
ESP: A System Utilization Benchmark
Adrian T. Wong, Leonid Oliker, William T. C. Kramer, Teresa L. Kaltz and David H. Bailey

National Energy Research Scientific Computing Center
Lawrence Berkeley National Laboratory

One Cyclotron Road, Berkeley, CA 94720, USA
Correspondence: David H. Bailey, dhbailey@lbl.gov

Abstract
This article describes a new benchmark, called the Effective System Performance (ESP) test, which

is designed to measure system-level performance, including such factors as job scheduling efficiency,
handling of large jobs and shutdown-reboot times. In particular, this test can be used to study the effects
of various scheduling policies and parameters. We present here some results that we have obtained so far
on the Cray T3E and IBM SP systems, together with insights obtained from simulations.

1. Introduction
The overall performance value of a high performance computing system depends not only on its raw

computational speed but also on system management effectiveness, including job scheduling efficiency,
reboot and recovery times and the level of process management. Common performance metrics such as
the LINPACK and NAS Parallel Benchmarks [3, 1] are useful for measuring sustained computational
performance for individual jobs, but give little or no insight into system-level efficiency issues.

In this article, we describe a new benchmark, the Effective System Performance (ESP) benchmark,
which measures system utilization and effectiveness [9]. Our primary motivation in developing this
benchmark is to aid the evaluation of high performance systems. We plan to use it to monitor the impact
of configuration changes and software upgrades in existing systems. But we also hope that this bench-
mark will provide a focal point for future research and development activities in the high performance
computing community, possibly leading to significantly improved system-level efficiency in future pro-
duction systems.

The ESP test extends the idea of a throughput benchmark with additional features that mimic day-
to-day supercomputer center operation. It yields an efficiency measurement based on the ratio of the
actual elapsed time relative to the theoretical minimum time assuming perfect efficiency. This ratio is
independent of the computational rate and is also relatively independent of the number of processors
used, thus permitting comparisons between platforms.

2. Scheduling and Utilization
Scheduling a set of parallel applications of different partition sizes is quite a challenge, since time

and partition constraints must be satisfied, while at the same time maximizing the system utilization. In
this setting, utilization is the fraction of busy processors to available processors integrated over time. In
day-to-day operation, other constraints and requirements create a more complex situation. For example,
a scheduler may use a best-fit-first (BFF) strategy, which is satisfactory for a workload of small- and
medium-sized jobs, but which often starves large-partition jobs.
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Function T3E SP
Checkpoint/restart X
Swapping/Gang-scheduling X
Job migration/compaction X
Priority pre-emption X
Backfill X X
Disjoint partitions X

Table 1: System Functionality on T3E and SP

One measure of system utilization is the elapsed time required to process a given workload suite. If
the time for each job is constant, regardless of whether it is run alone or concurrently with other jobs, then
the variation in the elapsed time for the workload depends only on the scheduling strategy and system
overhead. For a given workload with jobs of varying partition sizes and elapsed times, a utilization
efficiency E can be defined as

E =

P
i
piti

PT

where pi and ti are the partition size and best-case elapsed time, respectively, for the i-th job, T is
the observed time for the workload and P is the number of available processors. In the ideal limit of
perfect packing with no overhead, the efficiency, E is unity. Here the numerator and denominator are in
units of CPU-seconds. The problem of optimal packing is NP-complete, but several effective heuristic
techniques have been developed. Examples of recent work in non-preemptive, preemptive and multiple
resource schemes include [8, 10, 4, 6].

