HYBRID-ELECTRIC VEHICLES

It's no accident the most fuel-efficient vehicles in some classes for the 2005 model year are hybrid-electric vehicles (HEVs). Hybrids can be configured in many different ways to achieve a variety of different objectives. They combine the best features of the internal combustion engine with an electric motor and can significantly improve fuel economy without sacrificing performance or driving range. HEVs may also be configured to provide electrical power to auxiliary loads such as power tools.

HEVs are primarily propelled by an internal combustion engine, just like conventional vehicles. However, they also convert energy normally wasted during coasting and braking into electricity, which is stored in a battery until needed by the electric motor. The electric motor is used to assist the engine when accelerating or hill climbing and in low-speed driving conditions where

internal combustion engines are least efficient. Unlike allelectric vehicles, HEVs now being offered do not need to be plugged into an external source of electricity to be recharged; conventional gasoline and regenerative braking provide all the energy the vehicle needs.

Potential buyers should also be aware that the federal government is currently offering tax incentives for HEVs and other alternative fuel vehicles. Some states also offer incentives.

Additional information on HEVs, including tax incentives, can be found at www.fueleconomy.gov/feg/hybrid_sbs.shtml. Annual fuel cost is estimated assuming 15,000 miles of travel each year (55% city and 45% highway) and a gasoline fuel cost of $\$ 1.80$ per gallon (regular unleaded).

FORD

Escape HEV 4WD AV 2.3/4 33/29 \$872 ... 330 V , Ni-MH

ABBREVIATIONS:	Conv Convertible	M Manual Transmission
A Automatic Transmission	E85 85\% Ethanol/15\% Gasoline	NA Not Available at Press Time
A-S Automatic Transmission-Select Shift	Eng Size .. Engine Volume in Liters	Ni-MH Nickel-metal hydride
AV Continuously Variable Transmission	FFV Flexible Fuel Vehicle	T........... Turbocharger
City MPG on City Test Procedure	Hwy MPG on Highway Test Procedure	Trans Transmission
CNG Compressed Natural Gas	LB Lean Burn Fuel System	V Volts

ETHANOL FLEXIBLE-FUEL VEHICLES

This section contains the driving range and fuel economy values for ethanol flexible-fuel passenger cars and light trucks. Ethanol flexible-fuel vehicles are designed to operate on gasoline, E85 (a mixture of 85% ethanol and 15% gasoline), or any mixture of the two fuels. Annual fuel cost is estimated assuming 15,000 miles of travel each year (55% city and 45% highway) and an average fuel cost of $\$ 1.65$ per gallon of E85, $\$ 1.80$ per gallon of regular unleaded gasoline, and $\$ 1.95$ per gallon of premium unleaded gasoline.

The driving range and fuel economy values are shown for both gasoline and E85. When operating your FFV on mixtures of gasoline and E85, such as when alternating between using these fuels, your driving range and fuel economy values will be somewhere between those listed for the two fuels, depending on the actual percentage of gasoline and E85 in the tank.

					$\stackrel{\bar{\sim}}{\sim}$	¢ ¢ ¢ ¢
COMPACT CARS						
CHRYSLER						
Sebring Conv	A-4 2.7/6 .		15/20 \$1,455 ... E85			
			21/28 ...	\$1,174 ..		
Sebring Conv (2-Mode)	A-4 2.7/6 .		15/20 ...	\$1,455 ..	E85	
			21/28 ...	\$1,174 ...	Gas	
MERCEDES-BENZ						
C240 FFV	A-5 2.6/6		14/19 ...	\$1,547 ..	E85	
			20/25 ...	\$1,331 ..	P	
C320 FFV	A-5 3.2/6 .		14/19 ...	\$1,547 ..	E85	
			20/26 ...	\$1,331 ..		
C320 Sports Coupe FFV	A-5 3.2/6 .		14/18 ...	\$1,651 ..		
			19/24 ...	\$1,392 ..	P ...	400

			¢	
FORD				
Explorer 2WD FFV.	A-5 4.0/6	. 11/15 \$1,903	E85	
		16/21 \$1,588 ... Gas 380		
GMC				
C1500 Yukon 2WD A-4 5.3/8 .		. 11/15 \$1,903 ... E85 310/540*		
		15/19 ... \$1,588	Gas	410/690*
C1500 Yukon XL 2WD .	A-4 5.3/8 .	. 11/14 \$2,062 ... E85 310/540*		
		14/19 \$1,688	Gas	410/690*
MERCURY				
Mountaineer 2WD FFV	A-5 4.0/6	. 11/15 \$1,903 ... E85 290		
		16/21 \$1,588 .	Gas	

