5-7 9/23/2003

Figure 2.5-2. Single Include Example

Facility Contact List Schema

Facility Schema
contact name,

street, phone, ZIP
code

ZIP Code Schema
city, state

A nested include is illustrated in Figure 2.5-3. As with the single include example
above, a facility contact list schema references the facility schema to get the
contact, street address, telephone number, city, state, and Zip Code information.
However, instead of the facility contact list schema referencing the Zip Code
schema, the facility schema retrieves the city and state from the Zip Code schema
for the facility contact list schema.

Figure 2.5-3. Nested Include Example

Facility Contact List Schema

Facility Schema
contact name, stree t, phone, ZIP code

ZIP Code Schema
city, sta te

When two or more schemas are nested into the message schema, the schema at
the top of the nest is usually referenced to retrieve the characteristics of the
construct in the message schema at the bottom of the nest. Note that as the
number of schemas involved in nesting increases, so does the complexity
involved in tracking and maintaining the schemas and their references.

Number of Nested Includes

Message schemas may contain one shared construct, a set of similar shared
constructs, or all constructs used by an application. An application using one
schema for each shared construct (e.g., every complexType resides in a distinct
file) may experience heavy maintenance and tracking burdens, while an
application with one message schema for all shared constructs may face
readability and performance issues.

The recommended method of handling constructs for Exchange Network shared
schemas is to group similar constructs into one schema to reduce the number of
nested schemas referenced by the message-level schemas.

9/23/2003 2.5-8

Schema Configuration and Documentation

Nested Includes

Pros and Cons

Advantages: The structure for storing commonly used constructs is highly modular.

Disadvantages: It is difficult to keep track of and maintain constructs or schemas.
The use of nested includes introduces potential conflict between XML
construct names across the Exchange Network.
Configuration does not enable the highest degree of interoperability and
increases the complexity of Exchange Network schemas.
Procedural guidance must be provided for proper implementation and use.
Strict versioning and notification guidance are required.

Rules and Guidelines

Data-centric: [SD5-14] Exchange Network schemas SHOULD group like constructs into
one schema.
[SD5-15] Message-level schemas SHOULD maintain a reasonable number
of nested includes.

Document-centric: [SD5-16] Exchange Network schemas SHOULD group like constructs into
one schema.
[SD5-17] Message-level schemas SHOULD maintain a reasonable number
of nested includes.

Justification

As with any solution that offers a high degree of modularity, inclusion is highly subjective and
requires common sense to avoid overly cumbersome implementations. Run-time schemas, based
on the design schemas, may need to be constructed to make processing more efficient. Storage of
similar shared complex or simpleType constructs in one message schema is a more logical choice
for developing schemas than accessing constructs through multiple layers of schemas.

CODE LISTS
Several strategies exist for handling lists of values or “code lists.” The main
points and recommended method for handling them are summarized below.3

In XSD, the values contained in the list are in reality tokens for more detailed
values. For example, the EPA maintains a B_Type_Code list that supports field
number two in the B_Geographic_Area file layout for the federal version of the
Safe Drinking Water Information System (SDWIS) application. This list is, in
reality, a list of values that have assigned tokens. Multiple namespaced types are
used for handling code lists in Exchange Network schemas.

3 For a detailed discussion, see Logistics Management Institute, XML Enumeration and Code

Lists for the Environmental Information Exchange Network, LMI Report EP211L2, Mark
Crawford, Jessica Glace, and Alison Kittle, December 2002.

 2.5-9 9/23/2003

Multiple namespaced types require the use of an element dedicated to containing
codes from a particular code list bound to a unique type that is qualified with an
external namespace. An instance document would look like this:

<GeographicAreaCode>
<SDWISGeographicAreaCodeContent>ARV</SDWISGeographicAreaCodeContent>

</GeographicAreaCode>

In the above example, SDWIS Geographic Area Permitted Value List is defined
as a code list with a token of “SDWISGeographicAreaCode”. The
“GeographicAreaCode” element does not contain the value, but a subelement of
“SDWISGeographicAreaCodeContent”.

In this instance, the “SDWISGeographicAreaCodeContent” value space is
populated with a value of “ARV” which is a token for the value “Alaskan Remote
Village.” The part of the schema code that would define this looks as follows:

<xsd:element name=“GeographicAreaCode” type=“EPA103:GeographicAreaCodeType”>
<xsd:element name=“SDWISGeographicAreaCodeContent”
 type=“EPA103:SDWISGeographicAreaCodeContentType”>
<xsd:complexType name=“GeographicAreaCodeType”>
<xsd:choice>
<xsd:element name=“GeographicAreaCode” type=“EPA103:GeographicAreaCodeType”/>
<xsd:element name=“XXXCode” type=“xxx:CodeType”/>
<xsd:element name=“YYYCode” type=“yyy:CodeType”/>
</xsd:choice>
</xsd:complexType>

The namespace qualified the location of the elements and types. Three options are
provided for the associated elements of the complex type GeographicAreaCodeType.
This allows for the selective use of either the EPA or state code list at runtime,
depending on the element conveyed.

Using this technique, schema modules maintain code lists separately from the
message-level schema. All code lists used must be published in a standard module
available on the Internet so that code list contents are always available for
validation from the authoritative source at runtime. Code lists not published by
code list owners that the Exchange Network uses will need to be published by the
EPA. Code list owners will be responsible for maintaining their code lists.

9/23/2003 2.5-10

Schema Configuration and Documentation

Code Lists

Pros and Cons

Advantages: This technique provides strong semantic clarity, strong interoperability, and
simple, externalized maintenance. It fully supports XML processor
validation and provides easy readability.

Disadvantages: This technique requires cooperation of external activities and an initial
effort to define and publish schema modules.

Data-centric: [SD5-18] Exchange Network schemas SHOULD support code lists through
multiple namespaced types.

Document-centric: [SD5-19] Exchange Network schemas SHOULD support code lists through
multiple namespaced types.

Justification

The code lists method presents the best solution because it provides the ability to minimize
maintenance workload while achieving access to authoritative source code lists in real time. This
ability supports runtime parser validation.

EXCHANGE NETWORK SCHEMA VERSIONING
A consistent version control strategy based on current technology needs to be
applied to Exchange Network schemas. This section summarizes versioning at the
schema root, the root instance, and the targetNamespace levels.4

The numbering used in schema versioning should include both a major version
component and a minor version component, such as Version 1.2 (“1” is the major
version component, and “2” is the minor version component). A major change
may not be backward compatible, but a minor change must be. For example, a
minor change might add optional elements, annotations, or anything in which an
instance created against an old Schema 1.0 can still be valid against 1.x. A major
change might add a mandatory element complex type, or anything in which an
instance created against an old Schema 1.0 may not be valid against 2.0.

Built-In Schema Version Attribute

The W3C Schema standard contains a “version” attribute that can be included in
the root element of a schema. Following is an example:

<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>
 xmlns:ExchangeNetwork=“http://www.ExchangeNetwork.gov/XML”
version=“1.2”>

4 Logistics Management Institute, XML Schema Namespace and Versioning Strategy for the

Environmental Information Exchange Network, Report EP211L1, Mark Crawford and Jessica
Glace, December 2002.

 2.5-11 9/23/2003

Built-In Schema Version Attribute

Pros and Cons

Advantages: The W3C Schema version attribute takes advantage of a built-in feature of
W3C Schema.
Instance documents would not need to change if they remain valid with the
new version of the schema.

The schema contains information that informs applications that it has
changed. An application could interrogate the version attribute, recognize
that this is a new version of the schema, and take appropriate action.

Disadvantages: The W3C Schema version attributes are not inherently enforced by an XML
validator.

Rules and Guidelines

Data-centric: [SD5-20] Data-centric schemas MUST include a version number using the
W3C Schema version attribute.
[SD5-21] The version number MUST include both a major version
component and a minor version component.
[SD5-22] Data-centric schemas SHOULD include a version number in their
filename.

Document-centric: [SD5-23] Document-centric schemas MUST include a version number
using the W3C Schema version attribute.
[SD5-24] The version number MUST include both a major version
component and a minor version component.
[SD5-25] Document-centric schemas SHOULD include a version number in
their filename.

Justification

Version numbers must be included in schemas for configuration management. Use of a W3C
Schema construct for the version number (as opposed to a user-defined schema construct)
ensures that the version can be consistently located by an XSLT stylesheet or XML-capable
processing application.

User-Defined Version Attribute on Instance Root

A user-defined version attribute on an element used in the instance root is useful
for tracking minor updates. In the schema, it would look like this:

<xs:element name=“AsbestosPublicState” type=“EPAMetadata”/>
<xs:complexType name=“EPAMetadata”/>
<xs:attribute name=“schemaVersion” type=“xs:decimal” use=“required”/>
</xs:complexType>

In the XML document, the versioning would look like this:

<AsbestosPublicState schemaVersion=“1.0” >
…
</AsbestosPublicState>

9/23/2003 2.5-12

Schema Configuration and Documentation

User-Defined Version Attribute on Instance Root

Pros and Cons

Advantages: The schema version attribute is enforceable through schema validation.
Instances would not validate without matching the constraints defined for
the attribute.
Instance documents may not need to change if they remain valid with the
new schema version as long as the constraints were built to accommodate
this.

An application would receive an indication that the schema has changed
because the instance would carry the version number.

Disadvantages: If the instance root element versioning is not implemented properly, any
time a schema is updated, the instance documents based on that schema
will need to be updated.

Rules and Guidelines

Data-centric: [SD5-26] Data-centric schemas MUST define a schema version attribute
for use on the instance root.

Document-centric: [SD5-27] Document-centric schemas MUST define a schema version
attribute for use on the instance root.

Justification

Use of a version attribute in the instance root ensures matching the instance with the appropriate
major version of a schema. It provides additional information for efficiently processing information
and reducing errors caused by assumptions about which schema should be used for validating an
instance. Pattern matching can be used to eliminate the need for updates when a minor change is
implemented.

EXCHANGE NETWORK SCHEMA DOCUMENTATION
This section discusses documentation within Exchange Network schemas. The
following concepts are covered:

 Schema construct documentation—schema constructs within Exchange
Network schemas

 Schema header documentation—schema headers within Exchange
Network schemas.

Schema Construct Documentation

One important advancement for the W3C Schema standard over DTDs is the
capability to create machine-processable comments. In DTDs, comments were
marked as follows:

<!—this is a comment—!>

This was an adequate technique for DTDs, but it does not allow for machine
processing of comments. The W3C Schema documentation element is very useful

 2.5-13 9/23/2003

when documenting schemas. Following is an example of the documentation
element:

<xsd:documentation>Schema Name: Facility Identification Schema</xsd:documentation>

Although the W3C Schema standard still supports DTD-style comments, use of
the documentation element in a schema enables machine processing of comments
because it is an XML element; therefore, comments can be processed by an
application (for example, an XSL stylesheet) to create such documents as a user
manual.

The documentation element can be used anywhere within a schema. In the
following example, it is a subelement of the W3C Schema annotation element and
is used to document the function of a specific element:

<xsd:element name=“epa:FacilityIdentificationCode” type=“xsd:string”/>
<xsd:annotation>

<xsd:documentation>Description goes here</xsd:documentation>

<xsd:annotation>
</xsd:element>

Schema Construct Documentation

Pros and Cons

Advantages: Schema construct documentation adds clarity to a schema and therefore
enables efficient reuse of constructs.

The W3C Schema documentation element enables machine processing of
comments in a schema.

Disadvantages: Schema construct documentation can increase verbosity in a schema.

Rules and Guidelines

Data-centric: [SD5-28] Data-centric schemas SHOULD include schema construct
documentation.
[SD5-29] Data-centric schemas SHOULD use the documentation element
for schema construct documentation.
[SD5-30] Data-centric schemas MAY use DTD-style comments for
comments pertaining to the structure of the schema.

Document-centric: [SD5-31] Document-centric schemas SHOULD include schema construct
documentation.
[SD5-32] Document-centric schemas SHOULD use the documentation
element for schema construct documentation.
[SD5-33] Document-centric schemas MAY use DTD-style comments for
comments pertaining to the structure of the schema.

9/23/2003 2.5-14

Schema Configuration and Documentation

Schema Construct Documentation

Justification

DTD-style comments may be used to document the structure of a schema, as in the following
example: <!—THESE ARE THE GLOBAL TYPES—!>. Such comments are not critical for machine
processing because their meaning is irrelevant outside the schema.
Although the documentation element of schema constructs can increase verbosity, it adds clarity
and enables efficient reuse of constructs by conveying their purpose. The advantages of
documentation, therefore, outweigh the potential disadvantages.

Schema Header Documentation

Just as schema construct documentation adds clarity to a schema, schema header
documentation enables information—the purpose, use, and contents of a
schema—to be concentrated in a single place within a schema. As with schema
construct documentation, the W3C Schema documentation element should be used
for schema header documentation. Table 2.5-1 lists the items that should be
included in the header section of all Exchange Network schemas.

Table 2.5-1. Header Documentation Information

Header item name Description

Schema Name The schema file
Current Version Available At The URL where the schema is located, if it is URL accessable
Description Plain text description of the information described by the

schema
Application The name and version of the application that produces XML

instance documents that conform to the schema
Developed by State or “Environmental Protection Agency,” followed by name

of the organization that developed the schema
Point of Contact Person to contact with questions about the schema
Change History or a URI
reference to the change
history (optional)

A history of the changes to the schema. Each entry should
include the

 change number,
 schema version,
 change date,
 change description, and
 XML processor (vendor and version) used to validate

schema,
or the change history file name and location.

The header item name should precede the actual contents of the header item, as in
the following example:

<xsd:documentation>Schema Name: Enforcement Compliance Schema</xsd:documentation>
<xsd:documentation>Description: This schema contains…</xsd:documentation>

 2.5-15 9/23/2003

Schema Header Documentation

Pros and Cons

Advantages: Schema header documentation concentrates the information about the
purpose, use, and contents of a schema in a single place within a schema.

Disadvantages: There are no disadvantages to this technique.

Rules and Guidelines

Data-centric: [SD5-34] Data-centric schemas MUST include schema header
documentation.