Particular scheduling strategies depend on the availability of certain key system functionalities. As
shown in Table 1, the currently available T3E and SP systems at NERSC differ considerably in this
regard. Here checkpoint/restart is the ability to save to disk and subsequently restore a running job.
Without checkpointing, a system administrator is often faced with the unpleasant choice of allowing a
large portion of the system to be idle, or prematurely terminating one or more running jobs. Swapping
and gang-scheduling are the parallel analogues of time-slicing on single processor machines, but with a
relatively coarse granularity. They allows oversubscription (multiple processes per processor), increasing
the apparent number of processors available and allowing greater flexibility in scheduling. Job migra-
tion/compaction refers to the capability to move a running job to a different set of processors. This aids
in defragmentation and scheduling large partitions. Priority pre-emption is the ability to launch a higher
priority job with the resulting effect of swapping out, suspending or terminating lower priority jobs. This
is useful to improve turnaround and prevent starvation of large partition jobs. Backfill is the insertion of
smaller, shorter jobs ahead of earlier jobs in the queue to fill empty slots.

Checkpoint/restart, swapping, migration and pre-emption all depend on the fundamental kernel oper-
ation of pre-emptively changing process images between run and idle states and moving them to memory
and disk. Unfortunately, few vendors have implemented this feature, or at least they have not made it
available to the global scheduling/queuing software.

The Cray T3E at NERSC has recently demonstrated over 95% utilization for an extended time period
[7, 2]. Scheduling on the T3E involves two interacting subsystems: a batch queue (NQS) and the global
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resource manager (GRM). NQS schedules at a coarse grain and launches jobs from queues based on site
policies. Multiple NQS queues for different partition sizes are used. The number of released jobs for each
queue may be limited by the NQS configuration. Therefore, the profile of jobs launched may be adjusted
according to the time of the day. For example, at night, larger partition jobs are preferentially launched
by limiting small partition jobs. Dynamic management of currently launched jobs is implemented by
GRM using swapping, priority preemption and compaction. Two priority rankings are recognized by
GRM; normal and prime. The prime rank is used to preemptively insert jobs to run immediately with the
effect of swapping out running jobs.

Loadleveler software is used on the IBM SP for scheduling batch jobs. In general, each job is
assigned dedicated processors and runs to completion without swapping. Different job classes with
varying requirements and priorities may be defined within Loadleveller. Loadleveller uses an overall
first-come-first-served (FCFS) strategy with backfill to launch jobs from the queue. The ordering of jobs
considered for launch maybe adjusted using system and/or user assigned priorities. Efficient backfill
requires a priori estimated run times.

3. ESP Benchmark Design
The throughput workload that is currently used in the ESP test consists of a set of jobs of varying

partition sizes and times with the objective of obtaining the shortest elapsed run time. By reporting the
utilization efficiency E instead of the absolute time, the ESP test is independent of the computational
rate. The ESP test runs roughly four hours on 512 CPUs of the NERSC T3E. This time length was a
compromise between a longer simulation that is more representative of actual usage and a shorter time
that is more suitable to routine benchmarking.

The throughput of large-partition jobs is an ongoing concern at a large supercomputer center such
as NERSC, since without this focus, the rationale for acquiring and operating a large tightly-coupled
computer system is weakened. Thus the ESP test includes two “full configuration jobs”, with partition
sizes equal to the number of available processors. The run rules for the ESP test specify that upon
submission, the full configuration jobs must be run before any further jobs are launched. The first full
configuration job can only be submitted after 10% of the theoretical minimum time has elapsed such that
it is non-trivial to schedule. Similarly, the second full configuration job must complete within 90% of
the test and is not simply the last job to be launched. The requirement to run these two full configuration
jobs is a difficult test for a scheduler, but it is nonetheless a common scenario in capability environments.

Large systems typically require a great deal of system adminstration to maintain and improve their
operation. These activities often require a system outage, either scheduled or unscheduled, and the
time required for shutting down and restarting the system can significantly impact the overall system
utilization. For this reason, the ESP test includes a shutdown-reboot cycle, which is required to start
immediately after the completion of the first full configuration job. In practice, a shutdown-reboot cycle
is difficult to implement as part of a test run without manual intervention during the test. So if the
shutdown/reboot time S is known in advance then the operation need not be performed, and the utilization
efficiency can be computed as

E =

P
i piti

P (T + S)

It has been pointed out to us that this design of a shutdown-reboot immediately following the full-
configuration job tends to ignore the need to restart some applications (or the advantages of checkpoint-
ing). However, our test otherwise favors systems with these features.

