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INTRODUCTION

The Shell Lydonia Canyon (LC) Block
357 No. 1 well was the sixth to be
spudded and last to be completed of the
eight industry wildcat wells drilled on
Georges Bank.  Spudded on April 14,
1982, this well is the southwesternmost
of the group of wells drilled on Georges
Bank.  It is about 20 miles southwest of
the Continental Offshore Stratigraphic
Test (COST) G-2 well.  The Shell LC
Block 357 No. 1 well was drilled by a
semi-submersible rig in 265 feet of water
on the continental shelf about 124 miles
east-southeast of Nantucket Island and
18 miles from the shelf edge.

Shell Offshore Inc. (Shell) was the
designated operator for the well, and the
company’s primary drilling target was a
simple structural closure on Jurassic
horizons in the northwest part of the
block.  In the Exploration Plan, Shell
identified three horizons on seismic data,
JII, JIII, and JIV, between 1.8 and 3.6
seconds, two-way travel time.  Inferred
depths range from 16,000 to 22,000 feet
in limestone, dolomite, and anhydrite. 
Shell said that the anticlinal closure at
and below 2.8 seconds might be an
expression of a deeper geologic
structure, such as a salt swell.  Although
the well was permitted to 22,000 feet,
total depth reached was 19,427 feet. 
Within the target zone, Shell
encountered tight micritic limestones
with oolites, pellets, and fossil
fragments, as well as minor anhydrite
and dolomite.  There was a significant
gas show of about 1,300 units at 18,760

feet in limestone.  Petrophysical tests done
on two conventional cores, between 18,800
feet and total depth, yielded porosities of up
to 3.1 percent and permeabilities mostly
below one millidarcy.   No well tests were
attempted.  The Shell 357 No. 1 well was
plugged and abandoned as a dry hole on
September 27, 1982.

This report relies on geologic and
geophysical data provided to the Minerals
Management Service (MMS) by Shell,
according to Outer Continental Shelf (OCS)
regulations and lease stipulations.  The data
were released to the public after the LC
Block 357 lease No. OCS-A-0210 expired
on January 31, 1985.  Interpretations of the
data contained in this report are those of
MMS and may differ from those of Shell.
Well depths are measured from kelly
bushing (measured depths) unless otherwise
stated.

The material contained in this report is from
unpublished, undated MMS, internal
interpretations.   No petroleum geochemical
or kerogen analysis was done for this well
by MMS.  No attempt has been made to
provide more recent geologic, geochemical,
or geophysical interpretations or data,
published or unpublished.

This report is initially released on the
Minerals Management Service Internet site
http://www.gomr.mms.gov, and, together
with the other Georges Bank well reports, on
a single compact disk (CD).  At a later date,
additional technical data, including well
“electric” logs will be added to the CD.
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OPERATIONAL SUMMARY

The Shell Lydonia Canyon (LC) Block
357 No. 1 well (figures 1 and 2) was
drilled by the Zapata Offshore
Company’s Saratoga semisubmersible
drilling rig to a total measured depth of
19,427 feet.  The well was spudded on
April 14, 1982, in 265 feet of water. 
Daily drilling progress for the well is
shown in figure 3 and well statistics are
presented in table 1.  Geologic
exploration objectives were Jurassic
carbonate rocks between 2.8 and 3.4
seconds two-way travel time, identified
on seismic record sections and
interpreted to be at depths of 16,000 to
22,000 feet.  At the well location, the
target strata form a simple structural
closure over an inferred salt pillow at
greater depth.

The surface hole was drilled with 8.9-
ppg mud and opened to 36 inches to a
depth of 514 feet.  The 30-inch surface
casing was set at 495 feet with 2,000
sacks of class H cement.  A casing
diagram is shown in figure 4.  Re-
cement jobs were attempted after testing
because of leakage around the outside of
the surface casing.  The marine riser was
connected, the cement plug was drilled
out, and drilling continued with a 17 1/2-
inch bit to 1,219 feet and with mud
weights from 9.0 to 10.0 ppg.  The hole
was logged and then opened to 26 inches
to a depth of 1,181 feet.  In two attempts,
the 20-inch casing could not be run into
the hole because of bridging.  After
repeated reaming, washing, and re-
cementing the surface casing, the 20-
inch casing was run and set at 1,169 feet
with 1,030 sacks of class H cement.
The blowout preventer and riser were

run and tested and the 20-inch casing was
tested to 200 psi for 30 minutes.  The
cement plug was drilled out and drilling
continued with a 17 1/2-inch bit and 9.0- to
9.1-ppg mud to 4,465 feet depth.  The hole
was logged and the 13 3/8-inch casing was
run and set at 4,417 feet with 255 sacks of
class H cement.