Document-centric: [SD5-35] Document-centric schemas SHOULD include schema header
documentation.
[SD5-36] Document-centric schemas SHOULD use the documentation
element for schema construct documentation.

Justification

Schema header documentation allows a schema developer to easily discern the purpose, use, and
contents of a schema. This information is also very helpful when a schema developer needs to
select a schema to be used as a template in the creation of another schema.

9/23/2003 2.5-16

Chapter 6
Information Association and Uniqueness

Information association allows XML processors or processing applications to link
information items. Uniqueness involves the nonduplication of certain information
within either an entire XML instance document or a section of an XML instance
document. This chapter discusses techniques that can be used for information
association and uniqueness within XML instance documents, and it provides
guidance for the Exchange Network.

INFORMATION ASSOCIATION
For processing, it is sometimes necessary to associate information in an XML
instance document. For example, consider an XML instance document with
information about purchase orders and customers. It may be beneficial for a
processing application that stores this information in a relational database to
associate the purchase orders in the XML instance document with their
corresponding customers so that these associations can be recorded in the
database.

Several techniques can be used to make information associations in XML instance
documents:

 ID/IDREF technique, which uses the W3C Schema ID and IDREF built-in
datatypes to associate information in an XML instance document

 KEY/KEYREF technique, which uses W3C Schema KEY and KEYREF
constructs to associate information in an XML instance document

 XLink/XPointer technique, whichuses two relatively new W3C standards
to associate information in an XML instance document through the
addition of declarations to an XML instance document.

These techniques are discussed in the following subsections.

ID/IDREF Technique

With the ID/IDREF technique, information that must be included in an association
is contained in an attribute of datatype ID or IDREF. In the following example,
submitters are associated with their facilities through the inclusion of a
facilityIdentificationCode attribute for each submitter and facility:

 2.6-1 9/23/2003

<Facilities>
<FacilitySiteDetails facilityIdentificationCode=“A15849”>

<FacilityAddressDetails>
<!—information removed for example purposes—>

</FacilityAddressDetails>
</FacilitySiteDetails>

</Facilities>
<Submitters>
<SubmitterDetails submitterFacilityIdentificationCode=“A15849”>

<SubmitterNameDetails>
<!—information removed for example purposes—>

</SubmitterNameDetails>
</SubmitterDetails>

</Submitters>

In the above example, the facilityIdentificationCode attribute is of datatype “ID,”
while the submitterFacilityIdentificationCode attribute is of datatype “IDREF.” An
XML processor will validate that there is a corresponding ID-type attribute value
in an XML instance document for each IDREF-type attribute value—there is a
corresponding facilityIdentificationCode attribute value for each
submitterFacilityIdentificationCode attribute value. Therefore, in the above example,
if there were no ID-type attribute in the XML instance document with a value of
A15849, an XML processor would generate an error.

It should be noted that an XML processor cannot confirm that matching
ID/IDREF values perform the intended associations. (In the example above, if
there were no facilityIdentificationCode attributes with a value of A15849, but
another attribute that was completely unrelated to the association coincidentally
contained the value of A15849, an error would not result.) However, a processing
application could recognize associations between ID and IDREF values during its
processing of an XML instance document.

ID/IDREF Technique

Pros and Cons

Advantages: With the ID/IDREF technique, an XML processor will validate a
corresponding ID-type attribute value in an XML instance document for
each IDREF-type attribute value.

Disadvantages: With the ID/IDREF technique, an XML processor cannot confirm that
matching ID/IDREF values perform the intended associations.

The technique uses attributes, which are prohibited for data-centric
schemas.

An ID- or IDREF-type attribute value must be unique in an XML instance
document.

An ID- or IDREF-type attribute value cannot begin with a number.

9/23/2003 2.6-2

Information Association and Uniqueness

ID/IDREF Technique

Rules and Guidelines

Data-centric: [SD6-1] Data-centric schemas MUST NOT use the ID/IDREF technique for
information association.

Document-centric: [SD6-2] Document-centric schemas MUST NOT use the ID/IDREF
technique for information association.

Justification

The many disadvantages of this technique render it virtually unusable. The ID/IDREF technique
has been superceded within the W3C Schema standard by the new KEY/KEYREF technique,
which is discussed below.

KEY/KEYREF Technique

The KEY/KEYREF technique has the following improvements over the
ID/IDREF technique:

 Use of attributes is not required (elements can be used for associations).

 Constructs used in associations can be of any datatype (they do not have to
be ID-type or IDREF-type attributes).

 An XML processor will confirm that matching values perform the
intended associations.

 Values for constructs used in associations can be duplicated in XML
instance documents because the KEY/KEYREF technique allows the
specification of a range within an XML instance document for which the
values must be unique.

The KEY/KEYREF technique uses separate W3C constructs to associate
information in an XML instance document. The first construct—the KEY
construct—declares a “primary key” for an information association, while the
second construct—the KEYREF construct—declares a “foreign key.”

Continuing with the above example, the following KEY construct declares a
primary key for the facilityIdentificationCode attribute in an XML instance
document:

<xsd:key name=“FacilityKey”>
<xsd:selector xpath=“Facilities/FacilitySiteDetails”/>
<xsd:field xpath=“@facilityIdentificationCode”/>

</xsd:key>

The above declaration stipulates that the facilityIdentificationCode attribute (the
attribute listed with the field element) is used for information association in an

 2.6-3 9/23/2003

XML instance document. In addition, the value of this attribute must be unique
within all FacilitySiteDetails elements that appear under the Facilities element (the
XPath expression listed with the selector element). This means a facility
identification code can be duplicated within an XML instance document, but not
within the Facilities content model.

Similarly, the following KEYREF construct declares a foreign key for the
submitterFacilityIdentificationCode attribute in an XML instance document:

<xsd:keyref name=“SubmitterKey” refer=“FacilityKey”>
<xsd:selector xpath=“Submitters/SubmitterDetails”/>
<xsd:field xpath=“@submitterFacilityIdentificationCode”/>

</xsd:keyref>

As with the KEY declaration, the above KEYREF declaration stipulates that the
value of the submitterFacilityIdentificationCode attribute must be unique within all
SubmitterDetails elements appearing under the Submitters element in the XML
instance document. In addition, the refer attribute ensures that an XML processor
will confirm there is a corresponding FacilityIdentificationCode value for each
SubmitterFacilityIdentificationCode value in an XML instance document.

KEY/KEYREF Technique

Pros and Cons

Advantages: Use of attributes is not required.

Constructs used in associations can be of any datatype.

An XML processor will confirm that matching values perform the
intended associations.

Values for constructs used in associations can be duplicated in XML
instance documents.

Disadvantages: KEY and KEYREF declaration names must be unique within a schema and
across externally referenced schemas, regardless of namespace.

Rules and Guidelines

Data-centric: [SD6-3] Data-centric schemas SHOULD use the KEY/KEYREF technique
for information association.

[SD6-4] Extreme caution SHOULD be applied when writing an XPath
expression in a selector element to ensure it specifies the intended range.

[SD6-5] Special attention SHOULD be paid to the restrictions on KEY and
KEYREF declaration names given above.

Document-centric: [SD6-6] Document-centric schemas SHOULD use the KEY/KEYREF
technique for information association.

[SD6-7] Extreme caution SHOULD be applied when writing an XPath
expression in a selector element to ensure it specifies the intended range.

[SD6-8] Special attention SHOULD be paid to the restrictions on KEY and
KEYREF declaration names given above.

9/23/2003 2.6-4

Information Association and Uniqueness

KEY/KEYREF Technique

Justification

The vast improvements of the KEY/KEYREF technique over the ID/IDREF technique make it very
valuable. The fact that this technique does not require the use of attributes also makes it beneficial,
because data-centric schemas prohibit attributes.

KEY Technique

A KEY declaration can be used without a corresponding KEYREF declaration to
enforce uniqueness. With the KEY technique, the construct that enforces
uniqueness must appear in an XML instance document. Continuing with the
above example, the following KEY construct enforces uniqueness for the
facilityIdentificationCode attribute within a specified range in an XML instance
document:

<xsd:key name=“FacilityKey”>
<xsd:selector xpath=“Facilities/FacilitySiteDetails”/>
<xsd:field xpath=“@facilityIdentificationCode”/>

</xsd:key>

It is required, however, that the facilityIdentificationCode attribute always appear
within the specified range.

KEY Technique

Pros and Cons

Advantages: The KEY technique enforces uniqueness of values within a specified range
in an XML instance document, while requiring their constructs to appear
within that range.

Disadvantages: KEY declaration names must be unique within a schema and across
externally referenced schemas, regardless of namespace.

An XML processor may not detect an incorrect XPath expression in a KEY
declaration. This can cause a duplication of a value in an XML instance
document to be undetected.

Rules and Guidelines

Data-centric: [SD6-9] Data-centric schemas SHOULD use the KEY technique to enforce
uniqueness of values in an XML instance document when their constructs
are required to appear within the specified range.

[SD6-10] Extreme caution SHOULD be applied when writing an XPath
expression in a selector element to ensure it specifies the intended range.

[SD6-11] Special attention SHOULD be paid to the restrictions on KEY
declaration names given above.

 2.6-5 9/23/2003

KEY Technique

Document-centric: [SD6-12] Document-centric schemas SHOULD use the KEY technique to
enforce uniqueness of values in an XML instance document when their
constructs are required to appear within the specified range.

[SD6-13] Extreme caution SHOULD be applied when writing an XPath
expression in a selector element to ensure it specifies the intended range.

[SD6-14] Special attention SHOULD be paid to the restrictions on KEY
declaration names given above.

Justification

The KEY technique is extremely useful for enforcing uniqueness in an XML instance document,
and its use is therefore recommended.

XLink/XPointer Technique

The XLink/XPointer technique uses two relatively new W3C standards to
associate information in an XML instance document. With this technique, the
declarations for the information association are placed in an XML instance
document rather than in a schema. Two types of links are discussed:

 Simple links, which declare associations between two items within a single
XML instance document

 Extended links, which declare associations between any number of items
both within and across XML instance documents.

SIMPLE LINKS

Simple links are unidirectional links, much like the HTML “A” element. In the
following example, submitters are associated with their facilities through the
inclusion of a simple link within each SubmitterDetails element:

<Facilities>
<FacilitySiteDetails FacilityIdentificationCode=“A15849”>

<FacilityAddressDetails>
<!—information removed for example purposes—>

</FacilityAddressDetails>
</FacilitySiteDetails>

</Facilities>
<Submitters>

<SubmitterDetails>
<SubmitterNameDetails>

<!—information removed for example purposes—>
</SubmitterNameDetails>
<SubmitterIdentificationCode>9187234</SubmitterIdentificationCode>
<SubmitterFacilityIdentificationCode xlink:type=“simple” xlink:href=“#A15849”/>

9/23/2003 2.6-6

Information Association and Uniqueness

</SubmitterDetails>
</Submitters>

The notation used in the xlink:href construct above (“#” followed by the actual
value) is called an XPointer Bare Names notation. The following should be noted
regarding this technique:

 Information that requires inclusion in an association must be contained in
an attribute of datatype ID.

 An XLink-aware processor is not required to confirm there is a corresponding
ID-type attribute value in an XML instance document for each href
attribute value.

 An XLink-aware processor is not required to confirm that matching values
perform the intended associations in an XML instance document.

EXTENDED LINKS

Unlike simple links, extended links do not need to be declared in the same XML
instance document that contains the items being associated. Therefore, they are
useful when associations are required between items in one or more XML
instance documents, but the XML instance documents cannot be updated to
indicate the associations. Also unlike simple links, extended links can declare
associations between more than two items.

Continuing with the previous example, the following extended link declaration
associates submitters with their facilities:

<xlink:extended role=“Link Submitters to Facilities” title=“Links”>
<xlink:locator href=“#9187234” role=“Submitter” label=“Submitter 9187234”>
<xlink:locator href=“#147341” role=“Submitter” label=“Submitter 147341”>
<xlink:locator href=“#A15849” role=“Facility” label=“Facility A15849”>
<xlink:arc from=“Submitter 9187234” to=“Facility A54346” arcrole=“Submitter Works For”>
<xlink:arc from=“Submitter 147341” to=“Facility A54346” arcrole=“Submitter Works For”>

</xlink:extended>

The locator elements in the above example specify the elements that participate in
the extended link. There is one locator element for each submitter identification
code and facility identification code. The role attributes simply describe the
function of the location where they appear. The arc elements specify the actual
associations between the submitters and facilities using each submitter and
facility’s label attribute.

 2.6-7 9/23/2003

The following similarities with simple links should be noted:

 Information that requires inclusion in an association must be contained in
an attribute of datatype ID.

 An XLink-aware processor is not required to verify that there is a
corresponding ID-type attribute value in an XML instance document for
each href attribute value.

 An XLink-aware processor is not required to confirm that matching values
perform the intended associations in an XML instance document.

It is also possible to specify the extended links shown above in a separate XML
instance document. Suppose the XML instance document containing submitter
and facility information were in Submissions.xml. The earlier extended link
declaration would change only in that the href attributes began with the name of
the XML instance document file and were followed by the ID values listed above:

<xlink:extended role=“Link Submitters to Facilities” title=“Links”>
<xlink:locator href=“Submissions.xml#9187234” role=“Submitter” label=“Submitter 9187234”>
<xlink:locator href=“Submissions.xml#147341” role=“Submitter” label=“Submitter 147341”>
<xlink:locator href=“Submissions.xml#A15849” role=“Facility” label=“Facility A15849”>
<xlink:arc from=“Submitter 9187234” to=“Facility A54346” arcrole=“Submitter Works For”>
<xlink:arc from=“Submitter 147341” to=“Facility A54346” arcrole=“Submitter Works For”>

</xlink:extended>

XLink/XPointer Technique
Pros and Cons

Advantages: The XLink/XPointer technique allows declarations for information
association to be placed in an XML instance document rather than a
schema. This can be useful when a schema cannot be updated.

Extended links allow declarations for information association to be
placed in a separate XML instance document. This can be useful when
an XML instance document cannot be updated.

Extended links allow associations to be declared between more than
two items.

Disadvantages: With the XLink/XPointer technique, information that must be included in
an association must be contained in an attribute of datatype ID.

