

The Microwave Limb Sounder (MLS) on Aura: Science Objectives

presentation at 8 July 2004 Aura pre-launch meeting Lucien Froidevaux MLS Science Team

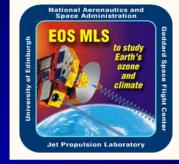
Aura pre-launch Science Team meeting 8 Jul 2004 Jet Propulsion Laboratory California Institute of Technology 818-354-8301 <u>Iucien@mks.ipl.nasa.gov</u> CL #04-2325

Microwave Limb Sounder (MLS): Science

Overall Science Objectives of MLS

 Fall under Objective 1.1 of NASA's (2003) Strategic Plan:
 "To understand how Earth is changing, better predict change, and understand the consequences for life on Earth."

Track recovery of the ozone layer


Sepecially track chlorine and bromine chemistry, and resolve current issues in hydrogen chemistry

Understand aspects of how composition affects climate

- > especially through water vapor in the upper troposphere
- Quantify aspects of pollution in the <u>upper</u> troposphere
 > ozone, carbon monoxide (CO), methyl cyanide (CH₃CN), hydrogen cyanide (HCN); biomass burning injections

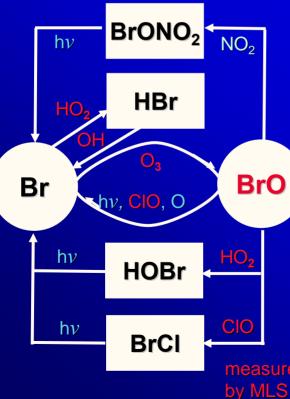
A more detailed discussion of these objectives follows

Aura pre-launch Science Team meeting 8 Jul 2004

Aura

pre-launch Science

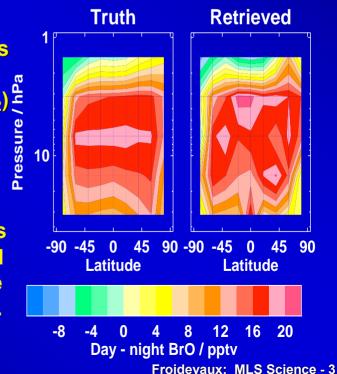
Team


meeting

8 Jul 2004

MLS Science Objectives: Ozone Chemistry - Bromine & Chlorine Objective: Quantify bromine & chlorine budgets, trends, & impact on ozone. MLS will measure spatial & temporal changes in stratospheric bromine monoxide (BrO), a key reactive bromine gas that destroys ozone.

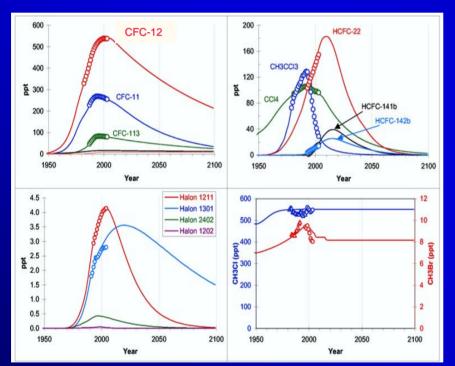
- > Total bromine ≈ 20 pptv ($\pm \sim 20\%$): 150 times less than total chlorine. - Exact amount of bromine getting into the stratosphere is still under investigation.
- > BrO in the lower stratosphere destroys O_3 much faster (atom for atom) than ClO. - Reactive fraction BrO/Bry \approx 0.5 in lower stratosphere \gg chlorine fraction in ClO.


Bromine gases & chemical cycles in the stratosphere

Can infer Br_v (total inorganic bromine) and other Br species from BrO & other Aura data (HO₂, NO₂) -+ models or correlations (e.g., between **Br**_v and tracers) \rightarrow constrain models of Br chemistry and sources of bromine in the stratosphere.

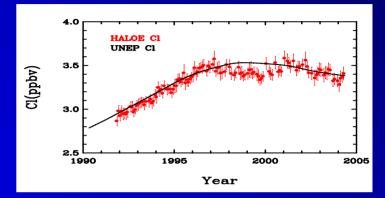
measured

Simulated MLS retrieval of zonal mean BrO (~ 23 - 45 km) (Day-Night) monthly average



MLS Science Objectives: Ozone Chemistry – Bromine & Chlorine Objective: Quantify bromine & chlorine budgets, trends, & impact on ozone.