The casing was tested at 1,000 psi for 30
minutes.  Drilling resumed to 12,060 feet
with a 12 1/2-inch bit and 9.0 to 9.1 ppg
mud.  Repeated reaming was required to
maintain hole gauge.  The hole was logged,
and the 9 5/8-inch casing was run and set at
12,011 feet with 2,760 sacks of class H
cement.  The casing and plug were tested at
2,700 psi, the ball joint repaired, and the
BOP tested.  The plug was drilled out,
drilling and reaming resumed to 17,988 feet
with an 8 1/2-inch bit and mud weights from
9.5 to 12.0 ppg, and the hole was logged. 
Drilling resumed to 18,845 feet with an 8
1/2-inch bit and 12.8- to 12.9-ppg mud.  A
gas show was encountered at 18,765 feet. 

The hole was logged, cleaned, and sidewall
cores run.  A 7-inch liner was run and
cemented with 800 sacks of class H cement
to 18,630 feet.  Pressure testing was done by
bumping the plug to 2,000 psi, but the
setting sleeve failed.  The top of the liner
was cemented and tested to 4,145 psi for 30
minutes.  With the use of a 5 7/8-inch bit,
the cement plugs were drilled out, but the
drill pipe stuck at 18,752 feet.  After backing
off, the bit, sub, and drill collar were left in
the hole.  Fishing was partly successful, and
the bit was milled and the hole cleaned. 
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Drilling resumed to 19,427 feet with
mud weights of 12.8 to 12.9 ppg, where
the rate of penetration became
negligible. 

The hole was reamed to TD and attempts to
resume drilling were not successful.  The
hole was logged, the conventional core was
cut, and sidewall cores were shot.

Table 1.  Well statistics

Well identification:

Surface location:

Bottomhole location:

Proposed total depth:

Measured depth:

True vertical depth:

Kelly bushing elevation:

Water depth:

Spud date:

Reached TD:

Off location:

Final well status:

API #61-040-00006
Lease No. OCS-A-0210

Lydonia Canyon NK 19-12
LC Block 357
3,676 feet FNL
1,974 feet FWL

Latitude 40o 36' 51.196" N
Longitude 67o 44' 40.419" W

UTM coordinates:
X = 606,201.7m
Y = 4,496,479.7m

18 feet S and 53.9 feet W of surface location

22,000 feet

19,427 feet

19,398.5 feet

72 feet

265 feet

April 14, 1982

September 18, 1982

September 27, 1982

Plugged and abandoned

Note: All well depths indicated in this report are measured from the kelly bushing (measured depth), unless
otherwise indicated.  Mean sea level is the datum for the water depth.
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Figure 4.  Casing diagram for the Shell Lydonia Canyon Block 357 No. 1 well.
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Abandonment procedures (figure 4)
included setting cement plugs at 18,220,
17,170, and 11,500 feet (tops of cement)
with 100 sacks of class H cement for
each plug.  A pressure test was
conducted at 11,500 feet with 1,000 psi,
and the 9 5/8-inch casing was cut at 600
feet and pulled.  A packer was set and
tested at 540 feet and 100 sacks were
squeezed below the retainer (bottom of
cement, 778 feet), and 75 sacks were

spotted on top (top of cement, 480 feet). 
The plug was tested at 1,000 psi and the
13 3/8-inch casing was cut at 470 feet and
pulled.  The 13 3/8-inch annulus was tested
at 400 psi, and the 20- and 30-inch casings
were cut and pulled at 354 feet.  All
wellhead equipment and anchors were
retrieved.  The site was cleaned by divers
and surveyed by sidescan sonar, and the rig
was released on September 27, 1982.