An XLink-aware processor is not required to confirm that there is a
corresponding ID-type attribute value in an XML instance document for
each href attribute value in a simple or extended link.

An XLink-aware processor is not required to confirm that matching
values perform the intended associations in an XML instance
document.

Because the XLink and XPointer standards are both new (XLink
became a W3C Recommendation in June 2001, and XPointer is
currently a Candidate Recommendation), there is currently very little
XML processor support for them.

9/23/2003 2.6-8

Information Association and Uniqueness

Rules and Guidelines

Data-centric: [SD6-15] Data-centric schemas MUST NOT use the XLink/XPointer
technique for information association.

Document-centric: [SD6-16] Document-centric schemas MUST NOT use the
XLink/XPointer technique for information association.

Justification

The XLink and XPointer standards are not yet mature; therefore, there is very little XML
processor support for them.

In addition, the XLink/XPointer technique requires the use of ID-type attributes, which have
multiple disadvantages.

UNIQUENESS
For processing, it is sometimes necessary to ensure that information is not
duplicated in an XML instance document. Two techniques can be used to enforce
uniqueness in XML instance documents:

 KEY technique, which, as stated earlier in this chapter, uses the W3C
Schema KEY construct to specify a range within an XML instance
document for which values must be unique, while requiring their
constructs to appear within that range

 UNIQUE technique, which uses the W3C Schema UNIQUE construct to
specify a range within an XML instance document for which values must
be unique, without requiring their constructs to appear within that range.

With the UNIQUE technique, the construct for which uniqueness is enforced does
not need to appear in an XML instance document; however, if it does appear, its
value must be unique within a specified range within the XML instance document.
This range is specified using a technique that is similar to the KEY technique.

Continuing with the above example, the following UNIQUE construct enforces
uniqueness for the facilityIdentificationCode attribute within a specified range in an
XML instance document:

<xsd:unique name=“FacilityKey”>
<xsd:selector xpath=“Facilities/FacilitySiteDetails”/>
<xsd:field xpath=“@facilityIdentificationCode”/>

</xsd:key>

It is not required, however, that the facilityIdentificationCode attribute always appear
within the specified range.

 2.6-9 9/23/2003

UNIQUE Technique

Pros and Cons

Advantages: The UNIQUE technique enforces uniqueness of values within a specified
range in an XML instance document without requiring their constructs to
appear within that range.

Disadvantages: UNIQUE declaration names must be unique within a schema and across
externally referenced schemas, regardless of namespace.

An XML processor may not detect an incorrect XPath expression in a
UNIQUE declaration. This can cause a duplication of a value in an XML
instance document to be undetected.

Rules and Guidelines

Data-centric: [SD6-17] Data-centric schemas SHOULD use the UNIQUE technique to
enforce uniqueness of values in an XML instance document when their
constructs are not required to appear within the specified range.

[SD6-18] Extreme caution SHOULD be applied when writing an XPath
expression in a selector element to ensure it specifies the intended range.

[SD6-19] Special attention SHOULD be paid to the restrictions on UNIQUE
declaration names given above.

Document-centric: [SD6-20] Document-centric schemas SHOULD use the UNIQUE technique
to enforce uniqueness of values in an XML instance document when their
constructs are not required to appear within the specified range.

[SD6-21] Extreme caution SHOULD be applied when writing an XPath
expression in a selector element to ensure it specifies the intended range.

[SD6-22] Special attention SHOULD be paid to the restrictions on UNIQUE
declaration names given above.

Justification

The UNIQUE technique is extremely useful for enforcing uniqueness in an XML instance
document, and its use is therefore recommended.

9/23/2003 2.6-10

Chapter 7
Advanced W3C Schema Concepts

This chapter discusses the following W3C Schema advanced concepts and
provides recommendations for their use on the Exchange Network:

 Datatype derivation—derivation of new datatypes from existing datatypes
in a schema.

 Variable content models—schema constructs that allow the structure of
information within an XML instance document to vary greatly without
requiring schema updates.

 Default and fixed element and attribute values—the new W3C Schema
features of default and fixed element values, as well as default and fixed
attribute values.

 Nillible Attribute—A built-in XSD attribute that allows an element to be
empty.

 Substitution groups—a W3C Schema feature that allows an element to
replace another element in an XML instance document without requiring
schema updates.

 Code lists—the handling of lists of values through multiple namespaced
types.

 Supplemental instructions—the use of supplemental instructions in a
schema to pass them to a processing application.

DATATYPE DERIVATION
Datatype derivation can be applied to both simple and complex datatypes. Each is
discussed below.

Simple Datatype Derivation

Simple datatypes can be derived using the following techniques:

 Simple datatype restriction, in which the properties of a simple datatype
are used for the basis of a new simple datatype and further restricted

 2.7-1 9/23/2003

 List technique, in which a space-separated list of values is created from a
base datatype

 Union technique, in which a range of possible values for a simple datatype
is restricted through the union of two or more simple datatypes.

The three techniques for deriving simple datatypes are discussed in the following
subsections. In the discussion, two concepts are key:

 A base datatype is the existing datatype that serves as the basis for a
derived datatype.

 A facet is a W3C Schema construct that specifies various datatype
properties. The following are examples of W3C Schema facets:

 minInclusive—the minimum permissible value for a range

 maxInclusive—the maximum permissible value for a range

 minLength—the minimum permissible length for a datatype

 maxLength—the maximum permissible length for a datatype

 enumeration—a set of allowed values for a datatype.

SIMPLE DATATYPE RESTRICTION

With simple datatype restriction, a base datatype is restricted to a range of
allowed values using facets. The base datatype may be a W3C Schema built-in
datatype or a user-defined datatype. In the following example, a derived simple
datatype is defined to restrict the base datatype “integer” (a W3C Schema built-in
datatype) to a range (1–10) of allowed values:

<xsd:element name=“WaterQualityRatingCode”type=“xsd:RangeOneToTenType”/>
<xsd:simpleType name=“RangeOneToTenType”>

<xsd:restriction base=“xsd:integer”>
<xsd:minInclusive value=“1”>
<xsd:maxInclusive value=“10”>

</xsd:restriction>
</xsd:simpleType>

9/23/2003 2.7-2

Advanced W3C Schema Concepts

This derived datatype can also be used as a base datatype for other restrictions. In
the following example, a new datatype is defined based on the above datatype, but
for the range of 3–10:

<xsd:simpleType name=“RangeThreeToTenType”>
<xsd:restriction base=“xsd:RangeOneToTenType”>

<xsd:minInclusive value=“3”>
</xsd:restriction>

</xsd:simpleType>

Only the “minInclusive” facet was required above because the “maxInclusive” value
of 10 carried from the base datatype.

As with complex datatypes, derived simple datatypes can be named and, therefore,
globally declared.

Simple Datatype Restriction

Pros and Cons

Advantages: Simple datatype restriction allows global simple datatypes to be created.
Global simple datatypes can be associated with any element in a schema.
Simple datatype restriction also allows the use of existing simple datatypes
to define new datatypes, thereby decreasing complexity in a schema.
A change to a user-defined datatype that is used as a base datatype for
other simple datatypes will propagate to those datatypes. This allows a far-
reaching change to be made in a single location within a schema, thereby
lowering maintenance costs.

Disadvantages: A change to a user-defined datatype that is used as a base datatype for
other simple datatypes will propagate to those datatypes. Additional
schema updates may be required in such cases, thereby increasing
maintenance costs.
A processing application can perform the same validations on an XML
instance document that are enforced by facets in a schema (such as a
range of allowed values). Additional effort is required in such situations to
ensure that changes to the processing application validations and schema
validations remain in sync.

Rules and Guidelines

Data-centric: [SD7-1] Data-centric schemas SHOULD NOT use simple datatype
restriction when a data standard or an approved schema exists.
[SD7-2] Data-centric schemas MUST use global simple datatypes.
[SD7-3] Data-centric schemas MUST NOT use local simple datatypes.

Document-centric: [SD7-4] Document-centric schemas MAY use simple datatype restriction.
[SD7-5] Document-centric schemas MAY use global simple datatypes.
[SD7-6] Document-centric schemas MUST NOT use local simple
datatypes.

 2.7-3 9/23/2003

Simple Datatype Restriction

Justification

Simple datatype restriction is a very useful W3C Schema feature. Global simple datatypes are
valuable because they can be associated with any element in a schema. This promotes high
datatype visibility.
Although there is a potential requirement for additional schema updates in a propagation scenario,
the potential advantages of using simple datatype restriction far outweigh the potential
disadvantages.

LIST TECHNIQUE

With the list technique, a datatype for a whitespace-delimited list of values is
defined from a base datatype. In the following example, a list datatype is defined
based on the NMTOKEN datatype (a W3C Schema built-in datatype):

<xsd:element name=“ReportMonthsList” type= “MonthListType”>
<xsd:simpleType name=“MonthListType”>

<xsd:list itemType=“xsd:NMTOKENS”/>
</xsd:simpleType>

The following is an XML instance document excerpt that uses the above
declaration:

<ReportMonthsList>February March September</ReportMonthsList>

Although the intent of the ReportMonthsList element is to hold month names, an
XML processor cannot verify that the contents of the element are valid month
names, given the above declarations.

List Technique

Pros and Cons

Advantages: The list technique allows datatypes to be defined to represent a
whitespace-delimited list of values.

Disadvantages: An XML processor cannot validate the contents of a list.
Rules and Guidelines

Data-centric: [SD 7-7] Data-centric schemas MAY use the list technique.
[SD 7-8] Data-centric schemas MUST NOT use the list technique if the
values within the list may contain spaces themselves (e.g., a person’s first
and last name).

Document-centric: [SD 7-9] Document-centric schemas MAY use the list technique.
[SD 7-10] Document-centric schemas MUST NOT use the list technique if
the values within the list may contain spaces themselves (e.g., a person’s
first and last name).

9/23/2003 2.7-4

Advanced W3C Schema Concepts

List Technique

Justification

The usefulness of this technique is limited because an XML processor cannot validate the contents
of a list. In addition, if the values within a list contain spaces themselves, each component of the
value (between spaces) will be considered a separate value in the list. This may yield incorrect
results from a processing application.

UNION TECHNIQUE

With the union technique, a datatype that represents a range of allowed values is
defined through the union of two or more existing datatypes. In the following
example, a simple datatype, StateOrRegionType, is defined as the union of two list
datatypes: one that holds state codes (StateCodesType), and another that holds
region codes (RegionCodesType). The StateOrRegion element can therefore contain
any value that is a state or a region code:

<xsd:element name=“StateOrRegion” type= “StateOrRegionType”>

<xsd:simpleType name=“StateOrRegionType”>
<xsd:union memberTypes=“StateListType RegionListType”>

</xsd:simpleType>

<xsd:simpleType name=“StateListType”>
<xsd:list itemType=“StateCodesType”/>

</xsd:simpleType>

<xsd:simpleType name=“RegionListType”>
<xsd:list itemType=“RegionCodesType”/>

</xsd:simpleType>

<xsd:simpleType name=“StateCodesType”>
<xsd:restriction base=“xsd:string”>

<xsd:enumeration value=“AK”/>
<xsd:enumeration value=“AL”/>
<xsd:enumeration value=“AR”/>
<!—information removed for example purposes—>

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name=“RegionCodesType”>
<xsd:restriction base=“xsd:string”>

<xsd:enumeration value=“01”/>
<xsd:enumeration value=“02”/>
<xsd:enumeration value=“03”/>
<!—information removed for example purposes—>

</xsd:restriction>
</xsd:simpleType>

 2.7-5 9/23/2003

Therefore, either of the following two elements would be valid in an XML
instance document:

<StateOrRegion>VA</StateOrRegion>

<StateOrRegion>03</StateOrRegion>

Union Technique

Pros and Cons

Advantages: The union technique allows an element to contain a range of values that is
merged from two or more datatypes.
A change to any user-defined datatype used in a union will propagate to
the union datatype. This allows a far-reaching change to be made in a
single location within a schema, thereby lowering maintenance costs.

Disadvantages: A change to any user-defined datatype used in a union will propagate to
the union datatype. Additional schema updates may be required in such
cases, thereby increasing maintenance costs.
Use of the union technique may add an additional level of complexity to a
schema.

Rules and Guidelines

Data-centric: [SD7-11] Data-centric schemas MAY use the union technique.

Document-centric: [SD7-12] Document-centric schemas MAY use the union technique.
Justification

The union technique is a very useful W3C Schema feature. Although there is a potential for
additional schema updates to be required in a propagation scenario, the potential advantages for
using the union technique far outweigh the potential disadvantages.

Complex Datatype Derivation

Complex datatypes can be derived using the following techniques:

 Complex datatype restriction, in which the definition of a complex
datatype serves as the basis of a new complex datatype, which is further
restricted through the removal or modification of constructs

 Complex datatype extension, in which the definition of a complex datatype
serves as the basis of a new complex datatype, which is further expanded
through the addition of constructs.

9/23/2003 2.7-6

Advanced W3C Schema Concepts

COMPLEX DATATYPE RESTRICTION

With complex datatype restriction, a base datatype is restricted through the
removal or modification of constructs. In the following example, the
FacilityAddressDetailsType datatype is restricted to contain a lower number of
maximum occurrences for the FacilityStreetName element (all constructs from the
base datatype must be listed in the restriction):

<xsd:complexType name=“FacilityAddressDetailsType”>
<xsd:sequence>

<xsd:element name=“FacilityStreetAddress”type=“xsd:string”maxOccurs=“3”/>
<xsd:element name=“FacilityCity”type=“xsd:string”/>
<xsd:element name=“FacilityState”type=“xsd:string”/>
<xsd:element name=“FacilityZipCode”type=“xsd:string”/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name=“FacilityAddressDetailsTypeAbbreviated”>
<xsd:complexContent>

<xsd:restriction base=“FacilityAddressDetailsType”>
<xsd:sequence>
<xsd:element name=“FacilityStreetAddress” type=“xsd:string” maxOccurs=“2”/>
<xsd:element name=“FacilityCity”type=“xsd:string”/>
<xsd:element name=“FacilityState”type=“xsd:string”/>
<xsd:element name=“FacilityZipCode”type=“xsd:string”/>
</xsd:sequence>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

Because the FacilityAddressDetailsTypeAbbreviated complex datatype is derived
from the FacilityAddressDetailsType datatype, any element declared as part of the
FacilityAddressDetailsTypeAbbreviated datatype can appear anywhere in an XML
instance document in which the base datatype is expected.