Source Gases for chlorine & bromine


Decreases (per international regulations) in total surface sources for bromine and chlorine gases should be reflected (a few years later) in total stratospheric Br & Cl.

Aura pre-launch Science Team meeting 8 Jul 2004

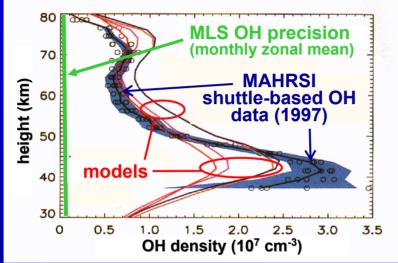
Surface measurements (symbols) and predictions (lines). Figure is updated from WMO Report No. 47 (2003). (S. Montzka, NOAA CMDL, private communication).

Atmospheric Chlorine (Cl) loading

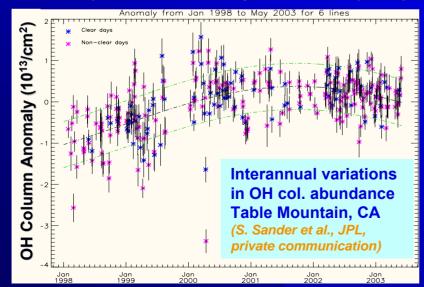
Valuable HALOE HCI data → global avg. CI (at 55 km) vs surface CI (with 5 yr lag). (James M. Russell III and John Anderson, Hampton Univ., private communication). MLS will provide daily global profiles of HCI to track chlorine loading and recovery (upper stratosphere) + chlorine partitioning variations and trends (throughout stratosphere and under depleted ozone conditions). Other useful quantities: CIO/HCI ratio, related Aura data (e.g., HIRDLS CIONO₂).

Aura

pre-launch


Science

Team


meeting 8 Jul 2004

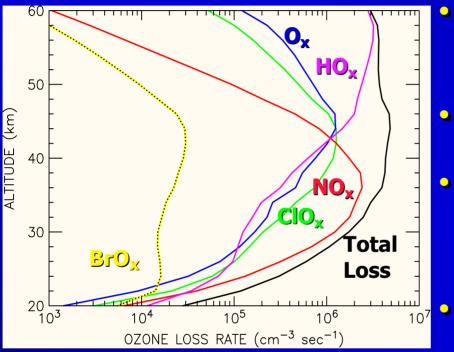
MLS Science Objectives: Ozone Chemistry – Hydrogen Chemistry Objective: Resolve issues in hydrogen chemistry - Hydrogen chemistry is dominant mechanism of ozone destruction

at the highest and lowest altitudes in the stratosphere

adapted from Conway et al., GRL (2000)

"The HO_x dilemma"

OH: Models are inconsistent with previous OH data in altitude region where chemistry seems fairly simple - mainly need to know OH, HO₂, O₃, H₂O, all measured by MLS.


HO₂: Balloon-borne and groundbased measurements of HO₂ yield larger than expected abundances (by ~30%).

→ Chemistry or Data Issue ?

Column OH: Grd-based col. shows large variability *(Mills et al., GRL, 2002).* Interannual changes at Table Mtn., CA, are larger than the expected combined effects of O₃, H₂O, and solar flux *(Mills et al., JGR, 2003).* The combination of ground-based and MLS measurements will help to understand these variations.

MLS Science Objectives: Ozone Chemistry – Chemical Cycles Objective: Use measurements of radicals and source species to provide critical global tests of ozone chemistry.

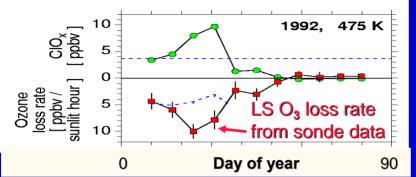
Importance of Chemical Cycles for O₃ Loss

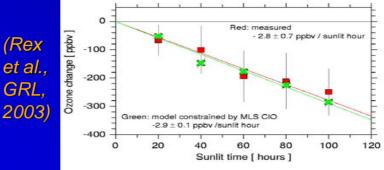
(updated from Osterman et al., GRL, 1997)

MLS \rightarrow monthly zonal mean distributions for OH, HO₂, ClO & BrO above ~ 20 km.