9

WELL VELOCITY PROFILE

Schlumberger Ltd. ran a velocity
checkshot survey between 12,407 and
17,907 feet in the Shell LC Block 357 No.
1 well.  The checkshot data, together with
that for the other nine wells drilled on
Georges Bank, were given by MMS to
Velocity Databank, Inc. at their request
after all leases had been relinquished or
had expired.  Velocity Databank calculated
interval, average, and RMS velocities,

plotted time-depth curves, and tabulated
the data.  Table 2 presents well depth, two-
way travel time, and the calculated
velocities for the Shell LC Block 357 No.
1 well.  Figures 5 and 6 show interval
velocity, average velocity, and RMS
velocity plotted against depth and against
two-way travel time, respectively.  Well
depths are subsea.

Table 2.  Well velocity data

Depth (feet) Two-Way Time
(seconds)

Interval Velocity
(feet/sec.)

RMS Velocity
(feet/sec.)

Average
Velocity

(feet/sec.)
12,407 2.530 9,807 9,807 9,807
12,925 2.592 16,709 10,027 9,972
13,427 2.646 18,592 10,274 10,148
13,927 2.700 18,518 10,502 10,316
14,389 2.752 17,769 10,685 10,457
14,927 2.804 20,692 10,954 10,646
15,427 2.856 19,230 11,160 10,803
15,927 2.906 20,000 11,370 10,961
16,252 2.940 19,117 11,490 11,055
16,877 3.002 20,161 11,734 11,243
17,427 3.054 21,153 11,956 11,412
17,907 3.102 19,999 12,122 11,545

A lithologic column is also shown in
figure 5.  Because check shots were done
in only the bottom portion of the well,

only two interval-velocity intervals are
apparent on figure 5.  These are listed in
table 3.

Table 3.  Well velocity intervals

Interval Depth Range (feet) Interval Velocity
range (feet/second)

Average Interval Velocity
(feet/second)

I  0-14,500
(12,925-14,500*)

9,807-18,592
(16,709-18,592*)

16,279
(17,897*)

II 14,500-17,907 19,117-21,153 20,050
*Shallowest data point omitted
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Interval I This interval contains the
first five data points and includes the
entire column of water and rock to 14,389
feet.  With regard to interval velocities, the
first value, 9,807 feet per second, at
12,407 feet, has little practical value, since
it also applies to the entire column of
water and rock to that depth.  In Table 3,
the values in parentheses for Interval I
omit the shallowest data point and are
representative of the interval velocities at
12,925 to 14,500 feet.  These moderately
high velocities correlate with limestone

with siliciclastic interbeds. According to
Shell Offshore, Inc. biostratigraphic
analysis, this part of the section is
Oxfordian (Late Jurassic).

Interval II This interval is identified
on the basis of high interval velocities,
which correlate with limestones.  The
lower portion of the interval also contains
some dolomite and anhydrite.  This
interval is Early(?) to Late Jurassic,
according to Shell’s biostratigraphy.
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LITHOLOGIC INTERPRETATION
Taken and adapted from A. Rampertaap, MMS internal report

Well cuttings were collected at 30-foot
intervals from 540 to 13,020 feet and then
10-foot intervals to total depth, 19,427 feet
in the Shell LC Block 357 No. 1 well. 
Sample quality ranged from fair to good,
based on amounts of cavings and degree of
washing.  Conventional cores from 18,815
to 18,845 feet and 19,399 to 19,407 feet,
together with 46 sidewall cores taken from
15,189 to 18,782 feet, provided additional
lithologic control.

The lithologic descriptions of this report
are based on examination of drill cuttings,
supplemented by mud log sample
descriptions.  Depths of lithologic
boundaries are adjusted with reference to
electric logs.  All depths are from kelly
bushing.  Rocks penetrated are divided
into gross lithologic-stratigraphic units,
shown in figure 7.

From 540 to 580 feet, the section consists
of unconsolidated quartz sand, with red
siltstone fragments and traces of shell
debris and glauconite.  From 580 to 1,200
feet, there are no cutting samples.  From
1,200 to 1,300 feet, the interval consists of
coarse sand with subrounded to rounded
grains and traces of shell fragments.

From 1,300 to 1,450 feet, the section
consists of coarse-grained quartz sand with
subrounded to rounded grains, silty clay,
glauconitic sandstone fragments, and
traces of shell fragments.  From 1,450 to
2,400 feet, the section consists of dark
gray clay with lesser amounts of sandy
siltstone, and sandstone.  There are trace
quantities of shell fragments, and lignite is
abundant at about 2,000 feet.
From 2,400 to 3,150 feet, the section

consists of gray to black, calcareous,
clayey siltstone or mudstone with traces of
sand, lignite (which may be cavings), and
shell fragments.