The “xsi:type” W3C Schema instance construct must be used to indicate to an
XML processor exactly which datatype (base or derived) applies:

<FacilityAddressDetails xsi:type=“FacilityAddressDetailsTypeAbbreviated”>
<FacilityStreetAddress>15 Main St.</FacilityStreetAddress>
<!—information removed for example purposes—>

</FacilityAddressDetails>

A base datatype can also be restricted through the removal of constructs;
however, the construct must be declared as optional in the base datatype. With

 2.7-7 9/23/2003

this type of restriction, all constructs from the base datatype are repeated in the
restriction, with the exception of the construct being removed.

Complex Datatype Restriction
Pros and Cons

Advantages: Complex datatype restriction allows new complex datatypes to be defined
based on existing complex datatypes, thereby decreasing complexity in a
schema.
A change to a complex datatype that is used as a base datatype for other
complex datatypes will propagate to those datatypes. This allows a far-
reaching change to be made in a single location in a schema, thereby
lowering maintenance costs.

Disadvantages: A change to a complex datatype that is used as a base datatype for other
complex datatypes will propagate to those datatypes. Additional schema
updates may be required in such cases, thereby increasing maintenance
costs.

Rules and Guidelines

Data-centric: [SD7-13] Data-centric schemas MAY use complex datatype restriction.

Document-centric: [SD7-14] Document-centric schemas MAY use complex datatype
restriction.

Justification

Complex datatype restriction is a very useful W3C Schema feature. Although there is a potential
requirement for additional schema updates in a propagation scenario, the potential advantages for
using complex datatype restriction far outweigh the potential disadvantages.

COMPLEX DATATYPE EXTENSION

With complex datatype extension, a base datatype is extended through the
addition of constructs. In the following example, the FacilityAddressDetailsType
datatype extends to contain an additional FacilityRegion element (only the
additional element needs to be listed in the extension):

<xsd:complexType name=“FacilityAddressDetailsType”>
<xsd:sequence>

<xsd:element name=“FacilityStreetAddress”type=“xsd:string”/>
<xsd:element name=“FacilityCity”type=“xsd:string”/>
<xsd:element name=“FacilityState”type=“xsd:string”/>
<xsd:element name=“FacilityZipCode”type=“xsd:string”/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name=“FacilityAddressDetailsTypeExtended”>

<xsd:complexContent>
<xsd:extension base=“FacilityAddressDetailsType”>

<xsd:sequence>
<xsd:element name=“FacilityRegion” type=“xsd:string”/>
</xsd:sequence>

</xsd:extension>

9/23/2003 2.7-8

Advanced W3C Schema Concepts

</xsd:complexContent>
</xsd:complexType>

As with the complex datatype restriction example, any element declared as part of
the FacilityAddressDetailsTypeExtended datatype can appear anywhere in an XML
instance document that the base datatype is expected, and the “xsi:type” construct
must be used to indicate to an XML processor exactly which datatype applies.

Complex Datatype Extension

Pros and Cons

Advantages: Complex datatype extension allows the definition of new complex
datatypes based on existing complex datatypes, thereby decreasing
complexity in a schema.
A change to a complex datatype that serves as a base datatype for other
complex datatypes will propagate to those datatypes. This allows a far-
reaching change to be made in a single location in a schema, thereby
lowering maintenance costs.

Disadvantages: A change to a complex datatype that serves as a base datatype for other
complex datatypes will propagate to those datatypes. Additional schema
updates may be required in such cases, thereby increasing maintenance
costs.

Rules and Guidelines

Data-centric: [SD7-15] Data-centric schemas MAY use complex datatype extension.
Document-centric: [SD7-16] Document-centric schemas MAY use complex datatype

extension.
Justification

Complex datatype extension is a very useful W3C Schema feature. Although there is a potential
requirement for additional schema updates in a propagation scenario, the potential advantages for
using complex datatype extension far outweigh the potential disadvantages.

PROHIBITING COMPLEX DATATYPE DERIVATION

It is possible to indicate in a schema that a given complex datatype cannot be
restricted or extended. This may be useful when a schema developer believes a
datatype definition is final and, therefore, should not be restricted or extended by
other schema developers—or when the base datatype of a derived datatype may
change in the future. This is accomplished by a final attribute, which is placed on
the complex datatype definition as follows:

<xsd:complexType name=“FacilityAddressDetailsType” final=“restriction”>
<xsd:sequence>

<!—information removed for example purposes—>
</xsd:sequence>

</xsd:complexType>

The value of the final attribute shown above can also be “extension” (to prohibit
complex datatype extension) or “all” (to prohibit both restriction and extension).

 2.7-9 9/23/2003

Prohibiting Complex Datatype Derivation

Pros and Cons

Advantages: The ability to prohibit complex datatype derivation can be useful when a
schema developer believes a datatype definition is final and, therefore,
should not be restricted or extended by other schema developers, or when
it is anticipated that the base datatype of a derived datatype may change in
the future.

Disadvantages: Prohibiting complex datatype derivation may lead to the unnecessary
creation of new complex datatypes, causing unnecessary duplication of
schema constructs.

Rules and Guidelines

Data-centric: [SD7-17] Data-centric schemas MAY use the final attribute derivation.
Document-centric: [SD7-18] Document-centric schemas MAY prohibit complex datatype

derivation.
Justification

The potential for duplication of schema constructs outweighs the potential advantages for
prohibiting complex datatype derivation. Therefore, use of the “final” attribute is not recommended
for data-centric schemas.
Because duplication of schema constructs is not as critical an issue for document-centric schemas
as for data-centric schemas, prohibiting complex datatype derivation is permissible for document-
centric schemas.

PROHIBITING USE OF DERIVED COMPLEX DATATYPES

In a schema, it is possible to prohibit the appearance of an element that is a
derivation of a given complex type. This may be useful when a schema has been
updated to include derived datatypes, but a processing application cannot yet
accommodate the change. This prohibition is accomplished by a block attribute
placed on the complex datatype definition, as follows:

<xsd:complexType name=“FacilityAddressDetailsType” block=“restriction”>
<xsd:sequence>

<!—information removed for example purposes—>
</xsd:sequence>

</xsd:complexType>

As with the final attribute, the value of the block attribute shown above can also be
extension or all.

9/23/2003 2.7-10

Advanced W3C Schema Concepts

Prohibiting Use of Derived Complex Datatypes
Pros and Cons

Advantages: The ability to prohibit use of derived complex datatypes can be useful when
a schema has been updated to include derived datatypes but a processing
application cannot yet accommodate the change.

Disadvantages: Prohibiting the use of derived complex datatypes may cause an increase in
errors from the processing of XML instance documents.

Rules and Guidelines

Data-centric: [SD7-19] Data-centric schemas MAY use the block attribute.

Document-centric: [SD7-20] Document-centric schemas SHOULD NOT prohibit use of derived
complex datatypes.

Justification

The potential for XML instance document errors outweighs the potential advantages of prohibiting
use of derived complex datatypes; therefore, prohibiting use of derived complex datatypes is not
recommended.

VARIABLE CONTENT MODELS
Variable content models allow the structure of information within an XML
instance document to vary greatly without requiring schema updates. This section
discusses two W3C Schema techniques—abstract datatypes and wildcards—that
enable variable content models in XML instance documents.

Abstract Datatypes

Abstract datatypes are complex datatypes that act as templates for the derivation
of other complex datatypes. Unlike base datatypes, abstract datatypes cannot be
used in the declaration of elements. Instead, a derived datatype must be defined
based on the abstract datatype; only then can this derived datatype be used in the
declaration of elements.

Abstract datatypes are useful when representing the fewest constructs required for
a series of complex datatypes, which allows a certain level of consistency in all
element declarations indirectly based on the abstract datatype.

In the following example, the FacilityAddressDetailsType datatype is declared as an
abstract datatype. It contains the fewest constructs required for a facility address:

<xsd:complexType name=“FacilityAddressDetailsTypeTemplate” abstract=“true”>
<xsd:sequence>

<xsd:element name=“FacilityStreetAddress”type=“xsd:string”/>
<xsd:element name=“FacilityCity”type=“xsd:string”/>
<xsd:element name=“FacilityState”type=“xsd:string”/>
<xsd:element name=“FacilityZipCode”type=“xsd:string”/>

</xsd:sequence>
</xsd:complexType>

 2.7-11 9/23/2003

The following complex datatype is derived from the above abstract datatype and
includes additional constructs:

<xsd:complexType name=“FacilityAddressDetailsType”>
<xsd:complexContent>

<xsd:extension base=“FacilityAddressDetailsTypeTemplate”>
<xsd:sequence>
<xsd:element name=“FacilityRegion”type=“xsd:string”/>
<xsd:element name=“FacilityStreetAddressExtra”type=“xsd:string”/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

If constructs were added to the “FacilityAddressDetailsTypeTemplate” abstract
datatype, the change would propagate to all element declarations that are
indirectly based on the abstract datatype (all facility address constructs).

Abstract Datatypes

Pros and Cons

Advantages: Abstract datatypes can be useful in representing the minimum amount of
constructs required for a series of complex datatypes, allowing a certain
level of consistency in all element declarations that are indirectly based on
the abstract datatype.
A change to a complex datatype that is defined as an abstract datatype will
propagate to all datatypes based on the abstract datatype. This allows a
far-reaching change to be made in a single location in a schema, thereby
lowering maintenance costs.

Disadvantages: A change to a complex datatype that is defined as an abstract datatype will
propagate to all datatypes based on the abstract datatype. Additional
schema updates may be required in such cases, thereby increasing
maintenance costs.
Use of abstract datatypes may add an additional level of complexity to a
schema.

Rules and Guidelines

Data-centric: [SD7-21] Data-centric schemas MUST NOT use abstract datatypes.
Document-centric: [SD7-22] Document-centric schemas MUST NOT use abstract datatypes.

Justification

Although abstract datatypes can be useful in some situations, the additional level of complexity that
they add to a schema does not outweigh their potential advantages.

Wildcards

Wildcards are W3C Schema features used to create a placeholder where any well-
formed XML can appear in an XML instance document. This may be useful when
a project is beginning and it is unclear what content will be required within an

9/23/2003 2.7-12

Advanced W3C Schema Concepts

XML instance document or where a portion of an XML instance document should
be unconstrained (perhaps because it is a memo or notes field).

The W3C Schema any and anyAttribute constructs mark the occurrence of a
wildcard in a schema, as in the following example:

<xsd:element name=“FacilityAddressDetails”type=“FacilityAddressDetailsType”/>
<xsd:complexType name=“FacilityAddressDetailsType”>

<xsd:sequence>
<xsd:element name=“FacilityStreetAddress”type=“xsd:string”/>
<xsd:element name=“FacilityCity”type=“xsd:string”/>
<xsd:element name=“FacilityState”type=“xsd:string”/>
<xsd:element name=“FacilityZipCode”type=“xsd:string”/>
<xsd:any minOccurs=“0”/>

</xsd:sequence>
<xsd:anyAttribute/>

</xsd:complexType>

In the above example, the FacilityZipCode element may be followed by one or
more elements. Although the schema developer’s intention may be to show that
elements appearing at that point in an XML instance document relate to a facility
address, there is no such requirement. In addition, the FacilityAddressDetails
element may contain an attribute that may or may not relate to a facility address.

A certain degree of control can be placed on wildcards by controlling the namespace
from which constructs that are used in place of a wildcard declaration originate.
This is accomplished by a namespace attribute that is placed on the any element.
The following are possible values:

 ##any—constructs can come from any namespace.

 ##targetNamespace—constructs must come from the same namespace as
the target namespace of the schema.

 ##other—constructs must come from a namespace other than the target
namespace of the schema.

 ##local—constructs must not be in a namespace.

 A namespace URI—constructs must come from the specified namespace.

In addition, a schema developer can specify how an XML processor should
validate constructs used in place of a wildcard declaration. This is accomplished
by a processContents attribute placed on the any element. The following are
possible processContents values:

 skip—the XML processor does not attempt to validate the contents.

 2.7-13 9/23/2003

 strict—the XML processor validates the contents according to the schema
of the specified namespace; an error is generated if the schema cannot be
accessed.

 lax—the XML processor validates whatever contents it can according to
the schema of the specified namespace; an error is not generated if the
schema cannot be accessed.

Wildcards declarations can lead to “nondeterministic” content models, which can
cause an XML processor to generate an error. Consider the following variation on
the above example (the wildcard declaration is now at the top of the content
model):

<xsd:complexType name=“FacilityAddressDetailsType”>
<xsd:sequence>

<xsd:any minOccurs=“0” maxOccurs=“2”/>
<xsd:element name=“FacilityStreetAddress”type=“xsd:string”/>
<xsd:element name=“FacilityCity”type=“xsd:string”/>
<xsd:element name=“FacilityState”type=“xsd:string”/>
<xsd:element name=“FacilityZipCode”type=“xsd:string”/>

</xsd:sequence>
<xsd:anyAttribute/>

</xsd:complexType>

If a FacilityStreetAddress element appeared in place of the wildcard declaration in
the above example, it would not be possible for an XML processor to discern

 if the FacilityStreetAddress element were used in place of the wildcard
declaration, or

 if it represents the FacilityStreetAddress element declared above.

In fact, because the any element has a maxOccurs value of “2,” three
FacilityStreetAddress elements could appear in succession (two in place of the any
element, and the one representing the FacilityStreetAddress element).

To better discern which declaration a given FacilityStreetAddress element represents,
the XML processor would need to look ahead three places, something XML
processors cannot do. This means the content model is nondeterministic and,
therefore, illegal.

9/23/2003 2.7-14

Advanced W3C Schema Concepts

Wildcards

Pros and Cons

Advantages: Wildcards can be useful when a project is beginning and it is unclear
what content will be required at certain points within an XML instance
document, or where part of an XML instance document should be
unconstrained (e.g., it is a memo or notes field).

