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PEER REVIEW

A peer review panel was assembled for acetone. The panel consisted of the following members:

1 . Dr. Elizabeth Jeffery, Associate Professor of Toxicology, University of Illinois, Urbana, Illinois

2 . Dr. Peter G. Lacouture, Associate Director, Clinical Research, Purdue Frederick Company,
Norwalk, Connecticut

3 . Dr. John Morris, Associate Professor of Pharmacology and Toxicology, Toxicology Program,
School of Pharmacy, University of Connecticut, Storrs, Connecticut.

These experts collectively have knowledge of acetone’s physical and chemical properties, toxicokinetics,
key health end points, mechanisms of action, human and animal exposure, and quantification
of risk to humans. All reviewers were selected in conformity with the conditions for peer review
specified in Section 104(i)( 13) of the Comprehensive Environmental Response, Compensation, and
Liability Act, as amended.

Scientists from the Agency for Toxic Substances and Disease Registry (ATSDR) have reviewed the
peer reviewers’ comments and determined which comments will be included in the profile. A listing
of the peer reviewers’ comments not incorporated in the profile, with a brief explanation of the
rationale for their exclusion, exists as part of the administrative record for this compound. A list of
databases reviewed and a list of unpublished documents cited are also included in the administrative
record.

The citation of the peer review panel should not be understood to imply its approval of the profile’s
final content. The responsibility for the content of this profile lies with the ATSDR.
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1. PUBLIC HEALTH STATEMENT

This public health statement tells you about acetone and the effects of exposure. This

information is important because this chemical may harm you.

The Environmental Protection Agency (EPA) has identified 1,350 hazardous waste sites as the

most serious in the nation. These sites make up the National Priorities List (NPL) and are

targeted for long-term federal clean-up. Acetone has been found in at least 560 NPL sites.

However, it’s unknown how many NPL sites have been evaluated for this substance.

As EPA tests more sites, the sites with acetone may increase. This is important because

exposure to acetone may harm you and because these sites are or may be sources of exposure.

When a large industrial plant or a small container releases a substance, it enters the

environment. This release does not always lead to exposure. You are exposed to a substance

only when you come in contact with it by breathing, eating, touching, or drinking.

If you are exposed to acetone, many factors determine if you’ll be harmed and how badly.

These factors include the dose (how much), the duration (how long), and how you’re exposed.

You must also consider the other chemicals you’re exposed to and your age, sex, nutritional

status, family traits, lifestyle, and state of health.

1.1 WHAT IS ACETONE?

Acetone is a chemical that is found naturally in the environment and is also produced by

industries. Low levels of acetone are normally present in the body from the breakdown of

fat; the body can use it in normal processes that make sugar and fat (see Section 1.4).

Acetone is a colorless liquid with a distinct smell and taste. People begin to smell acetone in

air at 100 to 140 parts of acetone in a million parts of air (ppm), though some can smell it at

much lower levels. Most people begin to detect the presence of acetone in water at 20 ppm.

Acetone evaporates readily into the air and mixes well with water. Most acetone produced is
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used to make other chemicals that make plastics, fibers, and drugs. Acetone is also used to

dissolve other substances. You will find further information on the physical and chemical

properties of acetone, and its production and use in Chapters 3 and 4.

1.2 WHAT HAPPENS TO ACETONE WHEN IT ENTERS THE ENVIRONMENT?

Acetone enters the air, water, and soil as a result of natural processes and human activities.

Acetone occurs naturally in plants, trees, volcanic gases, and forest fires. People and animals

breathe out acetone produced from the natural breakdown of body fat. Acetone is also

released during its manufacture and use, in exhaust from automobiles, and from tobacco

smoke, landfills, and certain kinds of burning waste materials. The levels of acetone in soil

increase mainly because of acetone-containing wastes being buried in landfills. Acetone is

present as a gas in air. Some acetone in air is lost when it reacts with sunlight and other

chemicals. Rain and snow also remove small amounts of acetone from the atmosphere and,

in the process, deposit it on land and water. About half the acetone in a typical atmosphere

at any time will be lost in 22 days. Microbes (minute life forms) in water remove some

acetone from water. Some acetone in water will evaporate into air. About half the acetone in

a stream will be removed from water in less than a day. Fish do not store acetone from

water in their bodies. Microbes in soil remove part of the acetone in soil. Some is lost from

soil by evaporation. Acetone molecules do not bind tightly to soil. Rainwater and melted

snow dissolve acetone and carry it deeper into the soil to groundwater. You will find further

information about the fate and movement of acetone in the environment in Chapter 5.

1.3 HOW MIGHT I BE EXPOSED TO ACETONE?

Your body makes small amounts of acetone. You can be exposed to a small amount of

acetone by breathing air, drinking water, and eating food with acetone. You can also be

exposed by contact with household chemicals with acetone. Several consumer products,

including certain nail polish removers, particle board, some paint removers, many liquid or

paste waxes or polishes, and certain detergents or cleansers, contain acetone. You can also be

exposed to acetone if you are exposed to isopropyl alcohol, because isopropyl alcohol changes
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to acetone in the body. The level of acetone in air and water is generally low. The amount

of acetone in the air of cities is generally higher than in remote and rural areas. The typical

level of acetone in the air of cities in the United States is about 7 parts of acetone per billion

parts of air (ppb). The level of acetone in air inside homes is usually slightly higher than in

outside air (8 ppb versus 7 ppb). This is because of household chemical use inside homes.

Acetone in drinking water is so low that its levels have not been measured in many samples.

In a national survey, the acetone level in drinking water from Seattle, Washington, was 1 ppb.

Acetone occurs naturally in many fruits and vegetables. The amount of acetone in food does

not increase because of processing or packaging. The average amount of acetone an adult in

the United States gets from food is not known.

People who work in certain industries that process and use acetone can be exposed to higher

levels than the general populace. These industries include certain paint, plastic, artificial

fiber, and shoe factories. Professional painters and commercial and household cleaners are

also likely to breathe or touch higher acetone concentrations than the general population. As

a member of the general public, you may be exposed to higher than normal levels of acetone

if you smoke cigarettes, frequently use acetone nail polish removers, live near landfill sites

that contain acetone, live near busy roadways (because automobile exhaust contains acetone),

or live near other facilities that are known to release acetone, such as incinerators. The

exposure from these sources will be mainly from breathing air that contains acetone or by

direct skin contact with it. In addition, children can be exposed to acetone by eating dirt or

by placing dirty hands in their mouths after exposing their skin to dirt from landfill sites.

You will find further information about acetone exposure in Chapter 5.

1.4 HOW CAN ACETONE ENTER AND LEAVE MY BODY?

Your body normally contains some acetone because it’s made during the breakdown of fat.

Your body will make more acetone from body fat if you are on a low-fat diet. In addition to

the acetone that your body makes from normal processes, acetone can enter your body if you

breathe air that contains acetone, drink water or eat food that contains acetone, or if you

touch liquid acetone or soil that contains acetone.
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The bloodstream absorbs acetone rapidly and completely from the lungs and stomach. The

bloodstream can also absorb acetone from the skin, but less rapidly than from the lungs and

stomach. Blood carries acetone to all body organs, but it does not stay there very long.

The liver breaks down acetone to chemicals that are not harmful. The body uses these

chemical to make glucose (sugar) and fats that make energy for normal body functions. The

breakdown of sugar for energy makes carbon dioxide that leaves your body in the air you

breathe out. These are normal processes in the body.

Not all the acetone that enters your body from outside sources is broken down. The amount

that is not broken down leaves your body mostly in the air that you breathe out. You also

breathe out more carbon dioxide than normal if you are exposed to acetone from sources

outside the body because more carbon dioxide is made from the extra acetone.

Only a small amount of acetone that is not broken down leaves the body in the urine. The

acetone that is not used to make sugar leaves your body within a few days in the air you

breathe out and in the urine. The amount of acetone that enters and leaves your body

depends on how much you’re exposed to and for how long. The higher the level of acetone

and the longer that you are exposed will cause acetone to leave your body more slowly, but

almost all the acetone will leave your body within 3 days after your exposure stops. If you

exercise or work while exposed to acetone in air, more will enter your lungs because you

breathe faster and more deeply during exercise. For more information on how acetone enters

and leaves the body, see Chapter 2.

1.5 HOW CAN ACETONE AFFECT MY HEALTH?

As mentioned in Section 1.4, low levels of acetone are normally present in the body from the

breakdown of fat. The body uses acetone in normal processes that make sugar and fats that

make energy for normal body functions. Many conditions can lead to higher-than-average

amounts of acetone in the body. For example, babies, pregnant women, diabetics, and people

who exercise, diet, have physical trauma, or drink alcohol can have higher amounts of acetone
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in their bodies. These higher amounts of acetone usually don’t cause health problems. In

addition, acetone can prevent convulsions.

Most of the information on how acetone affects human health comes from medical exams of

workers on a single workday; from lab experiments in humans exposed to acetone in air for a

few days; and from cases of people who swallowed acetone-based glue or fingernail polish

remover.

Workers and people exposed to acetone in the lab complained that acetone irritated their

noses, throats, lungs, and eyes. Some people feel this irritation at levels of 100 ppm acetone

in the air, and more people feel the irritation as the level in air increases. The workers who

complained of irritation were exposed to levels of 900 ppm or more. Workers exposed to

acetone at 12,000 ppm or higher also complained of headache, lightheadedness, dizziness,

unsteadiness, and confusion depending on how long they were exposed (from 2 minutes to

4 hours). Two workers exposed for 4 hours became unconscious.

In addition, some people who had casts applied with acetone were exposed to acetone that

evaporated into air during and after the casts were applied. These patients became nauseous,

vomited blood, and became unconscious. These cases happened many years ago; modern

hospitals have different methods that don’t use acetone when casts are applied. Some people

exposed to acetone in the air at about 250 ppm for several hours in the lab had headaches and

lacked energy, and they also had some mild behavioral effects. These effects showed up in

tests of how long it takes to react to a visual stimulus or the ability to hear different sounds.

Some people exposed to 500 ppm in the air for several hours in the lab had effects on the

blood, but other studies showed no effects on the blood at even higher exposure levels.

Some women exposed to 1,000 ppm for about 8 hours in a lab said that their periods came

earlier than expected. Workers are not usually exposed to levels higher than 750 ppm

anymore because of current government regulations. The regulation says workroom air

should contain no more than an average of 750 ppm. Most people can smell acetone in the

air at 100 to 140 ppm; that means you will probably smell acetone before you feel effects like
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headache and confusion. Levels of acetone in air in rural areas and in cities (less than 8 ppb)

are generally lower than this.

People who swallowed acetone or substances that contained acetone became unconscious, but

they recovered in the hospital. The amount of acetone that these people swallowed was not

always known, but one man swallowed about 2,250 milligrams of pure acetone per kilogram

of body weight (2,250 mg/kg). In addition to becoming unconscious, he had tissue damage in

his mouth and he later developed a limp, which eventually cleared up, and symptoms similar

to diabetes (excessive thirst, frequent urination). The amount of acetone in water or food

would never be high enough to cause these effects, but people, especially children, could

accidentally swallow enough acetone in nail polish remover or some household cleaners to

cause such effects.

In a lab experiment, people who had liquid acetone applied directly on their skin and held

there for a half hour developed skin irritation. When the skin was looked at under a

microscope, some of the skin cells were damaged.

Animals briefly exposed to high levels of acetone in the air also had lung irritation and

became unconscious; some died. Exposure at lower levels for short periods also affected

their behavior. Pregnant animals that were exposed to high levels of acetone in air had

livers that weighed more than usual and had fewer fetuses. The fetuses weighed less than

normal and had delayed bone development. We do not know how exposure to acetone in air

for longer than 2 weeks affects animals.

Animals given large amounts of acetone to swallow or drink for short periods had bone

marrow hypoplasia (fewer new cells being made), degeneration of kidneys, heavier than

normal livers and bigger liver cells, and collapse and listlessness. Pregnant mice that

swallowed acetone had lower body weights and produced fewer newborn mice. More of the

newborns of mice that had swallowed acetone died than newborns of mice that were not

given acetone.
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Male rats that swallowed or drank even small amounts of acetone for long periods had

anemia and kidney disease. The female rats did not have anemia, but they had kidney disease

when they swallowed a much larger amount of acetone than the male rats swallowed. The

female rats had livers and kidneys that weighed more than normal, and so did the male rats,

but only when they swallowed larger amounts of acetone than the females swallowed. The

male rats also had abnormal sperm. The female rats did not have any effects in their

reproductive organs. Rats also had signs that acetone caused effects on their nervous systems.

Acetone is irritating to the skin of animals when it is placed directly on their skin, and it

burns their eyes when placed directly in their eyes. One kind of animal (guinea pigs) even

developed cataracts in their eyes when acetone was placed on their skin.

We do not know whether many of the effects seen in animals would occur in humans.

People exposed to acetone were not examined for some effects or could not be examined for

effects that can be seen only by looking at internal organs under a microscope. The findings

in animals show that male rats are more likely than female rats to get blood and kidney

disease and effects on reproductive organs after exposure to acetone. This suggests that men

might be more likely to have effects of exposure to acetone than women.

One effect of acetone seen in animals is an increase in the amount of certain enzymes

(chemicals in the body that help break down natural substances in the body and chemicals

that enter the body). The increase in these enzymes caused by acetone exposure can make

some chemicals more harmful. This is one reason that people should be concerned about

being exposed to acetone; exposure is very likely to mixtures of chemicals in the

environment, near hazardous waste sites, or in the workplace is very likely.

Acetone does not cause skin cancer in animals when it is applied to their skin. We don’t

know whether acetone would cause cancer after breathing or swallowing it for long periods,

because no tests have been done. The Department of Health and Human Services and the

International Agency for Research on Cancer have not classified acetone for carcinogenic
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effects. The EPA has determined that acetone is not classifiable as to its human

carcinogenicity.

1.6 IS THERE A MEDICAL TEST TO DETERMINE WHETHER I HAVE BEEN
EXPOSED TO ACETONE?

Acetone can be measured in the air you breathe out, in the blood, and in the urine. Methods

for measuring acetone in breath, blood, and urine are available at most modern testing labs.

Doctors’ offices may not have the necessary equipment, but your doctor can take blood and

urine samples and send them to a testing lab. The measurement of acetone in breath, blood,

and urine can determine whether you have been exposed to acetone if the levels are higher

than those normally seen. They can even predict how much acetone you were exposed to.

However, normal levels of acetone in breath, blood, and urine can vary widely depending on

many factors, such as infancy, pregnancy, lactation, diabetes, physical exercise, dieting,

physical trauma, and alcohol. The odor of acetone on your breath can alert a doctor that you

have been exposed to acetone. An odor of acetone on your breath could also mean that you

have diabetes. Because acetone leaves your body within a few days after exposure, these

tests can tell only that you have been exposed to acetone within the last 2 or 3 days. These

tests cannot tell whether you will experience any health effects related to your exposure.

1.7 WHAT RECOMMENDATIONS HAS THE FEDERAL GOVERNMENT MADE TO
PROTECT HUMAN HEALTH?

EPA requires that spills of 5,000 pounds or more of acetone be reported. To protect workers,

the Occupational Safety and Health Administration (OSHA) has set a legal limit of 750 ppm

of acetone in workroom air. The regulation means that the workroom air should contain no

more than an average of 750 ppm of acetone over an 8-hour working shift or over a 40-hour

workweek.
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1.8 WHERE CAN I GET MORE INFORMATION?

If you have any more questions or concerns, please contact your community or state health or

environmental quality department or:

Agency for Toxic Substances and Disease Registry

Division of Toxicology

1600 Clifton Road NE, E-29

Atlanta, Georgia 30333

404-639-6000

This agency can also tell you the location of occupational and environmental health clinics.

These clinics specialize in the recognition evaluation, and treatment of illness resulting from

exposure to hazardous substances.
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2.1 INTRODUCTION

The primary purpose of this chapter is to provide public health officials, physicians, toxicologists, and

other interested individuals and groups with an overall perspective of the toxicology of acetone. It

contains descriptions and evaluations of toxicological studies and epidemiological investigations and

provides conclusions, where possible, on the relevance of toxicity and toxicokinetic data to public

health.

A glossary and list of acronyms, abbreviations, and symbols can be found at the end of this profile.

2.2 DISCUSSION OF HEALTH EFFECTS BY ROUTE OF EXPOSURE

To help public health professionals and others address the needs of persons living or working near

hazardous waste sites, the information in this section is organized first by route of exposure -

inhalation, oral, and dermal; and then by health effect - death, systemic, immunological, neurological,

reproductive, developmental, genotoxic, and carcinogenic effects. These data are discussed in terms of

three exposure periods - acute (14 days or less), intermediate (15-364 days), and chronic (365 days

or more).

Levels of significant exposure for each route and duration are presented in tables and illustrated in

figures. The points in the figures showing no-observed-adverse-effect levels (NOAELs) or lowest- observed-

adverse-effect levels (LOAELs) reflect the actual doses (levels of exposure) used in the

studies. LOAEL have been classified into “less serious” or “serious” effects. “Serious” effects are

those that evoke failure in a biological system and can lead to morbidity or mortality (e.g., acute

respiratory distress or death). “Less serious” effects are those that are not expected to cause significant

dysfunction or death, or those whose significance to the organism is not entirely clear. ATSDR

acknowledges that a considerable amount of judgment may be required in establishing whether an end

point should be classified as a NOAEL, “less serious” LOAEL, or “serious” LOAEL, and that in some

cases, there will be insufficient data to decide whether the effect is indicative of significant

dysfunction. However, the Agency has established guidelines and policies that are used to classify
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these end points. ATSDR believes that there is sufficient merit in this approach to warrant an attempt

at distinguishing between “less serious” and “serious” effects. The distinction between “less serious”

effects and “serious” effects is considered to be important because it helps the users of the profiles to

identify levels of exposure at which major health effects start to appear. LOAELs or NOAELs should

also help in determining whether or not the effects vary with dose and/or duration, and place into

perspective the possible significance of these effects to human health.

The significance of the exposure levels shown in the Levels of Significant Exposure (LSE) tables and

figures may differ depending on the user’s perspective. Public health officials and others concerned

with appropriate actions to take at hazardous waste sites may want information on levels of exposure

associated with more subtle effects in humans or animals (LOAELs) or exposure levels below which

no adverse effects (NOAELs) have been observed. Estimates of levels posing minimal risk to humans

(Minimal Risk Levels or MRLs) may be of interest to health professionals and citizens alike.

Estimates of exposure levels posing minimal risk to humans (Minimal Risk Levels or MRLs) have

been made for acetone. An MRL is defined as an estimate of daily human exposure to a substance

that is likely to be without an appreciable risk of adverse effects (noncarcinogenic) over a specified

duration of exposure. MRLs are derived when reliable and sufficient data exist to identify the target

organ(s) of effect or the most sensitive health effect(s) for a specific duration within a given route of

exposure. MRLs are based on noncancerous health effects only and do not consider carcinogenic

effects. MRLs can be derived for acute, intermediate, and chronic duration exposures for inhalation

and oral routes. Appropriate methodology does not exist to develop MRLs for dermal exposure.

Although methods have been established to derive these levels (Barnes and Dourson 1988; EPA

1989a), uncertainties are associated with these techniques. Furthermore, ATSDR acknowledges

additional uncertainties inherent in the application of the procedures to derive less than lifetime MRLs.

As an example, acute inhalation MRLs may not be protective for health effects that are delayed in

development or are acquired following repeated acute insults, such as hypersensitivity reactions,

asthma, or chronic bronchitis. As these kinds of health effects data become available and methods to

assess levels of significant human exposure improve, these MRLs will be revised.

A User’s Guide has been provided at the end of this profile (see Appendix A). This guide should aid

in the interpretation of the tables and figures for Levels of Significant Exposure and the MRLs.
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2.2.1 Inhalation Exposure

2.2.1.1 Death
In a retrospective mortality study of 948 employees (697 men, 251 women) of a cellulose fiber plant

where acetone was used as the only solvent, no significant excess risk of death from any cause (all

causes, malignant neoplasm, circulatory system disease, ischemic heart disease) compared with rates

for the U.S. general population was found (Ott et al. 1983a, 1983b). The workers had been employed

at the plant for at least 3 months to 23 years. Industrial hygiene surveys found that median time-weighted-

average acetone concentrations were 380, 770, and 1,070 ppm based on job categories.

As shown in Table 2-l and Figure 2-1, high concentrations of acetone were required to produce death

in animals. An 8-hour LC50 value of 21,091 ppm and a 4-hour LC50 value of 31,994 ppm were found

for female rats (Pozzani et al. 1959). Inhalation exposure to acetone for a few hours has resulted in

death in rats at concentrations ranging from 16, inhalation exposure to acetone for a few hours has

resulted in death in rats at concentrations ranging from 16,000 to 50,600 ppm (Bruckner and Peterson

1981a; Smyth et al. 1962) and in guinea pigs from 10,000 to 50,000 ppm (Specht et al. 1939). In

general, higher concentrations of acetone resulted in death sooner than lower concentrations. That

very high concentrations of acetone are required to cause death of animals is reinforced by the fact

that no deaths were reported for rats exposed to acetone at 4,210 for 8 hours to 126-129 ppm for

25 minutes (Haggard et al. 1944) or mice exposed to <84,194 ppm for 8 hours (Mashbitz et al. 1936).

No studies were located regarding death of animals after intermediate- or chronic-duration inhalation

exposure to acetone.

2.2.1.2 Systemic Effects

The systemic effects of inhalation exposure to acetone in humans and animals are discussed below.

The highest NOAEL values and all LOAEL values for each systemic effect from each reliable study

are recorded in Table 2-l and plotted in Figure 2-l.

Respiratory Effects. The only effect on the respiratory system observed in humans exposed to

acetone vapors is irritation of the nose, throat, trachea, and lungs. The irritating properties of acetone

in humans have been noted both in workers who were exposed to acetone occupationally (Raleigh and
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McGee 1972; Ross 1973) and in volunteers under controlled laboratory conditions (Matsushita et al.

1969a, 1969b; Nelson et al. 1943). Complaints of irritation were reported by workers with average

exposures to acetone in the workroom of ≥901 ppm (Raleigh and McGee 1972; Ross 1973). In

controlled situations, the volunteers had been asked to give their subjective complaints, and some of

the volunteers reported that exposure to 100 ppm for 6 hours was irritating, with more subjects

reporting irritation at increasing exposure levels (Matsushita et al. 1969b). Subjective symptoms also

included the loss of the ability to smell acetone as exposure proceeded. In another controlled

experiment, the majority of subjects, although exposed for only 3-5 minutes, estimated that they could

tolerate an exposure level of 200 ppm for an 8-hour workshift (Nelson et al. 1943). Pulmonary

function testing of volunteers exposed <1,250 ppm acetone intermittently for various durations in a

complex protocol revealed no abnormalities caused by the exposure (Stewart et al. 1975). The

volunteers did experience throat irritation sporadically.

Exposure of animals to much higher concentrations of acetone than those reported in humans has

resulted in respiratory effects. Pulmonary congestion, edema, and hemorrhage of the lungs were

observed in guinea pigs that died after exposure to 10,000 ppm continuously for 1 or 2 days, to

20,000 ppm continuously for 1 day, or to 50,000 ppm for a few hours (Specht et al. 1939). The

congestion and edema were attributed to the irritating effects of acetone on the mucosa. The

hemorrhage may have been a consequence of death. Respiratory rates also decreased in the guinea

pigs during exposures, but the decrease was probably a consequence of the narcotic effects of acetone

(see Section 2.2.1.4). In mice exposed to acetone for 10 minutes, the calculated concentration of

acetone that decreased the respiratory rate 50% (RC50) was 77,516 ppm (Kane et al. 1980). The

decrease in respiratory rate was considered to be due to sensory irritation, but adaptation to the irritant

properties developed. The RC50 for acetone was higher than the values calculated for other solvents,

indicating that acetone is a weak irritant. In mice exposed to 6,000 ppm acetone for 0.5 hours/day for

1 or 5 days, no effects on the time of inspiration, time of expiration, time between breaths, or tidal

volume were found (Schaper and Brost 1991). In addition, acetone exposure caused no changes in

lung weight, lung volume displacement, or histological evidence of pulmonary pathology.

Histological examination of the lungs of rats exposed intermittently to a high concentration of acetone

(19,000 ppm) for 2-8 weeks revealed no evidence of treatment-related lesions (Bruckner and Peterson

1981b).



ACETONE 25

2. HEALTH EFFECTS

Cardiovascular Effects. Information regarding cardiovascular effects in humans following

inhalation exposure to acetone is limited. High pulse rates (120-160/minute) were commonly found in

patients exposed to acetone by inhalation and/or dermally after application of casts for which acetone

was used in the setting solution (Chatterton and Elliott 1946; Hift and Pate1 1961; Pomerantz 1950;

Renshaw and Mitchell 1956). In a controlled laboratory study using a complex protocol,

electrocardiography of volunteers exposed to <1,250 ppm acetone intermittently for various durations

revealed no alterations, compared with their preexposure electrocardiograms (Stewart et al. 1975). A

retrospective mortality study of 948 workers (697 men, 251 women) employed for at least 3 months to

23 years at a cellulose fiber plant where acetone was used as the only solvent found no significant

excess risk of death from circulatory system disease or ischemic heart disease compared with rates for

the U.S. general population (Ott et al. 1983a, 1983b). Industrial hygiene surveys found that median

time-weighted-average acetone concentrations were 380,770, and 1,070 ppm based on job categories.

Reduced heart rates were observed in guinea pigs exposed to various high concentrations of acetone

for various acute durations (Specht et al. 1939), but were probably a consequence of the narcotic

effects of acetone (Section 2.2.1.4). Necropsy of the guinea pigs revealed no effects on the heart, but

histological examination was not performed. Histological examination of the hearts of rats exposed

intermittently to a high concentration of acetone (19,000 ppm) for 2-8 weeks revealed no evidence of

treatment-related lesions (Bruckner and Peterson 1981b).

Gastrointestinal Effects. Case reports have described vomiting of blood and gastrointestinal

hemorrhage in patients who had hip casts applied with acetone present in the setting fluid (Chatterton

and Elliott 1946; Fitzpatrick and Claire 1947; Harris and Jackson 1952; Hift and Pate1 1961;

Pomerantz 1950; Renshaw and Mitchell 1956; Strong 1944). As the vomitus contained blood several

hours after vomiting first commenced, the gastrointestinal hemorrhage may have been due to the

trauma of repeated vomiting. These patients had a strong odor of acetone in their breath, and acetone

was detected in the urine and blood. These patients were exposed to acetone by inhalation during cast

application and from evaporation from the casts after the applications. In addition, the possibility of

contribution from dermal exposure could not be ruled out. In one case, exposure was considered to be

mainly dermal (Hift and Pate1 1961).
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Necropsy of guinea pigs that died after exposure to various high concentrations of acetone for various

acute durations revealed no effects on the stomach (Specht et al. 1939), but histological examination

was not performed.

Hematological Effects. In a health evaluation survey of 168 men and 77 women employed at a

cellulose fiber production plant where acetone was used as the only solvent, all hematological

parameters were within normal limits (Ott et al. 1983a, 1983c). The workers had been employed at

the plant for at least 3 months to 23 years. Industrial hygiene surveys found median time-weighted-

average acetone concentrations of 380, 770, and 1,070 ppm, based on job categories. Hematological

effects have been observed in humans after inhalation exposure to acetone in controlled laboratory

studies of volunteers. Statistically significant increased white blood cell counts and decreased

phagocytic activity of neutrophils, compared with controls, were observed in the volunteers after a

6-hour exposure or repeated 6-hour exposures for 6 days to 500 ppm (Matsushita et al. 1969a, 1969b).

No significant difference was seen in hematological parameters in the volunteers exposed to 250 ppm

compared with controls. In contrast, hematological findings were within normal limits in volunteers

exposed to 500 ppm for 2 hours (DiVincenzo et al. 1973) or <1,250 ppm acetone repeatedly for

l-7.5 hours/day for as long as 6 weeks (Stewart et al. 1975).

In animals, no studies were located regarding effects on the formed elements of the blood after

inhalation exposure to acetone.

Musculoskeletal Effects. No studies were located regarding musculoskeletal effects in humans or

animals after inhalation exposure to acetone.

Hepatic Effects. No indication that acetone caused hepatic effects in humans was found in

controlled studies of volunteers. Clinical chemistry parameters indicative of liver injury (e.g., serum

alanine aminotransferase, aspartate aminotransferase, lactic dehydrogenase, alkaline phosphatase,

ornithine carbamoyl transferase, cholesterol, triglycerides, bilirubin, lipids, etc.) were within normal

limits in volunteers exposed to acetone at concentrations of 500 ppm for 2 hours (DiVincenzo et al.

1973) or 11,250 ppm intermittently for various durations (Stewart et al. 1975). In a health evaluation

survey of 168 men and 77 women employed for at least 3 months to 23 years at a cellulose fiber

production plant where acetone was used as the only solvent, all clinical blood chemistry parameters

(aspartate aminotransferase, alanine aminotransferase, lactic dehydrogenase, alkaline phosphatase, total
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bilirubin, and albumin) were within normal limits (Ott et al. 1983a, 1983c). Industrial hygiene surveys

found median time-weighted-average acetone concentrations of 380, 770, and 1,070 ppm, based on job

categories.

Fatty deposits were found in the livers upon autopsy of guinea pigs that died after exposure to high

concentrations of acetone for various acute durations (Specht et al. 1939). In contrast, intermittent

exposure of rats to a high concentration of acetone (19,000 ppm) for 2-8 weeks did not produce signs

of liver toxicity, assessed by the measurement of serum aspartate aminotransferase, lactic

dehydrogenase, liver weights, and histological examination of the liver (Bruckner and Peterson 1981b).

Inhalation exposure to acetone at lower concentrations does not appear to be toxic to the liver of

animals; however, acetone potentiates the hepatotoxicity induced by some other chemicals (see Section

2.6). The mechanism by which acetone exerts the potentiation is through the induction or increased

activity of liver microsomal monooxygenases, particularly enzymes associated with cytochrome

P-450IIEl (see Sections 2.35 and 2.6). Most of the studies showing enzyme induction have been

conducted by the oral route (see Section 2.2.2.2). In acute inhalation studies in rats, acetone exposure

resulted in statistically significant increases in the liver concentration of cytochrome P-450, the activity

of ethoxycoumarin O-deethylase (associated with P-450IIBl), and the activity of glutathione-

S-transferase, and decreased the liver free glutathione content (Brondeau et al. 1989; Vainio and

Zitting 1978). Induction of microsomal enzymes is considered a normal physiological response to

xenobiotics, rather than an adverse effect.

In a developmental study, mice exposed intermittently to 6,600 ppm acetone on gestational days 6-19

had significantly increased absolute and relative liver weights compared with controls (p<0.05) (NTP

1988). Increased liver weight is considered a sign of maternal toxicity in developmental studies. The

increased liver weight could have been associated with enzyme induction.

Renal Effects. No indication that acetone caused renal effects in humans was found in controlled

studies of volunteers. Clinical blood chemistry parameters indicative of kidney injury (e.g., blood urea

nitrogen, uric acid) and urinalysis parameters were within normal limits in volunteers exposed to

acetone at concentrations of 500 ppm for 2 hours (DiVincenzo et al. 1973) or ≤1,250 ppm

intermittently for various durations (Stewart et al. 1975).
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The only indication that inhalation exposure to acetone causes renal effects in animals was the

consistent finding of congestion or distention of renal tubules or glomeruli in guinea pigs that died

after exposure to high concentrations of acetone for various acute durations (Specht et al. 1939). Rats

exposed intermittently to 19,000 ppm for <8 weeks had significantly decreased kidney weights

(p<0.0l) after 4 weeks of exposure compared with controls, but not after 2 or 8 weeks of exposure or

at 2 weeks postexposure (Bruckner and Peterson 1981b). Blood urea nitrogen levels were not affected

by acetone exposure, and no evidence of histological changes in the kidneys were found. In the

absence of other evidence of renal toxicity, the sporadically reduced kidney weight cannot be

considered an adverse effect.

Derma/Ocular Effects. Eye irritation is a common complaint of workers exposed to acetone

vapors occupationally (Raleigh and McGee 1972) and in volunteers exposed under controlled

conditions (Matsushita et al. 1969a, 1969b; Nelson et al. 1943; Ross 1973). In a report of the

experience at the Tennessee Eastman Corporation on acetone concentrations not associated with injury

presented at the American Conference of Governmental Industrial Hygienists (ACGIH) Tenth Annual

Meeting, it was noted that acetone is mildly irritating to the eyes at 2,000-3,000 ppm, with no

irritation persisting after exposure ceases (Sallee and Sappington 1949). Lacrimation has also been

observed in guinea pigs exposed to acetone vapors (Specht et al. 1939). Since eye irritation is due to

direct contact of the eyes with the vapor rather than a true systemic effect of inhalation of the vapor,

this and other dermal/ocular effects resulting from direct contact with acetone are discussed in

Section 2.3.3.

Other Systemic Effects. No studies were located regarding other systemic effects in humans after

inhalation exposure to acetone.

Other systemic effects observed in animals after inhalation exposure to acetone include body weight

changes. In a developmental study, rats exposed to acetone at 11,000 ppm, but not mice exposed to

6,600 ppm, intermittently during gestation had significantly (p<0.05) reduced body weight gain from

gestational day 14 onward and reduced extragestational body weight on gestational day 20 (NTP

1988). However, in a behavioral study, no effect on body weight gain was observed in female rats

exposed to 16,000 ppm intermittently for 2 weeks (Goldberg et al. 1964). It is possible that the

condition of pregnancy made the rats more susceptible to body weight reduction. In addition, marked

congestion and hemorrhage of the spleen were observed upon autopsy of guinea pigs that died after
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exposure to various high concentrations of acetone for various acute durations (Specht et al. 1939).

These effects could have been the consequence of death.

2.2.1.3 Immunological Effects

The only information regarding immunological effects in humans after inhalation exposure to acetone

is the finding of statistically significant increased white blood cell counts, increased eosinophil counts,

and decreased phagocytic activity of neutrophils in volunteers exposed to 500 ppm for a single 6-hour

exposure or intermittently for 6 days (Matsushita et al. 1969a, 1969b). No significant difference in

these parameters was seen in the volunteers exposed to 250 ppm compared with controls.

Hematological parameters, including total white cell counts and differential white cell counts, were

within normal limits in other volunteers exposed to 500 ppm for 2 hours (DiVincenzo et al. 1973) or

<1,250 ppm acetone intermittently for durations in a study with a complex protocol (Stewart et al.

1975); however, these investigators did not examine the phagocytic activity of neutrophils. The

NOAEL value of 250 ppm and LOAEL value of 500 ppm are recorded in Table 2-l and plotted in

Figure 2- 1.

No studies were located regarding immunological effects in animals after inhalation exposure to

acetone.

2.2.1.4 Neurological Effects

Case reports have described patients who became comatose or collapsed after hip casts were applied

with acetone present in the setting fluid (Chatterton and Elliott 1946; Fitzpatrick and Claire 1947;

Harris and Jackson 1952; Renshaw and Mitchell 1956; Strong 1944). In addition, a woman

experienced headache, dizziness, weakness, difficulty speaking, and depression after a cast containing

acetone had been applied (Pomerantz 1950). These patients had a strong odor of acetone in their

breath, and acetone was detected in the urine and blood. These patients were exposed to acetone by

inhalation during cast application and from evaporation from the casts after the applications. In

addition, the possibility of contribution from dermal exposure could not be ruled out. In another case

of neurological effects (drowsiness, fretfulness, irritability, restlessness, uncoordinated hand movement,

nystagmus) developing after application of a cast, exposure was considered to be mainly dermal

because an airblower was used continuously during the application to dissipate the fumes (Hift and
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Pate1 1961). However, because the patient had kept his head under a blanket, some inhalation of

acetone evaporating from the cast may have occurred.

Workers exposed to acetone in the past commonly experienced neurological effects. In an on-site

medical appraisal of nine workers, in which the time-weighted average exposure concentration was

1,006 ppm, three of the workers mentioned headache and lightheadedness as subjective symptoms

(Raleigh and McGee 1972). In another on-site medical appraisal of four workers, in which the time-

weighted average exposure concentration was 901 ppm, none of the workers complained of

neurological effects (Raleigh and McGee 1972). The medical examinations included the Romberg test,

finger-to-nose test, and observations for nystagmus (involuntary rapid movement of the eyeball).

These tests revealed no neurobehavioral effects in either study. Such symptoms as unconsciousness,

dizziness, unsteadiness, confusion, and headache were experienced by seven workers exposed to

>12,000 ppm acetone while cleaning out a pit containing acetone, that had escaped from nearby tanks

(Ross 1973). The degree of the symptoms varied depending on the length of time that the workers

had spent in the pit (2 minutes to 4 hours).

Neurological and behavioral effects have also been documented in volunteers tested under controlled

laboratory conditions. These effects included general lack of energy and weakness, headache, delayed

visual reaction time (Matsushita et al. 1969a, 1969b); subjective symptoms of tension, tiredness,

complaints (not otherwise specified), and annoyance (Seeber and Kiesswetter 1991; Seeber et al.

1992); increases in response and the percent false negatives in auditory discrimination tests and

increases in anger and hostility (Dick et al. 1989); and increased visual evoked response (Stewart et al.

1975). Other neurological and neurobehavioral tests (e.g., electroencephalography, choice reaction

time, visual vigilance, dual task, memory scanning, postural sway, Romberg test, or heel-to-toe test)

were also conducted on these volunteers, but acetone exposure had no effect on these parameters. The

relationship between concentration and duration of exposure on the development of narcosis was

demonstrated in volunteers exposed to acetone at 21,049-84,194 ppm for 1-8 hours (Haggard et al.

1944). As the concentration increased, the time to observations of signs of narcosis (not otherwise

described), loss of righting reflex, and loss of cornea1 reflex decreased. It should be noted that these

concentrations of acetone are extremely high, and exposure to lower concentrations of acetone for

shorter durations has resulted in unconsciousness in some workers, as discussed above. Based on a

LOAEL of 237 ppm for 4 hours for neurobehavioral effects in humans (Dick et al. 1989), an acute

inhalation MRL of 26 ppm was calculated as described in footnote “b” in Table 2-l. Based on a
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LOAEL of 1,250 ppm for neurological effects in a 6-week study (Stewart et al. 1975), intermediate

and chronic inhalation MRLs of 13 ppm were calculated as described in footnote “c” in Table 2-l.

Narcotic effects have been observed in animals exposed acutely to acetone vapors. The narcotic

effects observed in animals after inhalation exposure to acetone depend upon the duration and the

magnitude of exposure. The narcotic effects appear to proceed through several stages: drowsiness,

incoordination, loss of autonomic reflexes, unconsciousness, respiratory failure, and death as

concentrations and durations increase. The acute data suggest that concentrations >8,000 ppm

generally are required to elicit overt signs of narcosis, although neurobehavioral effects, when assessed

by specific behavioral tests, have been observed at lower concentrations. The relationship between

concentration and duration of exposure on the development of narcosis was demonstrated in rats

exposed to acetone at 2,105-126,291 ppm for 5 minutes to 8 hours (Haggard et al. 1944). While

exposure to 2,105 or 4,210 ppm for 8 hours resulted in no signs of narcosis or effects on righting

reflex or cornea1 reflex, these effects were observed at higher concentrations. At increasing

concentrations >10,524 ppm, the time to observations of signs of narcosis, loss of righting reflex, and

loss of cornea1 reflex decreased. The responses were correlated with blood acetone levels. Similar

concentration- and duration-response relationships were found in mice exposed to 16,839-84,194 ppm

acetone for up to 4 hours (Mashbitz et al. 1936). Neurological responses included drowsiness,

staggering, prostration, clonic movements of hind legs, and deep narcosis. Narcosis, evidenced by

decreased respiratory and heart rates, paralysis, and coma were observed in guinea pigs exposed to

21,800 ppm continuously for periods ranging from 25 minutes to 24 hours (Specht et al. 1939). The

degree of narcosis increased as the exposure duration increased. In a developmental study, virgin and

pregnant mice experienced severe narcosis after a single 6-hour exposure to 11,000 ppm on the first

day, but narcosis was no longer observed when the exposure was lowered to 6,600 ppm 6 hours/day

for the rest of the study (NTP 1988).

Neurobehavioral effects, indicative of narcosis, have been observed in rats, mice, and baboons acutely

exposed to acetone vapors. These effects include central nervous system depression measured by five

tests of unconditioned performance and reflex in rats (Bruckner and Peterson 1981a), decreased

operant behavior evaluated by a multiple fixed ratio-fixed interval schedule of food reinforcement in

rats (Geller et al. 1979b), inhibition of avoidance behavior and escape response in rats (Goldberg et al.