From 3,150 to 3,510 feet, the section
consists of dark-gray to black calcareous
mudstone with traces of sand, lignite, and
fossil fragments.  From 3,510 to 3,775
feet, the section consists of medium to
coarse grained quartz sand with subangular
to subrounded grains and traces of fossil
fragments.

From 3,775 to 3,910 feet, the section
consists of dark-gray, calcareous mudstone
with traces of sand, glauconite, and fossil
fragments.  From 3,910 to 4,300 feet, the
section consists of brown to gray
calcareous, sandy siltstone with traces of
shell fragments and glauconite pellets.

 From 4,300 to 4,500 feet, the section
consists of brown to gray, calcareous
siltstone, limestone, and traces of fossil
fragments and glauconite pellets.  From
4,500 to 4,775 feet, the section consists of
dark-gray, sandy siltstone with traces of
limestone, lignite, glauconite, and fossil
fragments.  From 4,775 to 5,350 feet, the
section consists of light-gray to gray
limestone, coarse-grained sandstone, gray
shale, calcareous siltstone, and clay.  From
5,350 to 6,450 feet, the section consists of
sandstone, shale, and calcareous sandy
siltstone.  The sandstone is very fine to
coarse, moderately sorted, and clear to
light gray with angular to subangular
grains and traces of pyrite, glauconite, and
coal.  Most of the shale is light to medium
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gray; a small proportion is red.  The sandy
siltstone is light to dark gray with traces of
pyrite, glauconite, and coal.

From 6,450 to 7,075 feet, the section
consists of limestone, calcareous
sandstone, and calcareous sandy siltstone. 
The limestone is light to dark gray with
traces of pyrite, shale, and quartz.  The
sandstone has clear, angular to subangular
grains and traces of pyrite.  The sandy
siltstone is light to dark gray with traces of
pyrite.  Silty clay occurs between 6,900
and 6,920 feet.  From 7,075 to 7,275 feet,
the section is predominantly light-gray
limestone and shale.

From 7,275 to 7,525 feet, the section
consists of white to gray, calcareous
siltstone with traces of shale.  From 7,525
to 7,900 feet, the section consists of
calcareous siltstone that is light to dark
gray, moderately well indurated, and has
traces of limestone.  Light-gray, calcareous
clay with traces of limestone occurs
between 7,810 to 7,900 feet.  From 7,900
to 8,875 feet, light-gray limestone grades
into dark-gray siltstone and light- to dark-
gray shale.  Traces of pyrite, siltstone,
shale, and limestone also occur.  Chalky
limestone occurs between 8,550 and 8,650
feet. 

From 8,875 to 9,520 feet, the section
consists of calcareous, sandy shale, shale,
limestone, and sandstone.  The sandy shale
contains fine, rounded sand grains.  The
shale is dark gray.  The limestone is light
to dark gray with traces of lignite.  The
sandstone is well sorted and fine grained
with rounded quartz grains.

From 9,520 to 12,100 feet, the section
consists of limestone, sandstone, siltstone,

and shale.  The limestone is white to dark
gray with small amounts of pyrite.  The
sandstone is dominantly light gray, fine
grained, and moderately sorted with
angular to subangular quartz grains. 
Traces of glauconite occur at 9,950 and
10,200 feet.  The siltstone is reddish
brown, gray, and light gray.  The shale is
dark gray. 

From 12,100 to 13,110 feet, the section
consists of microcrystalline limestone with
lesser amounts of sandstone, chalk, and
siltstone.  The limestone is white to
medium gray with scattered oolites from
12,900 to 13,100 feet.  The dominant
lithology from 13,110 to 13,510 feet is
white to gray, microcrystalline limestone,
in part oolitic, with traces of pyrite,
anhydrite, sandstone, and siltstone.  From
13,510 to 13,750 feet, the section consists
of light- to medium-gray limestone with
minor gray shale and traces of siltstone. 
From 13,750 to 14,400 feet, the section
consists of limestone with traces of
siltstone.  From 13,825 to 14,275 feet, the
limestone is oolitic with traces of
anhydrite at 13,910 feet. 