SPORTUTILITY VEHICLES 4WD	
CHEVROLET	
K1500 Avalanche 4WD A-4 5.3/8 .	. 11/14 \$2,062 ... E85 310/460*
	14/18 \$1,688 ... Gas 410/620*
K1500 Suburban 4WD A-4 5.3/8 .	. 11/14 \$2,062 ... E85 310/460*
	14/18 \$1,688 ... Gas 410/620*
K1500 Suburban AWD A-4 5.3/8 .	. 11/14 \$2,062 ...E85 310/460*
	14/18 \$1,688 ... Gas 410/620*
K1500 Tahoe 4WD A-4 5.3/8 .	. 11/14 \$2,062 ...E85 310/460*
	14/18 \$1,688 ... Gas 410/620*
K1500 Tahoe AWD A-4 5.3/8 .	. 11/14 \$2,062 ... E85 310/460*
	14/18 \$1,688 ... Gas 410/620*
FORD	
Explorer 4WD FFV A-5 4.0/6 .	. 11/15 \$1,903 ... E85 290
	15/20 \$1,588 ... Gas 380
GMC	
K1500 Yukon 4WD	. 11/14 \$2,062 ... E85 310/460*
	14/18 \$1,688 ... Gas 410/620*
K1500 Yukon AWD	. 11/14 \$2,062 ... E85 310/460*
	14/18 \$1,688 ... Gas 410/620*
K1500 Yukon XL 4WD	. 11/14 \$2,062 ... E85 310/460*
	14/18 \$1,688 ... Gas 410/620*
K1500 Yukon XL AWD A-4 5.3/8 .	. 11/14 \$2,062 ... E85 310/460*
	14/18 \$1,688 ... Gas 410/620*
MERCURY	
Mountaineer 4WD FFV A-5 4.0/6	. 11/14 \$2,062 ... E85 270
	15/19 \$1,688 ... Gas 360

STANDARD PICKUP TRUCKS 2WD

CHEVROLET

C1500 Silverado 2WD A-4 5.3/8 .. 12/16 \$1,767 ... E85 310/540* 16/20 \$1,501 ... Gas 410/690*
SMALL STATION WAGONS
MERCEDES-BENZ
C240 Wagon FFV A-5 2.6/6 .. 14/19 \$1,547 ... E85 310
20/25 \$1,331 ... P 420

SPORT UTILITY VEHICLES 2WD

CHEVROLET

SPORTUTILITY VEHICLES 2WD		
CHEVROLET		
C1500 Avalanche 2WD	A-4 5.3/8	.. 11/14 \$2,062 ... E85 310/540*
		14/19 \$1,688 ... Gas 410/690*
C1500 Suburban 2WD .	A-4 5.3/8 .	.. 11/15 \$1,903 ... E85 310/540*
		15/19 \$1,588 ... Gas 410/690*
C1500 Tahoe 2WD	A-4 5.3/8 .	.. 11/15 \$1,903 ... E85 310/540*
		15/19 \$1,588 ... Gas 410/690*

MIDSIZE STATION WAGONS

FORD
Taurus Wagon A-4 3.0/6 .. 14/19 \$1,547 ... E85 290

MERCURY
Sable Wagon A-4 3.0/6 .. 14/19 \$1,547 ... E85 290
SMALLSTATION WAGONS
MERCEDES-BENZ

C240 Wagon FFV A-5 2.6/6 .. $14 / 19 \ldots . .$| $\$ 1,547$ |
| :--- |
| $20 / 25 \ldots .$. E85 310 |
| $\$ 1,331$ |\ldots........... 420

FORD

STANDARD PICKUP TRUCKS 4WD

CHEVROLET
K1500 Silverado 4WD A-4 5.3/8 .. 11/14 \$2,062 ... E85 310/460* 15/18 \$1,688 ... Gas 410/620*

FORD
Explorer Sport Trac 4WD FFV A-5 4.0/6 .. 11/15 \$1,903 ... E85 290

[^0] smallest and largest available fuel tanks.