1964), decreased response to food presentation in mice (Glowa and Dews 1987), decreased duration of

immobility in a behavioral despair swimming test in mice (DeCeaurriz et al. 1984), and incoordination
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in a “match to sample” operant behavioral test in baboons (Geller et al. 1979a). In these studies, the

animals recovered from the neurobehavioral effects as exposure continued, indicating adaptation or

tolerance, or after exposure ceased, demonstrating the reversibility of these effects. The length of the

recovery period was generally related to the level of exposure (Bruckner and Peterson 1981a; Glowa

and Dews 1987). In the experiments of Geller et al. (1979a, 1979b), only four baboons and three rats

were studied, precluding meaningful statistical analysis, and only two of the four baboons exhibited

the effects. The rats were exposed to 150 ppm for 0.5-4 hours, and the baboons were exposed to

500 ppm continuously for 7 days. Intermediate-duration intermittent exposure of rats to 19,000 ppm

acetone resulted in a statistically significant decrease (p<0.02) in absolute brain weight, but no

exposure-related histological lesions (Bruckner and Peterson 1981b). Thus, based on the available

data, the neurological effects of acetone are reversible and cannot be attributed to histologically

observable changes in the brains of animals or to electroencephalographic changes in humans.

The highest NOAEL values and the LOAEL values for neurological effects from each reliable study

are recorded in Table 2-l and plotted in Figure 2- 1.

2.2.1.5 Reproductive Effects

Information regarding reproductive effects in humans after inhalation exposure to.acetone is limited.

Premature menstrual periods were reported by three of four women exposed to 1000 ppm acetone for

7.5 hours in a laboratory study of volunteers (Stewart et al. 1975). The shortening of the menstrual

cycle was considered to be possibly due to the acetone exposure. Women workers in a Russian

factory where workroom levels of acetone ranged from 14 to 126 ppm were reported to have

statistically significantly increased incidences of pregnancy complications, including miscarriage,

toxicosis (not otherwise described), decreased hemoglobin levels and hypotension, and “weakness of

labor activity,” compared with controls (Nizyaeva 1982). However, the number of women studied,

further description of the exposed and control groups (such as age, smoking history, use of alcohol),

and description of workroom monitoring methods and statistical methods were not reported.

Therefore, no conclusions can be made from this report. In a epidemiological study of the pregnancy

outcome among 556 female laboratory workers, no statistically significant difference in the incidence

of miscarriage was found between those exposed to a variety of solvents including acetone and those

not exposed to solvents (Axelsson et al. 1984).
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No reproductive effects (i.e., no effects on number of implants/litter, percent live pups/litter, or mean

percent resorptions/litter) were observed in rats or mice in an inhalation developmental study (NTP

1988). No studies were located regarding reproductive effects in male animals, histological effects on

reproductive organs of male or female animals, or the reproductive outcomes and other indices of

reproductive toxicity in animals after inhalation exposure to acetone. The NOAEL values for

reproductive effects in female rats and mice and the LOAEL value for premature menstrual periods in

humans are recorded in Table 2-1 and plotted in Figure 2-1.

2.2.1.6 Developmental Effects

Information regarding developmental effects in humans after inhalation exposure to acetone is limited.

Statistically significant increased incidences of developmental effects, such as, intrauterine asphyxia of

fetuses and decreased weight and length of neonates, were reported for women workers in a Russian

factory, where workroom levels of acetone ranged from 14 to 126 ppm (Nizyaeva 1982). However,

the number of women studied, further description of the exposed and control groups (such as age,

smoking history, use of alcohol), and description of workroom monitoring methods and statistical

methods were not reported. Therefore, no conclusions can be made from this report. In a

epidemiological study of the pregnancy outcome among 556 female laboratory workers, no statistically

significant differences in the incidences of miscarriage, perinatal death rate, or malformations were

found between those exposed to a variety of solvents, including acetone, and those not exposed to

solvents (Axelsson et al. 1984).

In a development study in rats exposed intermittently to acetone during gestation, the only effect was a

slight, but significant (p<0.05), decreased mean male and female fetal body weight at 11,000 ppm

(NTP 1988). It should be noted that the dams exposed at this level had significantly (p<0.05) reduced

body weight during gestation, reduced uterine weight, and reduced extragestational weight on

gestational day 20. No effects were seen on sex ratio, incidence of fetal variations, reduced

ossification sites, or mean fetal variations. The percent of litters with at least one fetal malformation

was higher in the 11,000 ppm group than in the control group, but no statistically significant increased

incidences of fetal malformations were observed. In mice similarly exposed during gestation,

however, there was a slight, but significant (p<0.05) increase in percent late resorptions, decrease in

mean male and female fetal weights, and increase in the incidence of reduced sternebral ossification in

the 6,600 ppm group. The only evidence of maternal toxicity at this exposure level was statistically
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significant increased absolute and relative liver weight. No effects were found on the number of

implantations per litter, percent live fetuses/litter, sex ratio, incidence of malformations or skeletal variations

combined. The NOAEL values and LOAEL values for developmental effects in rats and mice are recorded in

Table 2- 1 and plotted in Figure 2-l.

2.2.1.7 Genotoxic Effects

No studies were located regarding genotoxic effects in humans or animals after inhalation exposure to acetone.

Genotoxicity studies are discussed in Section 2.4.

2.2.1.8 Cancer
In a retrospective mortality study of 948 employees (697 men, 251 women) of a cellulose fiber plant where

acetone was used as the only solvent, no significant excess risk of death from any cause, including malignant

neoplasm, was found when compared with rates for the U.S. general population (Ott et al. 1983a, 1983b). The

workers had been employed at the plant for at least 3 months to 23 years. Industrial hygiene surveys found that

median time-weighted-average acetone concentrations were 380, 770, and 1,070 ppm, based on job categories.

No studies were located regarding cancer in animals after inhalation exposure to acetone.

2.2.2 Oral Exposure

2.2.2.1 Death

The 1991 Annual Report of the American Association of Poison Control Centers National Data

Collection System documented 1,137 incidents of human exposure to acetone (Litovitz et al. 1992).  Of these

incidents, 1,124 were due to accidental or intentional ingestion (the others were not clearly specified). No

fatalities were reported, only three cases had a major medical problem, 364 were treated in a health care

facility, 233 cases were referred to hospitals but had no effects, 367 cases
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suffered minor effects, and 39 suffered from moderate effects. None of the major, minor, or moderate

effects were further described, and the outcomes of the remainder of the incidents were not reported.

As seen in Table 2-2 and Figure 2-2, acute lethal dose (LD50) values were located for rats, mice, and

guinea pigs. In general, the lethality of acetone decreases with the age of the rats (Kimura et al.

1971). A higher LD50 value was found for young adult rats than for older adult rats, but the difference

was not statistically significant. Higher LD50 values were found for Wistar rats (Smyth et al. 1962)

and Nelson rats (Pozzani et al. 1959) than for Sprague-Dawley rats (Kimura et al. 1971). The LD50

value determined by Freeman and Hayes (1985), who also used Sprague-Dawley rats, is in line with

values for 14-day-old and young adult Sprague-Dawley rats. An oral LD50 value of 5,250 mg/kg was

found for male ddY mice (Tanii et al. 1986), and an oral LD50 value of 3,687 mg/kg was found for

male guinea pigs (Striegel and Carpenter 1961). In a study to determine which doses to use in a

developmental study, oral dosing of pregnant mice with acetone during gestation resulted in the death

of one of four mice at 2,400 mg/kg/day, and the number of dead mice increased as the dose increased

(EHRT 1987). No controls were used in the range-finding study. One of two rabbits given

7,844 mg/kg acetone by gavage died within 19 hours of dosing, two rabbits given 5,491 mglkg

survived, while one rabbit given 3,922 mg/kg died in 96 hours (Walton et al. 1928). Oral doses of

7,500 or 8,000 mg/kg acetone were fatal to two puppies (Albertoni 1884). No controls were included

in these studies, and the small numbers of animals used limits the reliability of the findings. Signs of

narcosis usually precede death in animals (see Section 2.2.2.4). No information was located regarding

the doses of acetone that could result in increased mortality after intermediate- or chronic-duration

exposure.

2.2.2.2 Systemic Effects

No studies were located regarding respiratory, cardiovascular, hematological, musculoskeletal, hepatic,

renal, or dermal/ocular effects in humans after oral exposure to acetone. The systemic effects in

humans and animals after oral exposure to acetone are discussed below. The highest NOAEL values

and the LOAEL values for each systemic effect from all reliable studies are recorded in Table 2-2 and

plotted in Figure 2-2.

Respiratory Effects. Oral exposure of animals to acetone has not been shown to produce adverse

respiratory effects. However, microsomes from the lungs of hamsters exposed to acetone in drinking
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water for 7 days had a 500% increased activity of aniline hydroxylase activity, an activity associated

with cytochrome P-450IIEl (Ueng et al. 1991). Furthermore, the level of cytochrome P-45011El and

the activity of butanol oxidase increased 6-fold in microsomes from the nasal mucosa of rabbits

exposed to acetone in drinking water for 1 week (Ding and Coon 1990). Induction of microsomal

enzymes is considered a normal physiological response to xenobiotics, rather than an adverse effect,

unless accompanied by increased organ weight and histopathological or other adverse respiratory

effects. Changes in respiratory rates (either increases or decreases), along with signs of narcosis, were

observed in rabbits dosed with >3,922 mg/kg acetone (Walton et al. 1928), and irregular respiration,

along with signs of narcosis, was observed in dogs dosed with 4,000 mg/kg (Albertoni 1884). In a

range-finding study to determine which doses to use in a developmental study, mice that died at doses

>4,800 mg/kg/day for 10 days displayed wheezing and/or rapid and labored breathing, accompanied by

signs of severe narcosis, prior to death (EHRT 1987). However, the apparent respiratory effects

probably reflect the severely compromised condition of these animals, rather than a toxic effect of

acetone on the lungs. Gross necropsy of a dog dosed with 8,000 mg/kg acetone revealed no effects on

the lungs, but the lungs were not examined histologically (Albertoni 1884). Histological examination

of the lungs of rats and mice exposed to acetone in drinking water for 13 weeks (Dietz et al. 1991;

NTP 1991) or of rats given acetone in water by gavage for 13 weeks (American Biogenics Corp.

1986) revealed no treatment related lesions. Thus, acetone by itself apparently is not toxic to the lungs

of animals when administered by the oral route, but the induction of lung microsomal enzymes

suggests that acetone may potentiate the respiratory effects induced by other chemicals (see

Section 2.6).

Cardiovascular Effects. Oral exposure of animals to acetone has not resulted in adverse effects on

the heart in intermediate-duration studies. Histological examination of the hearts of rats and mice

exposed to acetone in drinking water for 13 weeks (Dietz et al. 1991; NTP 1991) or of rats given

acetone in water by gavage for 13 weeks (American Biogenics Corp. 1986) did not reveal treatment- related

lesions. However, the heart-to-brain weight ratio was significantly increased (p<0.01) in the

female rats treated by gavage with 2,500 mg/kg/day. In the absence of histologically observable

lesions, the toxicological significance of the increased heart weight is questionable.

Gastrointestinal Effects. No studies were located regarding gastrointestinal effects per se in

humans after oral exposure to acetone, but a man who intentionally drank ≈200 mL of pure acetone
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(≈2,241 mg/kg) had a red and swollen throat and erosions in the soft palate and entrance to the

esophagus (Gitelson et al. 1966).

Significantly increased levels of cytochrome P-450IAl in duodenal microsomes and P-450IIB2 in

duodenal and jejunal microsomes from rats exposed to acetone in drinking water for 3 days were

found (Carriere et al. 1992). No increase in cytochrome P-450IIEl was found in these microsomal

preparations. As discussed above for respiratory effects, induction of microsomal enzymes is

considered a normal physiological response to xenobiotics rather than an adverse effect. Oral exposure

of animals to acetone has not resulted in adverse effects on the gastrointestinal tract in intermediate-

duration studies. Histological examination of the gastrointestinal tract of rats and mice exposed to

acetone in drinking water for 13 weeks (Dietz et al. 1991; NTP 1991) or of rats given acetone in water

by gavage for 13 weeks (American Biogenics Corp. 1986) did not reveal treatment-related lesions.

Hematological Effects. Exposure of rabbits to 863 mg/kg/day acetone in the drinking water for

7 days resulted in a 12.9-fold increase in the levels of cytochrome P-45011El in bone marrow

microsomes (Schnier et al. 1989). As discussed for respiratory effects, induction of microsomal

enzymes is considered a normal physiological response to xenobiotics rather than an adverse effect.

Hematological effects of oral exposure to acetone have been observed in rats but not in mice. Bone

marrow hypoplasia was observed in five of five male rats exposed to acetone in the drinking water for

14 days at 6,942 mg/kg/day, but not at 4,312 mg/kg/day (Dietz et al. 1991; NTP 1991). None of the

female rats had bone marrow hypoplasia. Although mice were similarly treated for 14 days in this

study, the authors did not specify whether bone marrow was examined; however, in the 13-week

studies, no hematological effects or histologically observable lesions in hematopoietic tissues were

found in mice. In contrast, evidence of macrocytic anemia was found in male rats exposed to acetone

in drinking water for 13 weeks. This evidence consisted of significantly (p<0.05 or p<0.01) decreased

hemoglobin concentration, increased mean corpuscular hemoglobin and mean corpuscular volume,

decreased erythrocyte counts, decreased reticulocyte counts and platelets, and splenic hemosiderosis.

The LOAEL for these effects was 400 mg/kg/day, and the NOAEL was 200 mg/kg/day. The number

of affected parameters increased as the dose increased. Based on the NOAEL of 200 mg/kg/day for

macrocytic anemia, an intermediate oral MRL of 2 mg/kg/day was calculated as described in the

footnote in Table 2-2. In female rats, hematological effects consisted of statistically significant

increased lymphocyte counts, increased mean corpuscular hemoglobin and mean corpuscular volume at

the highest dose, and decreased platelets at the highest and next-to-highest dose levels (Dietz et al.
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1991; NTP 1991). The biological significance of the hematological effects in female rats was not

clear, but the effects were not consistent with anemia. Sex differences in the hematological effects of

acetone exposure were also found in rats treated by gavage (American Biogenics Corp. 1986). Gavage

treatment for 46-47 days significantly (p<0.01) increased hemoglobin, hematocrit, and mean cell

volume in high-dose males (2,500 mg/kg/day), but not in females. With longer duration treatment (13

weeks), both high-dose males (p<0.01) and females (p<0.05) had increased hemoglobin and

hematocrit, and high-dose males (p<0.01) also had increased mean cell hemoglobin and mean cell

volume and decreased platelets. Thus, it appears that species and sex differences exist for

hematological effects of oral exposure to acetone.

Musculoskeletal Effects. Histological examination of femurs of rats and mice exposed to acetone

in drinking water for 13 weeks (Dietz et al. 1991; NTP 1991) or of rats given acetone in water by

gavage for 13 weeks (American Biogenics Corp. 1986) did not reveal treatment-related lesions.

Skeletal muscle was not examined histologically in the 13-week drinking water study (Dietz et al.

1991; NTP 1991), but histological examination of the skeletal muscle in rats in the 13-week gavage

study did not reveal treatment-related lesions (American Biogenics Corp. 1986). Based on this limited

information, it appears that acetone does not produce musculoskeletal effects.

Hepatic Effects. Acetone by itself is moderately toxic to the liver of animals, but acetone

potentiates the hepatotoxicity of some other chemicals by inducing microsomal enzymes that

metabolize other chemicals to reactive intermediates (see Sections 2.3.5 and 2.6). Numerous studies

have investigated these mechanisms to identify the specific cytochrome P-450 isoenzymes involved

(Banhegyi et al. 1988; Barnett et al. 1992; Carriere et al. 1992; Chieli et al. 1990; Furner et al. 1972;

Gervasi et al. 1991; Hetu and Joly 1988; Hewitt et al. 1987; Hong et al. 1987; Hyland et al. 1992;

Johannson et al. 1988; Kinsler et al. 1990; Kobusch et al. 1989; Koop et al. 1989, 1991; Menicagli et

al. 1990; Porter et al. 1989; Puccini et al. 1989, 1990, 1992; Puntarulo and Cederbaum 1988;

Robinson et al. 1989; Ronis et al. 1991; Ronis and Ingelman-Sundberg 1989; Schnier et al. 1989;

Sipes et al. 1973; Song et al. 1989; Tu et al. 1983; Ueng et al. 1991; Yoo and Yang 1985). In these

studies in general, rats, mice, rabbits, or hamsters were given acetone by gavage in water or in

drinking water for 1 day to 2 weeks. Microsome preparations from the livers were then analyzed for

cytochrome P-450 content, enzyme activities associated with specific cytochrome P-450 isoenzymes

(particularly cytochrome P-450IIEl), and identification of the specific isoenzymes. Acetone has also

been shown to increase the activity of glutathione S-transferase (Sippel et al. 1991). These topics are
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discussed more fully in Sections 2.35 and 2.6. Induction of microsomal enzymes is considered a

normal physiological response to xenobiotics rather than an adverse effect, unless it is accompanied by

increased liver weight and other hepatic effects. Mice exposed to acetone in drinking water for 14

days had dose-related increased liver weights at ≥965 mg/kg/day, probably associated with microsomal

enzyme induction (Dietz et al. 1991; NTP 1991). The increased liver weight was accompanied by

hepatocellular hypertrophy at 23,896 mg/kg/day. In rats treated for 14 days, increased liver weight

was stated to occur at the same or lower doses as in the 13-week study (see below), but more

definitive information regarding the doses was not provided. Histological examination revealed no

treatment-related hepatic effects in rats.

As stated above, acetone by itself is only moderately toxic to the liver. In mice exposed to

1,900 mg/kg/day acetone in the drinking water for 10 days, histological examination of the liver

revealed no hepatic lesions (Jeffery et al. 1991). Acetone did not increase the level of serum alanine

aminotransferase in rats at 871 mg/kg (Brown and Hewitt 1984), the levels of serum alanine

aminotransferase or bilirubin at 1,177 mg/kg (Charbonneau et al. 1986b), or the activities of hepatic

glucose-6-phosphatase, serum alanine aminotransferase, and serum ornithine carbamoyltransferase in

rats given 1,961 mg/kg for 1 day or 392 mg/kg/day for 3 days (Plaa et al. 1982). However, in an

intermediate-duration study, male rats, but not female rats, treated by gavage with 2,500 mg/kg/day,

but not 500 mg/kg/day, for 46-47 days and for 13 weeks had statistically significant increased levels

of serum alanine amino transferase (American Biogenics Corp. 1986). Liver weights were statistically

significantly increased in female rats at ≥500 mg/kg/day, but not at 100 mg/kg/day, and in male rats at

2,500 mg/kg/day after 13 weeks, but organ weights were not measured in the rats treated for

46-47 days. In the 13-week drinking water study, liver weights were also significantly (p<0.01)

increased in both sexes of rats at the same concentration (20,000 ppm, which was equivalent to

1,600 mg/kg/day for females, 1,700 mg/kg/day for males) and in female, but not male mice, at

11,298 mg/kg/day (Dietz et al. 1991; NTP 1991). However, in the mice, the increased liver weight

was not associated with hepatocellular hypertrophy seen in the 14-day study, suggesting a development

of tolerance.

Taken together, the data indicate that acetone induces liver microsomal enzymes, increases liver

weights, and may cause liver injury, as evidenced by increased serum levels of liver enzymes

associated with liver injury and hepatocellular hypertrophy. Species and sex differences exist in

susceptibility to acetone-induced liver effects.
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Renal Effects. Acetone can also induce enzymes in microsomes prepared from kidneys. In

hamsters given drinking water containing acetone for 7 days (Ueng et al. 1991) or 10 days (Menicagli

et al. 1990), the microsomes prepared from kidneys had increased levels of cytochrome P-450 and

cytochrome b5 and/or statistically significantly increased activities of p-nitrophenol hydroxylase, aniline

hydroxylase, and aminopyrine-N-demethylase. Microsomes prepared from kidneys of rats treated by

gavage with acetone had increased levels of cytochrome P-450IIEl and increased activity of

N-nitrosodimethylamine demethylase (Hong et al. 1987). Induction of microsomal enzymes is

considered to represent a normal physiological response to xenobiotics rather than an adverse effect,

unless accompanied by increased organ weight and other adverse renal effects.

Oral exposure of rats and mice to acetone has resulted in effects on the kidney. Degeneration of the

apical microvilli of renal tubules was reported in male rats after a single oral dose of acetone in corn

oil, but not in corn oil treated controls (Brown and Hewitt 1984). The incidence of this lesion was not

reported. However, in rats treated with 1,766 mg/kg/day acetone for 2 days, no significant difference

was found for kidney weight, blood urea nitrogen (BUN) levels, or organic ion accumulation

compared with controls (Valentovic et al. 1992). In 14-day drinking water studies, mice had doserelated

increased kidney weights at >6,348 mg/kg/day (Dietz et al. 1991; NTP 1991). In rats treated

for 16days, increased kidney weight occurred at the same or lower doses as in the 13-week study (see

below), but more definitive information regarding the doses was not provided. Histological

examination of the kidneys revealed no treatment-related lesions in rats or mice.

In the intermediate-duration drinking water study, significantly (p<0.01) increased kidney weights were

seen in female rats at 21,600 mg/kg/day and in male rats at 3,400 mg/kg/day (Dietz et al. 1991; NTP

1991). Conversely, male, but not female rats, given acetone in the drinking water at

21,700 mg/kg/day had increased incidence and severity of nephropathy that was not accompanied by

hyaline droplet accumulation (Dietz et al. 1991; NTP 1991). In the 13-week gavage study, kidney

weights were significantly (p<0.05 or p<0.01) increased in female rats at >500 mg/kg/day and in male

rats at 2,500 mg/kg/day (American Biogenics Corp. 1986). In addition, renal proximal tubule

degeneration and intracytoplasmic droplets of granules (hyaline droplets) in the proximal tubular

epithelium were seen in both control and treated rats at similar incidence, but the severity of these

lesions showed a dose-related increase in males at >500 mg/kg/day and in females at 2,500 mg/kg/day.

The renal lesions seen in both the gavage study and the drinking water study may represent an

enhancement by acetone of the nephropathy commonly seen in aging rats (American Biogenics Corp.
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1986; NTP 1991). No renal effects were observed in mice given acetone in the drinking water for 13

weeks (Dietz et al. 1991; NTP 1991).

Thus, species differences exist in susceptibility to acetone-induced renal effects. Sex differences also

exist, with kidney weight increases occurring in female rats at lower doses than in males rats, but

histopathological lesions occurring in male rats at lower doses than in females.

DermaVOcular Effects. No studies were located regarding dermal or ocular effects in humans after

oral exposure to acetone.

Histological examination of eyes and skin of rats and mice after exposure to drinking water containing

acetone for 13 weeks at doses <3,400 mg/kg/day (rats) and 11,298 mg/kg/day (mice) revealed no

treatment-related effects (Dietz et al. 1991; NTP 1991). Similarly, ophthalmoscopic examination of

the eyes of rats treated by gavage with acetone at doses <2,500 mg/kg/day revealed no ocular lesions

(American Biogenics Corp. 1986). Skin was not examined histologically in the gavage study.

Other Systemic Effects. Acetone exposure of humans can result in diabetes-like symptoms, e.g.,

hyperglycemia and glycosuria. For example, a man who intentionally drank about 200 mL (about

2,241 mg/kg) of pure acetone had been treated at a hospital for acetone poisoning, but 4 weeks after

the ingestion, he noticed excessive thirst and polyuria, and 2.5 months after ingestion, he was

hyperglycemic (Gitelson et al. 1966). As discussed by Gitelson et al. (1966), hyperglycemia and

glycosuria are commonly seen in cases of acetone poisoning.

Most of the information regarding other systemic effects in animals after oral exposure to acetone

relates to body weight changes. However, in an acute study conducted to determine the temporal

effects of maintaining elevated plasma concentrations of acetone similar to those encountered in fasting

and diabetic patients, treatment of rats by gavage with 3,214 mg/kg/day resulted in significantly

reduced (p<0.01) insulin-stimulated glucose oxidation in adipose tissue (Skutches et al. 1990). The

reduction was greater in fasted rats than in fed rats. Rats treated by gavage with a lethal dose of

acetone (LD50= 5,800 mg/kg) lost 15% of their body weight until 48 hours after dosing (Freeman and

Hayes 1985). However, treatment of rats by gavage with 1,766 mg/kg/day for 2 days (Valentovic et

al. 1992) or with drinking water that provided lower doses (<1,200 mg/kg/day) for up to 2 weeks

(Furner et al. 1972; Hetu and Joly 1988) did not affect body weight gain. Rats maintained on drinking
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water for 14 days at higher doses displayed decreased body weight gain >l0% of controls, but the

decrease was associated with reduced water consumption probably due to unpalatability (Dietz et al.

1991; NTP). In contrast, mice similarly treated had decreased water consumption at doses

≥6,348 mg/kg/day, but no effects on body weight gain occurred at doses <12,725 mg/kg/day.

Maternal body weight was slightly (5%) but significantly (p=0.02) reduced on day 3 postpartum in

mice treated with 3,500 mg/kg/day acetone by gavage during gestation (EHRT 1987).

In intermediate-duration studies, gavage or drinking water treatment of rats or mice with acetone did

not result in reductions in body weight except in cases where fluid consumption was reduced

(American Biogenics Corp. 1986; Ladefoged et al. 1989; NTP 1991; Spencer et al. 1978).

2.2.2.3 Immunological Effects

No studies were located regarding immunological effects in humans or animals after oral exposure to

acetone.

2.2.2.4 Neurological Effects

The narcotic effects of acetone occur after oral as well as inhalation exposure. Several case reports

describe patients in minimally responsive, lethargic, or comatose conditions after ingesting acetone, but

most of these cases are confounded by coexposure to other possible narcotic agents. For example, a

30-month-old child ingested most of a 6 ounce bottle of nail polish remover containing 65% acetone

and 10% isopropyl alcohol (Gamis and Wasserman 1988); a known alcoholic woman ingested nail

polish remover (Ramu et al. 1978); and a man ingested 200 mL of sake prior to intentionally ingesting

liquid cement containing a mixture of polyvinyl chloride, acetone, 2-butanone, and cyclohexanone

(Sakata et al. 1989). The lethargic and comatose condition of these patients were, however, attributed

to acetone poisoning, although one case of coma was attributed primarily to cyclohexanol, the

metabolite of cyclohexanone in the liquid cement (Sakata et al. 1989). Blood levels of acetone in

some of these patients were 2.5 mg/mL (Ramu et al. 1978) and 4.45 mg/mL (Gamis and Wasserman

1988). In the case reported by Sakata et al. (1989), the blood level of acetone was 110 µg/L and the

urine level was 123 µg/mL 5 hours after the ingestion, but the patient had been subjected to gastric

lavage. A man who intentionally ingested about 200 mL of pure acetone (about 2,241 mg/kg)

subsequently became deeply comatose, but responded to treatment (Gitelson et al. 1966). Six days
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later, he was ambulatory, but a marked disturbance of gait was observed. This condition had

improved upon follow-up examination 2 months later.

In acute experiments with animals, in which high oral doses of acetone resulted in death, severe

neurological signs of toxicity preceded death. In a study to determine the LD50 value for acetone in

rats (5,800 mg/kg), a state of prostration, usually without convulsions, preceded death (Freeman and

Hayes 1985). In a study to determine which doses to use in a developmental study, oral dosing of

pregnant mice with acetone during gestation resulted in languid behavior with subsequent death in one

of four mice at 2,400 mg/kg/day (EHRT 1987). At higher doses, the number of mice dying increased,

and they displayed a hunched appearance and became prostrate before death. No controls were used

in this range-finding study. Rabbits dosed orally with 3,922, 5,491, or 7,844 acetone displayed signs

of narcosis, the degree and the time to onset being dependent on dose (Walton et al. 1928). Signs of

narcosis included weakness, depression, and unconsciousness. Puppies given 7,500 or 8,000 mg/kg

and dogs given 4,000 mg/kg doses displayed incoordination, staggering, falling, tremors, delirium,

prostration, and coma (Albertoni 1884). Dogs given 1,000 mg/kg showed no adverse effects. No

controls were used in these studies, and only one or two animals were treated at each dose. A

significant (p<0.05) reduction in nerve conduction velocity, but no effect on balance time in the

rotorod test, was observed in rats treated for 6 weeks with acetone in drinking water at a dose of

650 mg/kg/day (Ladefoged et al. 1989). No reduction in nerve conduction velocity was found when

tested at 3, 4, or 5 weeks of dosing. No histopathological lesions were found in tissues sampled from

the cervico-medullary junction of the spinal cord; posterior tibia1 nerve proximal to the calf muscle

branches; cerebellar vermis; thoracic, lumbar, and sacral spinal cord; L5 and L6 dorsal and ventral

roots and spinal ganglia; and 3 levels of the sciatic nerve and the plantar nerves in the hindfeet of rats

administered 732 mg/kg/day acetone in the drinking water for 12 weeks (Spencer et al. 1978). In

another intermediate duration study, rats given 2,500 mg/kg/day acetone by gavage salivated

excessively beginning on the 27th day of treatment (American Biogenics Corp. 1986). At the terminal

sacrifice after 13 weeks of treatment, absolute brain weight was decreased in the male rats, but

histological examination of the brain revealed no lesions. No clinical or histological evidence of

neurotoxicity was observed in the rats or mice treated with higher doses for 13 weeks in the drinking

water study (Dietz et al. 1991; NTP 1991). The fact that clinical signs of neurotoxicity were seen in

the rats treated by gavage (American Biogenics Corp. 1986), but not in the rats or mice given higher

doses in drinking water (NTP 1991), may reflect the intermittent nature of ad libitum dosing via

drinking water, compared with the bolus nature of a gavage dose.
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The highest NOAEL value and the LOAEL values for each species and duration category for

neurological effects from all reliable studies are recorded in Table 2-2 and plotted in Figure 2-2.

2.2.2.5 Reproductive Effects

No studies were located regarding reproductive effects in humans after oral exposure to acetone.

Reproductive effects were assessed in pregnant mice exposed by gavage to acetone during gestation

(EHRT 1987). The reproductive index was significantly reduced (p=0.05) (number of females

producing viable litters/number of surviving females that were ever pregnant; 24/31 treated compared

with 34/36 controls). In addition, acetone treatment significantly (p<0.01) increased the duration of

gestation from 18.1 days in controls to 18.5 days in treated mice.

No effects were observed on the fertility of male Wistar rats treated with drinking water containing

acetone at 1,071 mg/kg/day for 6 weeks (Larsen et al. 1991). The indices of fertility examined were

successful matings with untreated females, number of pregnancies, number of fetuses, testicular

weight, seminiferous tubule diameter, and testicular lesions. However, male Sprague-Dawley rats

treated with 3,400 mg/kg/day acetone in drinking water for 13 weeks had significantly increased

(p<0.01) relative testis weight, probably because body weight was reduced, and significantly (p<0.05)

decreased sperm motility, caudal weight and epididymal weight, and increased incidences of abnormal

sperm (Dietz et al. 1991; NTP 1991). No testicular lesions were observed upon histological

examination. Vaginal cytology examinations of the female rats revealed no effects. No effects on

sperm morphology and vaginal cytology were observed in mice similarly treated with drinking water

containing acetone at doses <4,858 mg/kg/day in males and <11,298 mg/kg/day in females.

The highest NOAEL values and the all LOAEL values in each species and duration category from all

reliable studies are recorded in Table 2-2 and plotted in Figure 2-2.

2.2.2.6 Developmental Effects

No studies were located regarding developmental effects in humans after oral exposure to acetone.
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In a reproduction study, treatment of pregnant mice during gestation with acetone significantly

(<10.01) reduced postnatal pup survival (EHRT 1987). The average weight of each live pup/litter was

significantly reduced (p=0.0l) on postpartum day 0, but pups from the acetone treated groups gained

significantly (p<0.0l) more weight than controls from postpartum day 0 to 3. As this study was not

designed as a teratology study, fetuses or pups were not examined for internal malformations or

skeletal anomalies.

The LOAEL value of 3,500 mg/kg/day for developmental effects in mice is recorded in Table 2-2 and

plotted in Figure 2-2.

2.2.2.7 Genotoxic Effects

No studies were located regarding genotoxic effects in humans or animals after oral exposure to

acetone.

Genotoxicity studies are discussed in Section 2.4.

2.2.2.8 Cancer

No studies were located regarding cancer in humans or animals after oral exposure to acetone.

2.2.3 Dermal Exposure

2.2.3.1 Death

No studies were located regarding death of humans after dermal exposure to acetone.

In studies to determine the dermal LD50 values for acetone in rabbits (Roudabush et al. 1965; Smyth et

al. 1962) and guinea pigs (Roudabush et al. 1965), the highest doses tested did not result in death.

Therefore, LD50 values are >20 mL/kg (>15,688 mg/kg) for rabbits (Smyth et al. 1962) and

>9.4 mL/kg (>7,373 mg/kg) for guinea pigs (Roudabush et al. 1965). No studies were located

regarding death of animals after dermal exposure to acetone for intermediate- or chronic-durations.
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2.2.3.2 Systemic Effects

No studies were located regarding respiratory, hematological, musculoskeletal, hepatic, or renal effects

in humans after dermal exposure to acetone. Acetone has been used as a solvent or tested as a tumor

promoter for other chemicals in skin painting studies in mice, and as the solvent control in these

studies (Ward et al. 1986). An analysis of the histopathology in female SENCAR mice, used as

acetone controls in a skin painting study of formaldehyde and held for up to 100 weeks of age,

revealed no lesions associated with acetone exposure, that is, any lesions seen were considered

spontaneous in this strain. Since all major tissues, gross lesions, and selected other (unspecified)

tissues were examined histologically, it appears that no respiratory, cardiovascular, gastrointestinal,

hematological, musculoskeletal, hepatic, renal, or dermal/ocular lesions were observed upon

histological examination. The mice had been treated with 0.2 mL acetone on their backs twice a week

for 92 weeks. The dose of 0.2 mL is recorded as a NOAEL value in mice for each systemic effect for

chronic-duration exposure in Table 2-3. No other studies were located regarding respiratory,

gastrointestinal, hematological, or musculoskeletal effects in animals after dermal exposure to acetone.

The cardiovascular, gastrointestinal, and dermal/ocular effects in humans and the cardiovascular,

hepatic, renal, dermal/ocular, and other systemic effects in animals after dermal exposure to acetone in

other studies are discussed below.

Cardiovascular Effects. As discussed in Section 2.2.1.2, high pulse rates (120-160/minute) were

commonly found in patients exposed to acetone by inhalation and/or dermally after application of casts

for which acetone was used in the setting solution (Chatterton and Elliott 1946; Hift and Pate1 1961;

Pomerantz 1950; Renshaw and Mitchell 1956). Amyloidosis was observed in the hearts of mice

whose lumbo-sacral regions were painted twice weekly with an unspecified quantity of acetone for 12

months (Barr-Nea and Wolman 1977).

Gastrointestinal Effects. As discussed in Section 2.2.1.2, case reports have described vomiting of

blood and gastrointestinal hemorrhage in patients who had hip casts applied with acetone in the setting

fluid (Chatterton and Elliott 1946; Fitzpatrick and Claire 1947; Harris and Jackson 1952; Hift and

Pate1 1961; Pomerantz 1950; Renshaw and Mitchell 1956; Strong 1944). In most cases, exposure was

considered to be mainly by inhalation, but dermal exposure could not be ruled out. In one case, the

exposure was considered to be mainly dermal (Hift and Pate1 1961).
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Hepatic Effects. Amyloidosis was observed in the livers of mice whose lumbo-sacral regions were

painted twice weekly with an unspecified quantity of acetone for 12 months (Barr-Nea and Wolman

1977).

Renal Effects. Amyloidosis was observed in the kidneys of mice whose lumbo-sacral regions were

painted twice weekly with an unspecified quantity of acetone for 12 months (Barr-Nea and Wolman

1977).

Dermal/Ocular Effects. Liquid acetone has caused dermal effects in humans exposed by direct skin

contact. Application of 1.0 mL directly to the skin of the forearms of six or seven volunteers for 30

or 90 minutes resulted in histological and ultrastructural degenerative changes in the epidermis

(Lupulescu and Birmingham 1976; Lupulescu et al. 1972, 1973) and decreased protein synthesis

(Lupulescu and Birmingham 1975) compared with untreated skin. The degenerative changes included

a reduction and disorganization of the horny layers, intercellular edema, and vacuolization of the

stratum spinosum. A laboratory technician being treated with squaric acid dibutyl ester in acetone for

patchy alopecia areata on her scalp developed acute contact dermatitis after handling acetone for 2

years (Tosti et al. 1988). Patch testing with 10% acetone in olive oil showed a strong positive reaction

(see Section 2.2.3.3).

Eye irritation is a common complaint of workers exposed to acetone vapors in the air at the workplace

(Raleigh and McGee 1972) and in volunteers exposed to acetone in air under controlled laboratory

conditions (Matsushita et al. 1969a, 1969b; Nelson et al. 1943). This eye irritation is due to direct

contact of the eyes with the vapor rather than a systemic effect of vapor inhalation. Workers whose

exposures to acetone in the workroom averaged >900 ppm complained of eye irritation (Raleigh and

McGee 1972; Ross 1973). In controlled situations, the volunteers had been asked to give their

subjective complaints, and some of the volunteers reported eye irritation after exposure to >100 ppm

(Matsushita et al. 1969b). In a report of the experience at the Tennessee Eastman Corporation on

acetone concentrations not associated with injury presented at the ACGIH Tenth Annual Meeting, it

was noted that acetone is mildly irritating to the eyes at 2,000-3,000 ppm, with no irritation persisting

after exposure ceases (Sallee and Sappington 1949).

Dermal effects have also been studied in animals after direct application of acetone to the skin.

Application of 1.0 mL to the uncovered shaved skin of rabbits did not result in irritation within
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24 hours (Smyth et al. 1962). Application of 0.2 mL acetone to the shaved skin of mice increased

deoxyribonucleic acid (DNA) synthesis in the skin, compared to untreated shaved controls (Iversen et

al. 1988). The increased DNA synthesis was considered a reaction to slight irritation. Moderate

hyperplasia of the epidermis was observed in hairless mice treated twice weekly with 0.1 mL acetone

for 18 weeks (Iversen et al. 1981). The hyperplasia persisted for 10 weeks after the end of treatment.

Application of 0.5 mL/day for 6 months to the dorsal thorax of hairless guinea pigs resulted in only

mild erythema at the site of application (Taylor et al. 1993). Amyloidosis was observed in the skin of

mice whose lumbo-sacral regions were painted twice weekly with an unspecified quantity of acetone

for 12 months (Barr-Nea and Wolman 1977). In a study in which acetone-treated mice were used as

negative controls for a skin painting study of organosilanes, treatment with acetone alone 3 times/week

for 502 days resulted in cases of hyperplasia (1 of 40), dermatitis (2 of 40), and hyperkeratosis (1 of

40) at the site of application (De Pass et al. 1989).

Ocular effects have been observed in animals after direct instillation of acetone into the eyes and after

application of acetone to the skin. In rabbits, direct instillation of acetone into the eye has resulted in

reversible cornea1 burns (Bolkova and Cejkova 1983), edema of mucous membranes (Larson et al.

1956), severe eye necrosis and cornea1 burns (Carpenter and Smyth 1946; Smyth et al. 1962), and

uveal melanocytic hyperplasia (Pe’er et al. 1992). Application of 0.5 mL acetone directly to shaved

skin of guinea pigs intermittently for 3 or 6 weeks resulted in cataract development (Rengstorff et al.

1972; Rengstorff and Khafagy 1985). In contrast, rabbits did not develop cataracts after application of

1.0 mL to the shaved skin intermittently for 3 weeks (Rengstorff et al. 1976). The difference in

response between the guinea pigs and rabbits reflect species differences in susceptibility to the

cataractogenic effects of acetone. Although the rabbits received twice as much acetone as the guinea

pigs, the possibility that rabbits would have developed cataracts if an even larger quantity of acetone

had been applied was not ruled out. However, no cataracts or lens opacities were found in hairless

guinea pigs to which acetone (0.5 mL/day, 5 days/week) was applied to the skin for 6 months (Taylor

et al. 1993). Genetic variability in susceptibility between the hairless guinea pigs (Taylor et al. 1993)

and the normal guinea pigs (Rengstorff et al. 1972; Rengstorff and Khafagy 1985) is possible, but was

believed to be unlikely (Taylor et al. 1993). Lacrimation was observed in guinea pigs exposed to

acetone vapor in air at a concentration of 21,800 ppm for 25 minutes (Specht et al. 1939). The degree

of lacrimation increased with longer exposure.
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Other Systemic Effects. A transient weight loss of 60 g over a 2-week period was noted in

hairless guinea pigs to which acetone was applied to the skin for 6 months (Taylor et al. 1993).

Amyloidosis was observed in the adrenals and pancreas of mice whose lumbo-sacral regions were

painted twice weekly with an unspecified quantity of acetone for 12 months (Barr-Nea and Wolman

1977).

2.2.3.3 Immunological Effects

The only information regarding immunological effects in humans after dermal exposure to acetone is a

case report in which a laboratory technician being treated with squaric acid dibutyl ester in acetone for

patchy alopecia areata on her scalp developed acute contact dermatitis after handling acetone for 2

years (Tosti et al. 1988). Patch testing with 10% acetone in olive oil showed a strong positive

reaction. This acetone sensitization is considered a rare complication of sensitizing therapies for

alopecia areata.

No studies were located regarding immunological effects in animals after dermal exposure to acetone.