Disadvantages: Wildcard declarations place very minor restrictions on the information
that can be used in place of them. This can lead to a proliferation of
uncontrolled XML instance documents.
Wildcard declarations can lead to nondeterministic content models.
Use of wildcards may add an additional level of complexity to a
schema.

Rules and Guidelines

Data-centric: [SD7-23] Data-centric schemas MUST NOT use wildcards.
Document-centric: [SD7-24] Document-centric schemas MUST NOT use wildcards.

Justification

Although wildcards can be useful in some situations, the additional level of complexity they
add to a schema does not outweigh their potential advantages. In addition, their use can be
counter to efforts to control the types of information that can appear in XML instance
documents.

DEFAULT AND FIXED ELEMENT AND ATTRIBUTE VALUES
One important advancement for the W3C Schema standard over DTDs is the
capability to declare default and fixed element values (with DTDs, default and
fixed values were allowed only for attributes). This section discusses the new
W3C Schema features of default and fixed element and attribute values.

Default Element Values

When a default value is declared for an element, an XML processor will insert the
default value for that element into an XML instance document when it validates
the instance document. Any processing application that accepts the XML instance
document as an input recognizes the default element value as the actual element
value. In other words, a processing application will not be able to discern whether
the value was originally included in the XML instance document or inserted by an
XML processor. The following is an example:

<xsd:element name=“FacilityIdentificationCode” type=“xsd:string” default=“000”/>

In the above example, if there is no value for a FacilityIdentificationCode element in
an XML instance document, an XML processor will insert “000” in the XML
instance document.

For a default element value to take effect, an empty tag must appear in an XML
instance document for that element. For example, either of the following two

 2.7-15 9/23/2003

excerpts would be necessary in an XML instance document for the default value
to take effect:

<FacilityIdentificationCode/>
 or

<FacilityIdentificationCode></FacilityIdentificationCode>

If a value appears in an XML instance document that is different than the default
element value, the value in the XML instance document will take precedence.

Default Element Values

Pros and Cons

Advantages: Default element values allow the insertion of additional information in an
XML document without user intervention.
A default element value can be overridden by including a different value for
the element in an XML instance document.

Disadvantages: Default element values may cause data to be inserted in an XML instance
document that may not have been the intention of the XML instance
document author.
For a default element value to take effect, an empty tag must appear in an
XML instance document for that element.
Certain XML processors may not be able to support default element
values.

Rules and Guidelines

Data-centric: [SD7-25] Data-centric schemas SHOULD NOT use default element values.
Document-centric: [SD7-26] Document-centric schemas MAY use default element values.

Justification

While default element values can be considered an efficient feature of W3C schema, the risk of
having data inserted in an XML instance document that may not have been intended for insertion
outweighs the potential benefits of their use in data-centric scenarios.
However, in document-centric scenarios, the reduction of burden on an XML instance document
author through the use of default element values outweighs the risks. For example, a default
element value may be used to insert the text of a standard disclaimer into an XML document
instance, thereby eliminating the burden on the XML instance document author of having to enter
the text each time it is required.

Fixed Element Values

A fixed element value is handled by an XML processor in the same way as a
default element value, with one exception: if a value appears in an XML instance
document that is different than the fixed element value, the XML processor will
generate an error. An example of a fixed element is as follows:

<xsd:element name=“ActiveIndicatorCode” type=“xsd:boolean” fixed=“true”/>

9/23/2003 2.7-16

Advanced W3C Schema Concepts

In this example, if there is no value for an ActiveIndicatorCode element in an XML
instance document, an XML processor will insert “true” in the XML instance
document.

Fixed Element Values

Pros and Cons

Advantages: Fixed element values allow the additional insertion of information in an
XML document without user intervention.
A fixed element value ensures the same element value appears in an XML
instance document for a given element, wherever that element appears.

Disadvantages: A fixed element value cannot be overridden in an XML instance document.
Fixed element values may cause data to be inserted in an XML instance
document, which may not have been the intention of the XML instance
document author.
For a fixed element value to take effect, an empty tag must appear in an
XML instance document for that element.
Certain XML processors may not be able to support fixed element values.

Rules and Guidelines

Data-centric: [SD7-27] Data-centric schemas SHOULD NOT use fixed element values.
Document-centric: [SD7-28] Document-centric schemas MAY use fixed element values.

Justification

While fixed element values can be considered an efficient feature of W3C Schema, the risk of
having data inserted in an XML instance document that may not have been intended for insertion
outweighs the potential benefits of their use in data-centric scenarios.
However, in document-centric scenarios, the reduction of burden on an XML instance document
author through the use of fixed element values outweighs the risks. For example, a fixed element
value may be used to insert the text of a standard disclaimer into an XML document instance,
thereby eliminating the burden on the XML instance document author of having to enter the text
each time it is required.

Default Attribute Values

Default attribute values perform the same function as default element values, with
one exception: there is no need for an indication in an XML instance document
for a default attribute value to take effect (recall that, with default element values,
an empty tag must appear in an XML instance document for that element). The
following is an example of a default attribute:

<xsd:attribute name=“informationFormatIndicator” type=“xsd:string” default=“A”/>

In the above example, if there is no value for an informationFormatIndicator
attribute, an XML processor will insert “A” in the XML instance document. As
with default element values, if a value appears in an XML instance document that
is different than the default attribute value, the value in the XML instance
document will take precedence.

 2.7-17 9/23/2003

Default Attribute Values

Pros and Cons

Advantages: Default attribute values allow additional information to be inserted in an
XML document without user intervention.
A default attribute value can be overridden by including a different value for
the attribute in an XML instance document.
An indication is not needed in an XML instance document for a default
attribute value to take effect.

Disadvantages: Default attribute values may cause data to be inserted in an XML instance
document that may not have been the intention of the XML instance
document author.
Certain XML processors may not be able to support default attribute
values.

Rules and Guidelines

Data-centric: [SD7-29] Data-centric schemas SHOULD NOT use default attribute values.
Document-centric: [SD7-30] Document-centric schemas MAY use default attribute values.

Justification

As with default element values, the risk of having data inserted in an XML instance document that
may not have been intended for insertion outweighs the potential benefits of using default attributes
values in data-centric scenarios. However, in document-centric scenarios, the reduction of burden
on an XML instance document author through the use of default attribute values outweighs the
risks.

Fixed Attribute Values

Fixed attribute values perform the same function as fixed element values. An
example of a fixed attribute is as follows:

<xsd:attribute name=“informationFormatIndicator” type=“xsd:string” fixed=“A”/>

In the above example, if there is no value for an informationFormatIndicator
attribute, an XML processor will insert “A” in the XML instance document. As
with fixed element values, if a value appears in an XML instance document that is
different than a fixed attribute value, the XML processor will yield an error.

9/23/2003 2.7-18

Advanced W3C Schema Concepts

Fixed Attribute Values
Pros and Cons

Advantages: Fixed attribute values allow additional information to be inserted in an XML
document without user intervention.
A fixed attribute value will ensure that the same element value appears in
an XML instance document for a given attribute, wherever that attribute
appears.
An indication is not needed in an XML instance document for a fixed
attribute value to take effect.

Disadvantages: A fixed attribute value cannot be overridden in an XML instance document.
Fixed attribute values may cause data to be inserted in an XML instance
document that may not have been the intention of the XML instance
document author.
Certain XML processors may not be able to support fixed attribute values.

Rules and Guidelines

Data-centric: [SD7-31] Data-centric schemas SHOULD NOT use fixed attribute values.
Document-centric: [SD7-32] Document-centric schemas MAY use fixed attribute values.

Justification

As with fixed element values, the risk of having data inserted in an XML instance document that
may not have been intended for insertion outweighs the potential benefits of using fixed attributes
values in data-centric scenarios. However, in document-centric scenarios, the reduction of burden
on an XML instance document author through the use of fixed attribute values outweighs the risks.

SUBSTITUTION GROUPS
Substitution groups allow a global element to replace another global element in an
XML instance document without any further modifications to the schema.
Substitution groups do not apply to local elements. This feature is useful when
there are multiple trading partners and an element needs to be represented by a
group of trading partners using one name and by another group of trading partners
using another name (for instance, if the name is location specific).

The following is an example of a substitution group declaration:

<xsd:element name=“FacilityIdentificationCode” type=“xsd:string”/>
<xsd:element name=“StateIdentificationCode” type=“xsd:string”/>
 substitutionGroup=“FacilityIdentificationCode”/>

The above example declares the StateIdentificationCode element as substitutable for
the FacilityIdentificationCode element in an XML instance document. The
FacilityIdentificationCode element is known as the head element. Therefore, the
following two excerpts are both valid at the same point in an XML instance
document:

<FacilityIdentificationCode>15849</FacilityIdentificationCode>
 and

<StateIdentificationCode>VA</StateIdentificationCode>

 2.7-19 9/23/2003

As with complex datatype derivation, the “xsi:type” W3C Schema instance
construct must be used to indicate to an XML processor exactly which
declaration—head element or substitutable element—applies.

It is possible to prohibit an element from being “substituted for” in an XML
instance document. This is done using a block attribute that prohibits the element
from being used as the head element in a substitution group. For example, the
following declaration prohibits the FacilityIdentificationCode element from being
substituted for another:

<xsd:element name=“FacilityIdentificationCode” type=“xsd:string” block=“substitution”/>

Substitution Groups

Pros and Cons

Advantages: Substitution groups allow a global element to replace another global
element in an XML instance document without any further modifications to
the schema.

Disadvantages: Substitution groups do not promote the harmonization of element names.
Rules and Guidelines

Data-centric: [SD7-33] Data-centric schemas MUST NOT use substitution groups.
Document-centric: [SD7-34] Document-centric schemas SHOULD NOT use substitution

groups.
[SD7-35] Document-centric schemas MAY “block” use of substitution
groups.

Justification

Harmonization is the key to interoperable data exchange, and use of substitution groups moves
away from harmonization.
Because harmonization is not as critical an issue for document-centric schemas as for data-centric
schemas, use of substitution groups is permissible for document-centric schemas.

SUPPLEMENTAL INSTRUCTIONS
This section discusses inclusion of supplemental instructions in a schema for the
purpose of passing them to a processing application. This section begins with a
discussion of the W3C Schema appinfo element, which indicates the processing
instructions in schemas. The concept of notations is then discussed as a way to
allow non-XML data to be associated with an XML document.

9/23/2003 2.7-20

Advanced W3C Schema Concepts

W3C Schema appinfo Element

The W3C Schema appinfo element is used to indicate processing instructions in
schemas. An example is as follows:

<xsd:group name=“WaterSampleGroup”>
<xsd:annotation>

<xsd:appinfo>
 if (WaterCharacteristics.WaterState= “Acidic”)
 docParser.execute(AcidicProcessing);

 else
 docParser.execute(DefaultProcessing);

 </xsd:appinfo>
</xsd:annotation>
<!—information removed for example purposes—>

</xsd:group>

The information within the <xsd:appinfo> element above indicates a certain type
of script that is passed to a processing application by an XML processor that
processes the XML instance document. The intent of the script in the above
example is to test the value of a database field for Acidic and execute a
particular program based on that value.

W3C Schema appinfo Element

Pros and Cons

Advantages: The appinfo element can be very useful for passing processing
commands or other supplemental information to a processing
application.

Disadvantages: XML processors are not yet mature enough to be able to properly handle
this technique.

Rules and Guidelines

Data-centric: [SD7-36] Data-centric schemas MUST NOT use the appinfo element.

Document-centric: [SD7-37] Document-centric schemas MUST NOT use the appinfo element.
Justification

The use of the appinfo element is considered very risky at this time because certain XML
processors may not support its use. There is no guarantee that a given XML processor will properly
pass the processing instructions to an application, or, if it does, that an application will be able to
accept them or handle them properly.

Notations

A notation is a formal declaration to an XML processor of non-XML external
content that is not meant to be parsed (for example, image data). With DTDs, it
was possible to directly associate a notation with an attribute. In the W3C Schema

 2.7-21 9/23/2003

standard, however, notations can be represented only through a derived type, such
as an enumeration.

In the following example, the user is given a list of image types (JPEG or GIF).
The pertinent program (jpegviewer.exe or gifviewer.exe) is then initiated on user
selection:

<xsd:notation name=“jpeg” public=“image/jpeg” system=“jpegviewer.exe”/>
<xsd:notation name=“gif” public=“image/png” system=“gifviewer.exe”/>

<xsd:element name=“Picture”>
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base=“xsd:hexBinary”>

<xsd:attribute name=“pictureType”>
<xsd:simpleType name=“notation.Image”>

<xsd:restriction base=“xsd:NOTATION”>
<xsd:enumeration value=“jpeg”/>
<xsd:enumeration value=“gif”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element name>

Notations

Pros and Cons

Advantages: Notations provide an efficient method for including non-XML data in a
schema.

Disadvantages: XML processors are not yet mature enough to be able to properly handle
this technique.

Rules and Guidelines

Data-centric: [SD7-38] Data-centric schemas MUST NOT use notations.
Document-centric: [SD7-39] Document-centric schemas MUST NOT use notations.

Justification

The use of notations is considered very risky because there is no guarantee that an XML processor
will properly handle a notation declaration.

9/23/2003 2.7-22

Appendix A
Summary of XML Rules

This appendix summarizes the design rules found in this document. This appendix
is intended as a quick reference for developers. For additional information on the
feature or on the advantages, disadvantages, and justification for a particular rule,
please see the corresponding section for the full commentary as noted by the rule
prefix.

The rules contain certain words that have an explicit meaning. Those words,
defined in Request for Comments 2119 issued by the Internet Engineering Task
Force, are as follows:1

Note that the force of these words is modified by the requirement level of the
document in which they are used.

 MUST. This word, or the terms “REQUIRED” or “SHALL,” means that
the definition is an absolute requirement of the specification.

 MUST NOT. This phrase, or the phrase “SHALL NOT,” means that the
definition is an absolute prohibition of the specification.

 SHOULD. This word, or the adjective “RECOMMENDED,” means that
there may exist valid reasons in particular circumstances to ignore a
particular item, but the full implications must be understood and carefully
weighed before choosing a different course.