• HIRDLS & TES measure NO₂.

 Aura instruments will also measure the radical-generating molecules (H₂O, N₂O, CFCs, O₃) in the 'same' air mass (within 15 minutes).

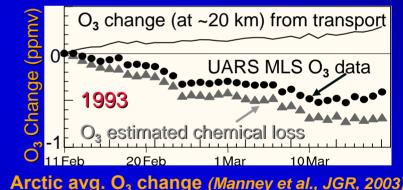

Can use model radical values on daily basis and average over a month to compare with monthly Aura observations of these radicals.


Aura pre-launch Science Team meeting 8 Jul 2004

MLS data combined with the ensemble of Aura products will critically test the completeness of known chemistry over a range of heights and for all seasons.

MLS Science Objectives: Ozone Chemistry – Polar Processes Objective: Refine understanding of lower stratospheric winter polar ozone loss and track its variations

 Improvements (over UARS MLS) include better spatial and temporal coverage, resolution, precision, and additional constituents.



- Measured and modeled Arctic O₃ loss rates do not 'match' in January
- Uncertainties remain in quantifying the relative contributions of transport and chemical processes in O₃ loss (for polar regions and globally).

In addition to polar O₃ loss studies, we plan to:

... but do in late winter.

Aura pre-launch Science Team meeting 8 Jul 2004

- Further explore issues regarding denitrification & dehydration and their relationship to O₃ loss in both hemispheres.
- Track interannual & longer-term variations, especially in Arctic, where temperatures may be near a threshold for larger ozone losses or a delay in recovery (tied to H₂O, polar stratospheric clouds, and climate change). Froidevaux: MLS Science - 7

MLS Science Objectives: Water Vapor and Climate Objective: Understand processes controlling stratospheric humidity

- How is H₂O removed before entering the stratosphere?
- MLS H₂O in tropical tropopause layer (TTL) will have better vertical resolution than UARS MLS + expect longer time series.

- Synergies with planned aircraft campaigns (which can also measure total H₂O).

H₂O in the TTL from UARS MLS compared to Holton & Gettelman (HG) "cold trap" model

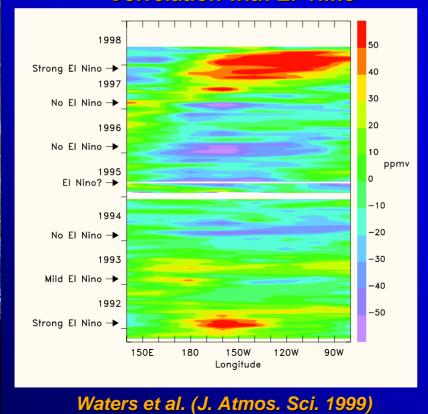
- Does tropical deep convection hydrate or dehydrate the TTL?
- MLS measurements that can be made in the presence of cirrus will help answer this question.