2.2.3.4 Neurological Effects

As discussed in Section 2.2.1.4, case reports have described patients who became comatose or

collapsed after hip casts were applied with acetone present in the setting fluid (Chatter-ton and Elliott

1946; Fitzpatrick and Claire 1947; Harris and Jackson 1952; Renshaw and Mitchell 1956; Strong

1944). In addition, a woman experienced headache, dizziness, weakness, difficulty speaking, and

depression after a cast containing acetone had been applied (Pomerantz 1950). In another case of

neurological effects (drowsiness, fretfulness, irritability, restlessness, uncoordinated hand movement,

nystagmus) developing after application of a cast, exposure was considered to be mainly dermal

because an airblower was used continuously during the application to dissipate the fumes (Hift and

Pate1 1961). However, because the patient had kept his head under a blanket, some inhalation of

acetone evaporating from cast may have occurred.

No studies were located regarding neurological effects in animals after dermal exposure to acetone.
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2.2.3.5 Reproductive Effects

No studies were located regarding reproductive effects in humans after dermal exposure to acetone.

Acetone has been used as a solvent or tested as a tumor promoter for other chemicals in skin painting

studies in mice, and as the solvent control in these studies (Ward et al. 1986). An analysis of the

histopathology in female SENCAR mice, used as acetone controls in a skin painting study of

formaldehyde and held for up to 100 weeks of age, revealed no lesions associated with acetone

exposure, that is, any lesions seen were considered spontaneous in this strain. Since all major tissues,

gross lesions, and selected other (unspecified) tissues were examined histologically, it is assumed that

no lesions in the female reproductive organs were observed upon histological examination. The mice

had been treated with 0.2 mL acetone on their backs twice a week for 92 weeks. However, the dose

of 0.2 mL cannot be considered a NOAEL for reproductive effects in the absence of data on male

reproductive organs or reproductive studies in animals after dermal exposure to acetone.

2.2.3.6 Developmental Effects

No studies were located regarding developmental effects in humans or animals after dermal exposure

to acetone.

2.2.3.7 Genotoxic Effects

No studies were located regarding genotoxic effects in humans or animals after dermal exposure to

acetone.

Genotoxicity studies are discussed in Section 2.4.

2.2.3.8 Cancer

No studies were located regarding cancer in humans after dermal exposure to acetone.

Acetone has been used as a solvent for other chemicals in skin painting studies in mice, and as the

solvent control in these studies (Ward et al. 1986). An analysis of the histopathology in female
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SENCAR mice used as acetone controls in a skin painting study of formaldehyde and held for

≤100 weeks of age, revealed no neoplastic lesions associated with acetone exposure, that is, any

lesions seen were considered spontaneous in this strain. Furthermore, acetone was negative as a tumor

promoter for formaldehyde. In other skin painting studies in which acetone-treated mice were used as

a negative vehicle control for organosilanes (De Pass et al. 1989) or flame retardants (Van Duuren et

al. 1978), no evidence was found to suggest that acetone alone was a skin carcinogen. Acetone was

also negative as a tumor initiator (Roe et al. 1972) and as a tumor promoter for

7,12-dimethylbenz[a]anthracene (Roe et al. 1972; Van Duuren et al. 1971; Weiss et al. 1986).

2.3 TOXICOKINETICS

Although the focus of this profile is on the effects of exposure to acetone from exogenous sources, a

full understanding of the toxicokinetics requires consideration of the metabolic fate of endogenous

acetone. Acetone is one of three ketone bodies that occurs naturally throughout the body (Le Baron

1982; Vance 1984). Under normal conditions, the production of ketone bodies occurs almost entirely

within the liver and to a smaller extent in the lung and kidney (Gavin0 et al. 1987; Le Baron 1982;

Vance 1984) The process is continuous, and the three products are excreted into the blood and

transported to all tissues and organs of the body where they can be used as a source of energy. Two

of these ketone bodies, acetoacetate and P-hydroxybutyrate, are organic acids that can cause metabolic

acidosis when produced in large amounts. Acetone, in contrast, is nonionic and is derived

endogenously from the spontaneous and enzymatic breakdown of acetoacetate (Kimura et al. 1986;

Koorevaar and Van Stekelenburg 1976; Lopez-Soriano and Argiles 1985; Lopez-Soriano et al. 1985;

Reichard et al. 1979; Van Stekelenburg and Koorevaar 1972). Endogenous acetone is eliminated from

the body either by excretion into urine and exhaled air or by enzymatic metabolism (Charbonneau et

al. 1986; Haggard et al. 1944; Owen et al. 1982; Reichard et al. 1986; Wigaeus et al. 1981). Under

normal circumstances, metabolism is the predominant route of elimination and handles 70-80% of the

total body burden.

Levels of endogenous acetone can fluctuate greatly due to normal diurnal variations (Wildenhoff

1972). In addition, circulating levels of endogenous acetone can fluctuate greatly depending on a

person’s age (Paterson et al. 1967; Peden 1964), nutritional status and fasting (Jones 1987; Kundu et

al. 1993; Levy et al. 1973; Lewis et al. 1977; Neiman et al. 1987; Reichard et al. 1979; Rooth and

Carlstrom 1970; Williamson and Whitelaw 1978); and degree of physical activity (Koeslag et al.
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1980). These physiological states all place high energy demands upon the body which result in

increased fatty acid utilization and higher than normal blood levels of acetone. Infants and young

children typically have higher acetone blood levels than adults due to their higher energy expenditure

(Peden 1964). Pregnancy and lactation can also lead to higher than average blood levels of acetone

(Bruss 1989; Paterson et al. 1967). In addition to these normal physiological conditions, a number of

clinical states can result in humans acetonemia and acetonuria. In each of these conditions, the ketosis

can be traced to the increased mobilization and utilization of free fatty acids by the liver. The

conditions include diabetes (Kobayashi et al. 1983; Levey et al. 1964; Reichard et al. 1986; Rooth

1967; Rooth and Ostenson 1966), trauma (Smith et al. 1975), and alcoholism (Phillips et al. 1989;

Tsukamoto et al. 1991).

Following exposure from exogenous sources, acetone is rapidly and passively absorbed from the lungs

and gastrointestinal tract. Acetone can also be absorbed from the skin. After uptake by the lungs,

acetone is readily absorbed into the bloodstream. Pulmonary uptake by humans has ranged from 30%

to 80%. The reason for the wide range in reported values involves the unique aqueous

wash-in/wash-out effect displayed when acetone is inhaled, causing spurious results. During this

phenomenon, acetone, which is highly water soluble, will dissolve in epithelial cells during inspiration

(wash-in) and evaporate during expiration (wash-out). This could account for lower than expected

pulmonary absorption based on the high blood-air partition coefficient. Exhaled breath levels of

acetone rise during exposure and reach steady state within 2 hours during exposure. Breath levels of

acetone are directly proportional to the exposure concentration and duration and increase with physical

activity due to increased pulmonary ventilation. Blood levels of acetone rose continuously during

2-4 hours exposure without reaching steady state, indicating continuous absorption during exposure.

About 75-80% of the inspired amount is absorbed by blood within 15 minutes, and blood levels

correlate with exposure concentration. Results in humans and animals indicate that relatively little

acetone is absorbed from the nasal passages. No major differences were found between humans and

animals in absorption after inhalation exposure. Based on animal studies, acetone is also absorbed

rapidly and extensively from the gastrointestinal tract, with at least 74-83% absorbed based on the

percent of the dose excreted by the lungs as acetone and carbon dioxide. As with inhalation, plasma

levels rise proportionately with oral dose. Absorption can be delayed by the presence of fat in the

stomach, due to delayed gastric emptying. Dermal absorption of acetone is also fairly rapid.



ACETONE 64

2. HEALTH EFFECTS

Acetone is highly water soluble and is widely distributed to tissues and organs throughout the body,

especially to tissues with high water content. Radiolabeled unchanged acetone and total radioactivity

(the percentage of total radioactivity that is not acetone represents metabolites) were detected in all

tissues examined (blood, pancreas, spleen, thymus, heart, testis, vas deferens, lung, kidney, brain, liver,

muscle, and adipose tissue) in male mice after inhalation exposure to radiolabeled acetone. Peak

levels in these tissues occurred during the first 6 hours after exposure, and longer or repeated exposure

resulted in no further accumulation except in liver and brown adipose tissue. Elimination of acetone

from all tissues was complete within 24 hours, but total radioactivity, which represented metabolites,

was still present in all tissues except blood and muscle. Thus acetone is not selectively distributed to

any tissue and is not likely to accumulate with repeated exposure. Although information on

distribution after oral and dermal exposure was not available, similar distribution is likely. Acetone

can also undergo transplacental transfer to the fetus.

The metabolic fate of acetone, whether from endogenous or exogenous sources, is similar in humans

and animals, is independent of route of exposure, and involves three separate gluconeogenic pathways,

with ultimate incorporation of carbon atoms into glucose and other products of intermediary

metabolism, with generation of carbon dioxide and adenosine triphosphate (ATP). Metabolism takes

place primarily in the liver. Some of the exogenous acetone is unmetabolized and excreted primarily

in the expired air. Acetone is initially oxidized to acetol by acetone monooxygenase, the rate limiting

step governing the overall accumulation and elimination of acetone from the body. Acetol is oxidized

to methylglyoxal by acetol monooxygenase. Both activities are associated with P-450IIE1, and the

reactions require oxygen and nicotinamide adenine dinucleotide phosphate (NADPH). Methylglyoxal

is converted to glucose directly or via D-lactate. Acetol can also be converted to L-1,2-propanediol,

from which the pathways branch with either formation of L-lactate to D-glucose or degradation of

1,2-propanediol to acetate and formate. The carbon atoms of acetone can also be incorporated into

glycogen, amino acids, fatty acid, heme, cholesterol, choline, and urea via acetate and formate. These

pathways appear to operate in rats, mice, and rabbits, with very few species differences, and hence

probably in humans. The relative importance of the three pathways depends upon the dose, with the

methylglyoxal and lactate pathways predominating at low doses, but shunting to the formate-acetate

branch of the propanediol pathway at higher doses as the methylglyoxal and lactate pathways become

saturated. Physiological status, such as diabetes and fasting, and genetic status can alter the pattern of

metabolism.
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The main route of excretion is via the lungs regardless of the route of exposure with very little

excreted in the urine. Acetone is excreted both unchanged and, following metabolism, mainly as

carbon dioxide. In humans exposed by inhalation, the rate and pattern of respiratory and urinary

excretion of acetone is influenced by exposure concentration, duration, the level of physical activity

during exposure, and gender. Respiratory excretion is complete within 20 hours after inhalation, and

peak urinary excretion occurs between 1 and 3.5 hours after exposure. The amount expired or

excreted in the urine increases with increasing exposure concentration and with increasing duration of

exposure, and increases with exercise during exposure. Women expired acetone more slowly than

men, but the percentages excreted were not significantly different. The time for urinary excretion to be

complete increases with exposure concentration and duration. Daily intermittent exposure may result

in a slight residual body burden, but elimination is generally complete in 48-72 hours after the last

exposure, depending on the exposure concentration. Excretion of acetone after inhalation exposure is

better characterized in humans than in animals, but appears to be similar. In rats exposed to

radiolabeled acetone, 52% of the expired radioactivity was unchanged acetone and 48% was carbon

dioxide. Based on animal studies, excretion of acetone and carbon dioxide after oral exposure is

similar to that after inhalation exposure.

Most of the toxic effects of acetone do not appear to be due to any of its metabolites. As is typical of

solvents, acetone is irritating to the mucous membranes. Acetone is also narcotic, and although the

mechanism by which acetone exerts is effects on the central nervous system is unknown, as a solvent,

it may interfere with the composition of membranes, altering their permeability to ions. The

mechanisms by which acetone produces hematological, hepatic, renal, reproductive, and developmental

effects is unknown, but acetone has been found to distribute to all of these target organs, including the

brain, and can undergo transplacental transfer. The renal toxicity may be due to the formation of

formate and may involve α2u-globulin. One of the main effects of acetone is the induction of

microsomal enzymes, particularly cytochrome P-450IIEl. Enzyme induction is probably responsible

for the increased liver and kidney weights observed in animals by virtue of the increase in protein

content. Acetone also potentiates the toxicity of numerous other chemicals primarily by increasing

their metabolism to toxic intermediates by the induction of cytochrome P-450IIE1, or otherwise

interfering with their metabolism and elimination.
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2.3.1 Absorption

2.3.1.1 Inhalation Exposure

Due to its high blood-air partition coefficient (167-330) (Fiserova-Bergerova and Diaz 1986; Haggard

et al. 1944; Paterson and Mackay 1989; Sato and Nakajima 1979), acetone is rapidly and passively

taken up by the respiratory tract and absorbed into the bloodstream during inhalation exposure.

Experiments in humans exposed to 23-4,607 ppm for up to 4 hours have measured pulmonary uptakes

ranging from ≈30% to 80% (DiVincenzo et al. 1973; Landahl and Herrmann 1950; Nomiyama and

Nomiyama 1974a; Pezzagno et al. 1986; Wigaeus et al. 1981). The reason for the wide range in

reported values involves the unique aqueous wash-in/wash-out effect when acetone in inhaled, which

can lead to spurious results (Schrikker et al. 1985, 1989). During this phenomenon, acetone, which is

highly water soluble, will dissolve in epithelial cells during inspiration (wash-in) and evaporate during

expiration (wash-out). This could account for the lower than expected pulmonary absorption based on

the high blood/air partition coefficient (Wigaeus et al. 1981). Exhaled breath levels of acetone in

humans rose during exposure and reached steady-state within ≈2 hours during exposure (Brown et al.

1987; DiVincenzo et al. 1973; Nomiyama and Nomiyama 1974a). Uptake was directly proportional to

exposure concentration and duration (DiVincenzo et al. 1973; Wigaeus et al. 1981). Uptake also

increased as the level of physical activity increased, i.e., during exercise, due to increased pulmonary

ventilation (DiVincenzo et al. 1973; Haggard et al. 1944; Jakubowski and Wieczorek 1988; Wigaeus et

al. 1981). Lungs (including the mouth and trachea) retained a greater percentage of inspired acetone

(55%) than the nasal cavity (18%) in humans, indicating that the nasal cavity absorbs acetone less

readily than the rest of the respiratory system (Landahl and Herrmann 1950). Blood levels of acetone

rose rapidly during exposure for up to 4 hours with no indication that steady-state was reached (Brown

et al. 1987; Dick et al. 1989; DiVincenzo et al. 1973), suggesting that during exposure, the rate of

absorption exceeded the rate of distribution and elimination. In humans exposed to 100 or 500 ppm

acetone for 2 or 4 hours, 75-80% of the amount of acetone inspired was absorbed by blood after 15

minutes of exposure, and 20-25% remained in the dead space volume (DiVincenzo et al. 1973).

Higher inspired amounts resulted in higher blood levels (DiVincenzo et al. 1973; Haggard et al. 1944;

Matsushita et al. 1969a; Pezzagno et al. 1986). A correlation between blood level at the end of

exposure and exposure concentration was found in humans exposed to 23-208 ppm for 2-4 hours

(Pezzagno et al. 1986). No significant difference in uptake or retention was found between men and

women (Brown et al. 1987).
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Animals also absorb acetone rapidly during inhalation exposure. Measurement of blood acetone levels

in rats after 4-6 hours of exposure to various concentrations shows that blood levels correlate well

with exposure concentrations (Charbonneau et al. 1986a, 1991; NTP 1988) and are highest

immediately after exposure (NTP 1988). In rats exposed to 1.50 ppm for 0.5-4 hours, measurement of

blood acetone concentrations during exposure revealed that blood levels increased steadily for 2 hours

and then remained constant for the next 2 hours of exposure (Geller et al. 1979b). Blood acetone

levels also correlated well with exposure concentration in dogs exposed for 2 hours (DiVincenzo et al.

1973). Blood levels were 4, 12, and 25 mg/L after exposures to 100, 500, and 1,000 ppm,

respectively. Comparison of uptakes in dogs and humans revealed that humans absorbed a greater

absolute quantity under comparable exposure conditions, but when expressed in terms of kg body

weight, dogs absorbed 5 times more than humans. In anesthetized dogs allowed to inhale concentrated

vapors of acetone spontaneously from a respirator at various ventilation rates, uptake by the respiratory

tract was 52% at flow rates of 5-18 L/minute and 42% at ventilation rates of 21-44 L/minute (Egle

1973). Retention in the lower respiratory tract was 48% at 5-18 L/minute and 37.5% at

2140 L/minute. Retention by the upper respiratory tract was 57% at 4-18 L/minute. The effect of

exposure concentration on total uptake was studied at a range of ventilation rates equated with

exposure concentrations. Percent uptakes were 52.1% at a mean concentration of 212 ppm, 52.9% at

283 ppm, and 58.7% at 654 ppm. These results indicate the respiratory uptake of acetone by dogs is

similar to human uptake values reported by Landahl and Herrmann (1950). The retention in the upper

respiratory tract was higher than in the lower respiratory tract of dogs (Egle 1973). Exposure

concentration had little effect on retention. The absorption of acetone by the nasal walls of

anesthetized dogs, in which the nasal passage was isolated, increased when the airflow rate was

increased (Aharonson et al. 1974). This suggests that increased airflow decreases the amount of

acetone that reaches the lungs.

In rats exposed continuously to 2,210 ppm for 9 days, peak acetone blood levels of

≈ 1,020-l ,050 mg/L were reached in 3-4 days and remained at this level for the duration of exposure

(Haggard et al. 1944) In rats exposed to 4,294 ppm for 12 days, acetone blood levels plateaued at

2,420-2,500 mg/L in 4 days. Blood levels in rats exposed to these concentrations for 8 hours/day

were about half of those reached during continuous exposure. The amount of acetone absorbed in the

first 8 hours exceeded the amount eliminated in the next 16 hours of exposure to fresh air, leading to a

small accumulation. However, the accumulation during intermittent exposure did not reach the levels
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achieved during continuous exposure. In other experiments of rats exposed to 2,105-126,291 ppm, the

time to peak blood level decreased as the exposure concentration increased.

As was found in humans (Landahl and Herrmann 1950) and dogs (Egle 1973), disposition of acetone

in the upper respiratory tract of rats, mice, guinea pigs, and hamsters indicates that relatively little

acetone is absorbed from the upper respiratory tract (Morris 1991; Morris and Cavanagh 1986, 1987;

Morris et al. 1986, 1991). The deposition efficiency was greater in Sprague-Dawley rats than in

Fischer-344 rats. Deposition was similar in B6C3Fl mice and Fischer-344 rats, and greater than in

Hartley guinea pigs and Syrian golden hamster. No difference was found between male and female

Sprague-Dawley rats (Morris et al. 1991). The differences among strains and species could not be

attributed to differences in metabolism because acetone is not significantly metabolized in the upper

respiratory tract of these species (Morris 1991). Rather, the difference was attributed to differences in

perfusion rates (Morris 1991; Morris and Cavanagh 1987).

2.3.1.2 Oral Exposure

In a series of experiments conducted in male volunteers given acetone orally at 40-80 mg/kg, an

estimated 65-93% of the administered dose was eliminated via metabolism, with the remainder

excreted in the urine and expired air in about 2 hours, indicating rapid and extensive gastrointestinal

absorption (Haggard et al. 1944). In a human who ingested 137 mg/kg acetone on an empty stomach,

the blood level of acetone rose sharply to a peak 10 minutes after dosing (Widmark 1919). In other

experiments, the subject ingested the same dose 10 or 12 minutes after eating porridge. The blood

acetone level rose slowly over 48-59 minutes to levels of about one-half to two-thirds that achieved

after taking acetone on an empty stomach. Thus, the presence of food in the gastrointestinal tract lead

to a slower rate of absorption.

Measurement of acetone in blood and urine of patients who accidentally or intentionally ingested

acetone indicated that acetone was absorbed, but the percentage absorbed cannot be determined from

the data. In one case, a man ingested liquid cement that provided a dose of acetone of ≈231 mg/kg

(Sakata et al. 1989). His plasma acetone level was about 110 µg/mL and his urinary level was

123 µg/mL 5 hours after ingestion, but he had been subjected to gastric lavage. In a another case, a

woman who had ingested nail polish remover had a blood acetone level of 0.25 g/100 mL

(2.5 mg/mL) upon admission to the hospital (Ramu et al. 1978). The authors estimated that her body
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burden was 150 g acetone at the time of admission. The serum acetone level of a 30-month-old child

was 445 mg/l00 mL (4.45 mg/rnL) 1 hour after ingestion of a 6ounce bottle of nail polish remover

(65% acetone) (Gamis and Wasserman 1988).

Experiments in rats indicated that acetone is rapidly and almost completely absorbed from the

gastrointestinal tract after oral exposure. A rat given 14C-acetone at a dose of 1.16 mg/kg expired

47.4% of the dose as 14C-carbon dioxide over the 13.5-hour collection period (Price and Rittenberg

1950). Another rat given about 7.11 mg/kg 14C-acetone by gavage once a day for 7 days expired

67-76% of the administered radioactivity as 14C-carbon dioxide and 7% as 14C-acetone over a 24-hour

period after the last dose. From these data, absorption of least 74-83% of the administered dose can

be inferred. A rat dosed with 6.19 mg/kg 14C-acetone expired 4.24% of the radiolabel as unchanged
14C-acetone over 5.5 hours, indicating rapid absorption. In rats given a single gavage dose of

1,177 mg/kg acetone, the maximum blood level of 850 µg/mL was reached in 1 hour and declined

gradually to about 10 µg /mL over 30 hours (Plaa et al. 1982). In another experiment, peak blood

levels and the time to peak blood levels were compared after various gavage doses to rats. After a

dose of 78.44 mg/kg, the maximum blood level of acetone of about 200 µg/mL was reached in 3 hours

and declined to 10 µg/mL at 12 hours, where it remained for the next 12 hours. After a dose of

196.1 mg/kg, the peak blood level was 400 µg/mL at 6 hours and declined biphasically to 50 µg/mL at

12 hours and to 30 µg/mL at 18 hours where it remained for the next 6 hours. After a dose of

784.4 mg/kg, the peak level was 900 µg/mL at 1 hour and declined to 300 µg /mL at 12 hours,

110 µg/mL at 18 hours, and 50 µg/mL at 24 hours. After a dose of 1,961 mg/kg, the peak level was

1,900 µg /mL at 3 hours and declined slowly to 400 µg /mL at 24 hours. In other studies where rats

were given similar or higher doses of acetone, plasma acetone levels rose proportionately with dose in

rats given acetone as single doses by gavage (Charbonneau et al. 1986a; Lewis et al. 1984) or in the

drinking water for 7 days (Skutches et al. 1990).

In a study comparing the blood levels of acetone achieved after fasting with those after oral dosing,

peak blood levels of acetone of about 35 and 110 µg /mL were reached within about 3 hours after

dosing of rats with 78 and 196 mg/kg acetone, respectively (Miller and Yang 1984). The levels

declined to near background levels within the next 16 hours. At an acetone dose of 20 mg/kg, the

blood level increased to about 5 µg /mL over 19 hours, when the rats were sacrificed. In rats fasted for

48 hours, blood acetone levels increased continuously to about 13 µg /mL. While the maximal blood
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concentrations of the treated rats differed considerably from that of the fasting group, the areas under

the curve for the 78 and 196 mg/kg groups were comparable to the fasting groups.

Conflicting data were located regarding the effect of vehicle on the gastrointestinal absorption of

acetone. In one study, maximum blood levels were higher and achieved earlier in rats given acetone

by gavage in water than in rats given acetone by gavage in corn oil (Charbonneau et al. 1986a). The

slower absorption of acetone in corn oil may have resulted from a delayed gastric emptying due to the

presence of corn oil (fat) in the stomach. In a later study, however, very little difference in blood and

liver levels of acetone were found in rats given the same dose of acetone in water or in corn oil

(Charbonneau et al. 1991).

No studies were located regarding absorption of acetone in other animal species after oral exposure to

acetone.

2.3.1.3 Dermal Exposure

Dermal absorption of acetone has been demonstrated in humans. Application of cotton soaked in

acetone to a 12.5 cm2 uncovered area of skin of volunteers for 2 hours/day for 4 days resulted in

blood levels of acetone of 5-12 µg /mL, alveolar air levels of 5-12 ppm, and urinary concentrations of

8-14 µg /mL on each day (Fukabori et al. 1979). Higher blood, alveolar air, and urinary levels were

obtained when the daily exposure increased to 4 hour/day: 26-44 µg /mL in blood, 25-34 ppm in

alveolar air, and 29-41 µg /mL in urine. The absorption was fairly rapid, with peak blood levels

appearing at the end of each daily application. Although precautions were taken to limit inhalation of

acetone vapors, the authors noted that it was not possible to completely prevent inhalation, and the

acetone concentration in the breathing zone of one subject was found to be 0.4-0.6 ppm. From the

alveolar air and urine concentrations, it was estimated that a 2-hour dermal exposure was equivalent to

a 2-hour inhalation exposure to 50-150 ppm, and a 4-hour dermal exposure was equivalent to a 2-hour

inhalation exposure to 250-500 ppm acetone.

No studies were located regarding the absorption of acetone in animals after dermal exposure. The

findings of cataract formation in guinea pigs exposed dermally (Rengstorff et al. 1972; Rengstorff and

Khafagy 1985) (see Section 2.2.3.2) however, indicated that acetone was absorbed from the skin of

the guinea pigs.
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2.3.2 Distribution

Of eight samples of breast milk from lactating women from four urban areas, all were found to contain

acetone (Pellizzari et al. 1982). Whether the source of acetone was endogenous or exogenous could

not be determined. Nevertheless, the data indicate that acetone is distributed to mother’s milk, and

represents a source of excretion from the mother and exposure for infants. Acetone was identified in

maternal and cord blood collected at the time of delivery, indicating transplacental transfer (Dowty et

al. 1976).

2.3.2.1 Inhalation Exposure

No studies were located regarding distribution of acetone or its metabolites in humans after inhalation

exposure to acetone. However, acetone is well absorbed into the blood from the respiratory tract of

humans (see Section 2.3.1 .l) and is highly water soluble. Therefore, widespread distribution,

especially to tissues with high water content, is expected.

The distribution of acetone has been studied in mice exposed to acetone by inhalation (Wigaeus et al.

1982). Mice were exposed to 500 ppm 14C-acetone for 1, 3, 6, 12, and 24 hours or for 6 hours/day for

1, 3, or 5 consecutive days, after which they were immediately killed. Radioactive unmetabolized

acetone and total radioactivity were found in blood, pancreas, spleen, thymus, heart, testis, vas

deferens, lung, kidney, brain, liver, muscle, brown adipose tissue, subcutaneous adipose tissue, and

intraperitoneal adipose tissue. A common feature was an increase in tissue concentration of acetone

and total radioactivity during the first 6 hours after exposure. These levels generally peaked from

about 2.5 to 3.5 µmol/g tissue except in adipose tissues for total radioactivity. Peak levels of

unmetabolized acetone were generally <l-l.3 µmol/g tissue. Exposure for longer than 6 hours

resulted in no further accumulation of total radioactivity except in the liver and brown adipose tissue,

in which levels rose to 4.8 µmol /g liver and 2.6 µmol /g brown adipose tissue at 24 hours. Only about

10% of the radioactivity in the liver at 24 hours was unmetabolized acetone. When the mice were

exposed intermittently on 3 or 5 consecutive days, most tissues showed no or only a small additional

increase in radioactivity after more than 1 day of exposure; however, the concentration in adipose

tissue increased significantly with increasing exposure duration <5 days. The ratio of acetone in the

tissues to that in blood was <1 at all exposure times except for the lungs (the site of exposure).

However, the ratio of total radioactivity in the tissues to that in the blood showed that after 1 and



ACETONE 72

2. HEALTH EFFECTS

3 hours exposure, only the lung had a ratio >l, whereas the ratios in the kidneys and liver were >1

after 6 hours. Only the muscle and subcutaneous and intraperitoneal adipose tissue rose continuously.

Elimination of acetone was fastest in blood, kidneys, lungs, brain, and muscles with half-times of

about 2-3 hours during the first 6 hours after exposure. The slowest elimination was in subcutaneous

adipose tissue with a half-time of >5 hours. Elimination of acetone was complete in all tissues by

24 hours after exposure, but total radioactivity, indicative of metabolites, was still present in all tissues

except blood and muscle. These data indicate that acetone is not selectively distributed to any tissues

but is more evenly distributed in body water. Acetone is not likely to accumulate with repeated

exposure. The continued accumulation of radioactivity in the liver and brown adipose tissue could be

the result of high metabolic turnover in these tissues.

2.3.2.2 Oral Exposure

No studies were located regarding the distribution of acetone or its metabolites in humans or animals

after oral exposure except that acetone was found in the liver of rats after oral exposure (Charbonneau

et al. 1986a, 1991). However, acetone is well absorbed from the gastrointestinal tract (see

Section 2.2.1.2) and is highly water soluble. Therefore, widespread distribution, especially to tissues

with high water content, is expected.

2.3.2.3 Dermal Exposure

No studies were located regarding distribution of acetone or its metabolites in humans or animals after

dermal exposure. The findings of cataract formation in guinea pigs exposed dermally (Rengstorff et al.

1972; Rengstorff and Khafagy 1985) (see Section 2.2.3.2), however, indicated that acetone was

absorbed from the skin of the guinea pigs and distributed to the eyes.

2.3.2.4 Other Routes of Exposure

The finding of acetone and its metabolites in fetuses from rats injected intravenously with 100 mg/kg

acetone on gestational day 19 indicates transplacental transfer (Peinado et al. 1986).
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2.3.3 Metabolism

The metabolic fate of acetone is independent of route of administration and involves three separate

gluconeogenic pathways, with ultimate incorporation of carbon atoms into glucose and other products

and substrates of intermediary metabolism with generation of carbon dioxide. The metabolic pathways

appear to be similar in humans and animals. The primary (major) pathway involves hepatic

metabolism of acetone to acetol and hepatic metabolism of acetol to methylglyoxal, while two

secondary (minor) pathways are partially extrahepatic, involving the extrahepatic reduction of acetol to

L-1,2-propanediol. Some of exogenous acetone is unmetabolized and is excreted primarily in the

expired air with little acetone excreted in urine (see Section 2.3.4).

The only studies located regarding the metabolism of acetone in humans were conducted in normal

fasted, obese fasted, and diabetic patients (Reichard et al. 1979; 1986). The involvement of

gluconeogenesis was demonstrated in normal patients fasted for 3 days, obese patients fasted for

3 days, and obese patients fasted for 21 days before intravenous injection of 2-[14C]-acetone (Reichard

et al. 1979). The percentages of 14C-glucose in plasma derived from 14C-acetone were 4.2%, 3.1%,

and 11.0% in the three respective groups, suggesting the involvement of gluconeogenesis. Cumulative
14C-carbon dioxide excretion by the lungs during the a 6-hour collection period accounted for 17.4%,

21.5%, and 4.9% in the three respective groups. Radioactivity was also incorporated into plasma

lipids and plasma proteins. Unmetabolized acetone in the expired air accounted for 14.7%, 5.3%, and

25.2%, urinary excretion of acetone accounted for 1.4%, 0.6%, and 1.3%, respectively, and in vivo

metabolism accounted for 83.%, 94.1%, and 73.%, respectively, of the radioactivity. Intravenous

infusion of 2-[14C]-acetone into patients with diabetic ketoacidosis resulted in a mean plasma acetone

turnover rate of 6.45 µmol /kg/minute (Reichard et al. 1986). Analysis of glucose in urine revealed a

labeling pattern in five of the six patients consistent with the involvement of pyruvate in the

gluconeogenic pathway. A different pathway may have operated in the other patient. Acetol and

1,2-propanediol were also detected in the plasma and the concentrations of these metabolites were

directly related to the plasma level of acetone. The results demonstrated high plasma acetone levels in

decompensated diabetic patients. The suggested pathway of acetone metabolism in these patients was

acetone to acetol to 1,2-propanediol to pyruvate and ultimately to glucose, but other pathways may

exist between subclasses of diabetic patients.
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The metabolism of acetone has been studied extensively in animals, primarily in rats, and three

separate pathways of gluconeogenesis have been elucidated (see Figure 2-3). These pathways are

consistent with the metabolic fate of acetone in humans, discussed above. The elucidation of these

pathways has been performed in experiments in which rats, mice, or rabbits were exposed by

inhalation, by gavage, via drinking water, or by intravenous, subcutaneous, or intraperitoneal injection

of nonradiolabeled acetone or to acetone labeled with 14C in the methyl groups, number 2 carbon atom,

or all three carbon atoms (Casazza et al. 1984; HaIlier et al. 1981; Hetenyi and Ferrarotto 1985;

Johansson et al. 1986; Koop and Casazza 1985; Kosugi et al. 1986a, 1986b; Mourkides et al. 1959;

Price and Rittenberg 1950; Puccini et al. 1990; Rudney 1954; Sakami and LaFaye 1950, 1951;

Skutches et al. 1990). In these experiments, identification of metabolites in liver, plasma, or urine, the

labeling patterns of 14C incorporation into metabolites from 14C-acetone in plasma or in liver, or the

results of enzyme reactions using microsomes from acetone treated animals have led to the pathways

illustrated in Figure 2-3.

In the first step, acetone is oxidized (hydroxylation of a methyl group) to acetol by acetone

monooxygenase (also called acetone hydroxylase), an activity associated the cytochrome P-450IIE1,

and requires oxygen and NADPH (Casazza et al. 1984; Johansson et al. 1986; Koop and Casazza

1985; Puccini et al. 1990). Cytochrome P-45011El can be induced by fasting, experimental diabetes,

or exposure to ethanol or acetone (Johansson et al. 1988; Patten et al. 1986; Puccini et al. 1990).

When the rate of acetone oxidation was evaluated in microsomes with acetone added to the incubation

system, microsomes from rats (Johansson et al. 1986) and mice (Puccini et al. 1990) pretreated with

acetone had a 7-8 times greater rate than microsomes from control rats or mice. Thus, acetone

induces its own metabolism.

The formation of acetol is common to all three pathways. Subsequent conversion of acetol to

methylglyoxal in microsomes is catalyzed by acetol monooxygenase (also called acetol hydroxylase),

an activity also associated with cytochrome P-450IIE1, and also requires oxygen and NADPH

(Casazza et al. 1984; Johansson et al. 1986; Koop and Casazza 1985). Methylglyoxal can then be

converted to D-glucose by an unidentified pathway, and/or possibly by catalysis by glyoxalase I and II

and glutathione to D-lactate, which is converted to D-glucose (Casazza et al. 1984). The conversion

of methylglyoxal to D-lactate by the actions of glyoxalase I and II is well established (Racker 1951),

but may represent a minor pathway in the metabolism of acetone (Casazza et al. 1984; Kosugi et al.

1986; Thornalley 1990). The unidentified pathway by which methylglyoxal is converted to D-glucose
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may involve conversion of methylglyoxal to pyruvate by 2-oxoaldehyde dehydrogenase, an activity

identified using aqueous extracts of sheep liver acetone powders (Monder 1967).

In the second and third pathways, acetol is converted to L-1,2-propanediol by an extrahepatic

mechanism that has not been characterized (Casazza et al. 1984; Kosugi et al. 1986a, 1986b; Rudney

1954; Skutches et al. 1990). The two pathways then diverge from the point of production of

1,2-propanediol. In the second pathway, 1,2-propanediol formed extra-hepatically returns to the liver

where it is converted to L-lactaldehyde via nicotinamide adenine dinucleotide (NADH)-dependent

alcohol dehydrogenase (Casazza et al. 1984; Kosugi et al. 1986a, 1986b), and L-lactaldehyde, in turn,

is converted to L-lactate (Casazza et al. 1984; Ruddick 1972; Rudney 1954) via NADH-dependent

aldehyde dehydrogenase (Casazza et al. 1984). L-lactate can then be converted to D-glucose (Casazza

et al. 1984). In the third pathway, the L-1,2-propanediol formed extra-hepatically returns to the liver

where it is degraded by an uncharacterized mechanism to acetate and formate (Casazza et al. 1984;

Ruddick 1972).

Several studies have traced the labeling patterns of 14C from 2-[14C]-acetone or 1,3-[14C]-acetone to

gluconeogenic precursors and formate to incorporation of 14C into glycogen, glycogenic amino acids,

fatty acids, heme, cholesterol, choline, and urea (Mourkides et al. 1959; Price and Rittenberg 1950;

Sakami and LaFaye 1950). The pattern of labeling suggested the involvement of the “acetate and

formate” pathway. The ultimate fate of glucose is entry into glycolysis or into the tricarboxylic acid

cycle, via pyruvate and acetyl coenzyme A (CoA) with the liberation of carbon dioxide, and

subsequent electron transport and oxidative phosphorylation with the production of ATP (Lehninger

1970). Fatty acids, amino acids, and glycogen may also enter stages of intermediary metabolism.

The relative importance of the three pathways in the metabolism of acetone may depend upon the

amount of acetone administered. When a trace amount of 2-[14C]-acetone was administered

intravenously to rats, the pattern of incorporation of 14C into glucose was consistent with the

production of glucose via the methylglyoxal/lactate pathway (Kosugi et al. 1986a). When a higher

dose of 2-[14C]-acetone (325 mg/kg) was injected, the pattern of incorporation was more consistent

with the 1,2-propanediol pathway. These results suggest that at low doses of acetone or endogenous

acetone, the methylglyoxal and lactate pathways predominate, but at higher doses, these pathways

become saturated and metabolism is shunted to the formate-acetate branch of the 1,2-propanediol

pathway.
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In addition to the pathways illustrated in Figure 2-3, 2,3-butanediol (Casazza et al. 1984) and isopropyl

alcohol (Lewis et al. 1984) were detected in the blood of rats after oral dosing with acetone, but their

position in the metabolic scheme is not clear.

That acetone is extensively metabolized has been demonstrated by the finding of high percentages of
14C-carbon dioxide in the expired air of animals exposed to 14C-acetone (Mourkides et al. 1959;

Sakami and LaFaye 1950, 1951; Price and Rittenberg 1950; Wigaeus et al. 1982) (see Section 2.3.4).

Although the liver is the primary site of acetone metabolism, radioactive unmetabolized acetone and

total radioactivity were found in blood, pancreas, spleen, thymus, heart, testis, vas deferens, lung,

kidney, brain, liver, muscle, brown adipose tissue, subcutaneous adipose tissue, and intraperitoneal

adipose tissue of mice after inhalation exposure to 14C-acetone (Wigaeus et al. 1982) (see

Section 2.3.2.1). The fraction of total radioactivity that was not unchanged acetone represented

metabolites. Elimination of acetone was complete in all tissues by 24 hours after exposure, but total

radioactivity, indicative of metabolites, was still present in all tissues except blood and muscle.

Whether these tissues (other than the liver) were capable of metabolizing acetone or whether the

metabolites themselves were distributed to the tissues was not clear. However, microsomes from the

lungs of hamsters exposed to acetone in drinking water for 7 days had a 500% increased activity of

aniline hydroxylase activity, an enzyme associated with cytochrome P-450IIEl (Ueng et al. 1991).

Furthermore, the level of cytochrome P-450IIEl increased 6-fold in microsomes from the nasal

mucosa of rabbits exposed to acetone in drinking water for 1 week (Ding and Coon 1990). In

hamsters given drinking water containing acetone for 7 days (Ueng et al. 1991) or 10 days (Menicagli

et al. 1990), the microsome prepared from kidneys had increased levels of cytochrome P-450 and

cytochrome b,. These results suggest that acetone metabolism, which involves cytochrome P-450IIE1,

may occur in the lungs and kidneys of hamsters and the nasal mucosa of rabbits. Incubation of

acetone with homogenates of nasal mucosa from mice indicated that acetone was metabolized via a

NADPH-dependent pathway in vitro, but no evidence of in vivo metabolism of acetone by the upper

respiratory tract was found in mice, rats, guinea pigs, or hamsters (Morris 1991). Injection of pregnant

rats with acetone on gestational day 19 resulted in high levels of 1,2-propanediol and acetol in the

fetuses (Peinado et al. 1986). Whether these findings reflect transfer of the metabolites from the dams

or metabolism of transferred or endogenous acetone by the fetuses was not resolved.
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Very few differences have been found among species in the metabolism of acetone. The pathways

illustrated in Figure 2-3 appear to operate in rats, mice, and rabbits. In microsomes from rabbits

exposed to acetone via drinking water, it was found that the oxidation of acetol could be catalyzed by

cytochromes P-4503b (IIC3), 2 (IIB6), and 4(IA2), as well as by cytochrome P-4503a (P-450IIEl)

(Koop and Casazza 1985). Only cytochrome P-450IIEl could catalyze the oxidation of acetone to

acetol. No studies were located regarding the ability of other isoenzymes of P-450 to catalyze these

reactions in other species.

Physiological or genetic status may alter the metabolism of acetone. When nondiabetic and diabetic

rats were treated by gavage with acetone at doses of 1,000, 2,000, or 4,000 mg/kg, isopropyl alcohol

was detected in the blood (Lewis et al. 1984). The levels of isopropyl alcohol and acetone increased

with increasing dose in the diabetic rats, although with plateaus for both acetone and isopropyl alcohol

at 1,000 and 2,000 mg/kg doses, but leveled off in the nondiabetic rats, indicating either saturation of

the metabolic pathway from acetone to isopropyl alcohol or a reversibility of the conversion at high

doses. It was suggested that in the diabetic rats, acetone and NADH, both needed for isopropyl

alcohol production from acetone, presumably via alcohol dehydrogenase, may be diverted to

gluconeogenic pathways to meet the diabetic rat’s need for glucose, resulting in the short plateau. The

subsequent rises of both compounds at the high dose of acetone in the diabetic rats could be accounted

for by greater generation of NADH from fatty acid oxidation in the diabetic rat, which reduces acetone

to isopropyl alcohol, accounting for the rising level of isopropyl alcohol. Liver homogenates from

mice heterozygous for the obesity gene treated with acetone were more effective in converting acetone

to lactate than liver homogenates from normal homozygous mice treated with acetone (Coleman 1980).