 SHOULD NOT. This phrase, or the phrase “NOT RECOMMENDED,”
means that there may exist valid reasons in particular circumstances when
the particular behavior is acceptable or even useful, but the full
implications should be understood and the case carefully weighed before
implementing any behavior described with this label.

 MAY. This word, or the adjective “OPTIONAL,” means that an item is
truly optional. One vendor may choose to include the item because a
particular marketplace requires it or because the vendor believes that it
enhances the product, while another vendor may omit the same item. An
implementation that does not include a particular option MUST be
prepared to interoperate with another implementation that does include the
option, though perhaps with reduced functionality. In the same vein, an
implementation that does include a particular option MUST be prepared to

1 Internet Engineering Task Force, Request for Comments 2119, March 1997,

<www.ietf.org/rfc/rfc2119.txt?number=2119>.

 A-1 9/23/2003

interoperate with another implementation that does not include the option
(except, of course, for the feature the option provides).

All design rules are normative. Design rules are identified through a prefix of
[XXc-nn].

 The value “XX” is a prefix to categorize the type of rule, where XX
corresponds to a particular section; GD indicates a general design rule
(Section 1), and SD indicates a schema design rule (Section 2).

 The value “c” indicates the chapter where the rule is located.

 The value “nn” indicates the sequential number of the rule.

For example, the rule identifier [SD6-22] identifies the 22nd rule in Chapter 6 of
Section 2, Schema Design Rules.

 A-2 9/23/2003

Summary of XML Rules

SECTION 1—GENERAL DESIGN RULES
File Naming Convention—Schema

 [GD1-1] Schemas and style sheets MUST follow a four part,
hierarchical naming convention, based on responsible party, data
flow, root, and version (for message-level schemas) or responsible
party, data flow or CRM, Major Data Group and version (for shared
schemas).
[GD1-2] File names MUST NOT use abbreviations unless their
meaning is beyond question (EPA, GSA, FBI).
[GD1-3] Message-level schemas SHOULD have their versions
changed when a referenced external modular schema is updated.

General XML Design

 [GD1-1] All Exchange Network schema must be based on the W3C
suite of technical specifications that hold Recommendation status.

 [GD1-2] Only W3C technical specifications holding
Recommendation, Proposed Recommendation, or Candidate
Recommendation status shall be used for production activities.

 [GD1-3] W3C technical specifications holding Draft status may be
used for prototyping. Such prototypes will not be put into production
until the associated specifications reach a Recommendation,
Proposed Recommendation, or Candidate Recommendation
status.

 [GD1-4] All XML parsers, generators, validators, enabled
applications, servers, databases, operating systems, and other
software acquired or used by partners’ activities shall be fully
compliant with all W3C XML specifications that hold a
Recommendation status.

 [GD1-5] The normative schema documents that implement the
partner document types shall conform to XML Schema Part 1:
Structures and XML Schema Part 2: Datatypes.

 [GD1-6] Each message must represent a single logical unit of
information (such as facility permit compliance data) conveyed in
the root element.

 [GD1-7] The business function of a message set must be unique
and must not duplicate the business function of another message.

 [GD1-8] The name of the message set must be consistent with its
definition.

 [GD1-9] Each message set should correspond to a business
process model or models in the ebXML catalog of business
processes.

 [GD1-10] Messages must use the UTF-8/UNICODE character set.

 A-3 9/23/2003

 [GD1-11] XML instance documents conforming to schemas should
be readable and understandable, and should enable reasonably
intuitive interactions.

 [GD1-12] Messages shall be modeled for the abstractions of the
user, not the programmer.

 [GD1-13] Messages shall use markup to make data substructures
explicit (that is, distinguish separate data items as separate
elements and attributes).

 [GD1-14] Messages shall use well-known data types.
 [GD1-15] EPA messages shall reuse registered data types to the

maximum extent practicable.
 [GD1-16] In a schema, information that expresses associations

between data elements in different classification schemes (in other
words, “mappings”) may be regarded as metadata. This information
should be accessible in the same manner as the rest of the
information in the schema.

TAG Structure

 [GD3-1] Element names MUST be in “Upper Camel Case” (UCC)
convention, where UCC style capitalizes the first character of each
word and compounds the name.
Example: <UpperCamelCaseElement/>

 [GD3-2] Schema type names MUST be in UCC convention.
Example: <DataType/>

 [GD3-3] Attribute names MUST be in “Lower Camel Case” (LCC)
convention where LCC style capitalizes the first character of each
word except the first word. Example: <UpperCamelCaseElement
lowerCamelCaseAttribute=“Whatever”/>

 [GD3-4] Acronyms SHOULD NOT be used, but in cases where they
are used,

– the capitalization SHALL remain
Example: <XMLSignature/>, and

– the acronym SHOULD be defined in the comments of the
DTD or Schema or in a separate document noted in the
DTD or Schema as providing a tag dictionary so that the
meaning of the acronym is clear.

 [GD3-5] Abbreviations SHOULD NOT be used. In cases where they
are used, they MUST be a major part of the federal or data
standards vocabulary, and the abbreviation SHOULD be defined
within the comments of the DTD or Schema or in a separate
document (noted in the DTD or Schema) as providing a tag
dictionary so that the meaning of the abbreviation is clear. An
exception to this rule is when identifier is used as a representation
term, ID SHOULD be used as part of the tag name.

 A-4 9/23/2003

Summary of XML Rules

 [GD3-6] Underscores (_), periods (.) and dashes (-) MUST NOT
be used.

 [GD3-7] Verbosity in tag length SHOULD be limited to what is
required to conform to the Tag Name Content recommendations.
When tags will be used in database structures, a limit of 30
characters is recommended.

Tag Name Content

 [GD3-8] Element, attribute, and data type tag names SHOULD be
unique.

 [GD3-9] Element tag names MUST be extracted from the
Environmental Data Registry (EDR) where possible.

 [GD3-10] High-level parent element tag names SHOULD consist of
a meaningful aggregate name followed by the term “Details”. The
aggregate name may consist of more than one word.
Example: <SiteFacilityDetails/>

 [GD3-11] Tag names SHOULD be concise and MUST NOT contain
consecutive redundant words.

 [GD3-12] Lowest level (it has no children) element tag name
SHOULD consist of the Object Class, the name of a Property Term,
and the name of a Representation Term. An Object Class identifies
the primary concept of the element. It refers to an activity or object
within a business context and may consist of more than one word.
Example: <LocationSupplementalText/>

 [GD3-13] A Property Term identifies the characteristics of the object
class. The name of a Property Term SHALL occur naturally in the
tag definition and may consist of more than one word. A name of a
Property Term shall be unique within the context of an Object Class
but may be reused across different Object Classes.
Example: <LocationZipCode/> and <MailingAddressZipCode/> may
both exist.

 [GD3-14] If the name of the Property Term uses the same word as
the Representation Term (or an equivalent word), this Property
Term SHALL be removed from the tag name. In this case, only the
Representation Term word will remain.

Examples: If the Object Class is “Goods”, the Property Term is
“Delivery Date”, and Representation Term is “Date”, the tag name is
<GoodsDeliveryDate/>

 [GD3-15] A Representation Term categorizes the format of the data
element into broad types. A list of UN/CEFACT Representation
Terms is included at the end of this list of rules, but the EPA and its
partners may need to augment this list to accommodate the specific
needs for environmental data. When possible the pre-defined
UN/CEFACT list SHOULD be used. Proposed additions should be
submitted to the TRG for consideration.

 A-5 9/23/2003

 [GD3-16] The name of the Representation Term MUST NOT be
truncated in the tag name.

 [GD3-17] A tag name and all its components MUST be in singular
form unless the concept itself is plural.
Example: <Goods/>

 [GD3-18] Non-letter characters MUST only be used if required by
language rules.

 [GD2-19] Tag names MUST only contain verbs, nouns and
adjectives (no words like “and”, “of”, “the”).

 A-6 9/23/2003

Summary of XML Rules

SECTION 2—SCHEMA DESIGN RULES
Topic Data-centric Document-centric

Simple Datatypes [SD2–1] Data-centric schemas MUST
use simple datatypes to the maximum
extent possible.

[SD2–2] Document-centric schemas
SHOULD use simple datatypes.

Global Complex
Datatypes

[SD2-3] Data-centric schemas that
employ complex datatypes MUST define
the complex datatypes as global.

[SD2-4] Document-centric schemas that
employ complex datatypes SHOULD
define the complex datatypes as global.

Local Complex
Datatypes

[SD2–5] Data-centric schemas SHOULD
NOT use local complex datatypes.

[SD2-6] Document-centric schemas
MAY use local complex datatypes.

Global Elements [SD3-1] Data-centric schemas MUST
use global elements.

[SD3-2] Document-centric schemas
SHOULD use global elements.

Local Elements [SD3-3] Data-centric schemas SHOULD
NOT use local elements.

[SD3-4] Document-centric schemas
MAY use global elements.

Occurrence Indicators [SD3-5] Data-centric schemas SHOULD
use occurrence indicators.
[SD3-6] Data-centric schemas SHOULD
NOT use occurrence indicators when the
required values are the default values.

SD3-7] Document-centric schemas
SHOULD use occurrence indicators.
SD3-8] Document-centric schemas
SHOULD NOT use occurrence
indicators when the required values are
the default values.

Attributes (General) [SD3-9] Data-centric schemas MUST
NOT use attributes in place of data
elements.
[SD3-10] Data-centric schemas MAY
use attributes for metadata.

[SD3-11] Document-centric schemas
MAY use attributes.

Global Attributes [SD3-12] Data-centric schemas MUST
NOT use global attributes in place of
data elements
[SD3-13] Data-centric schemas MAY
use global attributes for metadata.

[SD3-14] Document-centric schemas
MAY use global attributes.

Local Attributes [SD3-15] Data-centric schemas MUST
NOT use local attributes in place of data
elements.
[SD3-16] Data-centric schemas MAY
use local attributes for metadata.

[SD3-17] Document-centric schemas
MAY use local attributes.

“use” Indicator [SD3-18] Data-centric schemas
SHOULD use the “use” indicator.
[SD3-19] Data-centric schemas
SHOULD NOT use the “use” indicator
when the required value is the default
value.

[SD3-20] Document-centric schemas
SHOULD use the “use” indicator.
[SD3-21] Document-centric schemas
SHOULD NOT use the “use” indicator
when the required value is the default
value.

 A-7 9/23/2003

Topic Data-centric Document-centric

“sequence” Compositor [SD3-22] Data-centric schemas
SHOULD use the “sequence”
compositor.

[SD3-23] Document-centric schemas
SHOULD use the “sequence”
compositor.

“choice” Compositor [SD3-24] Data-centric schemas
SHOULD use the “choice” compositor.

[SD3-25] Document-centric schemas
SHOULD use the “choice” compositor.

“all” Compositor [SD3-26] Data-centric schemas MUST
NOT use the “all” compositor.

[SD3-27] Document-centric schemas
SHOULD use the “all” compositor.

Model Groups [SD3-28] Data-centric schemas MAY
use model groups.

[SD3-29] Document-centric schemas
MAY use model groups.

Attribute Groups [SD3-30] Data-centric schemas MUST
NOT use attribute groups in place of
data elements.
[SD3-31] Data-centric schemas MAY
use attribute groups for metadata.

[SD3-32] Document-centric schemas
MAY use attribute groups.

Namespace
Declaration and
Qualification—
Schemas

[SD4-1] Data-centric schemas MUST
use namespaces.
[SD4-2] Data-centric schemas MUST
use namespace qualification for all
schema constructs.

[SD4-3] Document-centric schemas
MUST use namespaces.
[SD4-4] Document-centric schemas
MUST use namespace qualification for
all schema constructs.

W3C Schema
Namespace

[SD4-5] Data-centric schemas MUST
declare the W3C Schema namespace.
[SD4-6] Data-centric schemas MUST
use namespace qualification for all W3C
Schema constructs.
[SD4-7] Data-centric schemas SHOULD
use “xsd” as a namespace prefix for all
W3C Schema constructs.

[SD4-8] Document-centric schemas
MUST declare the W3C Schema
namespace.
[SD4-9] Document-centric schemas
MUST use namespace qualification for
all W3C Schema constructs.
[SD4-10] Document-centric schemas
SHOULD use “xsd” as a namespace
prefix for all W3C Schema constructs.

The W3C Schema
Datatypes Namespace

[SD4-11] Data-centric schemas
SHOULD NOT declare the W3C
Schema Datatypes namespace.

[SD4-12] Document-centric schemas
SHOULD NOT declare the W3C
Schema Datatypes namespace.

Target Namespaces [SD4-13] Data-centric schemas MUST
use target namespaces.

[SD4-14] Document-centric schemas
MUST use target namespaces.

External Schema
References

[SD4-15] Data-centric schemas
SHOULD reference external schemas.
SD4-16] Data-centric schemas MAY use
the include construct.
[SD4-17] Data-centric schemas MAY
use the import construct.

[SD4-18] Document-centric schemas
MAY reference external schemas.
[SD4-19] Document-centric schemas
MAY use the include construct.
[SD4-20] Document-centric schemas
MAY use the import construct.

Single/Multiple
Namespaces

[SD4-21] Data-centric schemas
SHOULD use a multiple-namespace
configuration.

[SD4-22] Document -centric schemas
SHOULD use a multiple-namespace
configuration.

Default Namespaces [SD4-23] Data-centric schemas MUST
NOT use default namespaces.

[SD4-24] Document-centric schemas
MUST NOT use default namespaces.

 A-8 9/23/2003

Summary of XML Rules

Topic Data-centric Document-centric

Namespaces and
Attributes

[SD4-25] Data-centric schemas MUST
use namespace qualification for all
attributes.

[SD4-26] Document-centric schemas
MUST use namespace qualification for
all attributes.

Multiple Namespaces [SD4-27] Exchange Network schemas
MAY use multiple namespaces.
[SD4-28] Exchange Network schemas
MUST use urn:us:net:exchangenetwork
as the target namespace.
[SD4-29] EPA schemas MUST use
urn:us:gov:epa as the target
namespace.
[SD4-30] Each state MAY have one
unique namespace for use in Network
exchanges.

