

Public Health Information Network Messaging System

An Overview of PHINMS

U.S. Department of Health & Human Services April 2003
Prepared by

Table Of Contents

Table Of Contents ..ii

Public Health Information Network Messaging System ...1

Functional Description ..2
Major Components...2
Message Sender .. …… ……….3
Message Receiver ..3
Message Handler..3

Message Sender...4
Initialization ...4
Polling……..4
Operations and Transformations..5
Route Mapping...5
Collaboration Protocol Agreement Parsing ...5
LDAP Public Key Searching ...6
Message Encryption and Signing...6
SSL and Authentication ...6
SOAP Call…..6
Response Parsing and Writing to Database Table or Descriptor...6

Exchanging Messages ..7
Message Receiver ..7
Message Handler..7
1. SOAP Request ...7
2. Mapping Service Action Attributes ...7
3. Payload Processing ..8
4. Sending Transport Status ...8

Using a Third Party to Route Messages ..9

1. Message Sender A Sends a Message to the Message Receiver ...10
2. Message Receiver to the Router Message Handler..11
3. Storing and Retrieving Messages from the Message Bin ..12
4. Message Sender B Receives the Message ...13

Message Receiver Handling Modes ...14
Synchronous Handling Mode ..14
Asynchronous Handling Mode ..14
Combination Handling Modes...14

Index ...16

Public Health Information Network Messaging System
This document provides an overview of the Public Health Information Network
Messaging System, PHINMS. It is intended for users, administrators and programmers
and it provides general information about how the PHINMS works. For installation and
configuration of the PHINMS software see the PHINMS Client Installation Guide and the
PHINMS Server Installation Guide.

Last Updated 04/23/03 1

Functional Description

Developed by the Centers for Disease Control and Prevention, The Public Health
Information Network Messaging System, PHINMS, uses the Electronic Business
Extensible Markup Language, ebXML, infrastructure to securely transmit public health
information over the Internet.

PHINMS is a generic, standards-based, interoperable and extensible message transport
system. It is platform-independent and loosely coupled with systems that produce
outgoing messages or consume incoming messages.

Within NEDSS, the National Electronic Disease Surveillance System, PHINMS
functions as a component as shown in the following diagram:

PHINMS is loosely coupled with the Message Transformation Component. It uses a
Transport Queue interface to read and write outgoing and incoming messages. The
Transport Queue is implemented as a database table or as a file system directory.

Major Components

PHINMS has three major components: the Message Sender, Message Receiver and the
Message Handler.

Last Updated 04/23/03 2

Message Sender

The Message Sender functions as the client. It is a Java application that runs on a
workstation or server. The Message Sender polls the Transport Queue for outgoing data.
The Transport Queue can be a database table or a file system directory. When outgoing
data is found, the Message Sender packages the data as an ebXML message and sends it
to the Message Receiver.

Message Receiver

The Message Receiver functions as a server. It is a servlet that runs on a J2EE compliant
application server. When the Message Receiver receives a message, it processes the
message envelope, decrypts the message, verifies the signature and then forwards the
message payload to the Message Handler or writes the message directly into a worker
queue. Afterward the Message Receiver waits for an application status from the Message
Handler and when it receives the status it forwards it to the Message Sender.

Message Handler

The Message Handler functions as a server. It is a servlet that runs on a J2EE compliant
application server. The Message Handler and the Message Receiver can reside on the
same system. When the Message Handler receives the message payload from the
Message Receiver it processes the message payload and then sends a response, which
contains the Message Handler’s status, back to the Message Receiver.

Last Updated 04/23/03 3

Message Sender

The Message Sender, the client, is an ebXML compliant Java application that resides on
the host that sends the message. The Message Sender performs the following:

 Initialization
 Polling
 Operations and Transformations

Initialization

During initialization the Message Sender does the following:

 Reads its configuration file and prompts the user for a single password.

 Uses the password to decrypt the user’s passwords file. The user’s password file

contains all of the passwords the Message Sender needs to perform
authentication. Other configuration files make references to the passwords within
this encrypted passwords file.

 Stores the decrypted passwords in memory and uses them during the Message

Sender’s uptime.

Polling

The Message Sender operates in one of two polling modes, which is specified in its
configuration file:

 Database Polling Mode – The application that creates messages writes data to a
Transport table. The Message Sender polls the Transport Queue table for
outgoing messages. Message responses are written back to the Transport Queue
table.