The more effective conversion by heterozygous mice may account for their prolonged survival on the

starvation regimen, compared with normal mice. In pregnant and virgin rats (either fed or fasted)

injected intravenously with acetone, plasma acetol levels were not significantly different between

fasted and nonfasted rats, but pregnant rats had significantly lower levels than virgin rats (Peinado et

al. 1986). Liver levels of acetol were also significantly lower in pregnant rats than in virgin rats.

Methylglyoxal levels were very high in the livers and plasma of nonfasted rats (pregnant or virgin),

but fasting resulted in much lower levels. In contrast, no major differences were found in the

expiration of carbon dioxide between fasted and diabetic rats injected intraperitoneally with acetone

(Mourkides et al. 1959) or in the labeling pattern of 14C derived from 14C-acetone into glucose among

nonfasted diabetic, fasted diabetic, normal nonfasted, and normal fasted rats injected intravenously

with 14C-acetone (Kosugi et al. 1986a, 1986b).
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2.3.4 Excretion

2.3.4.1 Inhalation Exposure

The main route of excretion of acetone is via the lungs regardless of the route of exposure. Acetone is

excreted both unchanged and, following metabolism, mainly as carbon dioxide. Studies have been

conducted in humans exposed by inhalation, but these studies have followed the elimination only of

unchanged acetone from blood and the excretion of unchanged acetone in the expired air and urine.

In humans exposed to acetone <1,250 ppm for <7.5 hours/day in a complex protocol for 16 weeks, the

concentration of acetone in venous blood was directly related to the vapor concentration and duration

of exposure, and inversely related to the time elapsed following exposure (Stewart et al. 1975). The

rate of elimination of acetone from blood was constant regardless of blood acetone concentration

(DiVincenzo et al. 1973). Half-times for blood elimination of 3-3.9 hours have been estimated in

humans exposed to 100-500 ppm for 2-4 hours (Brown et al. 1987; DiVincenzo et al. 1973; Wigaeus

et al. 1981). Elimination half-times of 3.9 hours and 6.2 hours have been estimated for arterial and

venous blood, respectively (Wigaeus et al. 1981). No differences in elimination half-times were found

between men and women (Brown et al. 1987). The elimination from blood was found to be complete

in 24 hours after a 6-hour exposure in subjects exposed to 250 ppm, in 32 hours in subjects exposed to

500 ppm, and in 48 hours in subjects exposed to 1,000 ppm (Matsushita et al. 1969b). When humans

were exposed for 6 hours/day for 6 days, the blood levels of acetone rose each day and declined to

background levels by the following morning each day when the exposure concentration was 250 ppm

(Matsushita et al. 1969a). At an exposure concentration of 500-ppm, however, the blood levels

declined each day, but not to background levels. At the end of the 6-day exposure, blood acetone

levels declined to background within 2 days for the 250 ppm group and within 3 days for the 500 ppm

group. From the half-time and the data on time for decline to background levels, it appears that at

higher concentrations, acetone may accumulate slightly in the blood during daily intermittent exposure,

as would be experienced by workers.

The rate and pattern of respiratory excretion of acetone is influenced by exposure concentration,

duration, the level of physical activity during exposure, and gender. In humans exposed to acetone

<1,250 ppm for <7.5 hours/day in a complex protocol for <6 weeks, the rate of respiratory excretion

was a function of the duration, and the concentration of acetone in breath after exposure was directly
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related to the time-average concentration during exposure, with constant duration (Stewart et al. 1975).

The length of time after exposure in which acetone could be detected in the expired air was related to

the magnitude of exposure, with acetone still readily detectable 16 hours after exposure to 1,000 or

1,250 ppm for 7.5 hours. Excretion of acetone by the lungs was complete within 20 hours

postexposure in humans exposed to 237 ppm for 4 hours (Dick et al. 1989). During exposure for

2 hours, the acetone concentration in expired air rose to 20 ppm in humans exposed to 100 ppm and to

90-100 ppm in those exposed to 500 ppm (DiVincenzo et al. 1973). After exposure to 100 ppm, the

expired air concentration of acetone declined biphasically over the next 7 hours to 5 ppm. However,

after exposure to 500 ppm, the expired air concentration dropped sharply to 2 ppm and declined to

1 ppm over the next 7 hours. Prolonging the exposure duration to 4 hours resulted in less than a

2-fold increase in acetone levels in postexposure expired air, which may reflect a greater loss of

acetone through metabolism and urinary excretion. Exercise during the exposure period increased the

elimination almost 2-fold. In humans exposed to acetone at rest, during exercise at a constant

workload, or during exercise with step-wise increments in workload, expiration of acetone via the

lungs amounted to 70, 80, and 200 mg, respectively, at 4 hours postexposure and to 50, 80, and

200 mg, respectively, over the next 4-20 hours (Wigaeus et al. 1981). Excretion of acetone from the

lungs and kidneys (combined) amounted to 16, 20, and 27% of the amount absorbed in the three

respective groups of subjects. Urinary excretion amounted to only 1% of the total uptake. Women

expired acetone more slowly than men after a 4-hour exposure to 127-131 ppm, but the percentages

excreted by the lungs were not statistically significantly different between men and women (17.6% for

men, 15.0% for women) (Nomiyama and Nomiyama 1974b).

Very little unchanged acetone is excreted in the urine (DiVincenzo et al. 1973; Kawai et al. 1992;

Vangala et al. 1991; Wigaeus et al. 1981). Urinary excretion is biphasic (Pezzagno et al. 1986). Peak

urinary excretion occurred between 1 and 3.5 hours after exposure (Matsushita et al. 1969b; Wigaeus

et al. 1981). In male volunteers exposed to 497 or 990 ppm acetone for 4 hours, cumulative acetone

excretion in urine at 18 hours after cessation of exposure was 89.5 mg, suggesting slow excretion of

acetone in the urine (Vangala et al. 1991). The amount of acetone excreted in the urine is influenced

by the exposure concentration, the duration of exposure, and the level of physical activity during

exposure. The acetone concentration in the urine ranged from 0-17.5 mg/L at the end of the 8-hour

workshift in 45 workers exposed to 0-70 ppm acetone (background urinary concentration in 343

nonexposed subjects averaged 1.5 mg/L) (Kawai et al. 1992). Acetone levels in the preshift urine

samples were significantly higher than background levels when acetone exposure on the previous day
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was above 15 ppm. There was no significant difference between background urine levels and preshift

urine levels when the previous day’s exposure was <15 ppm. In humans exposed for 6 hours, peak

urinary levels were found within the first hour after exposure and were 5.2 mg/dL in subjects exposed

to 1,000 ppm, 2.9 mg/dL in subjects exposed to 500 ppm, and 1.8 mg/dL in subjects exposed to

250 ppm (Matsushita et al. 1969b). The decline in urinary acetone to background levels occurred

within 48 hours for the 1,000 ppm group, within 32 hours for the 500 ppm group, and within 24 hours

in the 250 ppm group. When human subjects were exposed for 6 hours/day for 6 days, urinary levels

of acetone rose each day and declined to background levels by the following morning each day when

the exposure concentration was 250 ppm (Matsushita et al. 1969a). At an exposure level of 500 ppm,

however, urinary levels declined each day, but not to background levels. At the end of the 6-day

exposure period, urinary acetone levels declined to background within 2 days for the 250 ppm group

and within 3 days for the 500 ppm group. Therefore, excretion was more complete after exposure to

lower concentrations, and at higher concentrations, acetone may accumulate somewhat during daily

intermittent exposure, as would be experienced occupationally. Total 24-hour urine content of acetone

was 1.25 mg in subjects exposed to 100 ppm for 2 hours and 3.51 mg in subjects exposed to 500 ppm

for 2 hours (DiVincenzo et al. 1973). Prolonging the duration to 4 hours in 100 ppm group resulted in

a total of 1.99 mg acetone in the urine. A slight increase in the urinary content of acetone (1.39 mg)

was found when humans exposed to 100 ppm for 2 hours exercised during the exposure. The nature

of physical activity during exposure also influenced the urinary excretion. At 3-3.5 hours after

exposure, 8.5, 8.5, and 13.4 mg were excreted by the kidney in subjects exposed at rest, during

exercise at a constant workload, and during exercise with step-wise increments in workload,

respectively (Wigaeus et al. 1981). Urinary excretion amounted to only 1% of the total uptake.

As in humans, acetone is excreted mainly by the lungs of animals. Studies in animals have followed

the elimination of acetone from blood and tissues, excretion of acetone and carbon dioxide in expired

air, and the urinary excretion of formic acid.

Blood levels of acetone were highest immediately after a 4-hour exposure of rats to acetone

(Charbonneau et al. 1986b). In rats exposed to 10,000 ppm, the blood level dropped from 2,114 to

5 µg /mL in 25 hours. In rats exposed to 15,000 ppm, the blood level dropped from 3,263 µg/mL to

50 µg /rnL after 25 hours. Elimination from blood was biphasic in rats exposed to 10,000 and

15,000 ppm, perhaps indicating saturation. Elimination from blood was triphasic in rats exposed to

1,000, 2,500, or 5,000 ppm and was complete within 17-25 hours. In dogs exposed to 100, 500, or
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1,000 ppm acetone for 2 hours, blood levels declined in a log-linear manner with a half-time of

3 hours, similar to that observed in humans (DiVincenzo et al. 1973). Blood levels declined from

25 mg/L immediately after exposure to 10 mg/L at 5 hours postexposure for the 1,000 ppm group,

from 12 to 3 mg/L for the 500 ppm group, and from 4 to 1.5 mg/L for the 100 ppm group.

Elimination of radioactivity and 14C-acetone was fastest from blood, kidney, lungs, brain, and muscle

tissues of mice exposed to 500 ppm 14C-acetone for 6 hours, with half-times of 2-3 hours during

6 hours postexposure (Wigaeus et al. 1982) (see Section 2.3.2.1). Elimination of acetone was

complete in 24 hours in all tissues, but radioactivity (indicative of metabolites) was still present in all

tissues except blood and muscle. When rats were exposed for 5 days, acetone tended to accumulate in

adipose tissue.

Excretion of acetone in air followed pseudo-first-order kinetics in rats exposed to <20 ppm acetone for

l-7 days, while at higher concentrations, saturation kinetics were observed (Hallier et al. 1981). In

rats exposed to 500 ppm 14C-acetone for 6 hours, 42 µmol of radioactive acetone and 37 µmol
14C-carbon dioxide were excreted in the expired air during a 12-hour postexposure period, with 95%

and 85%, respectively, recovered in the first 6 hours postexposure (Wigaeus et al. 1982). Radioactive

acetone accounted for 52% and radioactive carbon dioxide accounted for 48% of the expired

radioactivity. The concentration of acetone in the expired breath of dogs exposed to 100, 500, or

1,000 ppm acetone for 2 hours declined in a log-linear manner (DiVincenzo et al. 1973). The breath

levels were directly related to the magnitude of exposure. Breath levels declined from 1.6 ppm at 30

minutes after exposure to 0.3 ppm at 300 minutes in the l00-ppm group, from 6.8 to 1.5 ppm in the

500-ppm group, and from 15 to 4 ppm in the l,000-ppm group.

Urinary excretion of formic acid was followed for 7 days in rats exposed to 62,000 ppm acetone for

2 days. The rate of formic acid excretion was 344 µg/hour compared with 144 µg /hour in controls

(Hallier et al. 1981).

2.3.4.2 Oral Exposure

In volunteers who ingested 40-60 mg/kg acetone, the elimination of acetone in expired air and urine

was determined 2 hours later, and a rate of metabolism of 1.82 mg/kg/hour along with the excretion

data was used to calculate that 3.54-7.38 mg/kg had been excreted and metabolized (Haggard et al.
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1944). The authors estimated that 65-93% of the administered dose was eliminated via metabolism,

with the remainder excreted in the urine and expired air.

The only other information regarding excretion of acetone in humans after oral exposure is from case

reports of accidental or intentional ingestion of materials containing acetone plus other components

that may have influenced the elimination of acetone. In a man who ingested liquid cement containing

18% acetone (231 mg/kg), 28% 2-butanone, and 29% cyclohexanone and 720 mL sake, the plasma

level of acetone was ≈1,120 µg /mL 5 hours after ingestion and declined to 65 µg /mL at 18 hours,

60 µg /mL at 24 hours, and <5 µg /mL at 48 hours (Sakata et al. 1989). A first-order plasma

elimination rate constant of 0.038/hour and a half-time of 18.2 hours were calculated. The urinary

level of acetone decreased gradually from about 123 µg /mL at 5 hours after ingestion to about

61 yg/mL at 19 hours. In a case of a known alcoholic who had ingested nail polish remover and

whose blood acetone level was 0.25 g/dL (2.5 mg/mL) upon admission to the hospital, the blood level

of acetone declined in a log-linear manner to about 0.06 g/dL (0.6 mg/mL) about 86 hours after

admission, with a half-life of 31 hours (Ramu et al. 1978). The calculated clearance of acetone from

the lungs was 29 ml/minute or 0.39 ml/minute/kg. A half-time of 25 hours for lung clearance was

calculated, which is in agreement with the observed plasma elimination half-time of 31 hours. The

serum acetone level of a 30-month-old child was 445 mg/100 mL (4.45 mg/mL) 1 hour after ingestion

of a 6-ounce bottle of nail polish remover (65% acetone) and declined to 2.65 mg/mL at 117 hours, to

0.42 mg/mL at 48 hours, and to 0.04 mg/mL at 72 hours (Gamis and Wasserman 1988). The halftime

of acetone in this patient was 19 hours in the severe early stage and 13 hours in later stages of

intoxication, which suggested to the authors greater metabolism and/or excretion in children, compared

with adults.

For animals, information regarding the excretion of acetone after oral exposure is available only for

rats. As is the case after inhalation exposure, acetone, mainly as carbon dioxide, is excreted primarily

by the lungs. In a rat given 1.16 mg/kg 14C-acetone by gavage in water, expiration of 14C-carbon

dioxide totaled 47.4% of the administered radioactivity over the 13.5-hour collection period (Price and

Rittenberg 1950). In another experiment, a rat was given 7.11 mg/kg radioactive acetone. A small

amount of radioactive acetone (10%) was found in the expired air. Radioactive carbon dioxide and

acetate were also detected. In a rat made diabetic by alloxan and given 6.15 mg/kg 14C-acetone, a

total of 7.29% of the administered radioactivity was expired as acetone and 51.78% as carbon dioxide.

Radioactive acetate was detected in the urine. These data indicate that very little acetone (<10%) was
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excreted by the lungs after small doses of acetone. A major fraction was oxidized to carbon dioxide

and some of the derived carbon was used for acetylation. The diabetic rat was also able to oxidize

acetone, but only to ≈70% of that in the normal rat.

The dose of acetone influences the elimination of acetone from blood (Plaa et al. 1982). At a dose of

78.44 mg/kg, the maximum blood level of 200 µg /mL at 3 hours declined to 10 µg /mL at 12 hours,

where it remained for the next 12 hours (data inadequate to calculate total body clearance). At a dose

of 196.1 mg/kg, the maximum blood level of 400 µg /mL at 6 hours declined biphasically to 50 µg /mL

at 12 hours and to 30 µg /mL at 18 hours where it remained at 24 hours (total body

clearance-64 ml/hour). At a dose of 784.4 mg/kg, the maximum blood level of 900 µg /mL at

1 hour declined to 300 µg /mL at 12 hours, to 110 µg /mL at 18 hours, and to 50 µg /mL at 24 hours

(total body clearance-86 ml/hour). At a dose of 1,961 mg/kg, the maximum blood level of

1,900 µg /mL at 3 hours declined slowly to 400 µg /mL at 24 hours (total body clearance-

75 ml/hour). Thus total body clearance was independent of dose, but the half-time for elimination

increased from 2.4 hours for 196.1 mg/kg, to 4.9 hours for 784.4 mg/kg, and 7.2 hours for

1,96 1 mg/kg.

The vehicle (corn oil or water) in which acetone is administered has little influence on the elimination

of acetone from blood (Charbonneau et al. 1986a). After gavage treatment of rats with 78, 196, 392,

784, or 1,177 mg/kg acetone in corn oil or water, elimination was biphasic for the two higher doses

and triphasic for the lower doses. Acetone elimination from blood declined to <5 to <l0 µg /mL by

18-26 hours for all doses, but minor differences were found between water and corn oil as vehicle.

The blood concentration curves from rats given acetone in water more closely resembled those from

rats exposed by inhalation.

2.3.4.3 Dermal Exposure

Information regarding excretion of acetone after dermal exposure of humans is limited, but the main

route of excretion is via the lungs, with little excreted in the urine. Application of an unspecified

quantity of acetone to a 12.5 cm2 area of skin of volunteers for 2 hours/day for 4 days resulted

alveolar air levels of 5-12 ppm and urinary concentrations of 8-14 µg /mL on each day (Fukabori et al.

1979). These levels declined to background levels by the next day after each exposure. Higher

alveolar air and urinary levels were obtained when the daily exposure increased to 4 hour/day:
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25-34 ppm in alveolar air, and 29-41 µg /mL in urine, but these levels also returned to background

each day.

No studies were located regarding excretion of acetone by animals after dermal exposure.

2.3.4.4 Other Routes of Exposure

As determined in humans, physiological status may influence the disposition of endogenous and

exogenous acetone. In groups of nonobese patients fasted for 3 days, obese patients fasted for 3 days,

and obese patients fasted for 21 days and injected intravenously with 14C-acetone, 8-29% of the

urinary acetone was derived from plasma radioactive acetone (Reichard et al. 1979). The

concentrations of urinary acetone were 1.2, 0.4, and 2.6 µmol/mL in 3-day-fasted nonobese, 3-day-

fasted obese, and 21-day-fasted obese patients, respectively. The rates of urinary acetone excretion

were 1.2, 0.4, and 1.7 µmol/minute, respectively, suggesting marked renal reabsorption or backdiffusion.

The percentages of measured acetone production that could be accounted for by excretion

via the lungs were 14.7, 5.3, and 25.2%, respectively. The percentages that could be accounted for by

urinary excretion were 1.4, 0.6, and 1.3%, respectively. Cumulative excretion of 14C-carbon dioxide

during the 6-hour turnover study periods accounted for 17.4, 21.5, and 4.9%, respectively. Thus,

nonobese subjects fasted for 3 days excreted more acetone at higher rates than did obese subjects

fasted for 3 days. However, excretion by the obese patients fasted for 21 days exceeded that by both

3-day-fasted groups. These differences are probably related to the effect that the degree of starvation

ketosis has on the metabolism and overall disposition of acetone.

In contrast, no major differences were observed among normal rats, fasted rats, and diabetic rats in the

excretion of 14C-carbon dioxide from the lungs after intraperitoneal injections of 14C-acetone

(Mourkides et al. 1959). However, the dose level influenced the pattern of metabolism and, hence, the

excretion of carbon dioxide. Rats that received 9.3-22.7 mg/kg radioactive acetone rapidly

metabolized acetone, as evidenced by exhalation of 24-43% of the administered radioactivity as
14C-carbon dioxide within the first 3 hours after dosing. Rats that received 258-460 mg/kg radioactive

acetone exhaled only 2.1-5.7% of the radiolabel as carbon dioxide in the first 3 hours, 2.8-7.8% in the

next 3-6 hours, and 16-29% in the next 6-24 hours. Rats injected subcutaneously with 14C-acetone

also excreted the derived radioactive carbon mainly as carbon dioxide. In rats fasted for 24 hours and

given 170 mg/kg radioactive acetone, 27% of the radiolabel was excreted as carbon dioxide in 4 hours
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(Sakami and LaFaye 1951). Rats fasted for 48 hours before the subcutaneous dose of 174 mg/kg

radioactive acetone excreted 53% of the radiolabel as carbon dioxide over a 14-hour collection period

(Sakami and LaFaye 1950).

Fasted pregnant rats had an enhanced capacity for acetone elimination compared with fasted or fed

virgin rats or fed pregnant rats, after intravenous dosing with 100 mg/kg (Peinado et al. 1986). While

the elimination of acetone from plasma was biphasic in all groups, the fasted pregnant rats eliminated

acetone at a faster rate than the other groups.

2.3.5 Mechanism of Action

As discussed in the preceding sections, acetone is readily and passively absorbed from the lungs and

gastrointestinal tract and probably from the skin. Since acetone is highly water soluble, it is readily

taken up by the blood and widely distributed to body tissues. Other than gastric lavage in the case of

ingestion, there is no known way to interfere with the absorption of acetone. Within the liver, acetone

is metabolized by three separate gluconeogenic pathways through several intermediates, but most of its

intermediate or final metabolites are not considered toxic. Unmetabolized acetone does not appear to

accumulate in any tissue, but is excreted mainly in the expired breath. Acetone is irritating to mucous

membranes, possibly due to its lipid solvent properties, resulting in eye, nose, throat, and lung

irritation upon exposure to the vapors, and skin irritation upon dermal contact (see Section 2.2). The

mechanism of the narcotic effects of acetone is not known, but as a solvent, acetone may interfere

with the composition of the membranes, altering their permeability to ions (Adams and Bayliss 1968).

Systemically, acetone is moderately toxic to the liver and produces hematological effects. The

mechanism by which acetone produces these effects is unknown. The renal toxicity may be due to the

metabolite, formate, which is known to be nephrotoxic (NTP 1991) and is excreted by the kidneys

(Hallier et al. 1981). Furthermore, the renal toxicity, which appears to be specific for male rats, may

involve α2µ-globulin syndrome, as hyaline droplet formation was associated with the nephropathy

observed in male rats in the American Biogenics Corp. (1986) study. Acetone also causes increases in

liver and kidney weight, probably through the induction of microsomal enzymes, which would increase

the weight of the organs by virtue of the increased protein content. Acetone also causes reproductive

effects in male rats and is fetotoxic. Although the exact mechanism for many of the effects of acetone

is not known, distribution studies in mice indicate that acetone and metabolites are found in all of the



ACETONE 87

2. HEALTH EFFECTS

target organs (Wigaeus et al. 1982). Acetone and some of its metabolites were also transferred to rat

fetuses after the dams were exposed to acetone (Peinado et al. 1986).

One of the major effects of acetone is the potentiation of the toxicity of other chemicals (see

Section 2.6). Pretreatment with acetone has been shown to potentiate the hepatotoxicity and

nephrotoxicity of carbon tetrachloride and chloroform (Brown and Hewitt 1984; Charbonneau et al.

1985; 1986a, 1986b, 1988, 1991; Folland et al. 1976; Hewitt et al. 1980; Hewitt et al. 1987; Plaa et

al. 1973, 1982; Plaa and Traiger 1972; Sipes et al. 1973; Traiger and Plaa 1972, 1974) by inducing

particular forms of cytochrome P-450, especially cytochrome P-45OIIE1, and associated enzyme

activities (Brady et al. 1989; Johansson et al. 1988; Kobusch et al. 1989). The induction of these

enzymes leads to the enhanced metabolism of carbon tetrachloride and chloroform to reactive

intermediates capable of causing liver and kidney injury. Acetone enhances the formation of

carboxyhemoglobin by dichloromethane via induction of cytochrome P-450IIE1, leading to enhanced

metabolism of dichloromethane to carbon monoxide (Pankow and Hoffmann 1989). Acetone also

potentiates the hepatotoxicity of acetaminophen (Jeffery et al. 1991; Moldeus and Gergely 1980; Liu et

al. 1991), N-nitrosodimethylamine and N-nitrosodiethylamine (Hong and Yang 1985; Lorr et al. 1984;

Sipes et al. 1978;), thiobenzamide (Chieli et al. 1990), oxygen (Tindberg and Ingelman-Sundberg

1989), and chromate (Cr[VI]) (Mikalsen et al. 1991); the genotoxicity of N-nitrosodimethylamine

(Glatt et al. 1981; Yoo and Yang 1985; Yoo et al. 1990); the hematotoxicity of benzene (Johansson et

al. 1988; Johansson and Ingelman-Sundberg 1988; Schnier et al. 1989); and the lethality of acetonitrile

(Freeman and Hayes 1985; 1988) by inducing cytochrome P-450IIEl. The hepatotoxic and

nephrotoxic effects of dibromochloromethane and bromodichloromethane (Hewitt et al. 1983) and the

hepatotoxic effects of 1,l ,Ztrichloroethane (MacDonald et al. 1982a, 1982b), 1, 1-dichloroethene

(Hewitt and Plaa 1983; Jaeger et al. 1975), and dichlorobenzene (Brondeau et al. 1989) are also

enhanced by acetone. The exact mechanisms for these interactions are not clear, but the involvement

of mixed function oxidases has been implicated. The renal toxicity of N-(3,5-dichlorophenyl)

succinimide (a fungicide) is potentiated by acetone by the induction of cytochrome P-450IIEl

(Lo et al. 1987).

In other interactions, acetone enhances the neurotoxicity of ethanol by a proposed mechanism whereby

acetone inhibits the activity of alcohol dehydrogenase, a reaction responsible for 90% of the

elimination of ethanol (Cunningham et al. 1989). Acetone also potentiates the neurotoxicity and

reproductive toxicity of 2,5-hexanedione (Ladefoged et al. 1989; Lam et al. 1991; Larsen et al. 1991).
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The exact mechanism for these interactions is not clear but appears to involve decreased body

clearance of 2,5-hexanedione by acetone (Ladefoged and Perbellini 1986).

These interactions and mechanisms are discussed more fully in Section 2.6.

2.4 RELEVANCE TO PUBLIC HEALTH

Acetone is a highly volatile, highly water-soluble aliphatic ketone. Acetone is readily absorbed by the

lungs and gastrointestinal tract, taken up the blood, and widely distributed to organs and tissues of the

body. Acetone can also be absorbed dermally. Acetone is metabolized mainly in the liver by three

separate gluconeogenic pathways, leading to the production of glucose with subsequent liberation of

carbon dioxide. With the possible exception of formate, none of the intermediate metabolites appear

to be toxic. Acetone and acetone-derived carbon dioxide are excreted mainly in the expired breath,

with very little acetone excreted in the urine. Elimination of acetone is generally complete within

l-3 days, depending on the dose and duration of exposure, and has little tendency to accumulate.

Acetone is also produced endogenously in the body during lipid metabolism, which increases with

fasting. Normal levels of acetone in breath, blood, and urine can vary widely depending on a number

of factors, such as infancy, pregnancy, lactation, diabetes, physical exercise, dieting, physical trauma,

and alcohol consumption.

As a solvent, acetone is irritating to mucous membranes, and exposure to the vapors can irritate the

respiratory system and eyes. Acetone has anesthetic properties and causes headaches, lightheadedness,

confusion, dizziness, and can lead to unconsciousness and coma in humans at high enough exposure

levels. Neurobehavioral effects have been observed in humans exposed acutely by inhalation either in

the workplace or in laboratory experiments. Hematological effects, which might indicate

immunological effects, have been observed in humans exposed acutely to acetone in laboratory

experiments. Acute inhalation of acetone may shorten the menstrual cycle. Exposure to acetone vapor

can also lead to increased pulse rates, gastrointestinal irritation, nausea, vomiting, and hemorrhage.

However, the odor threshold of acetone (l00-140 ppm) and the feelings of irritancy are excellent

warning properties that generally preclude serious inhalation over-exposure. Accidental or intentional

ingestion of acetone can cause erosions in the mouth, coma, and diabetes-like symptoms. Acute

dermal exposure of humans to liquid acetone resulted in degenerative changes in the epidermis, and a

case of contact dermatitis was reported.
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Acetone is also irritating to the respiratory system of animals and produces narcosis, coma, and

behavioral effects upon acute inhalation exposure. Hematological effects have also been observed in

animals. Acute inhalation exposure of animals during gestation has resulted in decreased fetal body

weight and increased incidences of late resorption and reduced ossification. Acute oral exposure of

animals resulted in enzyme induction in the respiratory system, bone marrow, gastrointestinal tract,

kidney, and liver, increased liver weight and bone marrow hypoplasia, degeneration of apical

microvilli in renal tubules, and reduced insulin-stimulated glucose oxidation in adipose tissue. Acute

oral exposure of animals also resulted in neurological effects, such as languid behavior, prostration

before death, reproductive effects (reduced reproduction index and increased duration of gestation), and

developmental effects (reduced postnatal pup survival and reduced fetal weight). Intermediate-duration

oral studies in animals have found liver effects, hematological effects, nephropathy, and effects on

male reproductive organs. Ocular exposure to undiluted or concentrated acetone has produced severe

cornea1 burns and necrosis, and dermal exposure of animals to acetone has resulted in reports of

cataracts in one species and only a single report of amyloidosis. These observations have not been

made by other investigators or in other species, despite many experiments involving dermal exposure

of test animals to acetone.

The relevance of the liver, reproductive, and developmental effects to humans is not known, since

these end points have not been sufficiently examined in humans. However, few species differences

exist in the toxicokinetics of acetone, suggesting that these effects might be of concern for humans.

The renal effects may be specific for male rats, and the cataract formation may be specific for guinea

pigs, The relevance of amyloidosis in completely unknown. Acetone appears to have no delayed

toxic effects. Acetone may be weakly genotoxic, but the majority of genotoxicity assays were

negative. Acetone has not been studied for carcinogenicity by the inhalation or oral route, but it was

not tumorigenic when tested alone, when tested as a tumor initiator, or when tested as a tumor

promoter in skin painting studies.

One of the most studied effects of acetone is the induction of microsomal enzymes, particularly of

cytochrome P-450IIEl. Acetone induces its own metabolism by this induction, and potentiates the

toxicity of numerous other chemicals by enhancing the metabolism, which depends on cytochrome

P-450IIE1, to reactive intermediates. The induction of cytochrome P-45011El by acetone has been

documented in many species, and therefore poses a concern for humans exposed to acetone and the

chemicals whose toxicity is potentiated by acetone.
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Based on results of animal studies, which indicate that male animals are more susceptible than female

animals, men may be more susceptible than women to the hematological, hepatic, and renal effects,

and effects on reproductive organs. Furthermore, acetone may exacerbate preexisting hematological,

liver, kidney, or reproductive disorders in humans. The very young and the elderly may be more

susceptible. Fasting and diabetes increases endogenous levels of acetone in humans, suggesting that

dieters and diabetics may have a higher body burden, and additional exposure to acetone may make

them more susceptible to any effects. Results in animals suggest that the rate of acetone metabolism

is slower in pregnancy, making pregnant animals more susceptible, and this susceptibility might apply

to humans.

The general population can be exposed to acetone in the air, in contaminated water and soil, and by

ingestion of food containing acetone. As discussed in chapter 5, acetone is emitted into the air from

plants and trees, volcanic eruptions, forest fires, automobile exhaust, chemical manufacturing, tobacco

smoke, wood burning and pulp, refuse in polyethylene combustion, petroleum storage facilities, landfill

sites, and solvent use. Acetone is also found in nail polish remover, paint remover, glue, and cleaning

agents. Acetone is released into water by chemical manufacturing industries and energy-related

industries. Acetone can be released to soil from municipal and industrial landfills, from atmospheric

deposition, from disposed agricultural, food and animals wastes, and from household septic tanks. The

half-life of acetone in air due to reactions with hydroxyl radical and photolysis is 22 days. The

relatively long half-life permits transport to areas remote from the source. Because of its high water

solubility, precipitation can remove acetone from the air to surface water and soil. In water and soil

acetone undergoes microbial degradation but can also evaporate back into the atmosphere, depending

on the moisture content of soil. Adsorption to soil and sediment is inconsequential. Acetone does not

accumulate in fish or other aquatic or terrestrial organisms. Ambient air levels of acetone average <l

ppb (v/v) in remote areas, 3 ppb in rural areas, 6.9 ppb in urban air, and 8 ppb in indoor air due to

the use of household consumer products. Acetone levels can be <30 ppb in seawater, <40 ppb in river

water, <62 ppm in industrial landfill leachate, 0.3-3,000 ppb in well water, and <1 ppb in finished

drinking water. Occupations in which workers may be exposed to higher levels of acetone include

paint manufacturing, plastics manufacturing, artificial fiber industries, shoe factories, professional

painting, and commercial cleaning. The OSHA standard for a time-weighted average exposure to

acetone over an 8-hour workday and 40-hour workweek is 750 ppm, and the short-term exposure limit

is 1,000 ppm.
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Minimal Risk Levels for Acetone

Inhalation MRLs

z  An MRL of 26 ppm has been derived for acute-duration inhalation exposure (14 days or less) to

    acetone.

The MRL was based on a LOAEL of 237 ppm for 4 hours for neurobehavioral effects in an

experimental study in humans (Dick et al. 1989). In this study, groups of 11 men and 11 women were

exposed for 4 hours to acetone at a concentration of 237 ppm. Statistically significant changes in

performance from controls were seen in two measures of auditory tone discrimination (increased

response time and increased false alarms) and in anger and hostility. Neurological and behavioral

effects have also been observed in humans exposed to 250 ppm acetone for 6 hours or repeatedly for

6 hours/day for 6 days (Matsushita et al. 1969a, 1969b). Effects included lack of energy, general

weakness, delayed visual reaction time, and headache. Although irritation of the nose, throat, and

trachea was reported in humans exposed to 100 ppm for 6 hours (Matsushita et al. 1969b), other

studies in humans report respiratory irritation only at higher levels (>250 ppm) for longer durations

(Matsushita et al. 1969a; Nelson et al. 1943; Raleigh and McGee 1972; Ross 1983). Furthermore, the

reporting of these irritating effects was subjective, and only six volunteers were exposed to 100 ppm.

z An MRL of 13 ppm has been derived for intermediate-duration inhalation exposure (15-364

  days) to acetone.

The MRL was based on a LOAEL of 1,250 ppm for neurological effects in volunteers in a 6-week

study (Stewart et al. 1975). There was a statistically significant increase in amplitude of the visual

evoked response in subjects tested following exposure to 1,250 ppm. Neurological and behavioral

effects (lack of energy, general weakness, delayed visual reaction time, and headache) have also been

observed in humans exposed to 250 ppm acetone for 5.25 hours or repeatedly for 6 hours/day for

6 days (Matsushita et al. 1969a, 1969b). Increased anger and hostility, as well as increased response

time and rate of false negatives in a test of auditory tone discrimination, were reported in volunteers

exposed to 237 ppm for 4 hours (Dick et al. 1989). No other effects were detected in humans or

animals exposed to acetone for intermediate durations (Bruckner and Peterson 1981b; Stewart et al.

1975)
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z An MRL of 13 ppm has been derived for chronic-duration inhalation exposure (365 days or

  more) to acetone.

The MRL was based on a LOAEL of 1,250 ppm for neurological effects in volunteers in a 6-week

study (Stewart et al. 1975). There was a statistically significant increase in amplitude of the visual

evoked response in subjects tested following exposure to 1,250 ppm. Neurological and behavioral

effects (lack of energy, general weakness, delayed visual reaction time, and headache) have also been

observed in humans exposed to 250 ppm acetone for 5.25 hours or repeatedly for 6 hours/day for

6 days (Matsushita et al. 1969a, 1969b). Increased anger and hostility, as well as increased response

time and rate of false negatives in a test of auditory tone discrimination, were reported in volunteers

exposed to 237 ppm for 4 hours (Dick et al. 1989). A health survey of workers exposed to acetone

between 3 months and 23 years revealed no systemic effects (Ott et al. 1983a, 1983c).

Oral MRLs

z  An MRL of 2 mg/kg/day has been derived for intermediate-duration oral exposure (15-364 days)

       to acetone.

The MRL was based on a NOAEL of 200 mg/kg/day for macrocytic anemia in rats treated with

acetone in the drinking water for 13 weeks (Dietz et al. 1991; NTP 1991). The LOAEL was

400 mg/kg/day. Hematological effects have been observed in humans exposed by inhalation to

acetone (Matsushita et al. 1969a, 1969b), in rats exposed to 6,942 mg/kg/day in the drinking water for

14 days (Dietz et al. 1991; NTP 1991), and in rats treated by gavage with 2,500 mg/kg/day for

93-95 days (American Biogenics Corp. 1986). Male rats treated with 900 mg/kg/day in the drinking

water also had increased incidence of age-related nephropathy, which increased in severity as the dose

increased (Dietz et al. 1991; NTP 1991). These renal lesions were not seen in female rats or in male

or female mice similarly treated. In male rats treated by gavage with >500 mg/kg/day, but not

100 mg/kg/day, an enhancement of age-related nephropathy, accompanied by hyaline droplet

accumulation, was observed (American Biogenics Corp. 1986). Female rats had enhanced age-related

nephropathy only at the highest dose (2,500 mg/kg/day), but no evidence of hyaline droplet

accumulation was found. Because the mechanism for acetone-induced renal toxicity has not been
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elucidated, but may be specific for male rats, renal end points have not been considered for the

derivation of MRLs for acetone.

An MRL has not been derived for acute-duration oral exposure (14 days or less) to acetone because a

suitable NOAEL or LOAEL for a sensitive end point has not been sufficiently characterized, Such

effects as bone marrow hypoplasia, reduced insulin-stimulated glucose oxidation, and hepatocellular

hypertrophy were observed in rats or mice exposed to acetone in the drinking water for acute durations

(Dietz et al. 1991; NTP 1991; Skutches et al. 1990), but the NOAEL and LOAEL values for these

effects are close to or fall within the range of LD50 values for rats administered acetone by gavage

(Freeman and Hayes 1985; Kimura et al. 1971). Degeneration of apical microvilli in renal tubules was

observed in male rats treated once by gavage with 871 mg/kg (Brown and Hewitt 1984), but

incidences were not reported. Furthermore, as discussed above, acetone-induced renal lesions may be

specific for male rats and may not represent a suitable end point to consider for MRL derivation for

acetone.

An MRL was not derived for chronic-duration oral exposure (365 days or more) to acetone because no

chronic-duration studies were located.

Death. No studies were located regarding death of humans after dermal exposure to acetone. A

retrospective mortality study of workers exposed to time-weighted-average acetone concentrations of

380-1,070 ppm at a cellulose fiber plant where acetone was used as the only solvent found no

significant excess risk of death from any cause compared with rates for the U.S. general population

(Ott et al. 1983a, 1983b). Furthermore, in the 1991 Annual Report of the American Association of

Poison Control Centers National Data Collection System, no fatalities were reported among 1,124

cases of accidental or intentional ingestion of acetone (Litovitz et al. 1992). However, inhalation of

saturated atmospheres of acetone or accidental or intentional ingestion of acetone can lead to

unconsciousness if doses are sufficiently high, and death could ensue if the subjects do not receive

medical intervention. Two workers became unconscious after a single accidental exposure to acetone

at high concentrations (>1,200 ppm) (Ross 1973). Coma developed in patients who had hip casts

applied with acetone present in the setting fluid (Chatterton and Elliott 1946; Fitzpatrick and Claire

1947; Harris and Jackson 1952; Renshaw and Mitchell 1956; Strong 1944). These patients were

exposed to acetone by inhalation during the application and from evaporation of acetone from the casts

after application, but dermal exposure also could have occurred. In most cases of accidental or
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intentional ingestion, the quantity of acetone consumed is not known. In one case, a man became

comatose after ingesting 100 mL of liquid cement containing 15% polyvinyl chloride, 18% acetone,

28% 2-butanone, and 39% cyclohexanone, along with 750 mL sake (Sakata et al. 1989). The dose of

acetone ingested would be approximately 231 mg/kg, but the other components in the cement and the

sake could have contributed to his condition. In another case, a man became comatose after ingesting

200 mL of pure acetone (2,241 mg/kg) (Gitelson et al. 1966). Since the patients received medical

treatment, none died.

High concentrations of acetone in air are required to produce death in animals. An 8-hour LC50 value

of 21,091 ppm and a 4-hour LC50 value of 31,944 ppm were found for female rats (Pozzani et al.

1959). Death of animals has occurred after acute inhalation exposure to l0,000-50,000 ppm

(Bruckner and Peterson 1981b; Smyth et al. 1962; Specht et al. 1939). No information was located

regarding levels of acetone that would result in death of animals after inhalation exposure for longer

durations. Acute oral LD50 values in rats have ranged from 1,726 to 9,833 mg/kg, depending on age

and strain (Freeman and Hayes 1985; Kimura et al. 1971; Pozzani et al. 1959; Smyth et al, 1962). In

general, newborn rats are the most sensitive, followed by 14-day-old rats, older adult rats, and younger

adult rats (Kimura et al. 1971), and Sprague-Dawley rats (Freeman and Hayes 1985; Kimura et al.

1971) appeared to be more sensitive than Wistar rats (Smyth et al. 1962) or Nelson rats (Pozzani et al.