[SD4-31] Exchange Network schemas
MAY use multiple namespaces.
[SD4-32] Exchange Network schemas
MUST use urn:us:net:exchangenetwork
as the target namespace.
[SD4-33] EPA schemas MUST use
urn:us:gov:epa as the target
namespace.
[SD4-34] Each state MAY have one
unique namespace for use in Network
exchanges.

XML Instance
Document Validation

[SD4-35] Data-centric XML instance
documents MUST be validated against a
schema during processing.
[SD4-36] Data-centric XML instance
documents SHOULD list the storage
location of the schema where the XML
instance document validates in the root
element.
[SD4-37] Data-centric XML instance
documents MUST use the
schemaLocation construct when listing
the storage location of the schema to
which the XML instance document
validates.
[SD4-38] Data-centric XML instance
documents MUST NOT use the
noNamespaceSchemaLocation
construct when listing the storage
location of the schema to which the XML
instance document validates.

[SD4-39] Document-centric XML
instance documents SHOULD be
validated against a schema during
processing.
[SD4-40] Document-centric XML
instance documents SHOULD list the
storage location of the schema to which
the XML instance document validates in
the root element.
[SD4-41] Document-centric XML
instance documents MUST use the
schemaLocation construct when listing
the storage location of the schema to
which the XML instance document
validates.
[SD4-42] Document-centric XML
instance documents MUST NOT use the
noNamespaceSchemaLocation
construct when listing the storage
location of the schema to which the XML
instance document validates.

Namespace
Declaration and
Qualification—XML
Instance
Documents

[SD4-43] Data-centric XML instance
documents MUST use namespace
qualification for all elements.

[SD4-44] Document-centric XML
instance documents MUST use
namespace qualification for all elements
and attributes.

The W3C Schema
Instance Namespace

[SD4-45] Data-centric XML instance
documents MUST declare the W3C
Schema Instance namespace when
W3C Schema Instance constructs are
used.
[SD4-46] Data-centric XML instance
documents SHOULD use “xsi” as a
namespace prefix for all W3C Schema
Instance constructs.

[SD4-47] Document-centric XML
instance documents MUST declare the
W3C Schema Instance namespace
when W3C Schema Instance constructs
are used.
[SD4-48] Document-centric XML
instance documents SHOULD use “xsi”
as a namespace prefix for all W3C
Schema Instance constructs.

 A-9 9/23/2003

Topic Data-centric Document-centric

Local Namespace
Declarations

[SD4-49] Data-centric XML instance
documents MUST NOT use local
namespace declarations.

[SD4-50] Document-centric XML
instance documents SHOULD NOT use
local namespace declarations.

Message-level
Schemas

[SD5-1] Message-level Schemas
SHOULD be used.
[SD5-2] Data-centric Message-level
Schemas SHOULD use a target
namespace identifier as identified in the
Exchange Network Namespace
architecture.

[SD5-3] Message-level Schemas MAY
be used.

Shared Exchange
Network Schemas

[SD5–4] Shared Exchange Network
Schemas MUST be used when
available.
[SD5–5] Data-centric Shared Exchange
Network Schemas SHOULD use a target
namespace identifier of
“urn:us:gov:epa”.

[SD5-6] Shared Exchange Network
Schemas MUST be used when available

Functional Area
Schemas

[SD5–7] Functional Area Schemas MAY
be used.
[SD5–8] Data-centric Exchange Network
Schemas SHOULD use a target
namespace identifier as identified in the
Exchange Network Namespace
architecture.

[SD5-9] Functional Area Schemas MAY
be used.

Voluntary Standards
Body Schemas

[SD5-10] Appropriate Voluntary
Standard Body Schemas SHOULD be
adopted, when appropriate.

[SD5-11] Appropriate Voluntary
Standard Body Schemas SHOULD be
adopted, when appropriate.

Federal and State
Government Schemas

[SD5-12] Federal and state government
schemas MAY be used if they are
consistent with the guidelines for
schema development as set forth by the
Federal CIO XML Working Group or
those set forth in this document.

[SD5-13] Federal and state government
schemas MAY be used if they are
consistent with the guidelines for
schema development as set forth by the
Federal CIO XML Working Group or
those set forth in this document.

Nested Includes [SD5–14] Exchange Network Schemas
SHOULD group like constructs into one
schema.
[SD5–15] Message-level schemas
SHOULD maintain a reasonable number
of nested includes.

[SD5–16] Exchange Network Schemas
SHOULD group like constructs into one
schema.
[SD5–17] Message-level schemas
SHOULD maintain a reasonable number
of nested includes.

Code Lists [SD5–18] Exchange Network schemas
SHOULD support code lists through
multiple namespaced types.

[SD5–19] Exchange Network schemas
SHOULD support code lists through
multiple namespaced types.

 A-10 9/23/2003

Summary of XML Rules

Topic Data-centric Document-centric

Built-In Schema
Version Attribute

SD5–20] Data-centric schemas MUST
include a version number using the W3C
Schema version attribute.
[SD5–21] The version number MUST
include both a major version component
and a minor version component.
[SD5–22] Data-centric schemas
SHOULD include a version number in
their filename.

[SD5–23] Document-centric schemas
MUST include a version number using
the W3C Schema version attribute.
[SD5–24] The version number MUST
include both a major version component
and a minor version component.
[SD5–25] Document-centric schemas
SHOULD include a version number in
their filename.

User-Defined Version
Attribute on Instance
Root

[SD5-26] Data-centric schemas MUST
define a schema version attribute for use
on the instance root.

[SD5-27] Document-centric schemas
MUST define a schema version attribute
for use on the instance root.

Schema Construct
Documentation

[SD5-28] Data-centric schemas
SHOULD include schema construct
documentation.
[SD5-29] Data-centric schemas
SHOULD use the documentation
element for schema construct
documentation.
[SD5-30] Data-centric schemas MAY
use DTD-style comments for comments
pertaining to the structure of the
schema.

[SD5-31] Document-centric schemas
SHOULD include schema construct
documentation.
[SD5-32] Document-centric schemas
SHOULD use the documentation
element for schema construct
documentation.
[SD5-33] Document-centric schemas
MAY use DTD-style comments for
comments pertaining to the structure of
the schema.

Schema Header
Documentation

[SD5-34] Data-centric schemas MUST
include schema header documentation.

[SD5-35] Document-centric schemas
SHOULD include schema header
documentation.
[SD5-36] Document-centric schemas
SHOULD use the documentation
element for schema construct
documentation.

ID/IDREF Technique [SD6-1] Data-centric schemas MUST
NOT use the ID/IDREF technique for
information association.

[SD6-2] Document-centric schemas
MUST NOT use the ID/IDREF technique
for information association.

KEY/KEYREF
Technique

[SD6-3] Data-centric schemas SHOULD
use the KEY/KEYREF technique for
information association.
[SD6-4] Extreme caution SHOULD be
applied when writing an XPath
expression in a selector element to
ensure it specifies the intended range.
[SD6-5] Special attention SHOULD be
paid to the restrictions on KEY and
KEYREF declaration names given
above.

[SD6-6] Document-centric schemas
SHOULD use the KEY/KEYREF
technique for information association.
[SD6-7] Extreme caution SHOULD be
applied when writing an XPath
expression in a selector element to
ensure it specifies the intended range.
[SD6-8] Special attention SHOULD be
paid to the restrictions on KEY and
KEYREF declaration names given
above.

 A-11 9/23/2003

Topic Data-centric Document-centric

Key Technique [SD6-9] Data-centric schemas SHOULD
use the KEY technique to enforce
uniqueness of values in an XML
instance document when their
constructs are required to appear within
the specified range.
[SD6-10] Extreme caution SHOULD be
applied when writing an XPath
expression in a selector element to
ensure it specifies the intended range.
[SD6-11] Special attention SHOULD be
paid to the restrictions on KEY
declaration names given above.

[SD6-12] Document-centric schemas
SHOULD use the KEY technique to
enforce uniqueness of values in an XML
instance document when their constructs
are required to appear within the
specified range.
[SD6-13] Extreme caution SHOULD be
applied when writing an XPath
expression in a selector element to
ensure it specifies the intended range.
[SD6-14] Special attention SHOULD be
paid to the restrictions on KEY
declaration names given above.

XLink/XPointer
Technique

[SD6-15] Data-centric schemas MUST
NOT use the XLink/XPointer technique
for information association.

[SD6-16] Document-centric schemas
MUST NOT use the XLink/XPointer
technique for information association.

UNIQUE Technique [SD6-17] Data-centric schemas
SHOULD use the UNIQUE technique to
enforce uniqueness of values in an XML
instance document when their
constructs are not required to appear
within the specified range.
[SD6-18] Extreme caution SHOULD be
applied when writing an XPath
expression in a selector element to
ensure it specifies the intended range.
[SD6-19] Special attention SHOULD be
paid to the restrictions on UNIQUE
declaration names given above.

[SD6-20] Document-centric schemas
SHOULD use the UNIQUE technique to
enforce uniqueness of values in an XML
instance document when their constructs
are not required to appear within the
specified range.
[SD6-21] Extreme caution SHOULD be
applied when writing an XPath
expression in a selector element to
ensure it specifies the intended range.
[SD6-22] Special attention SHOULD be
paid to the restrictions on UNIQUE
declaration names given above.

Simple Datatype
Restriction

[SD7-1] Data-centric schemas SHOULD
NOT use simple datatype restriction
when a data standard or an approved
schema exists.
[SD7-2] Data-centric schemas MUST
use global simple datatypes.
[SD7-3] Data-centric schemas MUST
NOT use local simple datatypes.

[SD7-4] Document-centric schemas
MAY use simple datatype restriction.
[SD7-5] Document-centric schemas
MAY use global simple datatypes.
[SD7-6] Document-centric schemas
MUST NOT use local simple datatypes.

List Technique [SD7-7] Data-centric schemas MAY use
the list technique.
[SD7-8] Data-centric schemas MUST
NOT use the list technique if the values
within the list may contain spaces
themselves (e.g., a person’s first and
last name).

[SD7-9] Document-centric schemas
MAY use the list technique.
[SD7-10] Document-centric schemas
MUST NOT use the list technique if the
values within the list may contain spaces
themselves (e.g., a person’s first and
last name).

Union Technique [SD7-11] Data-centric schemas MAY
use the union technique.

[SD7-12] Document-centric schemas
MAY use the union technique.

Complex Datatype
Restriction

[SD7-13] Data-centric schemas MAY
use complex datatype restriction.

[SD7-14] Document-centric schemas
MAY use complex datatype restriction.

 A-12 9/23/2003

Summary of XML Rules

Topic Data-centric Document-centric

Complex Datatype
Extension

[SD7-15] Data-centric schemas MAY
use complex datatype extension.

[SD7-16] Document-centric schemas
MAY use complex datatype extension.

Prohibiting Complex
Datatype Derivation

[SD7-17] Data-centric schemas MAY
use the final attribute derivation.

[SD7-18] Document-centric schemas
MAY prohibit complex datatype
derivation.

Prohibiting Use of
Derived Complex
Datatypes

[SD7-19] Data-centric schemas MAY
use the block attribute.

[SD7-20] Document-centric schemas
SHOULD NOT prohibit use of derived
complex datatypes.

Abstract Datatypes [SD7-21] Data-centric schemas MUST
NOT use abstract datatypes.

[SD7-22] Document-centric schemas
MUST NOT use abstract datatypes.

Wildcards [SD7-23] Data-centric schemas MUST
NOT use wildcards.

[SD7-24] Document-centric schemas
MUST NOT use wildcards.

Default Element Values [SD7-25] Data-centric schemas
SHOULD NOT use default element
values.

[SD7-26] Document-centric schemas
MAY use default element values.

Fixed Element Values [SD7-27] Data-centric schemas
SHOULD NOT use fixed element values.

[SD7-28] Document-centric schemas
MAY use fixed element values.

Default Attribute
Values

[SD7-29] Data-centric schemas
SHOULD NOT use default attribute
values.

[SD7-30] Document-centric schemas
MAY use default attribute values.

Fixed Attribute Values [SD7-31] Data-centric schemas
SHOULD NOT use fixed attribute
values.

[SD7-32] Document-centric schemas
MAY use fixed attribute values.

Substitution Groups [SD7-33] Data-centric schemas MUST
NOT use substitution groups.

[SD7–34] Document-centric schemas
SHOULD NOT use substitution groups.
[SD7–35] Document-centric schemas
MAY “block” use of substitution groups.

W3C Schema appinfo
Element

[SD7-38] Data-centric schemas MUST
NOT use the appinfo element.

[SD7-39] Document-centric schemas
MUST NOT use the appinfo element.

Notations [SD7-40] Data-centric schemas MUST
NOT use notations.

[SD7-41] Document-centric schemas
MUST NOT use notations.