At 14,040 feet a thin bed of chalky
limestone is present.   From 14,400 to
14,740 feet, the section consists of white
to medium gray oolitic limestone.  From
14,740 to 19,427 feet, the section consists
entirely of limestone and dolomite with
limestone predominant in the upper
section to 19,110 feet and dolomite
predominant below 19,110 feet.  Through
the overall interval, the limestone grades
downward from oolite to micrite.   Small
amounts of anhydrite occur at 16,000,
16,300, 16,430, 16,690, 16,910, 17,500,
and 19,400 feet.
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BIOSTRATIGRAPHY

This biostratigraphic summary is taken from a
report submitted by Shell to MMS for the Shell
LC Block 357 No. 1 well.  No MMS

paleontological interpretations are available. 
This biostratigraphic summary also appears in
figure 7.

Table 4.  Biostratigraphy

Series Age Depth
Interval (feet)

Not examined 0-514
Not determined 514-1,330

Late Cretaceous at/in Campanian 1,300
at/in late Santonian 1,630

Coniacian - Turonian 2,560
in Turonian 2,660

at/in late Cenomanian 2,740
Early Cretaceous at/in Albian 3,250

at/in Aptian 3,940
in Barremian 5,080

at/in Hauterivian 5,650
at/in Valanginian 6,400

Late Jurassic (?) 7,060
Late Jurassic at/in Kimmeridgian 7,360

at/in Oxfordian 9,460
Early Jurassic (?) 17,010

Total sample depth 19,395
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FORMATION EVALUATION
Taken and adapted from R. Nichols, MMS internal report

Schlumberger Ltd. ran the following
geophysical “electric” logs in the Shell LC
Block 357 No. 1 well to provide

information for stratigraphic correlation
and for evaluation of formation fluids,
porosity, and lithology:

Table 5.  Well logs

Log Type Depth Interval (feet)
Below KB

DISFL/Sonic (dual induction spherically focused log/sonic) 497-19,391
BHC/Sonic (borehole compensated/sonic) 4,419-19,389
FDC (compensated formation density) 1,172-19,392
CNL/FDC (compensated neutron log/compensated formation density) 1,172-19,392
LDT/GR (lithodensity tool/gamma ray) 4,419-12,038
GR/Spectrometry (gamma ray/spectrometry) 4,419-19,392
Caliper 4,419-18,840
HDT (high-resolution dipmeter) 4,419-19,395
FIL (fracture identification log) 12,013-18,840

Exploration Logging, Inc. (EXLOG)
provided a formation evaluation “mud”
log, which included a rate of penetration
curve, sample description, and a graphic
presentation of any hydrocarbon shows
encountered (515 to 19,434 feet).  In
addition, a pressure analysis log (500 to
19,400 feet) and a drilling data pressure
log (520 to 19,430 feet) were provided. 
EXLOG’s deepest well depths are not
consistent with the operator’s measured
TD’s.

The “electric” logs, together with the
“mud” log and other available data, were
analyzed in detail to determine the
thickness of potential reservoirs, average
porosities, and feet of hydrocarbon
present.  Reservoir rocks with porosities
less than 5 percent were disregarded.  A
combination of logs was used in the
analysis, but a detailed lithologic and
reservoir property determination from
samples, conventional cores, and sidewall
cores, in addition to full consideration of
any test results, is necessary to substantiate
the following estimates as shown in
table 6. 
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Table 6.  Well log interpretation summary

Series* Depth
Interval

(feet)

Potential
Reservoir1

(feet)

Ave φφφφ
(%)

SW (%) Feet of
Hydrocarbon

EK 3,358-3,400 42 34 **NC NC
3,412-3,424 12 35 - -
3,528-3,578 50 28 - -
3,654-3,712 44 34 - -
4,134-4,158 24 35 - -
4,436-4,452 16 (35) - -
4,734-4,804 19 33 - -
4,854-4,864 10 29 - -
5,036-5,044 8 29 - -
5,356-5,384 28 29 - -
5,428-5,448 16 29 - -
5,490-5,673 83 29 - -
5,718-5,760 38 32 - -
5,882-5,908 24 30 - -
5,938-5,958 20 32 - -
6,066-6,128 58 29 - -
6,144-6,182 38 28 - -
6,210-6,250 40 32 - -
6,302-6,322 20 30 - -
6,572-6,593 13 23 - -
6,673-6,720 24 23 - -
6,822-6,833 11 26 - -
7,726-7,736 8 28 67 -
8,252-8,269 15 18 - -
8,818-8,848 30 19 - -
8,862-8,874 12 19 - -
9,196-9,218 12 22 - -
9,293-9,332 35 18 - -
9,384-9,396 12 16 - -