1959). Acute oral LD50 values of 5,250 mg/kg for male mice (Tanii et al. 1986) and 3,687 mg/kg for

guinea pigs (Striegel and Carpenter 1961) have been reported. Doses of 3,922-7,844 mg/kg (Walton

et al. 1928) and 7,500-8,000 mg/kg (Albertoni 1884) have been reported to be fatal to rabbits and

puppies, respectively. An acute oral dose of 2,400 mg/kg was fatal to one of four pregnant mice, and

more pregnant mice died at higher doses (EHRT 1987), but no effect on mortality was found in

nonpregnant mice exposed to acetone in drinking water at doses < 1,298 mg/kg/day for 13 weeks

(NTP 1991). Therefore, pregnant mice may be more susceptible than nonpregnant mice. Likewise, in

intermediate-duration studies, no effects on mortality were found in rats exposed to acetone by gavage

(American Biogenics Corp. 1986) or in drinking water (NTP 1991) at doses <3,400 mg/kg/day. In

studies attempting to determine dermal LD50 values for animals, the highest doses used did not result

in death. Therefore, the LD50 values for dermal exposure were >9.4 mL/kg for guinea pigs

(Roudabush et al. 1965) and >20 mL/kg for rabbits (Smyth et al. 1962).

The lethality of acetone is related to its narcotic properties, since prostration and unconsciousness

usually precede death (Albertoni 1984; EHRT 1987; Freeman and Hayes 1985; Specht et al. 1939;
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Walton et al. 1928). It is unlikely that humans would die after exposure to acetone at ambient air, soil,

or water levels, or at levels present at hazardous waste sites. Accidental occupational exposure and

accidental or intentional ingestion of acetone could conceivably lead to death if the victims do not

receive medical attention. In the case of the worker who became unconscious at an acetone level of

900 ppm, the OSHA standard of 750 ppm (OSHA 1989) was exceeded.

Systemic Effects

Respiratory Effects. Acetone does not appear to produce respiratory effects in humans or animals

after oral or dermal exposure. As is common with solvent exposure, the respiratory effects of acetone

observed in humans exposed by inhalation are related to the irritating properties of acetone.

Experimental subjects experienced irritation of the nose, throat, and trachea at acute inhalation

concentrations ≥100 ppm for 6 hours (Matsushita et al. 1969b), but this appears to be related to the

duration of exposure, as people exposed to 200 ppm for 3-5 minutes experienced no irritation and

estimated that they could tolerate this concentration for 8 hours (Nelson et al. 1943). Workers exposed

to higher concentrations also complained of nose, throat, and lung irritation (Raleigh and McGee 1972;

Ross 1973). Individual sensitivity to acetone-induced respiratory irritation appears to be highly

variable (Nelson et al. 1943). Pulmonary function testing of volunteers exposed to <1,250 ppm

acetone intermittently for various durations in a complex protocol revealed no abnormalities caused by

the exposure (Stewart et al. 1975).

Acetone is also irritating to the respiratory system of animals after acute inhalation exposure. Guinea

pigs that died after exposure to high concentrations of acetone had pulmonary congestion and edema

due to the irritating properties of acetone, and hemorrhage of the lung, probably as a consequence of

death (Specht et al. 1939). An RC50 of 77,516 ppm was found for mice (Kane et al. 1980). The

decrease in respiratory rate is due to sensory irritation and is typical of sensory irritants, No

intermediate-duration inhalation studies examined animals for respiratory effects, and no chronic-

duration inhalation studies in animals were located. Changes in respiratory rates or irregular

respiration were observed in rabbits dosed orally with >3,922 mg/kg (Walton et al. 1928) and dogs

dosed orally with 4,000 mg/kg (Albertoni 1884), but were accompanied by signs of narcosis. Acute

oral exposure of rabbits to 863 mg/kg/day resulted in the induction of microsomal enzymes in the

nasal mucosa (Ding and Coon 1990), but induction of microsomal enzymes is a normal physiological

response to xenobiotics and is not adverse. However, acetone potentiates the toxicity of chemicals by
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enzyme induction (see Section 2.6). While it is conceivable that acetone might potentiate the toxicity

of chemicals toxic to the respiratory system, no such interactions were located.

It is unlikely that people would experience respiratory irritation after exposure to acetone at ambient

air, soil, or water levels, or at levels present at hazardous waste sites. Occupational exposure to

acetone can cause respiratory irritation, but other respiratory effects are unlikely. The OSHA time-

weighted average standard to protect against irritation is 750 ppm, and the short-term exposure limit is

1,000 ppm (OSHA 1989), which is higher than the exposure levels producing irritation in laboratory

subjects.

Cardiovascular Effects. No studies of workers located reported cardiovascular effects of acetone

unrelated to narcosis. A retrospective mortality study of workers exposed to time-weighted-average

acetone concentrations of 380-1,070 ppm at a cellulose fiber plant where acetone was used as the only

solvent found no significant excess risk of death from circulatory system disease or ischemic heart

disease compared with rates for the U.S. general population (Ott et al. 1983a, 1983b).

Electrocardiography of volunteers exposed to <1,250 ppm acetone intermittently for various durations

in a complex protocol revealed no abnormalities caused by the exposure (Stewart et al. 1975). Patients

exposed to acetone by inhalation and/or dermally after application of casts for which acetone was used

in the setting solution commonly had high pulse rates (120-l60/minute) (Chatterton and Elliott 1946;

Hift and Pate1 1961; Pomerantz 1950; Renshaw and Mitchell 1956). No gross heart lesions were

found in guinea pigs exposed acutely by inhalation to lethal concentrations (Specht et al. 1939), and

no histopathological heart lesions were found in rats exposed by inhalation to acetone for 2-8 weeks

(Bruckner and Peterson I981b) or in rats or mice exposed orally in intermediate-duration studies

(American Biogenics Corp. 1986; NTP 1991). However, amyloidosis was observed in the hearts of

mice whose lumbo-sacral regions were painted twice weekly with an unspecified quantity of acetone

for 12 months (Barr-Nea and Wolman 1977). The significance of the amyloidogenic effect of acetone

to humans is unknown since no clinical data regarding amyloidosis in humans who come in frequent

dermal contact with acetone, such as manicurists, are available.

The effects of acetone on the perfused isolated hearts of rabbits (Raje 1980) and the isolated right

atrium of rats (Chentanez et al. 1987) have been investigated in vitro. Acetone at concentrations of

0.5 and 1.0% (v/v) in the perfusate inhibited the force of cardiac contractions and increased the heart

rate of rabbits in a dose-related manner (Raje 1980). Acetone also increased the coronary flow, but
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not in a dose-related manner. The author stated, however, that the concentrations of acetone were

physiologically unrealistic. Acetone at concentrations of l0-210 mM in the bathing solution increased

the atria1 contraction rate of the isolated rat atrium in a dose-dependent manner (Chentanez et al.

1987). At concentrations >210 mM, the atria1 contraction rate gradually decreased to the normal

control value. At concentrations of l0-750 mM, acetone resulted in a dose-dependent increase in the

release of norepinephrine from the right atrium. The dose-response curves for atria1 contraction and

peak norepinephrine release were parallel at acetone concentrations of l0-210 mM, but norepinephrine

release still increased at concentrations <500 mM, while the atria1 contraction rate decreased at

>210 mM. The results indicated that the increase in atria1 contraction rate may be due in part to an

increase in norepinephrine release from the atria1 sympathetic nerve terminals at the lower

concentrations, but the higher concentrations may have been too toxic for norepinephrine to exert a

further effect on atria1 contraction. These in vitro studies were conducted to investigate the

mechanism of tachycardia in glue-sniffers to determine whether acetone, one of the components of

glue, was the component responsible for the tachycardia. Other components of glue, however, could

also cause tachycardia. These in vitro experiments suggest that acetone may cause tachycardia in vivo,

but tachycardia was not demonstrated by electrocardiography in the subjects exposed to <1,250 ppm in

the experiments by Stewart et al. (1975), and rapid heart rates were not reported as one of the

subjective symptoms in workers or experimental subjects.

The weight of evidence for cardiovascular effects in humans and animals exposed to acetone in vivo

suggest that it is unlikely that people would experience cardiovascular effects after exposure to acetone

at ambient air, soil, or water levels, or at levels present at hazardous waste sites.

Gastrointestinal Effects. Nausea and vomiting of blood have been observed in patients who had hip

casts applied with acetone present in the setting fluid (Chatterton and Elliott 1946; Fitzpatrick and

Claire 1947; Harris and Jackson 1952; Hift and Pate1 1961; Pomerantz 1950; Renshaw and Mitchell

1956; Strong 1944). The vomitus contained blood several hours after the onset of vomiting; therefore,

the gastrointestinal hemorrhage may have been due to trauma of repeated vomiting. These patients

were exposed to acetone by inhalation during the application and from evaporation of acetone from the

casts after application, but dermal exposure also could have occurred. None of the workers examined

in on-site medical evaluations (Raleigh and McGee 1972) or experimental subjects exposed to

<1,250 ppm complained of nausea or vomiting (DiVincenzo et al. 1973; Matsushita et al. 1969a,

1969b; Stewart et al. 1975). However, complaints of nausea and intermittent vomiting were reported
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by workers with accidental exposure to acetone (>12,000 ppm) (Ross 1973). It is possible that nausea

and vomiting are secondary to central nervous system toxicity. Effects on the stomach or intestines

were not reported in case reports of people who ingested acetone intentionally or accidentally (Gamis

and Wasserman 1988; Gitelson et al. 1966; Sakata et al. 1989), but a man who intentionally drank

≈200 mL of pure acetone (≈2,241 mg/kg) had a red and swollen throat and erosions in the soft palate

and entrance to the esophagus (Gitelson et al. 1966).

No gross stomach lesions were found in guinea pigs exposed acutely by inhalation to lethal

concentrations (Specht et al. 1939), and no histopathological stomach or intestinal lesions were found

in rats or mice exposed orally in intermediate-duration studies (American Biogenics Corp. 1986; NTP

1991). Although cytochrome P-450 enzyme levels were significantly elevated in duodenal and jejunal

microsomes from rats exposed to acetone in drinking water for 3 days (Carriere et al. 1992), induction

of microsomal enzymes is not considered an adverse effect.

People exposed to acetone at work could experience nausea and vomiting, but levels of acetone in

ambient air, soil, or water at hazardous waste sites are not likely to be high enough to cause nausea

and vomiting.

Hematological Effects. Acetone exposure has caused hematological effects in both humans and

animals. In men exposed experimentally to >500 ppm acetone for 6 hours or for 6 hours/day for

6 days, significantly increased white blood cell counts, increased eosinophil counts, and decreased

phagocytic activity of neutrophils were observed, compared with controls (Matsushita et al. 1969a,

1969b). No women were included in these studies. However, experimental studies that examined

hematological indices did not find any abnormalities in men (women not included in study) at

exposure levels of 500 ppm for 2 hours (DiVincenzo et al. 1973) or in men or women at exposure

levels <1,250 ppm acetone for <7.5 hours for various durations (Stewart et al. 1975). The reasons for

these different results are not known. In a health evaluation survey of 245 workers exposed to time-

weighted- average acetone concentrations of 380-1,070 ppm at a cellulose fiber production plant where

acetone was used as the only solvent, all hematological parameters were within normal limits (Ott et

al. 1983a, 1983c).

Oral exposure of rats to acetone was found to significantly increase the level of cytochrome P-45IIE1

in bone marrow microsomes (Schnier et al. 1989). While microsomal enzyme induction is not
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generally considered an adverse effect, the hemotoxicity of benzene depends upon its activation by

cytochrome P-450IIEl (see Section 2.6); therefore, acetone may potentiate the hemotoxicity of benzene

by this mechanism.

Hematological effects observed in animals consisted of bone marrow hypoplasia in male rats, but not

female rats, exposed to acetone in the drinking water for 14 days at 6,942 mg/kg/day (NTP 1991);

evidence of macrocytic anemia in male rats at ≥400 mg/kg/day and nonspecific hematological effects

not indicative of anemia in female rats at 3,100 mg/kg/day via drinking water for 13 weeks (NTP

1991); increased hemoglobin, hematocrit, and mean cell volume in male rats, but not female rats,

treated by gavage at 2,500 mg/kg/day for 46 days, and in both males and females at this dose for

13 weeks (American Biogenics Corp. 1986). In mice treated at <12,725 mg/kg/day for 14 days, it was

not clear whether bone marrow was examined, but in the 13-week study, no hematological effects or

histologically observable lesions in hematopoietic tissues were found in mice (NTP 1991). Thus, sex

differences exist in the hematological effects of acetone in animals, and species differences exist in the

hematological effects of acetone among animals and between animals and humans.

The weight of evidence indicates that acetone exposure might produce hematological effects in

humans. Based on animals studies, men might be more susceptible than women. Whether levels of

acetone in ambient air, soil, or water, or levels present at hazardous waste sites are high enough to

cause hematological effects is not known, but occupational exposure levels may be high enough, as the

OSHA time-weighted average standard is 750 ppm and the short-term exposure limit is 1,000 ppm

(OSHA 1989).

Musculoskeletal Effects. No studies were located regarding musculoskeletal effects in humans after

inhalation, oral, or dermal exposure in humans or animals after inhalation or dermal exposure to

acetone. Histological examination of rats and mice in intermediate-duration drinking water or gavage

studies did not find any evidence of musculoskeletal effects (American Biogenics Corp. 1986; NTP

1991)

In appears unlikely that exposure of humans to acetone in any setting would result in musculoskeletal

effects.
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Hepatic Effects. No indication that acetone caused hepatic effects in humans was found in controlled

studies of volunteers based on analysis of clinical chemistry parameters (DiVincenzo et al. 1973;

Stewart et al. 1975). Furthermore, none of the located studies of workers or case reports documented

hepatic effects. In a health evaluation survey of 245 workers exposed to time-weighted-average

acetone concentrations of 380-1,070 ppm at a cellulose fiber production plant where acetone was used

as the only solvent, all clinical blood chemistry parameters (aspartate aminotransferase, alanine

aminotransferase, lactic dehydrogenase, alkaline phosphatase, total bilirubin, and albumin) were within

normal limits (Ott et al. 1983a, 1983c).

Inhalation and oral studies in animals have found only mild to moderate hepatic effects. Guinea pigs

acutely exposed by inhalation to lethal concentrations had fatty deposits in the liver, which were

considered toxicologically insignificant (Specht et al. 1939). Mice exposed intermittently to

6,600 ppm acetone during gestation had significantly increased absolute and relative liver weights,

indicative of maternal toxicity (NTP 1988). The increased liver weight could have been associated

with enzyme induction. No increases in serum levels of hepatic enzymes indicative of liver injury

were found in acute oral studies in rats (Brown and Hewitt 1984; Charhonneau et al. 1986b; Plaa et al.

1982), and no histopathological liver lesions were found in an acute oral study in mice (Jeffery et al.

1991). Liver effects observed in animals orally exposed to acetone consisted of dose-related increased

liver weight in mice exposed to acetone in drinking water at >965 mg/kg/day and hepatocellular

hypertrophy at >3,896 mg/kg/day for 14 days, probably associated with microsomal enzyme induction

(NTP 1991); significantly increased levels of serum alanine aminotransferase in male rats, but not

female rats, at a gavage dose of 2,500 mg/kg/day for 46 days or 13 weeks, and significantly increased

liver weights in female rats at >500 mg/kg/day and in male rats at 2,500 mg/kg/day for 13 weeks

(American Biogenics Corp. 1986); and significantly increased liver weights in both sexes of rats at the

same drinking water concentration (1,600 mg/kg/day for females, 1,700 mg/kg/day for males) and in

female mice, but not male mice, at 11,298 mg/kg/day for 13 weeks (NTP 1991). Histological

examination of the liver of rats and mice in the 13-week studies revealed no evidence of liver

pathology (American Biogenics Corp. 1986; NTP 1991). The increased liver weight in mice in the

13-week study was not associated with hepatocellular hypertrophy as was seen in the 14-day study,

suggesting a development of tolerance (NTP 1991). In the absence of histologically observable liver

lesions in rats in the 13-week gavage study (American Biogenics Corp. 1986), the toxicological

significance of the increased serum level of alanine aminotransferase in the same study is questionable.

Amyloidosis was observed in the livers of mice whose lumbo-sacral regions were painted twice
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weekly with an unspecified quantity of acetone for 12 months (Barr-Nea and Wolman 1977). The

significance of the amyloidogenic effect of acetone to humans is unknown, since no clinical data

regarding amyloidosis in humans who come in frequent dermal contact with acetone, such as

manicurists, are available.

As mentioned above, increased liver weight was probably associated with hepatic microsomal enzyme

induction. Numerous acute oral and inhalation studies have demonstrated that acetone induces hepatic

microsomal monooxygenase activities, particularly activities associated with cytochrome P-450IIEl

(see Sections 2.2.1.2 and 2.2.2.2). Acetone potentiates the hepatotoxicity of carbon tetrachloride and

chloroform and other chemicals (see Section 2.6) by inducing microsomal enzymes that metabolize

these chemicals to reactive intermediates (see Sections 2.3.5 and 2.6).

Therefore, it is likely that people would develop no or only minimal liver effects by exposure to

acetone alone at ambient air, soil, or water levels, at levels present at hazardous waste sites, or in

occupational settings. However, exposure to acetone alone is extremely unlikely in these scenarios,

since many other chemicals are also present in air, soil, and water and at hazardous waste sites, and

workers are commonly exposed to other solvents and chemicals that produce hepatotoxic effects

potentiated by acetone. Such coexposure might make people more susceptible to the hepatotoxicity of

these chemicals.

Renal Effects. No indication that acetone caused renal effects in humans was found in controlled

studies of volunteers based on analysis of clinical chemistry parameters (blood urea nitrogen, uric acid)

and urinalysis (DiVincenzo et al. 1973; Stewart et al. 1975). Furthermore, none of the located studies

of workers or case reports documented renal effects.

The only indication that inhalation exposure to acetone causes renal effects in animals was the

consistent finding of congestion or distention of renal tubules or glomeruli in guinea pigs exposed

acutely to lethal levels of acetone (Specht et al. 1939). Rats exposed intermittently to 19,000 ppm for

18 weeks had no clinical or histological evidence of kidney damage (Bruckner and Peterson 1981b).

Amyloidosis was observed in the kidneys of mice whose lumbo-sacral regions were painted twice

weekly with an unspecified quantity of acetone for 12 months (Barr-Nea and Wolman 1977). The

significance of the amyloidogenic effect of acetone to humans is unknown, since no clinical data
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regarding amyloidosis in humans who come in frequent dermal contact with acetone, such as

manicurists, are available.

No significant differences in kidney weight, BUN levels, or organic ion accumulation by renal slices

were found in rats given 1,766 mg/kg/day acetone for 2 days compared with controls (Valentovic et al.

1992). Oral exposure of animals to acetone in other studies, however, has resulted in adverse renal

effects, including degeneration of the apical microvilli of renal tubules in rats given a single oral dose

of 871 mg/kg (Brown and Hewitt 1984); dose-related increased kidney weight in mice at

>6,348 mg/kg/day in drinking water for 14 days (NTP 1991); increased kidney weight in female rats at

>1,600 mg/kg/day and in male rats at 3,400 mg/kg/day, and a dose-related increased incidence and/or

severity of nephropathy at >900 mg/kg/day in male rats, but not female rats, in drinking water for

13 weeks (NTP 1991); and increased kidney weight in female rats at 2500 mg/kg/day and in male rats

at 2,500 mg/kg/day by gavage for 13 weeks (American Biogenics Corp. 1986). In addition, increased

severity of renal proximal tubule degeneration and intracytoplasmic droplets of granules (hyaline

droplets) in the proximal tubular epithelium showed a dose-related increase in males at

>500 mg/kg/day and in females at 2,500 mg/kg/day (American Biogenics Corp. 1986). The kidney

lesions seen in both the drinking water study and the gavage study may indicate that acetone enhanced

the age-related nephropathy in rats. No kidney effects were observed in mice given acetone in the

drinking water for 13 weeks (NTP 1991). Formate, one of the metabolites of acetone, may be

responsible for the nephrotoxicity of acetone (NTP 1991).

Thus, species differences exist in susceptibility to acetone-induced kidney effects. Sex difference also

exist; kidney weight increases in female rats at lower doses than in male rats, while histopathological

lesions occur in male rats at lower doses than in females.

As in the liver, acetone also induced enzymes in microsomes prepared from kidneys of rats (Hong et

al. 1987) and hamsters treated orally with acetone (Menicagli et al. 1990; Ueng et al. 1991). The

increased kidney weights observed in rats and mice might also be associated with an increased amount

of protein as a result of enzyme induction. Furthermore, acetone might potentiate the nephrotoxicity

of other chemicals, such as chloroform, by increasing the rate of metabolism to reactive intermediate

via enzyme induction (see Sections 2.3.5 and 2.6).
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Since there is no indication that acetone causes kidney effects in humans or animals exposed by

inhalation to nonlethal concentrations, exposure of people to acetone alone in ambient air, in air near

hazardous waste sites, or at work sites probably poses little risk for the development of nephropathy.

Whether levels in water or soil are high enough to increase kidney weight or cause other kidney

effects is not known. The relevance of the acetone-enhanced age-related nephropathy seen in male rats

treated orally with acetone (American Biogenics Corp. 1986; NTP 1991) to humans is not clear. The

kidney lesions were seen in male rats, but not female rats or mice of either sex, in the NTP (1991)

study. In the American Biogenics Corp. (1986) study, an increased severity of renal lesions was seen

in female rats at the highest dose, but the increased severity was dose-related in male rats at lower

doses and was associated with hyaline droplet formation. Hyaline droplet formation was not observed

in the NTP (1991) study. The presence of hyaline droplets suggests that the renal effects observed in

male rats may be associated with α2µ-globulin syndrome, which appears to be specific for male rats, as

this protein has not been found in female rats, mice, or humans (EPA 1991a). This low molecular

weight protein has been implicated in the mechanism of chemically-induced renal toxicity and renal

tumor formation in male rats for a number of chemicals. Thus, the renal pathology induced in male

rats by acetone exposure may have no relevance to human health. The ability of acetone to induce

microsomal enzymes may also pose a concern. Exposure to acetone alone is extremely unlikely in

these scenarios, since many other chemicals are also present in air, soil, and water and at hazardous

waste sites, and workers could be exposed to other chemicals with nephrotoxic effects that are

potentiated by acetone. Such coexposure could make people more susceptible to the nephrotoxicity of

these chemicals.

Dermal/Ocular Effects. Like many solvents, acetone is irritating to the skin and eyes. Dermal

contact with vapors of acetone in air has not been reported to cause dermal effects in humans or

animals. No studies were located regarding dermal or ocular effects in humans after oral exposure to

acetone. Exposure of humans by direct contact of the skin with liquid acetone for 30 or 90 minutes

has resulted in histological and ultrastructural degenerative changes in the epidermis (Lupulescu and

Birmingham 1975, 1976; Lupulescu et al. 1972, 1973), and frequent dermal contact may cause contact

dermatitis in sensitized humans (Tosti et al. 1988).

Oral exposure of animals to acetone in intermediate-duration studies did not cause any histological

changes in the skin (NTP 1991), but dermal exposure of mice resulted in increased DNA synthesis,

indicative of irritation (Iversen et al. 19SS), moderate hyperplasia of the epidermis (Iversen et al.
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1981), hyperplasia, dermatitis, and hyperkeratosis (DePass et al. 1989); and amyloidosis in the skin

(Barr-Nea and Wolman 1977). Hairless guinea pigs developed only mild erythema after direct

application of acetone to the dorsal thorax (Taylor et al. 1993).

Like many solvents, acetone is irritating to the eyes. Humans exposed to acetone vapors in the air,

either occupationally or in experimental studies, frequently complained of eye irritation (Matsushita et

al. 1969a, 1969b; Nelson et al. 1943; Raleigh and McGee 1972; Ross 1973; Sallee and Sappington

1949). Concentrations of acetone in the air >100 ppm have been reported as irritating to the eyes of

humans (Matsushita et al. 1969a). Eye irritation has also been observed in animals exposed to acetone

vapors (Specht et al. 1939), and direct instillation of acetone into the eyes of rabbits has caused

reversible cornea1 burns (Bolkova and Cejkova 1983), edema of mucous membranes (Larson et

al.1956), severe eye necrosis (Carpenter and Smyth 1946; Smyth et al. 1962), and uveal melanocytic

hyperplasia (Pe’er et al. 1992). Ocular effects have been observed in animals even after dermal

exposure. Application of acetone to shaved skin of guinea pigs, but not rabbits for 3 or 6 weeks

resulted in the development of cataracts (Rengstorff et al. 1972, 1976; Rengstorff and Khafagy 1985).

Cataracts also occurred in guinea pigs after subcutaneous injection of acetone (3.8 mg/kg) 3 days/week

for 3 weeks (Rengstorff et al. 1972). The difference in response between the guinea pigs and rabbits

reflect species differences in susceptibility to the cataractogenic effects of acetone, as twice as much

acetone was applied to rabbits than to guinea pigs. However, no cataracts or lens opacities were found

in hairless guinea pigs to which acetone was applied to the skin for 6 months (Taylor et al. 1993).

Genetic differences in susceptibility between hairless and normal guinea pigs was suggested to account

for the different results, but was considered to be unlikely. Acetone produced a dose-related increased

incidence of opacity in bovine cornea1 preparations in vitro (Gautheron et al. 1992). No cases of

cataract formation in humans exposed to acetone by any route were located; therefore, the relevance of

these findings to public health is not known. Histological and/or ophthalmoscopic examination of eyes

of rats and mice did not reveal any ocular effects in intermediate-duration oral studies (American

Biogenics Corp. 1986; NTP 1991).

Eye irritation is a concern for people exposed to acetone vapors occupationally, and splashing of liquid

acetone into the eyes may cause cornea1 burns or necrosis, but concentrations of acetone in air in the

general environment or near hazardous waste sites are probably not high enough to produce eye

irritation. Dermal contact with soil containing high concentrations of acetone could possibly cause

some dermal irritation, but acetone in water would probably be too dilute to irritate the buccal cavity.
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The relevance of the observed cataract formation and amyloidosis in animals after dermal exposure to

acetone to human health is not known.

Other Systemic Effects. No studies were located regarding other systemic effects in humans after

inhalation or dermal exposure to acetone, but a case report of man who intentionally drank 200 mL

pure acetone (2,241 mg/kg) described the subsequent development of diabetes-like symptoms, such as

excessive thirst, polyuria, and hyperglycemia (Gitelson et al. 1966). In an acute study, treatment of

fasted or fed rats by gavage with 3,214 mg/kg/day significantly reduced insulin-stimulated glucose

oxidation in adipose tissue (Skutches et al. 1990). The reduction was greater in fasted rats than in fed

rats. Acetone is a ketone so exposure can result in ketosis, and fasting can result in further ketosis

through the production of ketone bodies in response to low fat intake. Diabetics with ketoacidosis

produce more acetone endogenously than nondiabetic people (Fisher 1951; Reichard et al. 1986;

Sulway and Malins 1970); therefore, the fact that exogenous acetone mimics some aspects of a

diabetic-like condition is not surprising.

Most of the information regarding other systemic effects in animals after inhalation and oral exposure

relates to body weight changes. Pregnant rats that were exposed to acetone by inhalation at

11,000 ppm during gestation had reduced body weights (NTP, 1988), but no effect on body weight of

nonpregnant female rats exposed to 16,000 ppm for 2 weeks was found in another study (Goldberg et

al., 1964). Furthermore, maternal body weights of mice were statistically significantly reduced on day

3 postpartum after treatment with 3,500 mg/kg/day acetone by gavage during gestation (EHRT 1987).

It is possible that the condition of pregnancy made the rats and mice more susceptible to body weight

reduction. Although body weight loss was observed in rats treated by gavage with lethal doses of

acetone (Freeman and Hayes 1985), no indication of decreased body weight gain unrelated to

decreased water consumption was found in animals exposed to acetone in drinking water (Furner et al.

1972; Hetu and Joly 1988; Ladefoged et al. 1989; NTP 1991; Valentovic et al. 1992). The only

information on other systemic effects in animals exposed dermally to acetone was the finding of

amyloidosis in the adrenals and pancreas of mice (Barr-Nea and Wolman 1977) and a transient weight

loss of 60 g over a 2-week period in hairless guinea pigs to which acetone was applied to the skin for

6 months (Taylor et al. 1993). The relevance of these findings to human health is not known.

Exposure to acetone orally or by inhalation may result in ketosis, but whether concentrations of

acetone in air, water, or soil in the general environment or at hazardous waste sites would result in
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appreciable ketosis is not known. Occupational levels could be high enough to produce ketosis.

Based on results of animal studies, pregnant women may be susceptible to body weight reduction if

exposed to acetone, but it is unlikely that exposure levels in the environment or near hazardous waste

sites would be high enough to cause body weight loss.

Immunological Effects. Information regarding immunological effects in humans after exposure to

acetone is limited. Significantly increased white blood cell counts, increased eosinophil counts, and

decreased phagocytic activity of neutrophils were found in volunteers exposed to 500 ppm for a single

6-hour exposure or intermittently for 6 days (Matsushita et al. 1969a, 1969b). A case report of a

laboratory technician described the development of acute contact dermatitis from handling acetone 2

years after being treated with squaric acid dibutyl ester in acetone for patchy alopecia areata on her

scalp (Tosti et al. 1988). This acetone sensitization is considered a rare complication of sensitizing

therapies for alopecia areata. No studies were located regarding immunological effects in humans after

oral exposure or in animals after inhalation, oral, or dermal exposure to acetone.

While hematological findings in humans may represent immunological effects, they have not been

corroborated. Furthermore, other inhalation studies in humans that examined hematological end points

did not find any abnormalities (DiVincenzo et al. 1973; Ott et al. 1983a, 1983c; Stewart et al. 1975).

The development of contact dermatitis in the laboratory technician appears to be an isolated incident,

but it is possible that acetone could produce dermatitis in sensitized humans who come in frequent

dermal contact with acetone, such as laboratory workers.

Neurological Effects. No studies were located regarding neurological effects in animals after

dermal exposure to acetone, but acetone exposure by the inhalation and oral routes has resulted in

neurological effects, related to the narcotic effects of acetone, in both humans and animals. Patients

who were exposed to acetone, mainly by inhalation, during and after the application of hip casts with

acetone present in the setting fluid became comatose or collapsed (Chatterton and Elliott 1946;

Fitzpatrick and Claire 1947; Harris and Jackson 1952; Renshaw and Mitchell 1956; Strong 1944).

Some dermal exposure could have contributed to the total exposure. Headache, dizziness, weakness,

difficulty speaking, and depression were experienced by a woman after an acetone-containing cast was

applied (Pomerantz 1950). In addition, drowsiness, fretfulness, irritability, restlessness, uncoordinated

hand movement, and nystagmus developed in patients after application of cast where exposure was

considered to be mainly dermal (Hift and Pate1 1961). Neurological effects were commonly
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experienced by workers exposed to acetone in the past. These include headache, lightheadedness,

dizziness, unsteadiness, confusion, and unconsciousness (Raleigh and McGee 1972; Ross 1973), and

have been observed at concentrations of acetone >901 ppm in the workplace. Neurobehavioral tests

conducted in some of these workers did not reveal any effects of acetone on the parameters examined

(Raleigh and McGee et al. 1972). Neurological and behavioral effects, such as, lack of energy and

weakness, headache, delayed visual reaction time at 250 ppm for 6 hours or 6 hours/day for 6 days

(Matsushita et al. 1969a, 1969b); subjective symptoms of tension, tiredness, and annoyance (Seeber

and Kiesswetter 1991; Seeber et al. 1992); increases in response and the percent false negatives in

auditory discrimination tests and increases in anger and hostility at 237 ppm for 4 hours (Dick et al.

1989); and increased visual evoked response at 1,250 ppm intermittently in complex protocol (Stewart

et al. 1975) have been documented in volunteers tested under controlled laboratory conditions.

Electroencephalography revealed no abnormalities (Stewart et al. 1975). In volunteers exposed to

21,049-84,194 ppm acetone for l-8 hours, the time to observation of signs of narcosis, loss of

righting reflex, and loss of cornea1 reflex decreased as the exposure concentration increased (Haggard

et al. 1944). It should be noted that these concentrations are higher than those resulting in

unconsciousness in workers exposed for shorter durations.

Several case reports have described patients in unresponsive, lethargic, or comatose conditions after

ingesting acetone (Gamis and Wasserman 1988; Ramu et al. 1978; Sakata et al. 1989), but most of

these cases are confounded by coexposure to other possible narcotic agents. The lethargic and

comatose conditions of these patients was, however, generally attributed to acetone poisoning. Deep

coma developed in a man who intentionally ingested about 200 mL of pure acetone (about

2,241 mg/kg) (Gitelson et al. 1966). Six days after medical treatment, he was ambulatory but had a

marked disturbance of gait, which had improved upon follow-up examination 2 months later.

Narcotic effects have been observed in animals acutely exposed to acetone vapors. Signs of narcosis,

loss of righting reflex, and loss of cornea1 reflex were observed in rats exposed to concentrations of

acetone ≥10,524 ppm (Haggard et al. 1944). Drowsiness, staggering, prostration, clonic movements of

hind legs, and deep narcosis were observed in mice exposed to 16,839-84,194 ppm (Mashbitz et al.

1936). The time to observations of these signs decreased as the concentration of acetone increased.

Narcosis as evidenced by decreased respiratory and heart rates, paralysis, and coma were observed in

guinea pigs exposed to a lethal concentration (21,800 ppm) continuously for periods of 25 minutes

<24 hours (Specht et al. 1939). The degree of narcosis increased as the exposure duration increased.
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Severe narcosis was also observed in mice after a single 6-hour exposure to 11,000 ppm (NTP 1988).

Neurobehavioral effects, indicative of narcosis, have been observed in rats (Bruckner and Peterson

1981a; Garcia et al. 1978; Geller et al. 1979b; Goldberg et al. 1964), mice (De Ceaurriz et al. 1984;

Glowa and Dews 1987), and baboons (Geller et al. 1979a) acutely exposed to acetone vapors at

exposure levels >150 ppm for baboons. A statistically significant decrease in absolute brain weight

was observed, but no histopathological brain lesions, in rats exposed intermittently to 19,000 ppm in

an intermediate-duration study (Bruckner and Peterson 1981a).

Acetone is also neurotoxic in animals after oral exposure. Death in mice and rats exposed acutely was

preceded by prostration (EHRT 1987; Freeman and Hayes 1985). Weakness, depression, and

unconsciousness were observed in rabbits dosed orally with 3,922-7,844 mg/kg, with the degree and

time to onset dependent on dose (Walton et al. 1928). Incoordination, staggering, falling, tremors,

delirium, prostration, and coma were observed in dogs and puppies at oral doses of 4,000-8,000 mg/kg

(Albertoni 1884). In intermediate-duration oral studies, reduction in the nerve conduction velocity of

rats exposed via drinking water at 650 mg/kg/day (Ladefoged et al. 1989) and excessive salivation in

rats exposed by gavage at 2,500 mg/kg/day >27 days (American Biogenics Corp. 1986) were found.

Absolute brain weight was lower in the gavaged rats at the 13-week sacrifice, but no histopathological

lesions were found. No histopathological lesions were found in any of numerous central and

peripheral nervous system tissues of rats given 732 mg/kg/day acetone in drinking water for 12 weeks

(Spencer et al. 1978). However, no clinical or histopathological evidence was observed in rats or mice

treated with higher doses for 13 weeks in the drinking water study (Dietz et al. 1991; NTP 1991),

suggesting that the intermittent nature of ad libitum dosing via drinking water did not provide high

enough doses, compared with the bolus nature of a gavage dose.

The mechanism by which acetone exerts its narcotic effects is not known, but based on the available

data, it cannot be attributed to histologically observable changes in the brains of animals or to

electroencephalographic changes in humans. As a solvent, however, acetone may interfere with the

composition of membranes, altering their permeability to ions (Adams and Bayliss 1968). That

acetone distributes to the brain was demonstrated in mice (Wigaeus et al. 1982) (see Section 2.3.2.1).

The narcotic effects of acetone are generally reversible.

The narcotic effects of acetone represent a concern for public health, particularly in workers exposed

occupationally, as occupational exposure in the case above exceeded the time-weighted average
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standard of 750 ppm, but not the short-term exposure limit of 1,000 ppm (OSHA 1989). Narcotic

effects are also of particular concern for accidental ingestion of acetone-containing household products,

such as nail polish remover and liquid cement. Levels of acetone in ambient air, soil, or water, or

levels present at hazardous waste sites are probably not high enough to cause narcosis or coma, but

more subtle neurological and neurobehavioral effects may be of concern. Furthermore, acetone

potentiates the neurotoxicity of 2,5-hexanedione by an unknown mechanism (Ladefoged et al. 1989;

Lam et al. 1991; Strange et al. 1991) (see Section 2.6). Thus, coexposure to these neurotoxic ketones

is of greater concern than exposure to either alone.

Reproductive Effects. No studies were located regarding reproductive effects in humans after oral

or dermal exposure to acetone. Information regarding reproductive effects in humans after inhalation

exposure is limited to reports of premature menstrual periods by 3 of 4 women exposed to 1,000 ppm

acetone for 7.5 hours (Stewart et al. 1975), the lack of a statistically significant increased incidence of

miscarriage in female laboratory workers exposed to a variety of solvents, including acetone (Axelsson

et al. 1984), and an unreliable report of pregnancy complications in women factory workers exposed to

acetone in Russia (Nizyaeva 1982).

Information regarding reproductive effects in animals after inhalation exposure is also limited. In an

inhalation developmental study in rats and mice, no effects were found on the number of

implants/litter, percent live pups/litter, or mean percent resorptions/litter (NTP 1988). No studies were

located regarding reproductive effects in male animals, histological effects on reproductive organs of

male or female animals, or the reproductive outcomes and other indices of reproductive toxicity in

animals after inhalation exposure to acetone.

Reproductive effects (reduced reproductive index and increased duration of gestation) were found in

pregnant mice exposed orally to 3,500 mg/kg/day during gestation (EHRT 1987). Intermediate-

duration oral studies have shown that acetone produces reproductive effects in male Sprague-Dawley

rats, but not male Wistar rats or male mice. Exposure of male Wistar rats to 1,071 mg/kg/day acetone

in drinking water for 6 weeks did not affect successful mating to untreated females, number of

pregnancies, number of fetuses, testicular weight, seminiferous tubule diameter, and testicular lesions

(Larsen et al. 1991). However, statistically significantly increased relative testis weight (possibly due

to decreased body weight), decreased sperm motility, caudal weight and epididymal weight, and

increased incidences of abnormal sperm, but no histopathological testicular lesions, were found in male
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Sprague-Dawley rats treated with 3,400 mg/kg/day acetone in drinking water for 13 weeks (NTP

1991). As discussed by NTP (1991), these effects on spermatogenesis are similar to those seen in

alcoholics, and could be associated with the similarities in metabolism of acetone and ethanol.

Vaginal cytology examinations of the female rats revealed no effects, and similar evaluation of male

and female mice revealed no effects. While differences in susceptibility might account for the

different results in Wistar and Sprague-Dawley rats, the Wistar rats were treated with a lower dose for

a shorter duration. However, sex differences in rats, and species differences between male rats and

male mice appear to exist.

No indication that dermal exposure of female mice results in histopathological effects in reproductive

organs was found in an analysis of female SENCAR mice used as acetone controls in a skin painting

study of formaldehyde (Ward et al. 1986).

The available data are too limited to predict whether exposure of humans to acetone under any

conditions would result in reproductive effects. The finding of shortened menstrual cycles in women

has not been corroborated.

Developmental Effects. No studies were located regarding developmental effects in humans after

oral or dermal exposure to acetone. Information regarding developmental effects in humans after

inhalation exposure is limited to a report that found no statistically significant increased incidence of

miscarriage, perinatal death rate, or malformations of offspring in female laboratory workers exposed

to a variety of solvents including acetone (Axelsson et al. 1984) and to an unreliable report of fetal

death and low birth weight and length of neonates in female factory workers exposed to acetone in

Russia (Nizyaeva 1982).

Developmental effects have been found in animals after inhalation and oral exposure. In rats exposed

by inhalation to acetone during gestation, the only effect was a statistically significantly decreased

mean male and female fetal body weight at 11,000 ppm, the same concentration at which dams

displayed reduced body weight during gestation, reduced uterine weight, and reduced extragestational

weight (NTP 1988). Mice similarly exposed were more susceptible than rats; at 6,600 ppm,

statistically significantly increased incidence of late resorption, decreased fetal weight, and significantly

increased incidence of reduced stemebral ossification were observed, along with increased absolute and

relative liver weight of dams. Thus acetone produced fetotoxicity in rats and mice at concentrations
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that were maternally toxic. Developmental toxicity was also found in mice after oral treatment of the

dams with 3,500 mg/kg/day during gestation, such as reduced postnatal pup survival and reduced

average weight of each live pup/litter on postpartum day 0 (EHRT 1987). Some of the dams treated at

this dose displayed neurological signs of toxicity and died. Fetuses or pups were not examined for

internal malformations or skeletal anomalies. No studies were located regarding developmental effects

in animals after dermal exposure to acetone.

Acetone has been tested in attempts to develop in vitro methods for assessing developmental toxicity.