 File Based Polling Mode - The application that uses PHINMS creates file

descriptors in a files system directory. The Message Sender polls this directory
for file descriptors and, when it finds them, sends the corresponding file as an
ebXML compliant message and then creates a response descriptor.

Last Updated 04/23/03 4

Operations and Transformations

When the Message Sender finds new outgoing data, in a Transport Queue database table
or a file descriptor, it performs the following operations and transformations in the
diagram below:

Route Mapping
A configuration file, called routeMap, maps the route to its Collaboration Protocol
Agreement, the CPA. The route is specified in a field in the Message Queue database
table or as a field in the file descriptor that is associated with an outgoing message.

Collaboration Protocol Agreement Parsing
The CPA is read to determine the Message Receiver’s end point, and security attributes,
such as the authentication mode.

Last Updated 04/23/03 5

LDAP Public Key Searching
If the Message Sender has selected the encryption option and if the LDAP attributes of
the Message Receiver’s public key certificate are specified, an LDAP search is performed
and the Message Receiver's public key is retrieved.

Message Encryption and Signing
If the Message Sender has selected the message signature option, which is a field in the
Transport Queue table or a field in the file system directory, the message is signed using
the XML Signature standard.
A signature template configuration file, in XML format, is used to generate the signature.
Afterward, the message is encrypted using the XML Encryption standard. An encryption
template configuration file, in XML format, is used to generate the cipher text.

SSL and Authentication
Using SSL, the Message Sender connects to the Message Receiver’s end point, a URL
specified in the CPA, and then performs authentication with the Message Receiver. If the
CPA specifies a basic or custom authentication mode, the user name and password
parameters are read from the CPA and from an encrypted passwords file.

SOAP Call
The ebXML compliant message, which includes the file payload and message envelope,
is sent to the Message Receiver in a SOAP call.

Response Parsing and Writing to Database Table or Descriptor
The response from the Message Receiver is parsed for transport and application status
information. This information is written to the Transport Queue table or the
acknowledgement descriptor.

Last Updated 04/23/03 6

Exchanging Messages

Message Receiver
The Message Receiver is a servlet that runs on a J2EE compliant application server, such
as Tomcat or Silver Stream. The Message Receiver uses Java XML messaging libraries,
JAXM, to implement SOAP messaging.

Message Handler
The Message Handler is any web resource, such as a servlet, JSP, CGI or ASP that is
capable of:

 Parsing a MIME multi-part message which contains the payload and text with
data from the ebXML envelope such as the Message Sender's party ID, the
message manifest and so on.

 Performing base64 decoding.

The message exchange process is illustrated in the following diagram:

1. SOAP Request
When the Message Receiver receives a request from the Message Sender, the Message
Receiver parses the ebXML envelope and obtains the Service and Action attributes.
Every message is associated with a Service and Action attribute. This pair of attributes is
specified in the Message Sender, the client, as a file descriptor, which corresponds to an
outgoing file or a as a database record in a relational database table.

2. Mapping Service Action Attributes
Using the Service Map configuration file, the Message Receiver maps the Service and
Action attributes to the Message Handler or to a worker queue where it waits for a

Last Updated 04/23/03 7

Message Handler to poll for the message. After finding the Message Handler, the
Message Receiver determines if the message's payload is encrypted. If it is encrypted, the
Message Receiver tries to decrypt the payload and verify the signature.
If the payload is not signed or if the Message Receiver cannot decrypt the payload, it
sends the payload to the Message Handler as it is. If the Message Receiver successfully
decrypts the payload, it sends the decrypted plain text file to the Message Handler as an
attachment.

3. Payload Processing
When the Message Handler receives the payload, it processes it, and then sends a
response to the Message Receiver, which contains the application's status and other
information.

4. Sending Transport Status
The Message Receiver sends the transport and application status and any errors back to
the Message Sender in a synchronous manner, which means, the Message Receiver waits
for the Message Handler to finish processing the message payload before it sends a
response to the Message Sender.
The Message Sender waits for a response from the Message Receiver before it begins a
new message process.