10,255-10,266 11 15 - -
10,374-10,389 15 15 - -
10,466-10,480 14 16 - -
10,912-10,924 9 13 - -

UJ

14,108-14,122 12(?) 6 54+ -2

Continued
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Table 6.  Well log interpretation summary--continued
Series* Depth Interval

(feet)
Potential

Reservoir1 

(feet)

Ave φφφφ
(%)

SW (%) Feet of
Hydrocarbon

UJ 14,575-14,586 11 5 -
15,450-15,470 18 5 - -
15,688-15,774 41 10 - -
16,148-16,192 26 9 - -

EJ(?) 18,755-18,772 6 6 17 6(?)3

19,274-19,284 (5) (< 5) - -
*Biostratigraphy from company-submitted report
**Not calculated
1Generally in beds > 10 feet thick and  > 5%

2Mud log response = 3 units (C1-2)
3Mud log response = 1,300 units (C1-2)

The electric logs were of acceptable
quality.  However, SP shifts were reported
at 9,715, 13,950, 15,200, and 15,280 feet. 
Additional SP shifts may be present at
4,430, 17,800, 18,235, and 18,875 feet. 
The CNL/FDC tool stuck at 14,225 feet
and the readings from 14,168 to 14,248
feet appear to be in error.  From 6,900 to

19,391 feet, washouts indicated by the
caliper log appear to affect the density
porosity reading severely and cause false
annulus responses by the medium reading
induction log.

Sidewall core porosities (table 7) compare
favorably to “electric” log porosities,

Table 7.  Sidewall core analysis summary

Depth Interval
(feet)

Lithology Porosity
Range (%)

Permeability Range
(md)

15,189-18,782 Limestone, fine xln 1-31 NC*
*Not calculated
1Described as leached and vuggy with some open fractures

particularly the values calculated from the
sonic log.  The sidewall coring process 
may have induced fractures in the harder
limestone sections.

Two conventional cores were taken in this
well with results as follows:

Table 8.  Conventional core summary

Core
No.

Depth Interval
(feet)

Recov.
(feet)

Lith. φφφφ Range
(%)

Permeability
Range (md)

Grain
Density
(g/cc)

1 18,815-18,845 27 LS 0.2-1.7 0.009-0.02 2.70-2.75
2 19,399-19,407 7 LS/Dol 1.2-3.1 0.02-61.6 2.71-2.82
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Core No. 1 does not compare well with the
CNL/FDC because of severe washouts,
indicated by the caliper log.  The FDC
reads much too high because of the
enlarged hole and the CNL tracks at zero. 
The sonic log is not functional below
18,810 feet because of tool placement. 
Core No. 2 compares favorably with the
CNL porosity; however, the FDC and       
                                                             

sonic logs were not recorded over this
interval.

Results of the HDT survey were recorded
on a dipmeter arrow plot from 4,420 to
18,845 feet and 19,182 to 19,395 feet. 
Possible structural anomalies may be
present at 7,010, 9,190, 12,030, 13,030,
13,190, 15,500, 17,110, and 17,650 feet
(table 9).

Table 9.  Dipmeter analysis summary

Depth Interval
(feet)

Magnitude
(degrees)

Direction

4,420-8,250 1-12 Erratic
8,250-9,775 1-6 W

9,975-11,675 2-11 Erratic
11,675-12,025 1-4 W
12,025-13,025 1-6 W
13,025-15,200 1-2 W
15,200-15,700 20 W
15,700-17,650 40 Erratic
17,650-18,100 1-7 Erratic

18,100-19,395 (TD) 10 E

Table 10 lists all shows of hydrocarbon
encountered in this well.  The show
encountered at 18,760 to 18,770 feet was
judged to be significant.

A normal pressure gradient (approx. 9.0
eqmw) was encountered to a depth of
12,100 feet, and at that point the mud
weight increased to 9.5 ppg.  At 14,100
feet, the mud weight had increased to 10.0
ppg, and at 14,800 feet to 11.0 ppg.  At

18,000 feet, a mud weight of 12.0 ppg was
reached, and the formation pressure
estimated by Exploration Logging on their
pressure analysis log was 11.6 ppg eqmw.
From 18,900 to 19,400 feet, the mud
weight was 12.9 ppg and the formation
pressure was estimated to be 12.2 ppg
eqmw.