Acetone at a concentration range of 0.l-1.0% (v/v) in the incubation medium had no effects on

growth or malformations of 9.5 day postimplantation rat embryos or on growth and vascularization of

the yolk sac (Schmid 1985). Negative results were also obtained for growth of 11 day mouse embryo

limb buds at acetone concentrations of 10-100 mg/mL (Guntakatta et al. 1984). However, 10.5 day

whole rat embryo cultures failed to grow and differentiate and eventually died at an acetone

concentration of 2.5% (v/v) (Kitchin and Ebron 1984). A concentration of 0.5% acetone reduced yolk

sac diameter and significantly increased the percentage of abnormal embryos (enlarged pericardium).

At 0.1% acetone, abnormal brain development and edematous mandibular arches were also observed.

Although results of studies conducted in vitro are difficult to extrapolate to in vivo exposure, acetone

and its metabolites were found in fetuses from rats injected intravenously with 100 mg/kg acetone on

gestational day 19, indicating transplacental transfer (Peinado et al. 1986).

Thus, acetone appears to be toxic to rat and mouse fetuses at maternally toxic inhalation

concentrations and to developing neonatal mice at maternally toxic oral doses. Mice appear to be

more susceptible than rats in in vivo studies. From limited information, acetone does not appear to be

teratogenic in animals in in vivo experiments. Whether acetone would cause developmental toxicity in

humans under any exposure conditions is not known, but concentrations and doses used in the animal

studies were much higher than are likely to be experienced by humans.

Genotoxic Effects. No studies were located regarding the genotoxicity of acetone in humans or

animals after inhalation, oral, or dermal exposure. The results of in vivo studies conducted by

intraperitoneal injection are summarized in Table 2-4. Negative results were obtained in the

micronucleus test in Chinese hamsters (Basler 1986) and for cell transformation in fetal cells from

pregnant hamsters (Quarles et al. 1979a, 1979b). In addition, tests for gene mutation in silk worms

exposed by an unspecified route were negative (Kawachi et al. 1980). Acetone has been tested for
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genotoxicity in numerous assays in vitro, and results of representative studies are summarized in

Table 2-5. Results were negative for reverse mutation in all tested strains of Salmonella typhimurium

(DeFlora 1981; DeFlora et al. 1984; Ishidate et al. 1984; Kawachi et al. 1980; McCann et al. 1975;

Yamaguchi 1985), in the ret assay in Bacillus subtilis (Kawachi et al. 1980) with and without

metabolic activation, and for prophage induction (De Marini et al. 1991; Rossman et al. 1991;

Vasavada and Padayatty 1981) and DNA binding (Kubinski et al. 1981) in Escherichia coli. However,

with enzyme-generated triplet acetone (Menck et al. 1986) or photo-generated triplet acetone (Rahn et

al. 1974), results were positive for DNA damage in E. coli lambda prophage (Menck et al. 1986) and

DNA chain breaks and thymidine dimers in E. coli (Rahn et al. 1974). Triplet acetone, which is

electronically excited in one of the methyl groups, can be generated by endogenous enzymatic

reactions or by photochemical reactions (Menck et al. 1986). Thus, the relevance of the DNA damage

induced by triplet acetone to human exposure scenarios to acetone is questionable. Results were

mixed in fungi (Abbandandolo et al. 1980; Albertini 1991; Zimmermann 1983; Zimmermann et al.

1984, 1985), and results for gene mutation were negative in Arubidopsis thaliana seeds (Gichner and

Veleminsky 1987). Results have usually been negative in assays for cell transformation, chromosomal

aberrations, sister chromatid exchange, colony formation inhibition, and gene mutation in cultured

animal cells, and for sister chromatid exchange and unscheduled DNA synthesis in cultured human

fibroblasts and skin epithelial cells (see Table 2-5). However, some positive results were obtained for

chromosomal aberrations in Chinese hamster fibroblasts (Ishidate et al. 1984) and hamster lung

fibroblasts (Kawachi et al. 1980). Acetone also inhibited metabolic cooperation (intracellular

communication) in Chinese hamster V79 cells (Chen et al. 1984) and produced chromosome

malsegregation in porcine brain tubulin (Albertini et al. 1988). The overwhelming evidence is that

acetone is, at best, weakly genotoxic. Genotoxicity assay conditions vary widely, and probably

account for different results in similar cell systems.

Because of its solvent properties and mostly lack of genotoxic effects, acetone is often used as a

solvent for testing the genotoxicity of other chemicals and as the solvent control in these assays

(Nestmann et al. 1985; Norppa 1981; Norppa et al. 1981). Acetone was used as the solvent control to

study the promoting activity of 12-O-tetradecanoylphorbol 13-acetate in a 2-stage cell transformation

assay in the BALB/3T3 cell line (Sakai and Sato 1989). No indication that acetone promoted the

transforming activity of nine known genotoxic and carcinogenic chemicals was found.
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The weight of evidence for the genotoxicity indicates that acetone poses little threat for genotoxic

effects in humans exposed to acetone under any conditions.

Cancer. No studies were located regarding cancer in humans after oral or dermal exposure. A

retrospective mortality study of workers exposed to time-weighted-average acetone concentrations of

380-1,070 ppm at a cellulose fiber plant where acetone was used as the only solvent found no

significant excess risk of death from any cause, including malignant neoplasm, compared with rates for

the U.S. general population (Ott et al. 1983a, 1983b).

No studies were located regarding cancer in animals after inhalation or oral exposure to acetone. In an

analysis of the histopathology in female SENCAR mice used as acetone controls in a skin painting

study of formaldehyde, no neoplastic lesions associated with acetone exposure were found (Ward et al.

1986). Furthermore, acetone was negative as a tumor promoter for formaldehyde. In addition, no

evidence was found that acetone was a skin carcinogen when used as a negative control for

organosilanes (DePass et al. 1989) or flame retardants (Van Duuren et al. 1978) in skin painting

studies in mice. Acetone was also negative as a tumor initiator (Roe et al. 1972) and as a tumor

promoter for 7,12-dimethylbenz[a]anthracene (Roe et al. 1972; Van Duuren et al. 1971; Weiss et al.

1986).

EPA has classified acetone in Group D, that is, not classifiable as to human carcinogenicity due to the

lack of data concerning carcinogenicity in humans and animals (IRIS 1992). Acetone has not been

classified by the National Toxicology Program (NTP) or the International Agency for Research on

Cancer (IARC).

2.5 BIOMARKERS OF EXPOSURE AND EFFECT

Biomarkers are broadly defined as indicators signaling events in biologic systems or samples. They

have been classified as markers of exposure, markers of effect, and markers of susceptibility

(NASLNRC 1989).

A biomarker of exposure is a xenobiotic substance or its metabolite(s), or the product of an interaction

between a xenobiotic agent and some target molecule(s) or cell(s) that is measured within a

compartment of an organism (NAS/NRC 1989). The preferred biomarkers of exposure are generally
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the substance itself or substance-specific metabolites in readily obtainable body fluid(s) or excreta.

However, several factors can confound the use and interpretation of biomarkers of exposure. The

body burden of a substance may be the result of exposures from more than one source. The substance

being measured may be a metabolite of another xenobiotic substance (e.g., high urinary levels of

phenol can result from exposure to several different aromatic compounds). Depending on the

properties of the substance (e.g., biologic half-life) and environmental conditions (e.g., duration and

route of exposure), the substance and all of its metabolites may have left the body by the time samples

can be taken. It may be difficult to identify individuals exposed to hazardous substances that are

commonly found in body tissues and fluids (e.g., essential mineral nutrients such as copper, zinc, and

selenium). Biomarkers of exposure to acetone are discussed in Section 2.5.1.

Biomarkers of effect are defined as any measurable biochemical, physiologic, or other alteration within

an organism that, depending on magnitude, can be recognized as an established or potential health

impairment or disease (NAS/NRC 1989). This definition encompasses biochemical or cellular signals

of tissue dysfunction (e.g., increased liver enzyme activity or pathologic changes in female genital

epithelial cells), as well as physiologic signs of dysfunction such as increased blood pressure or

decreased lung capacity. Note that these markers are not often substance specific. They also may not

be directly adverse, but can indicate potential health impairment (e.g., DNA adducts). Biomarkers of

effects caused by acetone are discussed in Section 2.5.2.

A biomarker of susceptibility is an indicator of an inherent or acquired limitation of an organism’s

ability to respond to the challenge of exposure to a specific xenobiotic substance. It can be an

intrinsic genetic or other characteristic or a preexisting disease that results in an increase in absorbed

dose, a decrease in the biologically effective dose, or a target tissue response. If biomarkers of

susceptibility exist, they are discussed in Section 2.7, “Populations That Are Unusually Susceptible.”

2.5.1 Biomarkers Used to Identify or Quantify Exposure to Acetone

Acetone concentrations in expired air, blood, and urine have been monitored in a number of studies of

humans exposed to acetone in the workplace as well as in controlled laboratory situations, and

correlations with exposure levels have been found. However, acetone is cleared from breath, urine,

and blood within 1-3 days, so these methods are useful for monitoring only for recent exposure to

acetone. In addition, these methods can be used to detect or confirm relatively high exposure to
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acetone, such as what might occur in the workplace or from accidental ingestion, but they cannot be

used to detect exposure in the general population at levels reasonably likely to occur outside the

workplace. The detection of acetone odor in the breath can alert a physician that a nondiabetic patient

has been exposed to acetone (Harris and Jackson 1952; Strong 1944). It should be noted that exposure

to other chemicals that are metabolized to acetone, such as isopropyl alcohol, could also lead to

elevated blood, expired air, or urinary levels of acetone. Levels of endogenous acetone can fluctuate

greatly due to normal diurnal variations (Wildenhoff 1972). In addition, physical exercise (Koeslag et

al. 1980); nutritional status and fasting (Jones 1987; Kundu et al. 1993; Levy et al. 1973; Lewis et al.

1977; Neiman et al. 1987; Reichard et al. 1979; Rooth and Carlstrom 1970; Williamson and Whitelaw

1978); trauma (Smith et al. 1975); and pregnancy and lactation (Bruss 1989; Paterson et al. 1967)

place high energy demands upon the body, resulting in increased fatty acid utilization and higher than

average blood levels of acetone. Diabetes (Kobayashi et al. 1983; Levey et al. 1964; Reichard et al.

1986; Rooth 1967; Rooth and Ostenson 1966) and alcohol use (Phillips et al. 1989; Tsukamoto et al.

1991) may result in high levels of endogenous acetone. Infants and young children typically have

higher acetone in their blood than adults due to their higher energy expenditure (Peden 1964). These

factors and physiological states can complicate measuring acetone levels in blood, breath, and urine for

biomonitoring purposes.

In a group of 115 workers, alveolar air samples obtained during the workshift were collected at the

same time as breathing zone acetone concentrations (Brugnone et al. 1980). The mean ratio of

alveolar air acetone and breathing zone acetone was 0.288. Correlations were high between alveolar

air concentrations and breathing zone concentrations. Because the alveolar air samples and breathing

zone concentrations were collected at the same time, and since the equilibration of alveolar air with

environmental air requires some time, the alveolar samples might not necessarily reflect the

environmental concentration. Similar results were obtained in a group of 20 workers in a shoe factory

in which the mean environmental air concentrations ranged from 10 to 12 ppm at four sampling times

(Brugnone et al. 1978). The mean alveolar concentrations ranged from 2.75 to 3.75 ppm at three

sampling times during the workshift. The correlation was good between workroom air concentration

and alveolar air concentration, indicating that alveolar air concentrations of acetone are useful for

monitoring concurrent occupational exposure to acetone. In a group of 110 male workers exposed to

acetone for an average of 14.9 years, alveolar air samples were collected before work and at the end of

work on 2 consecutive days (Fujino et al. 1992). The breathing zone concentrations of acetone were

measured for each individual with personal monitors and ranged from 0 to about 1,200 ppm, with
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most concentrations between 100 and 500 ppm. The average concentration of acetone in alveolar air

before exposure on the first day was 2.95 ppm. Alveolar air concentrations at the end of the workday

(range of about 20 to 300 ppm, average not reported) correlated strongly with exposure concentrations

(r=0.65). It was estimated that the alveolar air concentrations corresponding to the ACGIH threshold

limit value (TLV) of 750 ppm and to the Japan Association of Industrial Health acceptable

concentration of 200 ppm were 177 and 56.2 ppm, respectively.

Expired air concentrations of acetone have also been studied in volunteers exposed to acetone in

controlled laboratory situations. In 11 men and 11 women exposed to 237 ppm acetone for 2 or

4 hours, alveolar breath samples collected immediately after exposure contained mean levels of

acetone of 21.5 ppm in those exposed for 2 hours and 25.8 ppm in those exposed for 4 hours (Dick et

al. 1989). The alveolar air concentrations of acetone dropped to 12.8 ppm by 90 minutes after the

4-hour exposure and to background levels of 0.6 ppm by 20 hours postexposure. In humans exposed to

acetone at <1,250 ppm for <7.5 hours/day in a complex protocol for <6 weeks, the rate of respiratory

excretion was a function of the duration, and the concentration of acetone in breath after exposure was

directly related to the time-average concentration during exposure, with constant duration (Stewart et

al. 1975). The length of time after exposure in which acetone could be detected in breath was related

to the magnitude of exposure; acetone was still readily detectable 16 hours after exposure to 1,000 or

1,250 ppm for 7.5 hours. Therefore, breath analysis can be used as a rapid method to estimate the

magnitude of recent acetone exposure, but has limited usefulness for more remote exposure because

elimination in expired air is generally complete within 1 day.

As discussed in Section 2.3.4.1, the level and nature of physical activity, the exposure concentration,

the duration of exposure, and gender can influence the rate and amount of acetone elimination in the

breath (DiVincenzo et al. 1973; Nomiyama and Nomiyama 1974a, 1974b; Pezzagno et al. 1986;

Wigaeus et al. 1981). In general more acetone is expired faster following exposure to high

concentrations than to low concentrations (DiVincenzo et al. 1973). Doubling the duration of

exposure almost doubles the total amount of acetone expired. Exercise during exposure eliminates

nearly twice the amount in expired air compared with exposure to the same concentration at rest, due

to increased uptake from increased pulmonary ventilation. Furthermore, exercising at stepwise

increments in workload during exposure results in greater respiratory elimination than exercising at a

constant workload (Wigaeus et al. 1981). Women appeared to expire acetone more slowly than men,
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but the total expired by women was not statistically significantly different than the total expired by

men (Nomiyama and Nomiyama 1974a, 1974b).

Acetone is mainly excreted in the expired air after oral exposure as well as after inhalation exposure

(see Section 2.3.4.2). Since urinary clearance of acetone is minimal, the calculated clearance of

acetone from the lungs was 29 ml/minute or 0.39 ml/minute/kg for a patient who ingested nail polish

remover using an average minute ventilation of 9.65 L/minute based on the patient’s age, weight, and

sex (Ramu et al. 1978). With a volume of distribution of 0.82 L/kg, the calculated half-life was

25 hours.

Monitoring of expired air for acetone exposure should take into consideration background levels of

acetone, since acetone is produced endogenously in the body, especially during fasting and in

diabetics. In addition, the ingestion of ethanol can influence the breath levels of acetone. Endogenous

levels of acetone in normal humans averaged 0.56 ppm (Phillips and Greenberg 1987). Endogenous

levels of acetone in alveolar air in a group of volunteers in an experimental study averaged 0.108 ppm

(Wigaeus et al. 1981). In healthy men who had fasted for 12 hours, the breath acetone levels ranged

from 0.96 to 1.7 ppm (Jones 1987). Fasting for 36 hours resulted in average acetone breath levels of

14-66 ppm. However, in fasting men who ingested 0.25 g/kg of ethanol, the breath acetone levels

decreased by 40% after a 12-hour fast and by 18% after a 36-hour fast (Jones 1988).

Acetone is metabolized to carbon dioxide (see Section 2.3.3), which is eliminated in expired air (see

Section 2.3.4). However, since carbon dioxide is the main constituent of normal respired air, expired

carbon dioxide has not been monitored to determine acetone exposure.

Although unchanged acetone is excreted mainly by the lungs, urinary levels are sufficiently high for

monitoring purposes. In a group of 104 workers employed at factories in which breathing zone levels

of acetone ranged from <242 to <1,452 ppm, urine was collected before the workshift and 4 hours

later (Pezzagno et al. 1986). A close correlation was found between the time-weighted average

workroom concentration and the urinary concentration of acetone. The equation obtained was:

urinary concentration (µmol/L) = 0.033 x time-weighted average environmental concentration

(umol/m3) = 0.005 (r=0.94, n=104). In another study of 28 workers, personal breathing zone

monitoring revealed wide variation depending on the type of job and ranged from <1 to 30 ppm

(Kawai et al. 1990a). Results of stationary monitoring revealed workroom concentrations ranging from
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1.4 to 16.2 ppm. Urine was collected at the end of the workshift, and acetone was detected in the

urine of all the workers. The concentration of acetone in urine was linearly correlated with the

breathing zone concentration as follows: acetone in urine (mg/L) = 0.10 + 0.40 x breathing zone

concentration (ppm) (r=0.90, p<O.01). Therefore, urinary levels of acetone are useful for monitoring

occupational exposure. In another study, postshift urinary levels of acetone in 45 workers exposed to

0-70 ppm acetone ranged from 0 to 17.5 mg/L (Kawai et al. 1992). The background urinary level of

acetone in nonexposed subjects was 1.5 mg/L. Acetone levels in preshift urine samples were

significantly higher than background levels when acetone exposure on the previous day was >15 ppm,

but there was no significant difference between background urine levels and preshift urine levels when

acetone exposure on the previous day was <15 ppm. In a group of 110 males workers exposed to

acetone for an average of 14.9 years, urine samples were collected before work and at the end of work

for 2 consecutive days (Fujino et al. 1992). The breathing zone concentrations of acetone were

measured for each individual with personal monitors and ranged from 0 to about 1,200 ppm, with

most concentrations between 100 and 500 ppm. The average urinary concentration before exposure on

the first day was 2.44 mg/L. Urinary levels at the end of the workshift (range of about 5 to 150 ppm,

average not reported) correlated strongly with exposure concentration (r=0.71). It was estimated that

the urinary concentrations corresponding to the ACGIH TLV of 750 ppm and to the Japan Association

of Industrial Health acceptable concentration of 200 ppm were 76.6 and 21.6 mg/L, respectively.

Acetone has also been detected in the urine of 15 subjects exposed to acetone under controlled

laboratory conditions. In volunteers exposed to 23-208 ppm for 2-4 hours, the urinary concentrations

of acetone immediately after exposure ranged from 18.8 to 155.2 µmol/L and displayed statistically

significant linear relationships with the exposure concentrations (Pezzagno et al. 1986). The regression

equation for subjects exposed for 2 hours at rest was: acetone in urine (µmol/L) = 0.0125 x

environmental concentration (µmol/m3) + 5.87 (r=0.98, n=5). For subjects exposed for 4 hours at rest

the equation was: acetone in urine (µmol/L) = environmental concentration (µmol/m3) + 6.97 (r=0.96,

n=5). For the subjects exposed for 2 hours with exercise, the equation was: acetone in urine (pmol/L)

= environmental concentration (µmol/m3) - 4.52 (r=0.99, n=5). At 4 hours after exposure, the urine

concentration increased to 120% of that measured immediately after exposure, then fell to 65% at

7 hours, 45% at 9 hours, 35% at 12 hours, and 15% at 20 hours. Urinary acetone was completely

cleared within 20 hours from subjects exposed to 242 or 542 ppm for 2 hours, regardless of whether

or not they had exercised during exposure (Wigaeus et al. 1981). In a group of subjects exposed to

acetone vapors for about 6 hours, urinary levels of acetone peaked within the first hour after exposure
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to 1.8 mg/dL at 250 ppm, 2.9 mg/dL at 500 ppm, and 5.3 mg/dL at 1,000 ppm and declined rapidly

after exposure to control levels within 24, 32, and 48 hours, respectively (Matsushita et al. 1969b). In

subjects exposed to 250 ppm for 6 hours/day for 6 days either at rest or during exercise, the urinary

levels declined to normal by the next morning each day and within 48 hours after the last

exposure day, regardless of whether or not they had exercised (Matsushita et al. 1969a). However, in

subjects exposed to 500 ppm 6 hours/day for 6 days, the level of acetone in the urine fell each day,

but not to background levels. After the last day of exposure, urinary levels declined to background

levels within 3 days. Background urinary levels of acetone in these subjects were about 0.1 mg/dL.

Therefore, the rate of urinary clearance is dependent on the magnitude of exposure.

Acetone can also be detected in urine after oral exposure. In a patient who was admitted to the

hospital in a comatose condition after ingesting sake and liquid cement containing 18% acetone

(231 mg/kg), urinary clearance of acetone was followed, but after he had been subjected to gastric

lavage (Sakata et al. 1989). Urine levels of acetone decreased gradually from 123 µg/mL at 5 hours

after ingestion to about 61 µg/mL at 19 hours. Acetone then disappeared more rapidly from the urine.

Formic acid was detected in the urine of rats collected for 7 days after exposure to 62,000 ppm

acetone in air, and was excreted at a rate of 344 µg formic acid/hour, compared with controls that

excreted formic acid at a rate of 144 µg/hour (Hallier et al. 1981). The authors concluded that the low

rate of formic acid excretion by rats suggests that 24 hours is an insufficient period of time for

following formic acid excretion in order to biomonitor acetone exposure in humans.

Blood levels of acetone can also be useful for exposure monitoring, but blood sampling is less

desirable because it is invasive. In a group of 110 males workers exposed to acetone for an average

of 14.9 years, blood samples were collected before work on the first day and at the end of work on the

second day (Fujino et al. 1992). The breathing zone concentrations of acetone were measured for each

individual with personal monitors and ranged from 0 to about 1,200 ppm, with most concentrations

between 100 and 500 ppm. The average blood concentration before exposure on the first day was

3.80 mg/L. Blood levels at the end of the workshift (range of about 2 to 225 mg/L, average not

reported) correlated strongly with exposure concentration (r=0.65). It was estimated that the blood

concentrations corresponding to the ACGIH TLV of 750 ppm and to the Japan Association of

Industrial Health acceptable concentration of 200 ppm were 118 and 41.4 mg/L, respectively. Subjects

exposed to 100 or 500 ppm for 2 or 4 hours had a blood acetone clearance half-life of 3 hours
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(DiVincenzo et al. 1973). The rate of blood elimination was constant regardless of blood acetone

concentration. In volunteers exposed to 237 ppm acetone, blood levels of acetone averaged 2.0 µg/mL

preexposure, 9.0 µg/mL after 2 hours of exposure, 15.3 µg/mL after 4 hours of exposure, 11.9 µg/mL

at 90 minutes postexposure, and 1.5 µg/mL at 20 hours postexposure (Dick et al. 1989). Therefore,

elimination of acetone from blood was complete 20 hours after exposure. Results were similar for

subjects exposed to acetone vapors for =6 hours (Matsushita et al. 1969b). Maximum blood levels of

acetone achieved and blood clearance of acetone were exposure concentration-related, but not in direct

proportion. At an exposure level of 250 ppm, the maximum blood level was 2 mg/dL and declined to

background level within 24 hours. At an exposure level of 500 ppm, the maximum blood level was

4.7 mg/dL and declined to background level within 32 hours. At an exposure level of 1,000 ppm, the

maximum blood level of 6.0 mg/dL declined to background level within 48 hours. In subjects

exposed 6 hours/day for 6 days, maximum blood levels on each day were similar to those seen in the

subject exposed only 1 day (Matsushita et al. 1969a). Blood levels declined to background levels on

the morning after exposure on each day when the exposure concentration was 250 ppm. With an

exposure concentration of 500 ppm, however, the blood levels declined each day, but not to

background levels. As with urinary clearance, blood clearance of acetone at the end of the 6-day

exposure period declined to background within 2 days at 250 ppm and within 3 days at 500 ppm.

Background blood levels of acetone in these subjects were about 0.1 mg/dL. In subjects exposed to

242 or 542 ppm for 2 hours, the arterial blood concentration 1 hour after exposure plotted as a

function of total uptake gave a linear relationship, indicating that an arterialized capillary sample

during or after exposure may be useful for exposure monitoring (Wigaeus et al. 1981). In humans

exposed to acetone <1,250 ppm for <7.5 hours/day in a complex protocol for <6 weeks, the

concentration of acetone in venous blood was directly related to the vapor concentration and duration

of exposure and inversely related to the time elapsed following exposure (Stewart et al. 1975). Using a

physiologically-based pharmacological model, Leung and Paustenbach (1988) calculated a biological

exposure index of 35 mg acetone/L blood for occupational exposure. The authors reported a

background acetone blood level of 2 mg/L. This value is in agreement with normal background levels

determined in other studies: 0.016 mM (0.93 mgn) (Gavin0 et al. 1986); 0.03 mmol/L (1.74 mg/L)

(Trotter et al. 1971); 2100 ppb (2.1 mg/L) (Ashley et al. 1992).

Similar rates of blood acetone clearance occur after oral exposure. In a patient admitted to the

hospital in a comatose condition after ingesting liquid cement containing 18% acetone (231 mg/kg),

the plasma level of acetone was 110 µg/rnL at 5 hours after ingestion and declined to 65 µg/rnL at
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18 hours, to 60 µg/mL at 20 hours, and to <5 µg/mL at 48 hours (Sakata et al. 1989). The gastric

contents of a patient were analyzed using infrared spectrophotometry and found to contain 1 mL

acetone/100 mL (Fastlich 1976). This analytical method was developed to detect volatile solvents in

gastric contents due to accidental ingestion of these solvents.

Acetone has been identified in breast milk of lactating women (Pellizzari et al. 1982). According to

the authors, mother’s milk is an attractive medium for biomonitoring purposes because sample

collection is reasonably straight-forward, milk contains a high amount of fat, so that fat-soluble

pollutants may be found at higher concentrations in milk than in blood or urine, large volumes are

easily collected, and the population of nursing mothers is relatively large. A disadvantage is the fact

that only young to middle-age females are nursing, making extrapolation to the general population

difficult.

As discussed in Section 2.9.3, an abstract indicated that acetone increased the levels of DNA adducts

in rats exposed via drinking water (Cunningham and Gold 1992).

2.5.2 Biomarkers Used to Characterize Effects Caused by Acetone

The most consistently observed effect of acetone exposure in animals is the induction of microsomal

enzymes, particularly of cytochrome P-450IIEl (see Sections 2.2.2.2, 2.35, and 2.6). The enzyme

induction has been associated with increased liver weights and hepatocellular hypertrophy due to the

increased protein content (NTP 1991). Acetone itself is only moderately toxic to the liver of animals,

as most studies have found no clinical or histological evidence of liver damage. However, increased

levels of serum alanine aminotransferase, which constitutes clinical evidence of liver damage, have

been found in rats in one study (American Biogenics Corp. 1986). Cytochrome P-450IIEl is

associated with the metabolism of acetone itself, but acetone is not metabolized to toxic intermediates

(see Section 2.3). However, the induction of this enzyme by acetone is the mechanism by which

acetone potentiates the hepatotoxicity, nephrotoxicity, genotoxicity, and perhaps the reproductive and

hematological toxicity of other chemicals (see Section 2.6). Cytochrome P-450IIEl can be induced by

a variety of other factors, such as exposure to ethanol, fasting, and experimental diabetes (Johansson et

al. 1986; Puccini et al. 1990); therefore, the induction is not specific to acetone. Moreover, the

detection of enzyme induction might require invasive methods, such as liver biopsy. As discussed in

Section 2.9.3, an in vivo probe is being developed to identify human populations with elevated levels
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of cytochrome P-45011El. These persons are thought to be at greater risk for developing the

carcinogenicities and cytotoxicities related to P-45011El activity.

Exposure of animals to acetone has resulted in degeneration of apical microvilli in renal tubules

(Brown and Hewitt 1984) and enhancement of nephropathy commonly seen in aging rats (NTP 1991),

but these effects have not been associated with increased levels of blood urea nitrogen.

As is typical of many organic solvents, acetone is irritating to respiratory mucosa, the skin, and eyes.

Acetone exposure can also result in such nonspecific narcotic effects as headache, dizziness,

lightheadedness, confusion, unconsciousness (DiVincenzo et al. 1973; Matsushita et al. 1969a, 1969b;

Nelson et al. 1943, Raleigh and McGee 1972; Ross 1973), some neurobehavioral and hematological

effects (Dick et al. 1989; Matsushita et al. 1969a; Stewart et al. 1975), and perhaps menstrual disorders

(Stewart et al. 1975). In addition, patients who had hip casts applied with acetone as the setting fluid

became nauseous, vomited blood, and had a strong odor of acetone in the breath. These symptoms

were associated with the subsequent development of unconsciousness (Harris and Jackson 1952; Strong

1944). The detection of a strong acetone odor on the breath and nausea could alert physicians to the

development of more serious sequelae, such as gastrointestinal hemorrhage and narcosis.

Since acetone is a ketone, acetone exposure can lead to ketosis and other diabetes-like symptoms in

humans (Gitelson et al. 1966) and to reduced insulin-stimulated glucose oxidation in animals (Skutches

et al. 1990). Again the detection of a strong odor of acetone on the breath, or high levels of acetone

in blood or urine can alert physicians to these effects.

In male rats, acetone exposure resulted in anemia as detected by hematological parameters (American

Biogenics Corp. 1986; NTP 1991), and in increased testis weight, decreased sperm motility, caudal and

epididymal weight, and increased incidences of abnormal sperm (NTP 1991). Hematological tests and

tests for sperm motility and abnormalities could be used to screen humans for possible hematological

and fertility effects.

Dermal exposure of humans to acetone irritated the skin, which when examined by light and electron

microscopy, showed signs of degenerative changes in the epidermis (Lupulescu and Birmingham 1976;

Lupulescu et al. 1972, 1973). Decreased protein synthesis was also found (Lupulescu and Birmingham
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1975). Overt signs of skin irritation could alert physicians to possible degenerative changes. Allergic

reactions to acetone can be detected by patch testing (Tosti et al. 1988).

As most of the effects of acetone are not specific to acetone, there is no reliable biomarker of effect

that can be used to detect or screen for possible effects from exposure to acetone at levels reasonably

likely to occur outside the workplace or from accidental ingestion.

For more detailed discussion of the effects caused by acetone see Section 2.2. Further information on

biomarkers for specific organ systems (immune, renal, hepatic) can be found in ATSDR/CDC (1990)

and on neurological effects in OTA (1990).

2.6 INTERACTIONS WITH OTHER SUBSTANCES

While acetone by itself is only moderately toxic, it potentiates the toxicity of a variety of chemicals,

including halogenated alkanes and alkenes, benzene, dichlorobenzene, ethanol, 2,5-hexanedione,

nitrosamines, acetonitrile, and acetaminophen. By far, the most extensively studied interactions are

those with carbon tetrachloride and chloroform. In most of the interactions discussed below, acetone

exerts its potentiating effect by inducing microsomal mixed function oxidases, in particular cytochrome

P-45OIIEl and P-450IIEl-dependent enzyme activities, that bioactivate the other chemicals to reactive

metabolites.

Halogenated Alkanes and Alkenes. No studies were located regarding the effects of coexposure of

humans to acetone and carbon tetrachloride. However, acetone, a metabolite of isopropyl alcohol, was

implicated in a study of workers in a isopropyl alcohol packaging plant who became ill after accidental

exposure to carbon tetrachloride (Folland et al. 1976). Fourteen workers became ill (nausea, vomiting,

headache, and weakness or abdominal pain, dizziness, diarrhea, and blurred vision). Workers in closer

proximity to isopropyl alcohol were especially affected. Renal failure and hepatitis developed in 4 of

the workers with closer proximity to isopropyl alcohol. Expired air samples taken subsequently from

workers during isopropyl alcohol bottling revealed strikingly elevated levels of acetone (mean =

19 ppm in workers on the bottling line and 7.5 ppm in more remote workers). The blood acetone

levels were 3-30 times higher than the normal range. Thus it appeared that isopropyl alcohol, by way

of acetone, predisposed the workers to the hepatotoxicity and renal toxicity induced by carbon

tetrachloride.
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The potentiation of carbon tetrachloride-induced hepatotoxicity and renal toxicity by acetone has been

well documented in rats. Pretreatment of rats by gavage with acetone enhanced the hepatotoxicity of

carbon tetrachloride, as evidenced by the statistically significantly increased relative liver weights,

increased severity of histopathological lesions (necrosis, hepatocellular swelling, lipid droplets),

activities of serum alanine aminotransferase and ornithine carbamoyltransferase, the serum

concentration of bilirubin, and/or the liver concentration of triglycerides compared with the liver

toxicity induced by carbon tetrachloride alone in several studies (Charbonneau et al. 1985; 1986a,

1986c; 1988; 1991; Plaa et al. 1973, 1982; Plaa and Traiger 1972; Traiger and Plaa 1973, 1974).

Acetone treatment alone had no effect on these parameters. The potentiation increased in a doserelated

manner at single doses of acetone >0.25 mL/kg (>196 mg/kg); doses of <0.10 mL/kg

(<78 mg/kg) are ineffective (Charbonneau et al. 1986a; Plaa et al. 1982; Traiger and Plaa 1973). In

rats given the minimal effective dose of acetone (196 mg/kg) twice daily for 3 days (total dose

1,177 mg/kg), carbon tetrachloride-induced liver toxicity was further enhanced over that of a single

dose of 196 mg/kg acetone (Plaa et al. 1982). However, the repetitive dose of acetone (6x196 mg/kg

= 1,177 mg/kg) potentiated the liver toxicity of carbon tetrachloride to a lesser extent than a single

dose of 1,177 mg/kg. Administration of the noneffective dose (78 mg/kg) twice a day for 3 days

(total dose 468 mg/kg) did not affect the liver toxicity of carbon tetrachloride, even though the

cumulative dose of 468 mg/kg, if given as a single dose, would have been high enough to cause

significant potentiation. When a dose of acetone of 1.5 mL/kg (1,177 mg/kg) was given once, divided

into 6 doses of 0.25 mL/kg (196 mg/kg) over 3 days (cumulative dose 1,177 mg/kg) or into 12 doses

of 0.125 mL/kg (98 mg/kg) over 3 days (cumulative dose 1,177 mg/kg), or infused intravenously over

3 days, before challenge with carbon tetrachloride, the most severe potentiation occurred with the

single dose, followed by 6 divided doses, and, then by 12 divided doses. The intravenous infusion did

not enhance the toxicity of carbon tetrachloride. The maximum blood levels calculated from

pharmacokinetic parameters for the different acetone treatment regimens showed a direct relationship

with the degree of potentiation. The results indicate that threshold blood, and hence liver,

concentrations must be exceeded before potentiation occurs. Acetone pretreatment also prolonged the

liver toxicity induced by carbon tetrachloride and decreased the recovery time (Charbonneau et al.

1985). With carbon tetrachloride alone, the severity of liver toxicity increased temporally in rats

sacrificed 24 and 48 hours after dosing, but liver toxicity was no longer observed at 96 hours.

Following pretreatment with acetone, the liver toxicity induced by carbon tetrachloride was enhanced

and increased in severity at all sacrifice times, even at 96 hours. Gavage pretreatment of rats with

1,452 mg/kg/day acetone in corn oil twice weekly for <12 weeks, followed by carbon tetrachloride
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challenge, resulted in decreased body weight gain and 35% mortality, compared with no effect on

body weight gain and 5% mortality in rats given corn oil and challenged with carbon tetrachloride

(Charbonneau et al. 1986c). The acetone plus carbon tetrachloride treated rats also had statistically

significantly decreased relative liver weights and statistically significantly increased kidney weights at

all four sacrifice times, compared with corn oil plus carbon tetrachloride rats. Bilirubin concentrations

and collagen content were also enhanced. Histological examination revealed fully developed cirrhosis

in the acetone plus carbon tetrachloride rats, compared with less severe cirrhosis in the corn oil plus

carbon tetrachloride rats. Renal toxicity was also enhanced, as evidenced by statistically significantly

elevated blood urea nitrogen levels in the acetone pretreated rats, compared with corn oil pretreated

rats. It should be noted that acetone displays a greater degree of potentiation when it is administered

in corn oil than in water (Charbonneau et al. 1986a, 1991), and it appears that corn oil alone can be

toxic to the liver (Charbonneau et al. 1991).

Inhalation exposure of rats to acetone vapors also displays a threshold effect (Charbonneau et al.

1986a). In rats exposed to 1,000, 2,500, 5,000, 10,000, or 15,000 ppm acetone for four hours, and

challenged 18 hours later with carbon tetrachloride, the liver toxicity of carbon tetrachloride was

enhanced in a concentration-related manner at >2,500 ppm acetone. The noneffective concentration

was 1,000 ppm. No cumulative effect of repetitive inhalation exposure to acetone on the carbon

tetrachloride-induced liver toxicity was found, but maximum blood levels of acetone correlated with

the degree of potentiation.

When rats were challenged with a mixture of trichloroethylene and carbon tetrachloride, the minimal

effective dose of acetone required to enhance the liver toxicity of carbon tetrachloride decreased at

least five-fold, indicating that mixtures of haloalkanes can cause severe liver injury, and prior exposure

to acetone can markedly affect the response produced by the mixtures (Charbonneau et al. 1988).

The mechanism of acetone potentiation of carbon tetrachloride-induced liver toxicity involves the

induction of mixed function oxidase microsomal enzymes. In microsomes prepared from rats treated

by gavage with acetone at 2.5 mL/kg (1,961 mg/kg) and incubated with 14C-carbon tetrachloride,

covalent binding of radioactivity to microsomal protein increased 3-4 times that of control microsomes

(Sipes et al. 1973). The time course followed the increased activity of N-nitrosodimethylamine

N-demethylase, indicating enzyme induction. Furthermore, aminothiazole, an inhibitor of cytochrome

P-450 and mixed function oxidase induction, reduced the potentiation by acetone of carbon
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tetrachloride-induced liver toxicity (Traiger and Plaa 1973). More recent studies have indicated that

the effects of acetone on the toxicity of carbon tetrachloride are caused by induction of cytochrome

P-450 forms belonging to at least two gene subfamilies, i.e., P-45011B and P-45011E (Johansson et al.

1988; Kobusch et al. 1989). Complementary DNA and protein sequencing analyses have shown that

these P-450 gene subfamilies are similar in rats and humans (Song et al. 1986). Acetone treatment

caused a nine-fold increase in cytochrome P-450IIEl accompanied by a similar increase in the rate of

nicotinamide adenine dinucleotide phosphate (NADPH)-dependent metabolism of carbon tetrachloride

(Johansson et al. 1988). Acetone treatment also increased the amount of messenger ribonucleic acid

(mRNA) and apoprotein of P-450IIBl l0- to 30-fold, suggesting regulation of cytochrome P-450IIBl

at the transcriptional level. mRNA coding for P-45OIIEl was increased by a combination of fasting

and acetone treatment, but not by treatment with acetone alone. The results suggested an enhanced

rate of P-45OIIEl gene transcription, P-450IIEl mRNA stabilization, or other posttranscriptional

mechanisms. The exact mechanism by which acetone increases the P-450 subfamilies is a subject of

recent and on-going investigations. The findings that pretreatment of rats or rabbits with acetone

results in increases in cytochrome P-45OIIEl and associated enzyme activities, but has no effect on the

level of P-450IIEl mRNA suggests that regulation of acetone-induced P-450IIEl occurs at the

posttranscriptional level (Hong et al. 1987; Johansson et al. 1988; Porter et al. 1989; Ronis and

Ingelman-Sundberg 1989; Ronis et al. 1991; Song et al. 1986; Song et al. 1989). In microsomal and

ribosomal preparations from rats administered acetone intraperitoneally, the polyribosomal distribution

of cytochrome P-45OIIEl mRNA shifted, compared with controls, suggesting that the induction of

P-45OIIEl by acetone involved enhanced translation efficiency through increased loading of ribosomes

of P-45OIIEl mRNA (Kim et al. 1990). However, in another study, incorporation of 3H-leucine into

P-45OIIEl in microsomes from rats treated with acetone was lower than that in control microsomes,

but the rate of translation of the P-450IIEl mRNA was about the same in both sets of microsomes,

indicating that P-45OIIEl is not induced by an increase in the rate of translation of its mRNA (Song et

al. 1989). Furthermore, incorporation of NaH14C03 was three-fold less in acetone induced P-450IIEl

protein than in controls. The rate of disappearance of radiolabel from P-45OIIEl in controls was

biphasic, with half-lives of 7 and 37 hours for the fast and slow phase, respectively. However, in

acetone-treated rats, the fast phase was absent, with a monophasic half-life of 37 hours. These results

demonstrated that the induction of P-450IIEl by acetone is due primarily to protein stabilization. In

microsomes and lysosomes from rats treated with acetone, cytochromes P-45OIIEl and P-450IIBl

increased, but the increase was greater in microsomes (Ronis and Ingelman-Sundberg 1989; Ronis et

al. 1991). Quantification of the proteins in lysosomes indicated that P-450IIEl and P-450IIBl are



ACETONE 131

2. HEALTH EFFECTS

degraded via an autophagosomal/autolysosomal pathway. The authors speculated that P-450IIEl is

catalytically inactivated in microsomes prior to degradation in lysosomes and that acetone may

interfere with the inactivation. Thus, the induction P-450IIBl appears to occur at the transcriptional

level, while the induction of P-450IIEl by acetone appears to occur through stabilization of the

apoprotein.