DIESEL VEHICLES

This section contains fuel economy values for diesel-fueled vehicles. Diesel fuel contains approximately 10% more energy per gallon than gasoline. In addition, diesel engines have higher compression ratios, run "lean," and are unthrottled, giving them a substantial fuel economy advantage over gasoline engines. Annual fuel cost is estimated assuming 15,000 miles of travel each year (55\% city and 45% highway) and a diesel fuel cost of $\$ 1.55$ per gallon.

COMPRESSED NATURAL GAS VEHICLES

This section supplies the driving range and fuel economy values for vehicles that operate on compressed natural gas (CNG). CNG fuel is normally dispensed in "equivalent gallons," where one equivalent gallon is equal to 121.5 cubic feet of CNG. Therefore, the fuel economy values are shown in miles per gallon-equivalent. Annual fuel cost estimates are based on an average fuel price of $\$ 1.05$ per gasoline equivalent gallon of CNG.

The driving range is shown in miles and represents the distance the vehicle can travel on a full tank (or tanks) of fuel during combined city and highway driving (55\% city and 45\% highway).

ABBREVIATIONS:	Conv Convertible	M Manual Transmission
A Automatic Transmission	E85 85\% Ethanol/15\% Gasoline	NA Not Available at Press Time
A-S Automatic Transmission-Select Shift	Eng Size .. Engine Volume in Liters	Ni-MH Nickel-metal hydride
AV Continuously Variable Transmission	FFV Flexible Fuel Vehicle	T........... Turbocharger
City MPG on City Test Procedure	Hwy MPG on Highway Test Procedure	Trans Transmission
CNG Compressed Natural Gas	LB Lean Burn Fuel System	V Volts

FUEL CELL VEHICLES

Advanced Transportation Technology

Although fuel cell vehicles (FCVs) are not expected to reach the mass market for at least a decade, a limited number will be available for sale or lease in 2004-2005 to demonstration fleets in parts of the country with a readily accessible hydrogen supply.

FCVs represent a radical departure from conventional vehicles with internal combustion engines. They use emerging technology with the potential to reduce harmful emissions substantially, as well as energy use and our dependence on foreign oil.

FCVs are propelled by electric motors powered by fuel cells, which produce electricity from the chemical energy of hydrogen. They are more efficient than conventional vehicles, and the only by-product of a hydrogen fuel cell is water. FCVs may also incorporate other advanced automotive technologies to increase efficiency.

The Challenges Ahead

Much work remains before FCVs can be mass-marketed and sold at local dealerships. Significant research and development is required to reduce costs and improve performance in areas such as driving range, cold-weather operation, and durability. A new refueling infrastructure may also be required to make hydrogen fuel widely available to consumers.

Automakers, fuel cell and component developers, government agencies, and others are working hard to accelerate the introduction of FCVs. In fact, partnerships such as the DOE-led FreedomCAR Initiative and the California Fuel Cell Partnership have been formed to encourage private companies and government agencies to work together to prove this technology's viability and move FCVs toward widespread commercialization. For more information about FCVs and links to fuel cell websites, please visit www.fueleconomy.gov/feg/ fuelcell.shtml.

	Motor	Energy Storage Device	Fuel	Miles per kilogram (City/Hwy)	Range (mi)
SUBCOMPACT					
HONDA					
FCX	80 kW DC* Brushless	9.2 Farad Ultra Capacitor	Hydrogen	62/51	190
COMPACT					
FORD					
Focus, 2WD	65 kW AC*	Ni-MH Battery*	Hydrogen	NA**	NA**

* kw = kilowatts; $\mathrm{DC}=$ direct current; $\mathrm{AC}=$ alternating current; $\mathrm{Ni}-\mathrm{MH}=$ nickel metal hydride
** The fuel economy values and driving range were not available at press time. See www.fueleconomy.gov for updated information.

SAMPLE FUEL ECONOMY LABEL

(Attached to New Vehicle Window)

This is the average estimate for

This is the average estimate for city driving.

These numbers represent a range of fuel economy that most drivers achieve with this particular model.
Use these two estimates to compare to other models.
\qquad \longrightarrow MY GUIDE available in the dealer showroon

See www.fueleconomy.gov Check the fuel economy label on the vehicle at the dealer showroom for its specific fuel economy (mpg) ratings. The ratings may vary slightly from the values in this guide because of engine and fuel system differences not listed here.

[^0]: Vehicle is available with various tank sizes. Driving ranges are shown for the