3



Size (CPUs) 2–15 16–31 32–63 64–127 128–255 256+
0–3600 sec. 0.7 1.1 3.7 6.6 0.9 4.2
3600–7200 sec. 0.3 1.0 1.6 8.1 2.4 1.1
7200–14400 sec. 0.8 3.7 5.1 22.5 8.5 1.0
14400+ sec. 1.2 0.5 2.5 12.6 8.8 1.4

Table 2: Workload Profile on the NERSC T3E (Percent)

Size (nodes) 0–31 32–63 64–127 128–256
0–3600 sec. 6.9 9.0 0.5 0.3
3600–9600 sec. 2.2 3.0 0.8 0.8
9600–10800 sec. 3.0 3.1 2.7 1.7
10800–14400 sec. 16.8 22.8 21.9 4.5

Table 3: Workload Profile on the NERSC SP (Percent)

The jobs in the ESP suite are grouped into three blocks, and the order of submission is determined
from a reproducible pseudo-random sequence. The total number of CPUs requested in the first block is
at least twice the available processors and the number of CPUs in the second block at least equal to the
available processors. The remaining jobs constitute the third block. The first block is submitted at the
start with the second and third blocks submitted 10 and 20 minutes thereafter, respectively. This structure
was designed to forestall artificially configured queues specific to this test and, at the same time, provide
sufficient queued work to allow flexibility in scheduling. No manual intervention is permitted once the
test has been initiated.

We consider it important that the ESP test be representative of the user workload, so we designed the
distribution of job sizes and run times in the ESP suite to roughly match the distribution of jobs running
on NERSC production systems (except that the ESP run times were scaled down so that the test could
be run in a more reasonable elapsed time). Tables 2 and 3 show some of this data, each set taken from a
recent month’s accounting records.

The applications in the ESP job mix originate from our user community and are used in production
computing. Furthermore, the job mix profile was designed to span the diverse scientific areas of research
amongst our users. Attention was also paid to diversify computational characteristics such as the amount
of disk I/O and memory usage. For each class, an application and problem set was selected to satisfy the
time and partition size constraints. The number of instances (Count) of each application/problem was
adjusted such that aggregate CPU-hours reflected the workload profile. Table 4 lists the final job mix for
the ESP benchmark with the elapsed times for each job on the T3E and SP.

If desired, the acutal codes used in the ESP test can be varied in several ways. First, a different site
workload could be used, so the ESP test would compare different systems on this job mix. Secondly,
a general suite of codes (such as well-known benchmark codes) could be used, with the objective of
being easily portable to all systems. Thirdly, the test could be run with job mixes derived from different
workloads and/or disciplines, permitting comparison of systems across disciplines. In part, the job mix
described here achieves this last objective, since it is derived from a rather diverse set of applications and
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Run Times
Application Discipline Size Count T3E SP
gfft Large FFT 512 2 30.5 255.6
md Biology 8 4 1208.0 1144.9
md 24 3 602.7 583.3
nqclarge Chemistry 8 2 8788.0 5274.9
nqclarge 16 5 5879.6 2870.8
paratec Material Science 256 1 746.9 1371.0
qcdsmall Nuclear Physics 128 1 1155.0 503.3
qcdsmall 256 1 591.0 342.4
scf Chemistry 32 7 3461.1 1136.2
scf 64 10 1751.9 646.4
scfdirect Chemistry 64 7 5768.9 1811.7
scfdirect 81 2 4578.0 1589.1
superlu Linear Algebra 8 15 288.3 361.2
tlbebig Fusion 16 2 2684.5 2058.8
tlbebig 32 6 1358.3 1027.0
tlbebig 49 5 912.9 729.4
tlbebig 64 8 685.8 568.7
tlbebig 128 1 350.0 350.7

Table 4: ESP Application Job Mix

numerous, but there is no reason that codes representing other applications and/or discplines could not
be used as well.