In contrast, pretreatment of mice with carbon tetrachloride enhanced the toxicity of acetone. In mice

intraperitoneally pretreated with olive oil, the oral LD50 of acetone was 5,250 mg/kg, while in mice

pretreated with a 20% solution of carbon tetrachloride in olive oil reduced the LD50 of acetone to

4,260 mg/kg (Tanii et al. 1986). The dose of carbon tetrachloride alone did not result in any death.

The authors suggested that carbon tetrachloride inactivated the microsomal monooxygenase system,

thereby inhibiting the inactivation of acetone.

Acetone also potentiates the hepato- and nephrotoxicity of chloroform. Pretreating rats with 15

mmol/kg (871 mg/kg) acetone in corn oil by gavage 18 hours prior to a challenge dose of 0.5 mL/kg

chloroform in corn oil statistically significantly increased the relative kidney weight, inhibited lactate

stimulated accumulation of p-aminohippurate and the accumulation of tetraethylammonium ion in

kidney slices, and resulted in vacuolar degeneration in the tubular epithelium, but not necrosis,

compared with corn oil controls (Hewitt et al. 1980). No effects on these parameters were observed

with acetone alone or in rats pretreated with corn oil and challenged with chloroform. Acetone

pretreatment also statistically significantly increased the plasma activities of alanine aminotransferase

(32-fold) and ornithine carbamoyltransferase (134-fold), compared with corn oil pretreated controls

challenged with chloroform, and caused balloon cells with pyknotic nuclei in the centrilobular region

of the liver. Acetone alone and chloroform alone did not cause liver lesions. In rats treated by gavage

with acetone in corn oil at 58, 290, 436, 581, 726, or 871 mg/kg and challenged with 0.5 mL/kg

chloroform in corn oil, acetone showed a dose-dependent decrease in p-aminohippurate uptake and an

increase in plasma creatinine levels, with maximum effects seen at doses between 290 and 581 mg/kg

acetone (Brown and Hewitt 1984). Renal necrosis, hyaline bodies, and/or tubular casts were seen in

3/6 rats at 58 mg/kg acetone and in 4/6-5/6 rats at higher doses. Acetone pretreatment also statistically

significantly increased plasma activities of alanine aminotransferase at >290 mg/kg. Balloon cells and

necrosis were observed in 216 rats pretreated with 58 mg/kg and in most of the rats pretreated with

>290 mg/kg. The effects of acetone pretreatment and chloroform challenge were greater than the

effects of corn oil pretreatment and chloroform challenge. Pretreating rats by gavage with 0.5 mL/kg
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acetone (871 mg/kg) in corn oil prior to a challenge dose of chloroform (0.5 mL/kg) in corn oil

statistically significantly increased the plasma activities of alanine aminotransferase and ornithine

carbamoyltransferase above that seen in rats pretreated with corn oil and challenged with chloroform,

and the potentiation was maximal at 18 hours (Hewitt et al. 1987). Microsomes from the acetone

treated rats showed increased activities of ethoxycoumarin O-deethylase and NADPH-dependent

cytochrome c reductase and statistically significantly increased rates of covalent binding of

radioactivity from 14C-chloroform in the reaction medium, compared with control microsomes. Results

were similar with microsomes prepared from rats treated by gavage with 2.5 mL/kg (1,961 mg/kg)

acetone in corn oil. Acetone enhanced the covalent binding of radioactivity of 14C-chloroform

two-fold compared with control microsomes and increased the activity of N-nitrosodimethylamine

N-demethylase (Sipes et al. 1973), an activity associated with cytochrome P-450IIEl. Thus, acetone

increased the biotransformation of chloroform.

The involvement of cytochrome P-450IIEl was confirmed with microsomes from rats given a gavage

dose of acetone (871 mg/kg) in corn oil (Brady et al. 1989). Acetone statistically significantly

increased the cytochrome P-450 content, the activity of N-nitrosodimethylamine N-demethylase, and

the content of cytochrome P-450IIE1, but not P-450IIB1, compared with control microsomes.

Furthermore, no effect was seen on the activity of benzphetamine demethylase, an activity associated

with P-45011B 1. The acetone-induced microsomes also showed a three-fold enhancement of

P-450IIEl-dependent chloroform metabolism, but the activity required the presence of cytochrome b5

No increased P-45011B l-dependent metabolism was seen. The involvement of P-450IIEl was further

demonstrated by inhibition of the reaction with a monoclonal antibody to P-450IIEl and by alternate

substrates for P-450IIE1, such as, pyrazole, benzene, nitrosodimethylamine, and diallyl sulfate.

Acetone also potentiates the toxicity of other halogenated alkanes. In rats injected intraperitoneally

with acetone in saline at doses of 581, 1,162, 1,742, or 2,323 mg/kg 48 hours prior to a gavage dose

of dichloromethane (0.4 mL/kg), statistically significantly increased blood levels of carboxyhemoglobin

were observed at 21,742 mg/kg acetone, compared with controls challenged with dichloromethane

(Pankow and Hoffmann 1989). The results indicated that acetone increased the metabolism of

dichloromethane to carbon monoxide. Results obtained with fasting rats or rats pretreated with

isoniazid, which also induces cytochrome P-450IIE1, produced similar potentiation of

dichloromethane-induced carboxyhemoglobinemia, thus implicating induction of cytochrome P-450IIEl

as the mechanism whereby acetone increased the metabolism of dichloromethane to carbon monoxide.
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While neither bromodichloromethane or dibromochloromethane were hepatotoxic (assessed by relative

liver weight and plasma activities of alanine aminotransferase and ornithine carbamoyltransferase) in

rats at the sublethal doses used, acetone pretreatment at 871 mg/kg by gavage in water resulted in liver

toxicity at lower challenge doses of these compounds compared to the doses that produced toxicity

when these compounds were administered without acetone pretreatment (Hewitt et al. 1983). Neither

bromodichloromethane or dibromochloromethane alone displayed appreciable toxicity to the kidney

(assessed by relative kidney weight, accumulation of p-aminohippurate and tetraethylammonium ion in

kidney slices, and blood urea nitrogen). However, pretreatment with acetone resulted in statistically

significantly increased kidney weight, inhibition of p-aminohippurate uptake, and increased levels of

blood urea nitrogen after challenge with bromodichloromethane. With a challenge dose of

dibromochloromethane, only blood urea nitrogen was significantly increased by acetone pretreatment.

Acetone pretreatment of rats by gavage at doses of 196 and 392 mg/kg, prior to challenge with

1,1,2-trichloroethane, potentiated 1,1,2-trichloroethane-induced increased activity of plasma alanine

aminotransferase (MacDonald et al. 1982a). However, higher pretreatment doses of acetone did not

potentiate the toxicity and may have decreased the severity. Pretreatment of rats with acetone

(392 mg/kg) followed by a challenge dose of 14C-1,1,2-trichloroethane did not increase covalent

binding of radioactivity to microsomal proteins but resulted in a greater decline in the content of

reduced glutathione. When 14C-trichloroethane was added in vitro, covalent binding of the radiolabel

statistically significantly increased in microsomes from rats treated with acetone, compared with

control microsomes (MacDonald et al. 1982b). The in vitro covalent binding was inhibited 80% by

the addition of reduced glutathione. It was suggested that acetone alters the bioactivation and the

detoxication of 1,1,2-trichloroethane, but the exact mechanism is unclear.

Acetone also potentiated the hepatotoxicity of chlorinated alkenes. Inhalation exposure of rats to

10,000 ppm acetone vapor for 2 hours prior to or during concomitant inhalation exposure to

2,000 ppm 1,l -dichloroethene resulted in statistically significant increased activity of serum alpha-

ketoglutarate transaminase, compared with that induced by l,l-dichloroethene alone (Jaeger et al.

1975). A biphasic pattern of potentiation of the liver toxicity induced by l,l-dichloroethene was

observed in rats pretreated orally with acetone at several dose levels (Hewitt and Plaa 1983). At doses

of 290 and 581 mg/kg acetone prior to challenge with 1,l-dichloroethene, statistically significantly

increased activities of plasma alanine aminotransferase and ornithine carbamoyltransferase were

observed, compared with water pretreated rats challenged with 1,l-dichloroethene. At higher

pretreatment doses of acetone (>871 mg/kg), the effect on these parameters diminished and acetone
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appeared to have a protective effect. Treatment of rats with l,l-dichloroethene did not result in any

evidence of nephrotoxicity, but acetone pretreatment statistically significantly reduced the accumulation

of tetraethylammonium ion in kidney slices. The biphasic pattern of potentiation/protection may be

related to alterations in the rate and/or pattern of l,l-dichloroethene bioactivation, such as,

bioactivation to reactive intermediates or decreased detoxication by decreasing hepatic glutathione

levels at the potentiating doses of acetone.

Benzene. Although potentiation of benzene toxicity by acetone has not been specifically tested,

microsomes from rats treated with acetone (3,922 mg/kg) for 1 or 2-days produced a <9-fold increase

in the rate of NADPH-dependent oxidation of benzene and induced cytochrome P-450, in particular

cytochrome P-450j (cytochrome P-450IIEl) (Johansson et al. 1988; Johansson and Ingelman-Sundberg

1988). Addition of inhibitors of P-450IIEl inhibited the oxidation of benzene in microsomes from

acetone treated rats, providing further evidence that this form of cytochrome P-450 is involved. In

addition, antibodies to rabbit cytochrome P-450LMeb (IIEl) and rat cytochrome P-450j (IIEl)

inhibited the oxidation of benzene by 80-100% in microsomes prepared from rabbits and rats treated

with acetone. In hepatocytes from rabbits given acetone (863 mg/kg/day) in drinking water for 7 days,

immunoblot analysis identified three distinct cytochromes: P-450IIE1, P-450IA1, and P-450IA2

(Schnier et al. 1989). In bone marrow cells from the treated rabbits, P450IIEl and P-450IAl were

identified. Quantitative analysis revealed that acetone treatment resulted in a 7.3-fold induction of

P-450IIEl in liver and a 12.9-fold induction of P-450IIEl in bone marrow cells. Acetone slightly

decreased the concentration of cytochrome P-450 reductase in bone marrow, and increased the ratio of

P-450IIEl to reductase by 16.4 times and the ratio of P-450IAl to reductase by 2 times. Hepatic

microsomes from acetone-treated rabbits were 4.8 times more active than control microsomes in

benzene hydroxylation, an activity of P-450IIEl. Acetone-induced marrow microsomes were 9.4 times

more active in benzene hydroxylation. Thus, the stimulation of benzene metabolism by acetone occurs

by a mechanism similar to that of the stimulation of carbon tetrachloride metabolism by acetone. The

results suggest that acetone may potentiate the toxicity of benzene, since bioactivation is required for

the expression of hematotoxicity of benzene (Sammet al. 1979; Snyder et al. 1975). It should be noted

that commercial acetone contains 30 ppm benzene (Union Carbide 1992).

Dichlorobenzene. Inhalation exposure of rats to acetone vapors at 4,785, 10,670, or 14,790 ppm for

4 hours increased the cytochrome P-450 contents and the activity of glutathione-S-transferase, with the

greatest increases occurring at the 4,785 ppm level (Brondeau et al. 1989). When the rats were
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challenged 18 hours later by inhalation exposure to 1,2-dichlorobenzene, the level of P-450 and the

activity of glutathione-S-transferase was no different from that seen with acetone alone. However,

acetone preexposure potentiated the liver toxicity of 1,2-dichlorobenzene at the lowest exposure,

reduced it at 10,670 ppm, and suppressed it at 14,790 ppm. In mice exposed to 6,747, 8,910, or

14,345 ppm acetone for 4 hours, followed by a challenge by l,2-dichlorobenzene, acetone preexposure

caused an interactive glucose-6-phosphatase response in the mediolobular area of the liver. It was

suggested that, at low concentrations, acetone induces the microsomal enzymes that convert

1,2-dichlorobenzene to toxic intermediates. However, since the glutathione-S-transferase activity did

not increase in rats preexposed to acetone and challenged with 1,2-dichlorobenzene, the diminished

liver toxicity induced by 1,2-dichlorobenzene after preexposure to the higher concentrations cannot be

explained by detoxification via enhanced glutathione conjugation. Instead, two microsomal enzymes

may be involved, in which, at low concentrations of acetone, one (activating) enzyme is induced, but

at higher concentrations concomitant induction of the second enzyme system could result in protection.

Ethanol. Acetone potentiated the central nervous system toxicity of ethanol in mice (Cunningham et

al. 1989). Mice were pretreated with an intraperitoneal injection of acetone in corn oil at 581, 1,162,

or 2,323 mg/kg, and 30 minutes later injected with 4,000 mg/kg ethanol. At 1,162 and 2,323 mg/kg,

acetone statistically significantly prolonged the duration of the loss of righting reflex induced by

ethanol. In mice given 2,323 mg/kg acetone prior to 2,000 mg/kg ethanol, the blood level of ethanol

was statistically significantly higher at all time intervals measured, and acetone pretreatment

significantly decreased the mean elimination rate of ethanol.

In vitro, acetone inhibited the activity of liver alcohol dehydrogenase, a reaction responsible for 90%

of ethanol elimination. It was suggested that acetone produced a prolongation of the central nervous

system toxicity of ethanol by reducing its elimination.

Other Ketones. The neurological and reproductive effects of coexposure to acetone and

2,5-hexanedione has been studied in animals. In rats exposed to 0.5% 2,5-hexanedione, 0.5% acetone

(650 mg/kg/day), or to a combination of 0.5% 2,5-hexanedione and 0.5% acetone in drinking water for

6 weeks, peripheral motor nerve conduction velocity was measured weekly from the third week of

dosing (Ladefoged et al. 1989). Acetone alone reduced the nerve conduction velocity compared with

controls only at 6 weeks, while 2,5-hexanedione alone significantly reduced it from the third week on.

The combination treatment resulted in a statistically significantly greater reduction than seen with
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2,5-hexanedione alone on the fourth and sixth week. Acetone alone had no effect on balance time in

the rotorod test, but balance time was statistically significantly reduced from the second week with the

combination treatment, and the reduction was greater than that with 2,5-hexanedione alone from the

fourth week on. In a similar dosing regimen for 7 weeks, coexposure to 2,5-hexanedione and acetone

statistically significantly inhibited acquisition, but not performance of spatial learning, (assessed in the

radial arm maze) above that seen with 2,5-hexanedione alone (Lam et al. 1991). Brain weights of rats

exposed to 2,5-hexanedione alone or to the combination were significantly reduced, with greater

reduction in the coexposed group. Both treatments reduced synaptosomal 5-hydroxytryptamine uptake

rate, but the combination treatment did not reduce the uptake below that seen with 2,5-hexanedione

alone. In a companion report of these treatment groups, there was no significant difference on the

number and size of neurons in the cerebral cortex between rats treated with 2,5-hexanedione alone or

rats coexposed to 2,5-hexanedione and acetone (Strange et al. 1991).

Acetone alone had no effect on indices of fertility in male rats but potentiated the reproductive toxicity

of 2,5-hexanedione when coadministered, compared with that seen with 2,5-hexanedione alone (Larsen

et al. 1991). The rats were exposed to drinking water containing 0.13%, 0.25%, or 0.5%

2,5-hexanedione or in combination with 0.5% acetone for 6 weeks. Fertility was assessed by mating

the exposed males with nonexposed females. 2,5-Hexanedione alone or the combination had no

effects on the number of matings. 2,5-Hexanedione alone at 0.5% statistically significantly decreased

the number of pregnancies, the number of fetuses, and the testicular weight. The combination

treatments further reduced all indices, and at 0.5% 2,5-hexanedione plus 0.5% acetone, complete

infertility occurred. Morphological assessment of the testes revealed mild to moderate vacuolization,

chromatin margination, epithelial disruption, multinucleated giant cells, and/or atrophy in rats exposed

to 2,5-hexanedione alone after 6 weeks of treatment, and the combination increased the severity of

these lesions. When assessed 10 weeks after the end of treatment, the lesions were still present.

The mechanism by which acetone potentiates or adds to the toxicity of 2,5-hexanedione in rats is not

known, but coexposure of rabbits to 2,5-hexanedione and acetone altered the pharmacokinetic

parameters of 2,5-hexanedione (Ladefoged and Perbellini 1986). The combined treatment decreased

the body clearance of 2,5-hexanedione, compared to the clearance of 2,5-hexanedione alone.

In a neurobehavioral study in volunteers, 11 men and 11 women exposed to 237 ppm acetone, 12 men

and 13 women exposed to 200 ppm 2-butanone (methyl ethyl ketone), and 8 men and 13 women
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exposed simultaneously to acetone (125 ppm) and 2-butanone (100 ppm) for 4 hours were subjected to

psychomotor tests (choice reaction time, visual vigilance, dual task, memory scanning), sensimotor

tests (postural sway), and psychological tests (profile of mood states) (Dick et al. 1989). Acetone

exposure alone produced small, but statistically significant changes in performances from controls in

two measures of auditory tone discrimination (increase response time and increase false alarm) and

hostility in men only. Neither 2-butanone alone or the combination of acetone and 2-butanone

produced any statistically significant changes. Furthermore, no interactions between acetone and

2-butanone on the uptake or elimination of acetone or 2-butanone were found in the same human

subjects (Brown et al. 1987). From this limited information, it appears that acetone and 2-butanone do

not interact to produce neurological effects.

Styrene. Although no studies were located regarding interactions between acetone and styrene in the

expression of toxic effects in animals, several studies have reported that coexposure to acetone and

styrene produce different changes in the content or activity of biotransformation enzymes in the liver

and lungs, compared with the changes seen with styrene alone (Elovaara et al. 1990, 1991; Vainio and

Zitting 1978). However, in humans subjects exposed for 2 hours to 293 mg/m3 styrene alone or to a

mixture of 301 mg/m3 styrene and 1,240 mg/m3 (517 ppm) acetone, there was no indication that

acetone alters the uptake, distribution, metabolism, or elimination of styrene (Wigaeus et al. 1984).

Nitrusamines. Acetone potentiated the hepatotoxicity of N-nitrosodimethylamine in rats pretreated by

gavage with 2.5 mL/kg (1,961 mg/kg) acetone in water 24 hours prior to a challenge intraperitoneal

dose of 75 mg/kg N-nitrosodimethylamine (Lorr et al. 1984). The acetone pretreatment doubled the

plasma activity of alanine aminotransferase (p<0.005) and increased the extent and severity of liver

necrosis and hemorrhage, compared with that seen with N-nitrosodimethylamine alone. Microsomes

prepared from rats treated with N-nitrosodimethylamine had diminished N-nitrosodimethylamine-

N-demethylase activity, compared with microsomes from untreated mice. The results indicate that

N-nitrosodimethylamine N-demethylase, an activity associated with cytochrome P-450IIE1, is

responsible for the activation of N-nitrosodimethylamine to a toxic intermediate, and that the induction

of this enzyme by acetone potentiates the hepatotoxicity. Microsomes from mice given 2,614 mg/kg

acetone increased the covalent binding of radioactivity from [14C]-N-nitrosodimethylamine to

microsomal DNA, RNA, and protein (Sipes et al. 1978). Microsomes from rats pretreated with

acetone had a four-fold increased activity of N-nitrosodimethylamine demethylase and a six-fold

increase in DNA methylation compared with control microsomes (Hong and Yang 1985). Several
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studies have shown that acetone given to rats or mice enhances the microsomal activity of

N-nitrosodimethylamine N-demethylase in a dose-related manner (Miller and Yang 1984; Patten et al.

1986; Sipes et al. 1973, 1978; Tu et al. 1983; Yoo et al. 1990), and this activity is associated with

cytochrome P-450 (Miller and Yang 1984; Tu et al. 1983; Yoo et al. 1990), in particular cytochrome

P-45OIIEl (Patten et al. 1986; Yoo et al. 1990). Acetone pretreatment of rats also enhanced the

denitrosation of N-nitroso-dimethylamine in microsomes, and antibodies against cytochrome P-450IIEl

inhibited this activity (Yoo et al. 1990). Similar results were obtained with N-nitrosodiethylamine

deethylation and denitrosation. The rates of both types of reactions depended upon the concentration

of the nitrosamine in the reaction mixture, leading to the conclusion that P-45OIIEl has a role in the

metabolism of low concentrations of these nitrosamines, and that this form of the enzyme is important

in the carcinogen activation.

In Ames assays, addition of acetone to the S-9 mix inhibited the mutagenicities of

N-nitrosodimethylamine, N-nitrosodiethylamine, 6 derivative of N-nitrosopropylamine, and N-nitroso-

2,6-dimethylmorpholine in S. typhimurium Tal00 at a concentration of <5.2 mg/0.l mL

(52,000 mg/L) nitrosamines (Mori et al. 1985). Acetone also inhibited the metabolism of

N-nitrosodimethylamine, N-nitrosomethyl (2-hydroxypropyl)amine, and N-nitrosomethyl

(2-0xopropyl)amine in vitro. In contrast, another study found that the S-9 mix prepared from mice

treated with acetone strongly enhanced the mutagenicity of N-nitrosodimethylamine in the Ames assay

in S. typhimurium TA92, which was more sensitive to N-nitrosodimethylamine than TAl00 (Glatt et

al. 1981). This assay used concentrations of the nitrosamine at <20 mM (1,491 mg/L). However,

acetone did not enhance the mutagenicity in the host-mediated assay. The authors explained that in

vitro, the activity of the dilute metabolizing system is limiting for the activity of

N-nitrosodimethylamine, such that induction increases mutagenicity, whereas in vivo,

N-nitrosodimethylamine is completely metabolized in both induced and noninduced animals. The

reason for the different effects of acetone on the mutagenicity of nitrosamines in the studies by Mori et

al. (1985) and Glatt et al. (1981) could be related to differences in the assay system (e.g., acetone

added to medium versus acetone-induced S-9), to the difference in concentration of the nitrosamines,

or to the different strains of S. typhimurium. Microsomes from rats pretreated with acetone increased

the activity of N-nitrosodimethylamine demethylase and increased the mutagenicity of

N-nitrosodimethylamine in Chinese hamster lung V79 cell cultures at low substrate concentrations (0.1

and 4 mM or 5.8 and 232 mg/L) compared with untreated microsomes (Yoo and Yang 1985).

However, a slight decrease in mutagenic activity was found at a N-nitrosodimethylamine concentration
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of 200 mM (11,616 mg/L). Acetone induced microsomes also enhanced the mutagenic activity of

N-nitrosomethylethylamine, N-nitrosodiethylamine, and N-nitrosomethylbutylamine, but not

N-nitrosomethylbenzylamine or N-nitrosomethylaniline. The findings that lower concentrations

enhanced the mutagenicity of N-nitrosodimethylamine (Glatt et al. 1981; Yoo and Yang 1985) are

consistent with the conclusions of Yoo et al. (1990) that cytochrome P-450IIEl is important in the

activation of the carcinogen at low concentrations.

Acetonitrile. Acetone also potentiates the toxicity of acetonitrile. When rats were given a 1:l mixture

of acetone plus acetonitrile by gavage, the acute LD50 was 3-4 times lower than the predicted LD50 for

additive toxicity (Freeman and Hayes 1985). The LD50 values of these chemicals alone were

5,800 mg/kg for acetone and 4,050 mg/kg for acetonitrile, while the LD50 for the mixture was

1,160 mg/kg, compared with the predicted value of 4,770 mg/kg. However, deaths occurred later with

the mixture than with either acetone or acetonitrile alone. Blood cyanide (a toxic metabolite of

acetonitrile) levels were higher, but peaked at a later time, in the rats given the mixture than in those

given acetonitrile alone. Administration of a second dose of acetone 30 hours after administration of

the mixture protected the rats from lethality to a degree similar to that seen with a dose of sodium

thiosulfate (an antidote used for cyanide poisoning). It was suggested that, initially, acetone

competitively inhibits the metabolism of acetonitrile to cyanide but later induces an isoenzyme of

cytochrome P-450 that catalyzes the metabolism of acetonitrile to cyanide, hence explaining the greater

toxicity of the mixture seen at a later time. To test this hypothesis, the metabolism of acetonitrile by

microsomes from rats treated with acetone at the same dose that potentiated the toxicity was compared

with that by noninduced microsomes (Freeman and Hayes 1988). The metabolism of acetonitrile

required oxygen and NADPH and was inhibited by known inhibitors of cytochrome P-450.

Microsomes from acetone pretreated rats increased the Vmax, while acetone added to the reaction

mixture in vitro competitively inhibited the conversion of acetonitrile to cyanide. The in vitro

metabolism of acetonitrile was competitively inhibited by ethanol, which also induces cytochrome

P-450IIE1, by dimethyl sulfoxide, which inhibits cytochrome P-450IIEl-dependent metabolism of

ethanol, and by aniline, a substrate for P-45011El. Thus, the mechanism for the potentiation of the

toxicity of acetonitrile by acetone also appears to involve cytochrome P-450IIEl.

A case report describes a woman who was asymptomatic for 24 hours after ingesting an overdose of

acetonitrile and acetone, but subsequently developed cardiovascular collapse, and profound acidosis,

and eventually died (Boggild et al. 1990). It was suggested that acetone delayed the onset of
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symptoms by initially inhibiting the metabolism of acetonitrile to cyanide, which is consistent with the

mechanism proposed by Freeman and Hayes (1988).

Acetaminophen. Acetone has been reported to increase the hepatotoxicity of acetaminophen in vitro

(Moldeus and Gergely 1980) and in vivo (Jeffery et al. 1991). The addition of acetone to

phenobarbital-induced rat liver hepatocytes caused a three-fold increase in acetaminophen-glutathione

conjugation due to enhanced cytochrome P-450-dependent activation of acetaminophen to a toxic

metabolite (Moldeus and Gergely 1980). The addition of acetone to the reaction system also caused

loss of hepatocyte viability, which was not seen when acetone or acetaminophen were excluded from

the system. According to the suggested mechanism, acetone enhanced a cytochrome P-450-dependent

activation of acetaminophen to a metabolite that conjugates with glutathione, thereby depleting hepatic

glutathione stores, leading to accumulation of the reactive metabolite. In contrast, pretreatment of rats

with 813 or 1,975 mg/kg acetone 18 hours and 1 hour prior to administration of acetaminophen

resulted in an increased blood half-life of acetaminophen, a decreased rate constant for acetaminophen

mercapturate formation, decreased acetaminophen sulfate formation, and decreased renal elimination of

acetaminophen (Price and Jollow 1983). Acetone also decreased the incidence and severity of liver

necrosis induced by acetaminophen. The authors suggested that acetone decreased the formation of an

acetaminophen reactive metabolite. However, in mice pretreated orally with acetone at

1,900 mg/kg/day for 10 days and then given 600 mg/kg acetaminophen intraperitoneally 6 hours

before sacrifice, a greater portion of the liver lobules with necrosis and hemorrhage was observed than

when acetaminophen was administered alone (Jeffery et al. 1991). Acetone pretreatment followed by

saline injection resulted in no hepatic lesions. When dimethylsulfoxide (DMSO), an inhibitor of

cytochrome P-450IIE1, was incubated with microsomes prepared from the acetone-pretreated,

acetaminophen-treated mice, a 91% inhibition of acetaminophen-glutathione conjugation was found

compared to when DMSO was excluded from the incubation mixture. Presumably, the inhibition of

glutathione conjugation by DMSO was due to inhibition of cytochrome P-45011El to form the active

metabolite of acetaminophen. Activation of acetaminophen to a reactive metabolite, N-acetyl-p-benzoquinone

imine, which can bind to tissue macromolecules leading to necrosis at high doses of

acetaminophen, is known to be dependent on cytochrome P-450IIEl (Morgan et al. 1983; Raucy et al.

1989). N-acetyl-p-benzoquinone imine can also be detoxified via conjugation with glutathione. The

addition of acetone to the reaction system enhances the formation of the glutathione conjugate in rat

liver microsomes (Liu et al. 1991). These results support a mechanism whereby acetone enhances the

cytochrome P-450IIEl-dependent conversion of acetaminophen to N-acetyl-p-benzoquinone imine,
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which in turn conjugates with glutathione to deactivate it. Thus, acetone could decrease the toxicity of

acetaminophen. However, if the dose of acetaminophen is high, leading to more N-acetyl-p-

benzoquinone imine than can be handled by glutathione detoxification, glutathione is depleted and

N-acetyl-p-benzoquinone imine accumulates. Thus, the induction of cytochrome P-45OIIEl by acetone

to produce enough N-acetyl-p-benzoquinone imine from acetaminophen to deplete glutathione would

result in an enhancement of acetaminophen-induced toxicity.

Miscellaneous Chemicals. 9,10-Dimethyl-1,2-benzanthracene (DMBA) in acetone was more effective

as a carcinogen than DMBA in mineral oil when applied to the tongues of hamsters (Marefat and

Shklar 1977). A dose of 581 mg/kg acetone prior to administration of

N-(3,5-dichlorophenyl)succinimide (NDPS), a fungicide, enhanced the NDPS-induced increase in blood

urea nitrogen and kidney weight, but had no effect on NDPS-induced changes in urine volume or

content, organic ion uptake by kidney slices, or renal pathology (Lo et al. 1987). Lower doses of

acetone were ineffective. Since NDPS requires bioactivation by cytochrome P-450-dependent

microsomal enzymes in the liver before renal toxicity occurs, it appears that acetone potentiated the

renal toxicity of NDPS by inducing a cytochrome P-450 capable of the bioactivation. Pretreatment of

rats with acetone prior to administration of thiobenzamide enhanced the degree of liver necrosis and

serum activity of alanine aminotransferase, while coadministration of acetone and thiobenzamide

reduced the extent of liver damage (Chieli et al. 1990). In addition, liver microsomes from acetone

treated rats statistically significantly increased the rate of thiobenzamide-S-oxidation, which was

dependent on a cytochrome P-450 enzyme. Thiobenzamide competitively inhibited acetone

monooxygenase activity, which is highly specific for P-45011El. The results indicated that

pretreatment of rats with acetone induces P-450IIE1, leading to enhanced bioactivation of

thiobenzamide to a reactive metabolite and enhanced thiobenzamide-induced liver damage. However,

when acetone and thiobenzamide were administered together, competition for the enzyme may have

led to less bioactivation of thiobenzamide, thereby affording the protective effect of acetone. Acetone

appears to afford protection against other toxic effects of other chemicals. Pretreatment of rats with

acetone produced complete protection against clonic tonic convulsions induced by isonicotinic acid and

electroshock-induced convulsion (Kohli et al. 1967). Since the protective action of acetone was

nonspecific, a biochemical mechanism did not seem likely.

Acetone also increased the toxicity of oxygen (Tindberg and Ingelman-Sundberg 1989) and chromate

(Cr[VI]) (Mikalsen et al. 1991). Pretreatment of rats with acetone prior to oxygen exposure
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potentiated the NADPH-dependent microsomal lipid peroxidation in the liver and lung and decreased

the survival of the rats (Tindberg and Ingelman-Sundberg 1989). Oxygen also induced cytochrome

P-450IIE1, indicating a role for cytochrome P-450IIEl in oxygen-mediated tissue toxicity.

Coexposure of rats to acetone and sodium chromate (Cr[VI]) resulted in some macroscopic alterations

in the liver (not otherwise described), whereas no liver toxicity was noted with chromate or acetone

alone (Mikalsen et al. 1991). Cytochrome P-450IIEl exhibited high chromate reductase activity, and

biochemical studies indicated that acetone caused the induction of microsomal Cr(V1) metabolism.

While the interactions discussed above involve the potentiation of the toxicity of other chemicals by

acetone, acetone has been found to antagonize the toxicity of semicarbizide (Jenney and Pfeiffer 1958).

In mice injected intraperitoneally with 168 mg/kg semicarbizide, 93% had convulsions and 91% died.

Pretreatment with 4,000 mg/kg acetone orally reduced the percentage of the semicarbizide-induced

convulsions and mortality to 0%. A dose of 1,800 mg/kg acetone reduced the percentage of mice

convulsing to 31%, delayed the onset of convulsions by 286%, reduced the percentage that exhibited

unmodified seizure from 98% to 40%, reduced the mortality to 12.5%, and delayed the time to death

by 125%. The authors attributed the protective effect of acetone to the presence of the keto group.

2.7 POPULATIONS THAT ARE UNUSUALLY SUSCEPTIBLE

A susceptible population will exhibit a different or enhanced response to acetone than will most

persons exposed to the same level of acetone in the environment. Reasons include genetic make-up,

developmental stage, age, health and nutritional status (including dietary habits that may increase

susceptibility, such as inconsistent diets or nutritional deficiencies), and substance exposure history

(including smoking). These parameters result in decreased function of the detoxification and excretory

processes (mainly hepatic, renal, and respiratory) or the preexisting compromised function of target

organs (including effects or clearance rates and any resulting end-product metabolites). For these

reasons we expect the elderly with declining organ function and the youngest of the population with

immature and developing organs will generally be more vulnerable to toxic substances than healthy

adults. Populations who are at greater risk due to their unusually high exposure are discussed in

Section 5.6, “Populations With Potentially High Exposure.”

Several lines of evidence from studies in animals indicate that sex differences exist in the susceptibility

to effects caused by acetone. Male rats were more susceptible than female rats to acetone’s
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hematological, hepatic, and renal effects, and effects on reproductive organs (American Biogenics Corp

1986; NTP 1991). While results in animals cannot always be extrapolated to humans, it is possible that

men may be more susceptible than women to the hematological, hepatic, renal, and reproductive

effects of acetone. Furthermore, acetone may exacerbate preexisting hematological, liver, kidney, or

reproductive disorders in humans.

In a lethality study among newborn rats, 14-day-old rats, and adult rats, susceptibility to the lethal

effects of acetone generally decreased with increasing maturity (Kimura et al. 1971). Humans may

have the same order of susceptibility.

Pregnant rats exposed to acetone by inhalation during gestation had reduced body weights (NTP 1991),

while nonpregnant rats exposed to a higher concentration for a longer duration did not show any

effects on body weight (Goldberg et al. 1964). Pregnant rats also had lower plasma and liver levels of

acetol, the first intermediate in the overall metabolism of acetone, than virgin rats (Peinado et al.

1986), suggesting differences in the rate of acetone metabolism. It is possible that the condition of

pregnancy made these rats more susceptible to body weight changes, and this susceptibility might

apply to humans.

The role of acetone in fasting and diabetes is complicated and not well understood (Reichard et al.

1979; 1986). Acetone is produced endogenously and, as demonstrated in humans, more acetone is

produced endogenously by fasting, which can result in ketosis (Reichard et al. 1979). This implies that

people on diets exposed to exogenous acetone will have a higher body burden of acetone than

nondieters exposed to the same amount of exogenous acetone, perhaps making them more susceptible

to any possible adverse effects. Acetone exposure of rats resulted in a reduced insulin-stimulated

glucose oxidation rate, and the reduction was greater in fasted rats than in fed rats, indicating that the

insulin resistance indigenous to fasting may be attributed in part to metabolic influences of acetone

(Skutches et al. 1990). This implies that people on diets may have a diminished capacity to utilize

glucose, and exposure to acetone may reduce the capacity further.

Diabetics may also be more susceptible to the effects of acetone. Acetone-induced insulin resistance

(Skutches et al. 1990) might also result in greater hyperglycemia in diabetics. Patients with diabetic

ketoacidosis have higher plasma levels of endogenous acetone (Reichard et al. 1986), and exposure to

exogenous acetone may increase the levels further. Similar results were found in rats. Diabetic rats
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had higher plasma acetone levels than nondiabetic rats after treatment with the same doses of acetone,

due to the higher endogenous level of acetone in the diabetic rats and differences in the metabolism of

acetone to isopropyl alcohol (Lewis et al. 1984). Diabetic rats were also less able to oxidize acetone

than nondiabetic rats (Price and Rittenberg 1950).

2.8 METHODS FOR REDUCING TOXIC EFFECTS

This section will describe clinical practice and research concerning methods for reducing toxic effects

of exposure to acetone. However, because some of the treatments discussed may be experimental and

unproven, this section should not be used as a guide for treatment of exposures to acetone. When

specific exposures have occurred, poison control centers and medical toxicologists should be consulted

for medical advice.

2.8.1 Reducing Peak Absorption Following Exposure

Since acetone is irritating to mucous membranes of the respiratory system and eyes, people exposed

occupationally wear protective clothing, goggles, and respirators (Stutz and Janusz 1988). If exposure

has occurred and symptoms of narcosis are present, the victim is removed from the contaminated area,

clothing is removed and isolated, the skin is washed with soapy water, oxygen is administered, and

eyes are thoroughly flushed with water. In the case of ingestion of acetone, activated charcoal is

given. Although induction of emesis by administration of syrup of ipecac is sometimes recommended

in the case of ketones in general (Stutz and Janusz 1988), this may be contraindicated in the case of

acetone ingestion because of the possibility of pulmonary aspiration, which increases for substances

with high volatility and low viscosity (Goldfrank et al. 1990). Gastric lavage has been used to treat a

patient who ingested acetone (Sakata et al. 1989), but the possibility of aspiration also exists for this

method (Goldfrank et al. 1990).

2.8.2 Reducing Body Burden

Following inhalation or oral exposure, acetone is eliminated within about l-3 days in humans

(DiVincenzo et al. 1973; Matsushita et al. 1969a, 1969b; Ramu et al. 1978; Sakata et al. 1989).

Acetone does not accumulate in any tissue and its metabolites do not appear to be toxic or retained

(Wigaeus et al. 1982). To reduce the body burden of acetone, a cathartic, such as magnesium sulfate
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in water, is administered (Stutz and Janusz 1988). In a case of isopropyl alcohol poisoning (acetone is

a major metabolite of isopropyl alcohol), hemodialysis has been used successfully to enhance

elimination of both isopropyl alcohol and acetone (Rosansky 1982).

2.8.3 Interfering with the Mechanism of Action for Toxic Effects

The mechanism of the narcotic effects of acetone is not known, but as a solvent, acetone may interfere

with the composition of the membranes, altering their permeability to ions (Adams and Bayliss 1968).

Systemically, acetone is moderately toxic to the liver, and produces hematological effects. The

mechanism by which acetone produces these effects is unknown. The renal toxicity may be due to the

metabolite, formate, which is known to be nephrotoxic (NTP 1991), and is excreted by the kidneys

(Hallier et al. 1981). Furthermore, the renal toxicity, which appears to be specific for male rats, may

involve α2µ-globulin syndrome, as hyaline droplet formation was associated with the nephropathy

observed in male rats in the American Biogenics Corp. (1986) study. Acetone also causes

reproductive effects in male rats, and is fetotoxic. Although the exact mechanism for many of the

effects of acetone is not known, distribution studies in mice indicate that acetone and metabolites are

found in all of the target organs (Wigaeus et al. 1982). Acetone and some of its metabolites were also

transferred to rat fetuses after the dams were exposed to acetone (Peinado et al. 1986). The

metabolites of acetone are gluconeogenic precursors and most do not appear to be the toxic.

Therefore, acetone itself appears to be a toxic agent, and increasing the metabolism of acetone would

appear to be the best method for interfering with the mechanism of action. However, acetone induces

its own metabolism by inducing cytochrome P-450IIEl (Johansson et al. 1986; Puccini et al. 1990).

The first and second steps of the metabolism of acetone are dependent on cytochrome P-45OIIEl

(Casazza et al. 1984; Johansson et al. 1986; Koop and Casazza 1985; Puccini et al. 1990). Since

ethanol also induces this particular form of P-450IIEl (Johansson et al. 1988; Puccini et al. 1990), the

metabolism of acetone might be increased by administering ethanol, although this may competitively

slow acetone metabolism, at first, and induce cytochrome P-450IIEl only after a lag of several hours.

In healthy men who fasted for 12 hours, the breath acetone levels ranged from 0.96 to 1.7 ppm (Jones

1987). Fasting for 36 hours resulted in average acetone breath levels of 14-66 ppm. In fasting men

who ingested 0.25 g/kg of ethanol, the breath acetone levels decreased by 40% after a 12-hour fast and

by 18% after a 36-hour fast (Jones 1988). However, since acetone potentiates the toxicity of other

chemicals by inducing cytochrome P-45OIIE1, which enhances the metabolism of the chemicals to

reactive intermediates (see Section 2.6), further increasing the cytochrome P-450IIEl levels might be
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counterproductive in cases of exposure to acetone followed by exposure to the other chemicals.

Furthermore, acetone potentiates the central nervous system toxicity of ethanol by reducing the activity

of alcohol dehydrogenase, which is responsible for 90% of ethanol elimination (Cunningham et al.

1989).

2.9 ADEQUACY OF THE DATABASE

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with

the Administrator of EPA and agencies and programs of the Public Health Service) to assess whether

adequate information on the health effects of acetone is available. Where adequate information is not

available, ATSDR, in conjunction with the National Toxicology Program (NTP), is required to assure

the initiation of a program of research designed to determine the health effects (and techniques for

developing methods to determine such health effects) of acetone.

The following categories of possible data needs have been identified by a joint team of scientists from

ATSDR, NTP, and EPA. They are defined as substance-specific informational needs that if met would

reduce the uncertainties of human health assessment. This definition should not be interpreted to mean

that all data needs discussed in this section must be filled. In the future, the identified data needs will

be evaluated and prioritized, and a substance-specific research agenda will be proposed.

2.9.1 Existing Information on Health Effects of Acetone

The existing data on health effects of inhalation, oral, and dermal exposure of humans and animals to

acetone are summarized in Figure 2-4. The purpose of this figure is to illustrate the existing

information concerning the health effects of acetone. Each dot in the figure indicates that one or more

studies provide information associated with that particular effect. The dot does not imply anything

about the quality of the study or studies. Gaps in this figure should not be interpreted as “data needs.”