No well tests were performed in this well.
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GEOTHERMAL GRADIENT

Figure 8 shows bottomhole temperatures
for seven logging runs in the Shell LC
Block 357 No. 1 well plotted against
depth.  A temperature of 60 0F is assumed
at the seafloor at an indicated depth of 337
feet (265-foot water depth plus 72-foot
kelly bushing elevation).  Shown also is a

straight-line graph between the seafloor
and total-depth temperatures in order to
represent an overall geothermal gradient
for the well, which is 1.36 0F/100 ft. 
Calculated geothermal gradients for all
Georges Bank wells range from 1.06 to
1.40 oF/100 ft.
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BURIAL HISTORY

The burial history model for the
stratigraphic section penetrated by the
Shell LC Block 357 No. 1 well (figure 9)
is based on biostratigraphic determinations
contained in a report submitted by Shell to
MMS (figure 7; table 4) and the
Cretaceous and Jurassic time scales of Van
Hinte (1976a and 1976b).  In general,
burial diagrams for Georges Bank wells
show rapid Lower and Middle Jurassic
subsidence followed by moderate and then
low burial rates through the rest of the
Mesozoic and Cenozoic Eras.  The Shell
LC Block 357 No. 1 profile is consistent

with those of the other Georges Bank
wells in which Early Jurassic marker
fossils were identified, the Mobil LC
Block 312 No. 1 and the Tenneco LC
Block 187 No. 1 wells.

In constructing figure 9, no adjustments
have been made for sedimentary
compaction or for section removed by
erosion.  In their report, Shell applied
“at/in” to most age designations; see the
Biostratigraphy chapter of this report.
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COMPANY-SUBMITTED DATA

Data and reports were submitted by Shell
Offshore, Inc., to MMS when the Shell LC
Block 357 No. 1 well was drilled, as
required by Federal regulations and lease
stipulations.  Items of general geological,
geophysical, and engineering usefulness
are listed below.  Items not listed include
routine submittals required by regulation
and detailed operations information, such
as the Exploration Plan, Application for
Permit to Drill, daily drilling reports,
monthly reports, well location survey, and
drilling pressure and temperature data
logs.  Well “electric” logs are listed in the
Formation Evaluation chapter.  Listed
and unlisted company reports and data are
available through the Public Information
Unit, Minerals Management Service, Gulf

of Mexico OCS Region, 1201 Elmwood
Park Boulevard, New Orleans, Louisiana
70123-2394; telephone (504)736-2519 or
1-800-200-GULF, FAX (504)736-2620. 
Well logs are available on microfilm from
the National Geophysical Data Center, 325
Broadway Street, Boulder CO 80303-
3337, attn. Ms Robin Warnken; telephone
(303)497-6338, FAX (303)497-6513; e-
mail rwarnken@NGDC.NOAA.GOV.

At a later date, additional original
technical data, including well logs, will be
added to the compact disk (CD) version of
the Georges Bank well reports.  The CD
will be available from the Gulf of Mexico
OCS Region Public Information Unit.

SELECTED COMPANY-SUBMITTED DATA

Velocity survey computation (well
velocity and well seismic tool data),
Schlumberger Ltd., Wireline Testing,
Houston TX, undated.

Physical formation (mud) log, Exploration
Logging of U.S.A., Inc., undated.

Core analysis data (conventional core
No. 1; porosity, air permeability, and grain
density), Shell Development Co.,
Petrophysical Services Laboratory,
Houston TX, 08/27/82.

Core analysis data (conventional core No.
2; porosity, air permeability, and grain
density), Shell Development Co.,

Petrophysical Services Laboratory,
Houston TX, 10/06/82.

Sidewall cores (lithologic descriptions),
Shell Offshore, Inc., New Orleans LA,
undated.

Paleontological summary (stage tops),
Shell Offshore, New Orleans LA,
10/05/82.

Source rock study (lithologic descriptions,
kerogen analysis, vitrinite reflectance,
molecular geochemical analysis), Shell
Development Co., Geochemical Services,
Houston TX, 08/18/82.
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