4. Results
Two test runs were completed on the T3E. In both cases, a separate queue was created for full config-

uration jobs. The full configuration jobs can thus be launched immediately on submission independent
of the queue of general jobs. Process migration/compaction was also enabled for both runs. In the first
run, labeled Swap, the system was oversubscribed by two and gang-scheduled with a time-slice of 20
minutes. A single NQS queue was used for the general job mix. In the second run, labeled NoSwap, the
system was not oversubscribed. Each job ran uninterrupted until completion. Six queues for different
maximum partition sizes; 256, 128, 64, 32, 16, with decreasing priority were used.

On the SP, two classes (queues) were created in Loadleveller; a general class for all jobs and a
special high priority class for the full configuration jobs. It is not possible to selectively backfill with
Loadleveller. Our preliminary runs showed that backfill would defer launching of the full configuration
job until the end of the test. This would clearly violate the intent of the test. Backfill was implicitly
disabled by assigning large wallclock times (several times greater than the complete test) to all jobs.
Thus Loadleveller was reduced to a strictly FCFS strategy.

The results of the ESP test for the T3E and the SP are summarized in Table 5. Two efficiency
measurements, with and without the shutdown/reboot time factored in, are reported. Figures 1, 2 and
3 show the details of the three runs where the instantaneous utilization is plotted against time and the
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T3E
Swap NoSwap SP

Available processors 512 512 512
Jobmix work (CPU-sec.) 7437860 7437860 3715861
Elapsed Time (sec.) 20736 17327 14999
Shutdown/reboot (sec.) 2100 2100 5400
Efficiency 0.64 0.75 0.36
Efficiency (w/o reboot) 0.70 0.84 0.48

Table 5: ESP Results

time axis has been rescaled by the theoretical minimum time. Additionally, the start time for each job is
indicated by an impulse where the height equals the partition size.

These results show that the T3E has a significantly higher utilization efficiency than the SP. This
is mainly due to the lack of an effective mechanism to immediately launch full configuration jobs on
the SP. On submission of the full configuration jobs, a considerable amount of time was spent waiting
for running jobs to complete. This is evident in Figure 3 which shows two large regions where the
instantaneous utilization drops to a very low value. Without this drawback, it is likely that the utilization
on the SP would be roughly comparable to the T3E. The time lag to run preferential jobs is indicative of
the difficulty in changing modes of operation on the SP. This is important for sites that routinely change
system characteristics, for example between interactive and batch or between small and large partitions.
The best remedy would be to either checkpoint or dynamically swap out running jobs.

Nonetheless, it is noteworthy that the SP system, in spite of its lower system-level efficiency, com-
pleted the test in less time due to its higher computational rate.

As seen in Figure 1, the BFF mechanism on the T3E deferred large partition jobs (� 128) until the
end. Consequently, at the end of the test there were large gaps that could not be filled by small jobs.
On the SP, a FCFS strategy was indirectly enforced which can be seen illustrated in Figure 3 where the
distribution of job start times is unrelated to partition size. It is evident from Figures 1 and 2 that a
significant loss of efficiency on the T3E is incurred at the tail end of the test. In an operational setting,
however, there are usually more jobs to launch. That is, the fact the ESP test is finite poses a problem
since we are interested in a continual utilization given a hypothetical infinite number of queued jobs.
Suggested solutions to this dilemma have proven to be awkward and require manual intervention. How
the test should be terminated and post-analyzed will be re-examined in the next design of the ESP test.