 A-13 9/23/2003

 A-14 9/23/2003 9/23/2003

 A-14

Appendix B
Glossary

abstract datatype A W3C Schema complex datatype that acts as a
“template” that cannot be directly used in an XML
instance document

Accredited National
Standards Institute
X12

 A committee that links the standards for multiple
industries and sets the norm for a more effective
exchange of information

API application program interface

ASC Accredited Standards Committee

attribute A W3C Schema construct that is associated with an
element and represents a property or characteristic of
that element

attribute group A W3C Schema construct that contains two or more
attributes

attributeFormDefault A W3C Schema construct that controls the
namespace qualification of attributes in an XML
instance document

base datatype A datatype used as the basis for a derived datatype in
a schema

block attribute A W3C Schema construct that prohibits the
appearance in an XML instance document of any
datatype derived from a given complex datatype

built-in datatype A datatype, such as string, that is predefined in the
W3C Schema standard

cardinality A W3C Schema property referring to the number of
times an element can appear in a given content model
in an XML instance document

child element An element that appears beneath another element in a
schema (also known as a subelement)

CIO chief information officer

complex datatype A user-defined datatype that contains child elements
or attributes

 B-1 9/23/2003

complex datatype
extension

 A W3C Schema technique in which the definition of
a complex datatype is used as the basis of a new
complex datatype and further expanded through the
addition of constructs

compositor A W3C Schema construct that groups element
declarations

content model A term used to describe two or more XML constructs
grouped together in an XML instance document (in
schemas, complex datatypes define content models)

Data Exchange
Template

DET A template for data presentation and exchange that
defines the types of information that are required for
a particular document as established in predefined
standards or agreements (from the State and EPA
Information Management Workgroup’s Blueprint for
a National Environmental Information Exchange
Network)

datatype derivation A W3C Schema technique in which new datatypes
from existing datatypes in a schema

default attribute
value

 A value specified for an attribute in a schema that
becomes the actual value of the attribute in an XML
instance document if the attribute does not appear in
the XML instance document

default element value A value specified for an element in a schema that
becomes the actual value of the element in an XML
instance document if the element appears as an empty
element in the XML instance document

default namespace A namespace to which all constructs in a schema that
are not namespace qualified belong

derived datatype A datatype that is defined in terms of an existing
datatype (the existing datatype is known as a base
datatype)

DET Data Exchange Template

document type
definition

DTD A document that defines the required structure of an
XML document and the constraints on its content

DOM document object model

DTD document type definition

ECOS Environmental Council of States

EDR Environment Data Registry

EIEIT Enterprise Interoperability and Emerging Information
Technology

9/23/2003 B-2

Glossary

element A W3C construct that is represented within an XML
instance document by a pair of tags that enclose data

elementFormDefault A W3C Schema construct that controls the
namespace qualification of elements in an XML
instance document

empty element An element that contains no data

enumeration facet A W3C Schema construct that specifies a set of
allowed values for a datatype

Environmental Data
Registry

EDR EPA’s comprehensive authoritative source of
reference about environmental data

EPA U.S. Environmental Protection Agency

extensibility A term referring to the level of expandability of
something; used in information technology to
describe a program, programming language, or
protocol that is designed so that users or designers
can later extend its capabilities

Extensible Markup
Language

XML A markup language for documents that contain
structured information; XML is a project of the W3C

Extensible Stylesheet
Language

XSL A W3C standard used to transform, query, and format
XML instance documents

Extensible Stylesheet
Language
Transformations

XSLT A W3C standard used to transform and query XML
instance documents; originated from the original XSL
specification, XSLT is designed to be used as part of,
or independently of, XSL

external schema A schema that is included in another schema, thereby
allowing the constructs from the external schema to
be referenced in that schema

facet A W3C Schema construct that specifies various
properties of datatypes

Federal CIO XML
Working Group

 A working group established by the EIEIT
Committee, whose purpose is to accelerate, facilitate,
and catalyze the effective and appropriate
implementation of XML technology in the
information systems and planning of the federal
government

final attribute A W3C Schema construct that prohibits the use of a
given complex datatype as a base datatype for
datatype derivation

 B-3 9/23/2003

fixed attribute value An attribute value specified in a schema that is
considered by an XML processor to be the actual
value of the attribute in an XML document if the
attribute does not appear in the XML document

fixed element value An element value specified in a schema that is
considered by an XML processor to be the actual
value of the element in an XML document if the
element appears in the XML document as an empty
element

Geography Markup
Language

GML A markup vocabulary for the transport and storage of
geographic information

global complex
datatype

 A datatype that is a direct descendant of the root
element of a schema (also known as a named
complex datatype)

global element An element that is a direct descendant of the root
element of a schema

GML Geography Markup Language

harmonization The process of ensuring that redundant declarations
of registered data elements do not appear within an
organization

Hypertext Markup
Language

HTML A W3C standard that defines a set of markup symbols
inserted into a file intended for display in a World
Wide Web browser; HTML originated from Standard
Generalized Markup Language

ID datatype A W3C Schema built-in datatype used along with the
IDREF datatype to associate information in an XML
document

IDREF datatype A W3C Schema built-in datatype used along with the
ID datatype to associate information in an XML
document

IDREFS datatype A W3C Schema built-in datatype used along with the
ID datatype to associate information in an XML
document; the IDREFS datatype is similar to the
IDREF datatype, but contains a whitespace-delimited
list of ID values for representing one-to-many
associations

IETF Internet Engineering Task Force

IM information management

IRM information resource management

9/23/2003 B-4

Glossary

lexical format The format used to define a W3C Schema built-in
datatype; for example, the lexical format for the
“date” datatype is YYYY-MM-DD

list technique A W3C Schema technique in which a whitespace–
separated list of values is created from a base
datatype

local complex
datatype

 A datatype that is associated with a single element in
a schema (also known as an anonymous complex
datatype)

local element An element that is not a direct descendant of the root
element of a schema, but is instead nested inside the
schema structure

Lower Camel Case LCC A naming convention that capitalizes the first
character of each word except the first
word(Example: <UpperCamelCaseElement
lowerCamelCaseAttribute=“Whatever”/>)

mixed content A free-form combination of character data and child
elements within a content model

model group A W3C Schema construct containing one or more
elements

name collision A condition that occurs when two constructs of the
same name but different datatypes are included in the
same schema; name collisions are avoided through
the use of namespaces

namespace A W3C Schema mechanism used to associate schema
constructs with a conceptual space that defines that
defines a markup vocabulary

namespace coercion A condition in which constructs in an included
schema are “coerced” to become part of the including
schema’s target namespace

namespace prefix An identifier in a schema that associates constructs
with the namespace to which they belong; such
constructs are said to be “namespace qualified”

NEI National Emissions Inventory

NMTOKEN datatype A W3C Schema built-in datatype that is a legal XML
name string without any constraints placed upon its
initial character

NMTOKENS
datatype

 A W3C Schema built-in datatype that is a
whitespace-delimited list of NMTOKEN values

 B-5 9/23/2003

nondeterministic A term referring to the availability of more than one
choice of a next move at some step in a
computational process; when used regarding W3C
Schema, it refers to content models in a schema that
require an XML processor to look ahead in order to
be able to associate the content model with a
declaration

OASIS Organization for the Advancement of Structured
Information Standards

occurrence indicator A W3C construct that indicates the cardinality of an
element or model group

OEI Office of Environmental Information

Office of
Environmental
Compliance and
Assurance

OECA An EPA office whose primary mission is to ensure
compliance with the nation’s environmental laws,
thereby reducing threats to public health and the
environment.

OIC Office of Information Collection

OIT Office of Information Technology

OMB Circular A-119 A document that directs agencies to use voluntary
consensus standards in lieu of government-unique
standards except where using the consensus standards
would be inconsistent with law or impractical

Organization for the
Advancement of
Structured
Information
Standards

OASIS A nonprofit international consortium that creates
interoperable industry specifications based on public
standards, such as XML and Standard Generalized
Markup Language (SGML)

Petroleum Industry
Data Exchange

PIDX The American Petroleum Industry’s EDI and XML
action group

PIDX Petroleum Industry Data Exchange
processContents
attribute

 An attribute used with the W3C Schema wildcard
feature that specifies how an XML processor should
validate constructs used in place of a wildcard
declaration

RCRA Resource Conservation and Recovery Act

RFC Request for Comments

root element The top-level element of a schema or XML instance
document

SAX Simple API for XML

9/23/2003 B-6

Glossary

schema See XML Schema

SGML Standard Generalized Markup Language

simple datatype A datatype defined by the W3C Schema team and
included in the W3C Schema standard (also known as
a “built-in” datatype)

simple datatype
restriction

 A W3C Schema technique in which the properties of
a simple datatype are used for the basis of a new
simple datatype and further restricted

Simple Object
Access Protocol

SOAP An XML-based protocol that allows software running
on disparate operating systems and in different
environments to communicate over the Internet;
originally a W3C Note, continuing development of
SOAP taking place as the XML Protocol W3C
Standard.

subelement An element that appears beneath another element in a
schema (also known as a child element)

substitution group A W3C Schema feature that allows an element to
replace another element in an XML instance
document without requiring schema updates

target namespace A namespace associated with a single schema that
indicates that the schema is acting as a “collector” of
constructs declared within it

trading partner
agreement

TPA A document that defines the conditions under which
two partners will transact business together

TRG Technical Resource Group

UBL Universal Business Language

UCS Universal Character Set

Uniform Resource
Identifier

URI An identifier for a resource on the World Wide Web

Uniform Resource
Locator

URL A type of URI that indicates the address of a resource
on the Internet

Uniform Resource
Name

URN A type of URI that is more closely tied to the actual
location and meaning of the resource it represents
than is a URL

union technique A W3C Schema technique in which a range of
possible values for a simple datatype is restricted
through the union of two or more simple datatypes

 B-7 9/23/2003

Universal Business
Language

UBL An OASIS technical committee whose purpose is to
develop a freely available standard library of XML
business documents that can be used in international
electronic commerce

Universal Character
Set

UCS

Upper Camel Case UCC A naming convention that capitalizes the first
character of each word and compounds the name
(Example: <UpperCamelCaseElement/>)

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

use indicator A W3C Schema construct that specifies optionality
for an attribute

UTF UCS transformation format

VADEQ Virginia Department of Environmental Quality

Variable Content
Model

 A W3C Schema feature that allows the structure of
information within an XML instance document to
vary greatly without requiring schema updates

W3C World Wide Web Consortium

well-formed XML A term referring to XML that conforms to the syntax
requirements of the W3C XML standard

wildcard A W3C Schema feature used to create a
“placeholder” at which any well-formed XML can
appear in an XML instance document

World Wide Web
Consortium

W3C A group that develops specifications to lead the
World Wide Web to its full potential as a forum for
information, commerce, communication, and
collective understanding; XML is a project of the
W3C

W3C XML Schema An XML-based constraint language that defines the
required structure of an XML document and
constrains its content

XML Extensible Markup Language

XML instance
document

 A set of data that conforms to XML standards

9/23/2003 B-8

Glossary

XML Linking
Language

XLink A W3C standard used to describe links between
constructs both within and across XML instance
documents

XML Pointer
Language

XPointer A W3C standard used to reference locations in XML
instance documents both from within and outside
those documents

XML processor A general term for a software product that validates a
schema or XML instance document, and that may
also validate an XML instance document against its
associated schema (also known as an XML parser)

XML tag A sequence of one or more characters surrounded by
<> symbols that is used to mark up data in an XML
document

XML-RPC An XML-based protocol that allows software running
on disparate operating systems and in different
environments to communicate over the Internet;
similar in concept to SOAP

XPointer Bare
Names Notation

 An XPointer technique that uses a shorthand notation
to reference elements that contain an attribute of
datatype ID

XSD Schema Definition Language

xsi:type construct A W3C instance construct used in datatype derivation
scenarios that indicates to an XML processor exactly
which datatype (base or derived) applies

XSL Extensible Stylesheet Language

XSL stylesheet An XML document conforming to the Extensible
Stylesheet Language W3C standard, the purpose of
which is to transform, query, or format an XML
instance document

XSLT Extensible Stylesheet Language Transformations

 B-9 9/23/2003

9/23/2003 B-10

9/23/2003 B-10

	Schema Introduction
	DTD Migration to W3C Schema
	Data-Centric and Document-Centric XML
	Data-Centric XML
	Document-Centric XML

	Frequently Used Terms
	Schema Construct
	Construct Visibility

	EP307S1_02Chap_Datatypes.pdf
	Datatypes
	Simple Datatypes
	Built-In Datatypes
	User-Defined Datatypes

	Complex Datatypes
	Global Complex Datatypes
	Local Complex Datatypes

	EP307S1_03Chap_Ele_Attrib.pdf
	Elements and Attributes
	Elements
	Global Elements
	Local Elements
	Cardinality of Elements

	Attributes
	Global Attributes
	Local Attributes
	Cardinality of Attributes

	Element and Attribute Grouping
	Compositors
	“Sequence” Compositor
	“Choice” Compositor
	“All” Compositor

	Model Groups
	Attribute Groups

	EP307S1_04Chap_Namespaces.pdf
	Namespaces
	Namespaces and Schemas
	Namespace Declaration and Qualification
	The W3C Schema Namespaces
	W3C Schema Namespace
	W3C Schema Datatypes Namespace

	Target Namespaces
	External Schema References
	Single or Multiple Namespaces
	Default Namespaces
	Namespaces and Attributes

	Exchange Network Namespace Configuration
	Namespaces and XML Instance Documents
	XML Instance Document Validation
	Namespace Declaration and Qualification
	The W3C Schema Instance Namespace
	Namespace Scope

	EP307S1_05Chap_SchemaConfig.pdf
	Schema Configuration and Documentation
	Exchange Network Schema Configuration Architecture
	Message-Level Schemas
	Shared Exchange Network Schemas
	Voluntary Standards Body Schemas
	Functional Area Schemas
	EPA Schemas
	State and Other Federal Agency Schemas

	Nested Includes
	Nested and Single Includes
	Number of Nested Includes

	Code Lists
	Exchange Network Schema Versioning
	Built-In Schema Version Attribute
	User-Defined Version Attribute on Instance Root

	Exchange Network Schema Documentation
	Schema Construct Documentation
	Schema Header Documentation

	EP307S1_06Chap_InfoAssoc_Uniqueness.pdf
	Information Association and Uniqueness
	Information Association
	ID/IDREF Technique
	KEY/KEYREF Technique
	KEY Technique
	XLink/XPointer Technique
	Simple Links
	Extended Links

	Uniqueness

	EP307S1_07Chap_AdvancedConcepts.pdf
	Advanced W3C Schema Concepts
	Datatype Derivation
	Simple Datatype Derivation
	Simple Datatype Restriction
	List Technique
	Union Technique

	Complex Datatype Derivation
	Complex Datatype Restriction
	Complex Datatype Extension
	Prohibiting Complex Datatype Derivation
	Prohibiting Use of Derived Complex Datatypes

	Variable Content Models
	Abstract Datatypes
	Wildcards

	Default and Fixed Element and Attribute Values
	Default Element Values
	Fixed Element Values
	Default Attribute Values
	Fixed Attribute Values

	Substitution Groups
	Supplemental Instructions
	W3C Schema appinfo Element
	Notations

	EP307S1_A Append_RuleSummary_V1.pdf
	Summary of XML Rules
	Section 1—General Design Rules
	File Naming Convention—Schema
	General XML Design
	TAG Structure
	Tag Name Content

	Section 2—Schema Design Rules

	EP307S1_B Append_Glossary.pdf
	Glossary