UARS MLS 100 hPa H₂O Winter (DJF) 1992/1993

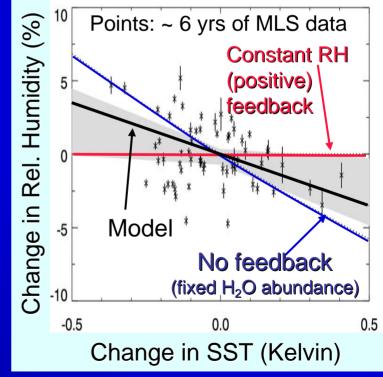
Aura

pre-launch

Science

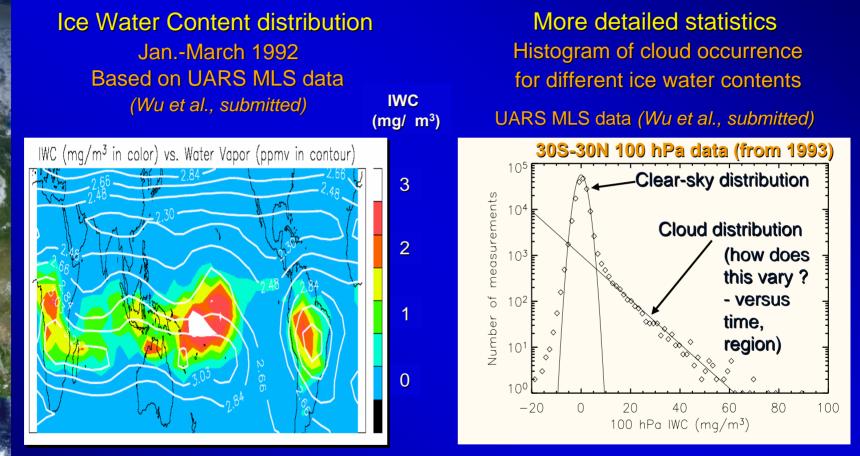

Team

meeting 8 Jul 2004 MLS Science Objectives: Water Vapor and Climate Objective: Better quantify water vapor relationship to climate


- Understand intra- and interannual changes
- MLS can observe changes in upper tropospheric Relative Humidity from El Niño & other variations.

UARS MLS tropical UT (215 hPa) H₂O: Correlation with El Niño

- Quantify the water vapor feedback in climate change
- MLS upper tropospheric H₂O data should help better predict the surface temperature rise from increasing CO₂ emissions.


MLS H₂O (215 hPa) vs Sea Surface T

Minschwaner & Dessler (J. Climate, 2004)

MLS Science Objectives: Water Vapor and Climate - Clouds Objective: To accurately measure global cloud Ice Water Content improve climate models

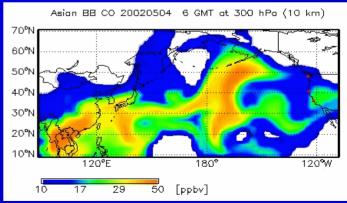
Aura pre-launch Science Team meeting 8 Jul 2004

- Inaccuracy in knowledge of cloud Ice Water Content: worse than 100%!
 - require assumptions about ice particle properties (e.g., sizes, shapes).
- Can reduce these uncertainties in the future by analyzing multi-frequency measurements from MLS, the A-train (e.g., CloudSat), & other instruments.

MLS Science Objectives: Tropospheric Pollution

Objective: Quantify aspects of pollution in the upper troposphere

> MLS will measure the following upper tropospheric species (+ H₂O):


- Ozone (tropospheric pollutant & important greenhouse gas in UT)
- CO (a good tracer of anthropogenic pollution)
- CH₃CN & HCN, biomass burning tracers. MLS sensitive only to large enhancements above background. [UARS MLS detected enhancement in CH₃CN from forest fire, injected into lower stratosphere (*Livesey et al., 2004*).]
- These data complement tropos. data from TES, OMI, HIRDLS, aircraft
 - Expect pollution + long-range transport in UT
 - (e.g., from convection, warm conveyor belts, 'pollution train').
 - Couple to goals of INTEX aircraft/ground campaigns (2004 & 2006).

Caveats: MLS sensitivity (~20, 30 ppbv for CO, O_3 at 200 hPa & worse at lower alt.) + sampling issues \rightarrow need useful 'averaging' (+ validation) of the MLS UT data.

Aura pre-launch Science Team meeting 8 Jul 2004

Simulated CO, O_3 (*Li et al., JGR, sub., 2004*) How are O_3 and CO correlated? How do models and data compare?

Intercontinental pollution transport illustration (CO biomass burning component only) (Q. Li, JPL, private communication., 2004)

Microwave Limb Sounder (MLS): Science

Summary and Acknowledgements

MLS will contribute to important areas of atmospheric research: [Thanks for inputs to this talk mainly from those listed below]

Ozone Chemistry

- Bromine and chlorine
- Hydrogen Chemistry
- Chemical Cycles
- Polar Processes

[N. Livesey, S. Montzka, J. Russell]
[H. Pickett, S. Sander]
[H. Pickett, R. Salawitch]
[G. Manney, M. Santee]

Water Vapor and Climate

- Water Vapor
- Cloud Ice

[W. Read] [D. Wu]

• Tropospheric Pollution [M. Filipiak, Q. Li]

Aura pre-launch Science Team meeting 8 Jul 2004 Thanks to Joe Waters and the whole MLS team (at JPL and Edinburgh University), the Aura Project, JPL, and NASA for helping get us to this stage & the eagerly awaited Aura launch.