The distribution of start times is qualitatively similar between the Swap and NoSwap runs on the T3E
although the queue set up was different. In the second run, we deliberately assigned increasingly higher
priorities to larger partition queues in an attempt to mitigate starvation. However, shortly after the start,
it is unlikely that a large pool of idle processors would become coincidently available. In this scenario,
the pattern of job submission reverts back to BFF and the queue set up has little impact. On the other
hand, there is considerable difference in efficiency between the two T3E runs. This is attributed to the
overhead of swapping which is significant when the oversubscribed processes cannot simultaneously fit
in memory and process images must be written to disk.

6



Efficiency
Observed (NoSwap) 0.84
Simulation
+ w/o preemption 0.49
+ with preemption 0.84
+ gang-scheduling 0.86

Table 6: Observed and Simulation Results on the T3E

5. Simulations
To aid the evaluation of the performance and sensitivity of the ESP test, a simulator was developed

to predict the runtime of this workload using various scheduling schemes. Several simple scheduling
algorithms, such as FCFS and BFF were implemented together with the option of using backfill schemes
and priority preemption. The simulator was used in the definition of the ESP test in order to ensure that
the test did not exhibit pathological behavior. We have also used the simulator to estimate results of the
ESP test on various system configurations and compared them to observed results.

Table 6 compares observed efficiency against various simulator efficiencies without shutdown/reboot.
The simulated efficiencies are somewhat optimistic since they do not account for system overhead such
as I/O contention, swapping and processor fragmentation. A gang-scheduled simulation of the ESP
test with a 1000 second time-slice and oversubscription of two achieved a utilization efficiency of 0.86.
However, this is overly optimistic as the observed efficiency of 0.70 from the Swap run indicate that
there is a significant overhead incurred with gang-scheduling. Furthermore, this is only a slight increase
compared to the preemption simulation with an efficiency of 0.84 without the use of gang-scheduling.
The most noticeable result obtained from the simulations has been the assessment of the preemption
functionality. The simulated efficiency of the ESP test using a BFF algorithm increased from 0.49 to
0.84 when preemption was employed. These results indicate that preemption can have a very significant
impact on system utilization in a real operational setting which agrees with the conclusion from the SP
run.

6. Conclusions and Future Plans
We have described a new system utilization benchmark, which we have successfully run on two

highly parallel production supercomputers. This test has provided quantitative data on the utilization and
scheduling efficiency of these systems, as well as useful insights on how to better manage them. The
most important conclusion is that certain system functionalities, such as checkpoint/restart, swapping
and migration, are critical for the highly efficient operation of large systems.

We have summarized here the results that we have obtained so far. We have however reached agree-
ment with some other research centers and vendors to run this test on their large systems, including
systems with different architectures, scheduling systems and operating priorities. In particular, we have
established plans to run the ESP test on a clustered SGI Origin system at NCSA, which has a total of 512
CPUs, and on a more tightly coupled SGI Origin system in the NAS facility at NASA Ames Research
Center, which has also has a total of 512 CPUs. In addition, we have now reached an agreement with
Compaq to run the ESP test on a system with 512 Alpha EV6/7 CPUs and a Quadrix interconnect. These
results will be presented at the SC2000 meeting in November.
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We also plan to introduce some variations on the ESP test, for example a variation with a job mix that
provides a priori runtimes to schedulers, so that they may exploit this information in achieving higher
utilization. The scalability of the test at larger number of processors and the difficulty with the tail end
of the test also needs to be addressed. Further, we intend to conduct a theoretical analysis of the ESP test
in the context of multiple resource requirements. Finally, we plan to make package the test in a freely
available software archive, together with facilities for simple installation and execution. In this way we
hope that this test will be of use to other sites and will help spur both industry and research to improve
system utilization on future systems.
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Figure 1: T3E Swap : Utilization Chronology
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Figure 2: T3E NoSwap : Utilization Chronology
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Figure 3: SP : Utilization Chronology

02040608010
0

0
0.

25
0.

5
0.

75
1

1.
25

1.
5

1.
75

2
2.

25

012
8

25
6

38
4

51
2

64
0

76
8

Utilization (%)

Partition Size

N
or

m
al

iz
ed

 T
im

e

12