Last Updated 04/23/03 8

Using a Third Party to Route Messages

When the Message Sender and the recipient, which can also be a Message Sender, are
behind separate firewalls, they need an intermediary to communicate. A Router Message
Handler acts as this intermediary. It "routes" the message to a temporary Message Bin
instead of reading it.
To retrieve the message from the Message Bin, the recipient polls the Message Receiver,
which communicates to the Router, which retrieves the message from the Message Bin.
This scenario is called "route-not-read."
If your Message Receiver and Message Handler reside on the same system, you do not
need to route messages through a third party.
The following diagram illustrates the "route-not-read” scenario. Message Sender A is
sending a message to Message Sender B. Both of these Message Senders are clients.

Last Updated 04/23/03 9

1. Message Sender A Sends a Message to the Message Receiver
The following flow chart describes the first portion of the "route-not-read"scenario.
Message Sender A sends the message to the Message Receiver.

Last Updated 04/23/03 10

2. Message Receiver to the Router Message Handler
The following flow chart describes the second portion of the "route-not-read"scenario
in which the Message Receiver sends the message to the Router Message Handler.

Last Updated 04/23/03 11

3. Storing and Retrieving Messages from the Message Bin
The following flow chart illustrates the two processes in the third portion of the
"route-not-read"scenario.
On the left side of the flow chart (If Action=Send), the Router Message Handler
receives a request from the Message Receiver to store a message in the Message Bin.
The right side (If Action=Poll) illustrates the Router Message Handler retrieving the
same message from the Message Bin.

Last Updated 04/23/03 12

4. Message Sender B Receives the Message
The following flow chart illustrates the fourth and last portion of the "route-not-
read"scenario. Message Sender B receives the message.

Last Updated 04/23/03 13

Message Receiver Handling Modes

In The Messaging System 2.0 the Message Receiver supports asynchronous and
synchronous message handling modes. You can implement either or both handling
modes.

Synchronous Handling Mode
Synchronous message handlers are usually servlets. However, they can also be
implemented as other web programs such as ASP and CGI scripts. In synchronous
handling mode the Message Receiver performs the following operations:

1. Receives an incoming message from the Message Sender.
2. Parses the incoming message envelope.
3. Maps the Service and Action attributes on the message envelope to a message

handler’s URL.
4. Posts the message payload to the message handler’s URL.
5. Sends the transport and application status to the Message Sender that sent the

incoming message.

Asynchronous Handling Mode
In the asynchronous handling mode the Message Receiver performs the following
operations:

1. Receives an incoming message from the Message Sender.
2. Parses the incoming message envelope.
3. Maps the Service and Action attributes to one or more worker queues.
4. Drops the payload and meta data into the worker queue.
5. Sends a transport status back to the Message Sender.

Afterward an asynchronous message handler application polls its worker queue to
receive the incoming message.

Combination Handling Modes

The Message Receiver can simultaneously accommodate the asynchronous and
synchronous handling modes. To use a combination of both handling modes the Message
Receiver does the following:

1. Receives an incoming message from the Message Sender.
2. Parses the incoming message envelope, decrypts the payload and then verifies the

signature.
3. Looks in the servicemap.xml file for an entry that corresponds to the Service and

Action attributes in the envelope of the incoming message.
4. Determines whether the entry type is servlet or workerqueue.
5. If the entry type is servlet the Message Receiver does the following:

Last Updated 04/23/03 14

 Sends the payload to a message handler.
 Waits for a response from the message.
 Sends a synchronous response to the Message Sender, which includes the

transport and application status.
6. If the entry type is workerqueue, the Message Receiver writes the payload to a

set of worker queues, which are defined in the servicemap.xml file, and then it
sends a synchronous response to the Message Sender, which contains only the
transport status.

Last Updated 04/23/03 15

Index

Collaboration Protocol Agreement, 5
Electronic Business Extensible Markup

Language, 2
Initialization, 4
J2EE, 3, 7
Java, 3, 4, 7
JAXM, 7
LDAP, 6
Message Bin, 9, 12
Message Handler, 2, 3, 7, 8, 9, 11, 12
Message Queue, 2, 3, 4, 5, 6
Message Receiver, 2, 3, 5, 6, 7, 8, 9, 10,

11, 12
Message Sender, 2, 3, 4, 5, 6, 7, 8, 9, 10,

13

National Electronic Disease Surveillance
System, 2

Operations and Transformations, 4, 5
payload, 3, 6, 7, 8
Polling, 4
public key, 6
public key certificate, 6
routeMap, 5
route-not-read, 10, 11, 13
Router, 9, 11, 12
Service Map, 7
Silver Stream, 7
SSL, 6
Tomcat, 7
XML Signature, 6

Last Updated 04/23/03 16