A data need, as defined in ATSDR’s Decision Guide for Identifying Substance-Specific Data Needs

Related to Toxicological Profiles (ATSDR 1989), is substance-specific information necessary to

conduct comprehensive public health assessments. Generally, ATSDR defines a data gap more

broadly as any substance-specific information missing from the scientific literature.
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As seen from Figure 2-4, data exist for inhalation exposure of humans for death, for systemic effects

of acute- and intermediate-duration exposure, and for immunological, neurological, developmental, and

reproductive effects. The data for systemic, neurological, immunological, and neurological effects

were derived from medical evaluations of workers after a single day exposure, from case reports, and

from experimental studies of humans exposed for acute- and intermediate-durations. The systemic

effects include respiratory irritation, cardiovascular effects, gastrointestinal effects, and hematological

effects, with no indications of hepatic or renal effects. Possible immunological effects consisted of

increased white blood cell counts and decreased phagocytic activity of neutrophils. Neurological

effects consisted of subjective symptoms, coma, and some behavioral effects. Reproductive and

development effects consisted of shortened menstrual periods of women in an experimental study. An

epidemiological study of pregnancy outcome among female laboratory workers who handle solvents

found no effects, but an unreliable study of pregnancy complications in Russian women factory

workers reported reproductive and developmental effects. Information in humans after oral exposure

was derived from case reports of intentional or accidental ingestion. Effects included erosions in the

buccal cavity, development of diabetes-like symptoms, and coma, and other neurological effects.

Effects of dermal/ocular exposure of humans consisted of eye irritation, degenerative changes in the

epidermis, and the development of contact dermatitis in a sensitized woman. In addition, patients

exposed by inhalation and/or dermally from applications of casts using acetone as a setting agent

developed increased pulse rate, vomiting and nausea, and neurological effects, including coma.

For animals exposed by inhalation, data exist for death, systemic effects of acute- and intermediate-

duration exposure, and neurological, developmental, and reproductive effects. Systemic effects

consisted of respiratory irritation, hepatic effects, renal effects, and body weight changes. Neurological

effects consisted of narcosis, coma, and behavioral effects. Fetotoxicity, but no reproductive effects,

were found in a developmental study. For oral exposure, data in animals were available for death

(acute), systemic effects of acute- and intermediate-duration exposure, and neurological, reproductive,

and developmental effects. Systemic effects included respiratory (enzyme induction), hematological,

hepatic, and renal effects, and reduced insulin-stimulated glucose oxidation and body weight changes.

No cardiovascular, gastrointestinal (other than enzyme induction), musculoskeletal, or dermal/ocular

effects were found. Neurological effects consisted of narcotic effects and reduced nerve conduction

velocity. Reproductive effects were found in male rats, and fetotoxicity was found in a developmental

study. Effects of dermal/ocular exposure consisted of amyloidosis in the heart, liver, kidney, pancreas,

and adrenals of mice exposed dermally, eye irritation and cornea1 burns and necrosis, skin irritation,
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and cataract development due to dermal exposure. Mice used as acetone solvent controls in skin

painting studies did not develop any acetone-related neoplastic or nonneoplastic lesions after

comprehensive histological examination. Acetone was negative as a tumor initiator or promotor in

skin painting studies.

2.9.2 Identification of Data Needs

Acute-Duration Exposure. Acute inhalation studies in volunteers (Matsushita et al. 1969a, 1969b;

Nelson et al. 1943) and on-site medical evaluations of workers on a single work day (Raleigh and

McGee et al. 1972; Ross 1973) have found that acetone is irritating to the nose, throat, trachea, lungs,

and eyes. Acute experimental studies in humans also found hematological effects, which might also

indicate immunological effects (Matsushita et al. 1969a, 1969b) and neurological and neurobehavioral

effects (Dick et al. 1989; Haggard et al. 1944; Matsushita et al. 1969a, 1969b; Seeber and Kieswetter

1991; Seeber et al. 1992). Case reports of patients exposed to acetone vapors by inhalation and/or

dermally during and after application of hip casts have found cardiovascular effects (increased pulse

rates), gastrointestinal effects (vomiting of blood, hemorrhage), and neurological effects (lethargy,

headache, listlessness, mystagmus, dizziness, coma, collapse) (Chatterton and Elliot 1946; Fitzpatrick

and Claire 1947; Harris and Jackson 1952; Hift and Pate1 1961; Pomerantz 1950; Renshaw and

Mitchell 1956; Strong 1984). No indication that the liver and kidney were target organs, based on

clinical chemistry parameters, was found in humans exposed under laboratory conditions (DiVincenzo

et al. 1973). Information on effects of acute oral exposure in humans was derived from case reports of

accidental or intentional ingestion of acetone and indicate that ingestion causes coma (Gamis and

Wasserman 1988; Gitelson et al. 1966; Ramu et al. 1978; Sakata et al. 1989), erosions in the buccal

cavity, and possible diabetes-like symptoms (Gitelson et al. 1966). Direct application of acetone to the

skin of humans resulted in skin irritation and degenerative changes in the epidermis (Lupulescu et al.

1972, 1973; Lupulescu and Birmingham 1975, 1976), and a case of contact dermatitis was reported

(Tosti et al. 1988). Acute inhalation studies in animals have provided LC50 values for rats (Pozzani et

al. 1959) and have identified the respiratory system (irritation) in mice and guinea pigs (Kane et al.

1980; Specht et al. 1939), liver in mice, guinea pigs, and rats (NTP 1988; Specht et al. 1939; Vainio

and Zitting 1978), and kidney in guinea pigs (Specht et al. 1939) as possible target organs. The heart

and stomach did not appear to be target organs, and the kidney effects in guinea pigs were found at

lethal concentrations (Specht et al. 1939). For acute oral exposure in animals, LD50 values are

available for rats (Freeman and Hayes 1985; Kimura et al. 1971; Pozzani et al. 1959; Smyth et al.
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1962), for mice (Tanii et al. 1986), and guinea pigs (Striegel and Carpenter 1961). Oral doses

associated with death were also available for rabbits (Walton et al. 1928) and dogs (Albertoni 1884).

The systemic effects of acute oral exposure found in animals were enzyme induction in the respiratory

system of hamsters (Ueng et al. 1991) and rabbits (Ding and Coon 1990) in the duodenum and

jejunum of rats (Carriere et al. 1992), in the bone marrow of rabbits (Schnier et al. 1989), in the liver

of rats, mice, rabbits, guinea pigs, and hamsters (see Section 2.2.2.2), and in the kidneys of hamsters

(Menacagli et al. 1991; Ueng et al. 1992) and rats (Hong et al. 1987), increased liver weight in mice

and bone marrow hypoplasia in rats (Dietz et al. 1991; NTP 1991) kidney effects in rats (Brown and

Hewitt 1984), and reduced insulin-stimulated glucose oxidation in adipose tissue in rats (Skutches et

al. 1990). Acute dermal exposure of animals produced increased DNA synthesis in the skin, indicative

of irritation, in mice (Iversen et al. 1988), and ocular exposure caused cornea1 bums and necrosis in

rabbits and guinea pigs (Bolkova and Cejkova 1983; Carpenter and Smyth 1946; Smyth et al. 1962).

Acetone does not appear to be very toxic by the dermal route, as attempts to determine LD50 values

for rabbits and guinea pigs found no deaths at the highest dermally applied concentrations (Roudabush

et al. 1965; Smyth et al. 1962). The acute inhalation study of Specht et al. (1939) was conducted at

lethal concentrations. An acute inhalation MRL of 26 ppm was derived based on neurobehavioral

effects in humans. Most of the acute inhalation and oral studies in animals were designed to study

enzyme induction. Comprehensive histological examination was performed in the high dose and

control animals in the 14-day drinking water study in rats and mice exposed at several dose levels

(Dietz et al. 1991; NTP 1991). An acute oral MRL was not derived because NOAEL and LOAEL

values in rats or mice in the acute-duration drinking water studies (Dietz et al. 1991; NTP 1991;

Skutches et al. 1990) were close to or fell within the range of LD50 values for rats exposed by gavage

(Freeman and Hayes 1985; Kimura et al. 1971). Acute-duration inhalation and oral studies conducted

at several exposure levels in rats and mice that perform clinical tests and comprehensive histological

examination of all dose groups would provide valuable information on dose-response relationships and

better characterize target organs, which might serve as bases for the development of MRLs. This

information is important because there are populations surrounding hazardous waste sites that might be

exposed to acetone for brief periods.

Intermediate-Duration Exposure. The only information located regarding systemic effects in

humans after intermediate-duration inhalation exposure was an experimental study in volunteers

exposed intermittently to acetone at concentrations <1,250 ppm for <7.5 hours and <5 or 6 weeks in a

complex protocol (Stewart 1975). Throat irritation was reported, but pulmonary function testing,
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electrocardiography, clinical chemistry and urinalysis determinations for liver and kidney damage, and

hematology did not reveal any abnormalities. No studies were located regarding effects in humans

after intermediate-duration oral or dermal exposure to acetone. An intermediate-duration inhalation

study in rats found no histological or clinical evidence of effects on lungs, hearts, kidneys, or livers

(Bruckner and Peterson 1981b), but histological examination was not comprehensive. An intermediate

inhalation MRL of 13 ppm was derived based on neurological effects in humans. An intermediateduration

drinking water study found increased liver weight in mice and hematological effects

(macrocytic anemia), increased liver weight, and kidney effects (nephropathy) in rats (Dietz et al.

1991; NTP 1991). An intermediate-duration gavage study in rats found clinical evidence of liver

effects, hematological effects, and nephropathy (American Biogenics Corp. 1986). The renal effects

seen in these studies appeared to be specific for male rats and may be related to α2µ-globulin

syndrome, since hyaline droplet formation was observed in the American Biogenics Corp. (1986)

study, but not the NTP (1991) study. No other systemic target organs were identified by

comprehensive histological examination. An intermediate-duration oral MRL of 2 mg/kg/day was

derived based on the NOAEL for macrocytic anemia in rats in the 13-week drinking water study

(Dietz et al. 1991; NTP 1991). Intermediate-duration dermal exposure of animals resulted in moderate

hyperplasia of the epidermis of mice (Iversen et al. 1981), mild erythema and transient weight loss in

guinea pigs (Taylor et al. 1993), cataracts in the eyes of guinea pigs (Rengstorff et al. 1972), and

amyloidosis in the heart, liver, kidney, skin, pancreas, and adrenals of mice (Barr-Nea and Wolman

1977). Intermediate-duration ocular exposure of rabbits resulted in uveal melanocytic hyperplasia

(Pe’er et al. 1992). An intermediate-duration inhalation study in rats and mice that is designed to

establish dose-response data for noncancer end points would also provide dose-response relationships

and identify target organs useful for MRL derivation and fill this data gap. An intermediate-duration

drinking water study in rats conducted at lower exposure levels than those used in the NTP (1991)

study might provide information on the threshold for anemia and nephropathy. Furthermore, a study

designed to confirm whether the acetone-induced nephrotoxicity is related to α2µ-globulin syndrome

would aid in the assessment of the relevance of the renal effects to human health. Examination of

workers who handle liquid acetone might provide information on the relevance to humans of the

cataract formation and amyloidosis seen in animals. This information is important because there are

populations surrounding hazardous waste sites that might be exposed to acetone for similar durations.

Chronic-Duration Exposure and Cancer. A retrospective mortality study of workers exposed

to acetone found no significant excess risk of death from any cause (all causes, malignant neoplasm,
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circulatory system disease, ischemic heart disease) (Ott et al. 1983a, 1983b). Furthermore, a health

evaluation survey of active employees found no evidence of hematological or liver effects (Ott et al.

1983a, 1983c). No studies were located regarding systemic effects in humans after oral or dermal

exposure to acetone or in animals after inhalation or oral exposure for chronic durations. The only

information regarding systemic effects in animals after chronic-duration exposure to acetone is that

female mice used as acetone solvent controls in skin painting studies did not develop any acetone-

related nonneoplastic lesions after comprehensive histological examination (Ward et al. 1986) and that

chronic dermal of exposure of mice resulted in low incidences of hyperplasia, dermatitis, and

hyperkeratosis (DePass et al. 1989). A chronic inhalation MRL of 13 ppm was derived based on

meurological effects in humans in an intermediate-duration study. The lack of data regarding systemic

effects after oral exposure precludes the derivation of an oral MRL. The conduct of chronic studies by

these routes in rats and mice would provide information on the dose-response relationships and

identify target organs of chronic inhalation and oral exposure to acetone. This information is

important because there are populations surrounding hazardous waste sites that might be exposed to

acetone for long periods of time.

A retrospective mortality study of workers exposed to acetone found no significant excess risk of death

from any cause, including malignant neoplasm (Ott et al. 1983a, 1983b). No studies were located

regarding cancer in humans after oral or dermal exposure to acetone, or in animals after inhalation or

oral exposure. Mice used as acetone solvent controls in skin painting studies did not develop any

acetone-related neoplastic lesions after comprehensive histological examination (Ward et al. 1986) or

skin tumors (DePass et al. 1989; Van Duuren et al. 1978). Acetone was negative as a tumor initiator

(Roe et al. 1972) and as a tumor promoter for 7,12-dimethylbenz[a]anthracene (Roe et al. 1972; Van

Duuren et al. 1971; Weiss et al. 1986). Following dermal absorption, acetone is probably widely

distributed throughout the body, as occurs after pulmonary absorption (Wigaeus et al. 1982).

However, it is not possible to predict that acetone would not be carcinogenic after inhalation or oral

exposure, because quantitative data regarding dermal absorption were not located. Genotoxicity

studies indicate that acetone may be weakly genotoxic (see below). Chronic inhalation and oral

studies in rats and mice designed to establish dose-response data for noncancer end points would also

provide information on the potential for acetone to cause cancer.

Genotoxicity. No studies were located regarding genotoxicity in humans or animals after inhalation,

oral, or dermal exposure. In vivo genotoxicity studies were conducted by the intraperitoneal route for
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micronuclei formation in Chinese hamsters (Basler 1986) and for cell transformation in fetal cells from

pregnant hamsters (Quarles et al. 1979a, 1979b) with negative results. In addition, tests for gene

mutation in silk worms by an unspecified route were negative (Kawachi et al. 1980). Numerous

studies were conducted in vitro. Mostly negative results were obtained in bacterial (De Flora 1981;

De Flora et al. 1984; De Marini et al. 1991; Ishidate et al. 1984; Kawachi et al. 1980; Kubinski et al.

1981; McCann et al. 1975; Rossman et al. 1991; Yamauchi 1985) and yeast (Abbandandolo et al.

1980; Albertini 1991) assays and in plant seeds (Gichner and Veleminsky 1987) with or without

metabolic activation, but some results were positive in E. coli when acetone was in the triplet state

(Menck et al. 1986; Rahn et al. 1974) and in yeast for aneuploidy (Zimmermann 1983; Zimmermann

et al. 1984, 1985) and for mitotic chromosome malsegregation (Albertini 1991) without metabolic

activation. Mostly negative results were obtained in assays for cell transformation, chromosomal

aberrations, sister chromatid exchange, colony formation inhibition, and gene mutation in cultured

animal cells (Amacher et al. 1980; Chen et al. 1984; DiPaolo et al. 1969; Freeman et al. 1973;

Kawachi et al. 1980; Mishra et al. 1978; Pienta 1980; Rhim et al. 1974; Tates and Kriek 1981), and

for sister chromatid exchange and unscheduled DNA synthesis in cultured human fibroblasts and skin

epithelial cells (Abe and Sasaki 1982; Kawachi et al. 1980; Lake et al. 1978). However, some positive

results were obtained for chromosomal aberrations in Chinese hamster fibroblasts (Ishidate et al. 1984)

and hamster lung fibroblasts (Kawachi et al. 1980), for inhibition of metabolic cooperation in Chinese

hamster cells (Chen et al. 1984), and for chromosome malsegregation in porcine brain tubulin

(Albertini et al. 1988). Acetone did not promote the transforming activity initiated by nine known

genotoxic and carcinogenic chemicals (Sakai and Sato 1989). The mostly negative results in bacteria

and cultured animal cells and the negative results in human fibroblasts and skin epithelial cells indicate

that acetone poses little threat for genotoxicity in humans. However, peripheral lymphocytes,

fibroblasts, and skin epithelial cells from workers exposed to acetone could be examined for

chromosomal aberrations to confirm this hypothesis.

Reproductive Toxicity. Information regarding reproductive effects in humans after inhalation

exposure is limited to the report of premature menstrual periods by 3 of 4 women exposed to

1,000 ppm acetone for 7.5 hours (Stewart et al. 1975), the lack of a statistically significant increased

incidence of miscarriage in female laboratory workers exposed to a variety of solvents, including

acetone (Axelsson et al. 1984) and an unreliable report of pregnancy complications of Russian women

factory workers (Nizyaeva 1982). No studies were located regarding reproductive effects in humans

after oral or dermal exposure to acetone. Information regarding reproductive effects in animals after
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inhalation exposure is also limited. In an inhalation developmental study in rats and mice, no effects

were found on the number of implants/litter, percent live pups/litter, or mean percent resorptions/litter

(NTP 1988). No studies were located regarding reproductive effects in male animals, histological

effects on reproductive organs of male or female animals, or the reproductive outcomes and other

indices of reproductive toxicity in animals after inhalation exposure to acetone. Reproductive effects

(reduced reproductive index and increased duration of gestation) were found in pregnant mice exposed

orally to 3,500 mg/kg/day during gestation (EHRT 1987). In a 6-week drinking water study in male

Wistar rats, no effects were found on successful mating to untreated females, number of pregnancies,

number of fetuses, testicular weight, seminiferous tubule diameter, and testicular lesions (Larsen et al.

1991). However, male Sprague-Dawley rats had statistically significantly decreased sperm motility,

caudal weight and epididymal weight, and increased incidences of abnormal sperm, but no

histopathological testicular lesions in a 13-week drinking water study (NTP 1991). Vaginal cytology

examinations of the female rats revealed no effects, and similar evaluations of male and female mice

revealed no effects. No indication that dermal exposure of female mice results in histopathological

effects in reproductive organs was found in an analysis of female SENCAR mice used as acetone

controls in a skin painting study of formaldehyde (Ward et al. 1986). An inhalation distribution study

in male mice showed that acetone is distributed to the testes and vas deferens (Wigaeus et al. 1982),

and the 13-week oral study showed effects on the male rat reproduction organs. Acetone is widely

distributed throughout the body regardless of route of exposure and species. Therefore, it is reasonable

that male rats (and perhaps male mice) exposed to acetone by inhalation for 13 weeks might have

effects on reproductive organs, but the concentration of acetone that would cause such effects cannot

be predicted. Therefore, reproductive organ pathology should be examined in the suggested

intermediate-duration inhalation study. The reproductive organs of female rats and mice could also be

examined in the intermediate-duration inhalation study to confirm the lack of effects in the existing

oral study. A multi-generation study conducted by the oral route would clarify whether the

reproductive effects observed in male rats in the existing 13-week drinking water study would affect

reproductive outcomes and other indices of reproduction. If the proposed intermediate-duration

inhalation study showed reproductive organ pathology, a similar multigeneration study by the

inhalation route might be warranted.

Developmental Toxicity. Information regarding developmental effects in humans after inhalation

exposure is limited to a report that found no statistically significant increased incidence of miscarriage,

perinatal death rate, or malformations of offspring in female laboratory workers exposed to a variety of
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solvents, including acetone (Axelsson et al. 1984) and an unreliable report of fetal death and reduced

birth weight and length of neonates in Russian women factory workers exposed to acetone (Nizyaeva

1982). No studies were located regarding developmental effects in humans after oral or dermal

exposure to acetone. Developmental effects have been found in animals after inhalation and oral

exposure. Decreased mean fetal body weight occurred at maternally toxic doses in rats exposed by

inhalation during gestation (NTP 1988). Significantly increased incidence of late resorption, decreased

fetal weight, and significantly increased incidence of reduced sternebral ossification occurred at

maternally toxic doses in mice exposed by inhalation during gestation (NTP 1988). In mice exposed

orally during gestation, reduced postnatal pup survival and reduced average weight of each live

pup/litter on postpartum day 0 occurred at maternally toxic doses (EHRT 1987). Fetuses or pups were

not examined for internal malformations or skeletal anomalies. Therefore, a more conventional oral

developmental toxicity study in mice would help to determine whether acetone causes fetal

malformations or skeletal anomalies. Developmental studies were not conducted in rats by the oral

route, but while it is reasonable to expect that fetotoxicity would occur, it is not possible to predict the

dose that would cause fetotoxicity in rats. An oral developmental study in rats would provide this

information. No studies were located regarding developmental effects in animals after dermal

exposure to acetone. Acetone can undergo transplacental transfer (Peinado et al. 1986). While it

appears that acetone is absorbed after dermal exposure, quantitative data were not available. If enough

acetone is absorbed dermally, then fetotoxicity by this route would also be expected. A dermal

developmental study might confirm or refute this possibility. Acetone has been tested in attempts to

develop in vitro methods for assessing developmental toxicity in postimplantation rat embryos (Kitchin

and Ebron 1984; Schmid 1985) and in mouse embryo limb buds (Guntakatta et al. 1984) with

inconclusive results. Further in vitro studies could be conducted to resolve the inconsistencies, but

such studies would be useful only for preliminary screening purposes and would not substitute for

developmental studies in animals administered acetone by environmentally relevant routes.

Immunotoxicity. Information regarding immunological effects in humans after exposure to acetone

is limited. Significantly increased white blood cell counts, increased eosinophil counts, and decreased

phagocytic activity of neutrophils were found in volunteers exposed by inhalation (Matsushita et al.

1969a, 1969b), but a battery of immune function tests has not been performed. A case report of a

laboratory technician described the development of acute contact dermatitis from handling acetone 2

years after being treated with squaric acid dibutyl ester in acetone for patchy alopecia areata on her

scalp (Tosti et al. 1988). This acetone sensitization is considered a rare complication of sensitizing
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therapies for alopecia areata. No studies were located regarding immunological effects in humans after

oral exposure or in animals after inhalation, oral, or dermal exposure to acetone. A study performing

a battery of immune function tests would clarify whether acetone is an immunotoxicant.

Neurotoxicity. Exposure to acetone by the inhalation and oral routes has resulted in neurological

effects, related to the narcotic effects of acetone, in both humans and animals. Acetone can cause

coma and other neurological effects in humans after inhalation and/or dermal exposure (Chatter-ton and

Elliott 1946; Fitzpatrick and Claire 1947; Harris and Jackson 1952; Hift and Pate1 1961; Pomerantz

1950; Renshaw and Mitchell 1956; Ross 1973; Strong 1944) or oral exposure (Gamis and Wasserman

1988; Ramu et al. 1978; Sakata et al. 1989) if exposure levels or doses are high enough. Neurological

effects were commonly experienced by workers and volunteers exposed by inhalation to acetone and

include headache, lightheadedness, dizziness, unsteadiness, and confusion (Raleigh and McGee 1972;

Ross 1973). Neurobehavioral tests conducted in some of these workers were negative (Raleigh and

McGee et al. 1972). Neurological and behavioral effects have also been observed in volunteers

exposed by inhalation (Dick et al. 1989; Haggard et al. 1944; Matsushita et al. 1969a, 1969b; Seeber

and Kieswetter 1991; Seeber et al. 1992; Stewart et al. 1975). Neurobehavioral effects, indicative of

narcosis, have been observed in rats (Bruckner and Peterson 1981a; Garcia et al. 1978; Geller et al.

1979b; Goldberg et al. 1964; Haggard et al. 1944), mice (DeCeaurriz et al. 1984; Glowa and Dews

1987; Mashbitz et al. 1936), and baboons (Geller et al. 1979a) exposed by inhalation. Acetone was

also neurotoxic in rats after oral exposure, producing prostration (Freeman and Hayes 1985), reduction

in nerve conduction velocity (Ladefoged et al. 1989), and excessive salivation (American Biogenics

Corp. 1986). Oral exposure to acetone caused prostration in mice (EHRT 1987), weakness,

depression, and unconsciousness in rabbits (Walton et al. 1928), and incoordination, staggering, falling,

tremors, delirium, prostration, and coma in dogs (Albertoni 1884). No studies were located regarding

neurological effects in animals after dermal exposure to acetone. There is no reason to suspect that the

effects are route- or species-specific. Acetone is widely distributed throughout the body after

absorption, and its presence in the brain of mice after inhalation exposure has been demonstrated

(Wigaeus et al. 1982). If enough acetone is absorbed dermally, neurological effects could occur;

however, no studies that applied acetone to the skin of animals (Iversen et al. 1981, 1988; Rengstorff

et al. 1972, 1976; Ward et al. 1986) described any neurological signs of toxicity.

Epidemiological and Human Dosimetry Studies. A retrospective mortality study of workers

exposed to acetone found no significant excess risk of death from any cause (all causes, malignant
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neoplasm, circulatory system disease, ischemic heart disease) (Ott et al. 1983a, 1983b). Furthermore, a

health evaluation survey of active employees found no evidence of hematological or liver effects (Ott

et al. 1983a, 1983c). Other epidemiological studies are limited to studies of pregnancy outcome

among female laboratory workers exposed to a variety of solvents, including acetone (Axelsson et al.

1984) and among female factory workers exposed to acetone in Russia (Nizyaeva 1982). No

statistically significant increased incidence of miscarriage, perinatal death rate, or malformations of

offspring was found in the laboratory workers (Axelsson et al. 1984). Miscarriages and neonates with

reduced body weights and length were reported for the factory workers (Nizyaeva 1982), but this study

was considered unreliable because of reporting limitations. Acute inhalation studies in volunteers

(Matsushita et al. 1969a, 1969b; Nelson,et al. 1943) and on-site medical evaluations of workers on a

single workday (Raleigh and McGee et al. 1972; Ross 1973) have found that acetone is irritating to

the nose, throat, trachea, lungs, and eyes and may cause unconsciousness if exposure levels are high

enough (Ross et al. 1973). Acute experimental studies in humans also found hematological effects,

which might also indicate immunological effects (Matsushita et al. 1969a, 1969b) and neurobehavioral

effects (Dick et al. 1989; Matsushita et al. 1969a, 1969b). Case reports of patients exposed to acetone

vapors by inhalation and/or dermally during and after application of hip casts have found

cardiovascular effects (increased pulse rates), gastrointestinal effects (vomiting of blood, hemorrhage),

and neurological effects (headache, dizziness, listlessness, mystagmus, difficulty speaking, coma,

collapse) (Chatterton and Elliot 1946; Fitzpatrick and Claire 1947; Harris and Jackson 1952; Hift and

Pate1 1961; Pomerantz 1950; Renshaw and Mitchell 1956; Strong 1984). No indication that the liver

and kidney were target organs, based on clinical chemistry parameters, was found in humans exposed

under laboratory conditions (DiVincenzo et al. 1973). Information on effects of acute oral exposure of

humans was derived from case reports of accidental or intentional ingestion of acetone and indicate

that ingestion causes coma (Gamis and Wasserman 1988; Gitelson et al. 1966; Ramu et al. 1978;

Sakata et al. 1989), erosions in the buccal cavity, and possible diabetes-like symptoms (Gitelson et al.

1966). Some of these cases were confounded by coexposure to other narcotic chemicals, such as

alcohol and liquid cement. Direct application of acetone to the skin of humans resulted in skin

irritation and degenerative changes in the epidermis (Lupulescu et al. 1972, 1973; Lupulescu and

Birmingham 1975, 1976), and a case of contact dermatitis was reported (Tosti et al. 1988).

Populations likely to be exposed to acetone include workers in industries that process and use acetone,

such as, paint, plastic, artificial fibers, and shoe factories. Professional painters and commercial

cleaners, laboratory workers, and manicurists, if they still use acetone-containing nail polish remover,

can also have greater exposure than the general population. Inhalation and dermal exposure are the
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most likely routes of exposure for workers. Cigarette smokers, people living near landfill sites that

contain acetone, near highways (automobile exhaust), or incinerators will also have greater exposure

primarily by inhalation than the general population. Any epidemiological studies designed for these

populations should look for neurological, immunological, hematological, hepatic, renal, reproductive,

developmental, and genotoxic effects and cancer. This information would be useful for establishing

cause/effect relationships and for future monitoring of individuals living near hazardous waste sites.

Biomarkers of Exposure and Effect

Exposure. Acetone has been identified in breast milk of lactating women, but nursing mothers

represent only a fraction of the general population (Pellizzari et al. 1982). Acetone concentrations in

expired air, blood, and urine have been monitored in a number of studies of humans exposed to

acetone in the workplace (Brugnone et al. 1978, 1980; Fujino et al. 1992; Kawai et al. 1990a, 1992;

Pezzagno et al. 1986) as well as by inhalation in controlled laboratory situations (Dick et al. 1989;

DiVincenzo et al. 1973; Matsushita et al. 1969a, 1969b; Nomiyama and Nomiyama 1969a, 1969b;

Pezzagno et al. 1986; Stewart et al. 1975; Wigaeus et al. 1981), and correlations with exposure levels

have been found. Acetone levels in expired air, blood, and urine have also been used to determine

whether patients admitted to the hospital in comatose conditions had ingested acetone (Ramu et al.

1978; Sakata et al. 1989). Gastric contents can also be analyzed for determining whether acetone was

ingested (Fastlich 1976). In addition, the detection of the odor of acetone in the breath can alert a

physician that a patient might have been exposed to acetone (Harris and Jackson 1952; Strong 1944).

Carbon dioxide is the main end metabolite of acetone, but has not been used to monitor for exposure,

probably because much unchanged acetone is expired and monitoring directly for acetone is more

specific. However, acetone is cleared from breath, urine, and blood of humans within l-3 days and

shows little tendency to accumulate (Brown et al. 1987; Dick et al. 1989; DiVincenzo et al. 1973;

Fukabori et al. 1979; Gamis and Wasserman 1988; Matsushita et al. 1969a, 1969b; Sakata et al. 1989;

Wigaeus et al. 1981), so these methods are useful for monitoring only for recent occupational exposure

or from accidental or intentional ingestion. Carbon dioxide derived from acetone is also cleared

rapidly. This implies that monitoring for more remote exposure is not possible. Other metabolites of

acetone enter gluconeogenic pathways, so their origin from exogenous acetone would be masked.

Furthermore, because acetone is a metabolite of isopropyl alcohol, it would be difficult to distinguish

whether a person was exposed to isopropyl alcohol or acetone. Furthermore, endogenous levels of

acetone vary widely due to a variety of factors. As discussed in Section 2.9.3, an abstract indicated
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that acetone increased the levels of DNA adducts in rats exposed via drinking water (Cunningham and

Gold 1992).

Effect. The consistently observed effect of acetone exposure in animals is the induction of

microsomal enzymes, particularly cytochrome P-450IIE1, which can be detected by immunochemical

methods using antibodies to it (Johansson et al. 1988). The enzyme induction has been associated

with increased liver weights and hepatocellular hypertrophy due to the increased protein content (NTP

1991). Cytochrome P-450IIEl is associated with the metabolism of acetone itself, but acetone is not

metabolized to toxic intermediates. However the induction of this enzyme is the mechanism by which

acetone potentiates the toxicity of many other chemicals (Brady et al. 1989; Freeman and Hayes 1988;

Johansson et al. 1988; Kim et al. 1990; Kobusch et al. 1989; Pankow and Hoffmann 1989; Ronis and

Ingelman-Sundberg 1989; Song et al. 1989; Tu et al. 1983; Yoo et al. 1990). Cytochrome P-450IIEl

can be induced by a variety of other factors, such as ethanol, fasting, and experimental diabetes

(Johansson et al. 1986; Puccini et al. 1990); therefore, the induction is not specific to acetone, and the

detection of the enzyme would require liver biopsy and would probably be indicative only of recent

exposure. However, an in vivo probe to detect elevated levels of cytochrome P-450IIEl in human

populations is being developed (see Section 2.9.3). Exposure of rats to acetone has resulted in

degeneration of apical microvilli in the kidney (Brown and Hewitt 1984) and nephropathy (NTP 1991),

but these effects have not been associated with increased levels of blood urea nitrogen. A strong odor

of acetone on the breath and nausea, or high levels of acetone in blood or urine in patients can alert

physicians to the possibility of more serious sequelae such as gastrointestinal hemorrhage and narcosis

(Harris and Jackson 1952; Strong 1944) or to metabolic acidosis (Gitelson et al. 1966). In rats,

acetone exposure resulted in anemia as detected by hematological parameters (American Biogenics

Corp. 1986; NTP 1991) and increased testis weight, decreased sperm motility, caudal weight and

epididymal weight, and increased incidences of abnormal sperm (NTP 1991). These effects were seen

after intermediate-duration exposure. Hematological tests and tests for sperm motility and

abnormalities could be used to screen humans for possible hematological effects and effects on

fertility. Overt signs of skin irritation could alert physicians to possible degenerative changes, which

can be detected by microscopic examination of the epidermis (Lupulescu et al. 1972, 1973). Allergic

reactions can be detected by patch testing (Tosti et al. 1988). There does not appear to be a need for

additional biomarkers.
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Absorption, Distribution, Metabolism, and Excretion. A substantial database exists regarding

absorption and excretion of acetone by humans and animals after acute inhalation and oral exposure to

acetone (Brown et al. 1987; Charbonneau et al. 1986a, 1986b; Dick et al. 1989; DiVincenzo et al.

1973; Egle 1973; Fukabori et al. 1979; Geller et al. 1979b; Haggard et al. 1944; Hallier et al. 1981;

Jakubowski and Wieczorek 1988; Kawai et al. 1992; Landahl and Herrmann 1950; Matsushita et al.

1969a, 1969b; Miller and Yang 1984; Morris 1991; Nomiyama and Nomiyama 1974a; NTP 1988;

Pezzagno et al. 1986; Plaa et al. 1982; Price and Rittenberg 1950; Ramu et al. 1978; Sakata et al.

1989; Schrikker et al. 1985, 1989; Skutches et al. 1990; Vangala et al. 1991; Widmark 1919; Wigaeus

et al. 1981, 1982) and the information is sufficient to assess relative rates and extent of absorption and

excretion. Uptake and excretion are directly proportional to dose and duration of exposure but can be

influenced by exercise during exposure and fasting. Acetone does not appear to accumulate to any

great extent after repeated exposure, so information on absorption and excretion after intermediate- and

chronic-duration exposure does not appear to be necessary. An inhalation study in mice examined the

distribution of acetone (Wigaeus et al. 1982), which is widespread regardless of route of uptake. The

metabolic pathways of acetone are relatively well understood based on animals studies (Casazza et al.

1984; Hallier et al. 1981; Hetenyi and Ferrarotto 1985; Johansson et al. 1986; Koop and Casazza

1985; Kosugi et al. 1986a, 1986b; Mourkides et al. 1959; Price and Rittenberg 1950; Puccini et al.

1990; Rudney 1954; Sakami and LaFaye 1950, 1951; Skutches et al. 1990). There is some indication

that at low doses, the pathways, via methylglyoxal and lactate, predominate, but at higher doses that

saturate this pathway, metabolism is shunted to the formate-acetate branch of the propanediol pathway

(Kosugi et al. 1986a). Although acetone is absorbed dermally, quantitative data are limited to a study

in which an unspecified amount of acetone was applied to the skin of volunteers and levels of acetone

were measured in blood, alveolar air, and urine (Fukabori et al. 1979). While the dermal absorption

was stated to be fairly rapid, the net amount absorbed and rate of absorption were not determined.

Furthermore, inhalation of acetone could not be completely prevented. Additional studies in humans

or animals, designed to measure the rate and extent of dermal absorption, would help to fill this gap in

understanding the toxicokinetics of acetone. Other than this gap in the database, there appears to be

little need for additional information on absorption, distribution, metabolism, and excretion.

Comparative Toxicokinetics. Acetone appears to have similar target organs in animal and

humans, such as, the hematological system and the central nervous system. Toxicokinetic studies have

been conducted in both humans and animals, especially in humans exposed by inhalation. There

appear to be very few differences between animal species, and the dog appears to be a good model for
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extrapolating absorption results to humans (DiVincenzo et al. 1973). Metabolic pathways have been

elucidated primarily in rats, but mice and rabbits have also been studied. Metabolism involves three

different pathways of gluconeogenesis (Casazza et al. 1984; Kosugi et al. 1986a, 1986b). The first

step in the metabolism of acetone is dependent on cytochrome P-450IIEl (Casazza et al. 1984), which

acetone induces, and this induction has been demonstrated in rats (Johansson et al. 1988), mice

(Banhegyi et al. 1988), hamsters (Ueng et a. 1991), and rabbits (Ding and Coon 1990). It appears that

the metabolic pathways operate in all species. The distribution of acetone has been studied only in

mice exposed by inhalation (Wigaeus et al. 1982). Acetone was widely distributed to organs and

tissues throughout the body. This is expected to be true for all species by virtue of its high water

solubility, facilitating distribution through the water compartment of the body. There appears to be

little need for additional comparative toxicokinetic studies.

Methods for Reducing Toxic Effects. Acetone is readily and passively absorbed from the lungs

and gastrointestinal tract into the blood stream (Brown et al. 1987; Charbonneau et al. 1986a; Dick et

al. 1989; DiVincenzo et al. 1973; Price and Rittenberg 1959; Sakata et al. 1989; Skutches et al. 1990)

and widely to distributed throughout the water compartment (Wigaeus et al. 1982). The only known

methods for reducing absorption from the gastrointestinal tract are administration of syrup of ipecac

(Stutz and Janucz 1988) and gastric lavage (Sakata et al. 1989). Established methods for reducing

body burden are administration of a cathartic, such as magnesium sulfate (Stutz and Janucz 1988) and

hemodialysis (Rosansky 1982). The mechanism of the narcotic effects of acetone is not known, but as

a solvent, acetone may interfere with the composition of the membranes, altering their permeability to

ions (Adams and Bayliss 1968). Developing a method to block this interference might prevent acetone

induced coma. Since the metabolites are gluconeogenic precursors, they are probably not toxic.

Therefore, acetone itself is probably the toxic agent, and enhancing its metabolism may block its toxic

action. However, acetone induces its own metabolism by inducing cytochrome P-450IIEl (Johansson

et al. 1986; Puccini et al. 1990). Since ethanol also induces this particular form of P-450IIEl

(Johansson et al. 1988; Puccini et al. 1990), the metabolism of acetone might be increased by

administering ethanol. Ethanol has been shown to decrease the breath levels of acetone (Jones 1988).

However, since acetone potentiates the toxicity of other chemicals by inducing cytochrome P-450IIE1,

which enhances the metabolism of the chemicals to reactive intermediates (see Section 2.6), further

increasing the cytochrome P-450IIEl levels might be counterproductive in cases of exposure to

acetone followed by exposure to the other chemicals. Furthermore, acetone potentiates the central

nervous system toxicity of ethanol by inhibiting alcohol dehydrogenase, which is responsible for 90%
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of ethanol elimination (Cunningham et al. 1989). Development of other means of enhancing acetone’s

metabolism might solve this dilemma. The established method for mitigating acute acetone poisoning

is the administration of a cathartic, and administration of diazepam to alleviate seizures, or

phenobarbital if diazepam is ineffective (Stutz and Janucz 1988). No methods were located to mitigate

more subtle effects.

2.9.3 On-going Studies

Dr. C.S. Yang of Rutgers University is conducting on-going studies sponsored by the National Institute

of Environmental Health Sciences (NIEHS) on the molecular mechanism of the regulation of

cytochrome P-450IIEl (CRISP 1993). The specific aims of the project are to examine the role of

acetone, other ketone bodies, and hormones in the induction of this enzyme in rat liver; to characterize

the molecular events in the regulation of P-45011El by measuring transcriptional and translational

activities and the stabilities of mRNA and proteins; to investigate sex-related differences and hormonal

regulation of P-450IIEl in the mouse kidney at the physiological, biochemical, and molecular

biological levels; and to understand the active site dynamics and catalytic function of P-450IIEl by

examining the structural characteristics of its substrates, by deriving structural information from the

amino acid sequence, by modifying specific amino acid residues in the active site with a site-directed

mutagenesis approach, and by studying the metabolism and toxicity of environmental chemicals.

Dr. K.E. Thummel of the University of Washington is conducting on-going studies sponsored by the

National Institute of General Medical Sciences on whether humans exposed to acetone and other

inducers of cytochrome P-450IIE1, or with altered metabolic states, will have elevated levels of this

enzyme that can be identified by an in vivo probe (CRISP 1993). The utility of the probe candidates

will be validated by determining the in vitro catalytic specificity of the probe toward human liver

P-450IIEl; identifying an in vivo metabolic clearance parameter that reflects intrinsic P-450IIEl

catalytic activity; and determining whether the in vivo clearance parameter predicts direct measurement

of hepatic P-450IIEl levels in normal and isoniazid-treated populations.

A number of recent abstracts of studies yet to be published were located covering topics related to

toxicokinetics and enzyme induction, These studies are described below.
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In rats treated intraperitoneally with acetone, the concentration of acetone in expired air was 40% and

the half-life was 4 hours (Teramoto et al. 1989).

Fed pregnant rats on gestational day 20 had slightly higher endogenous serum acetone levels compared

with nonpregnant controls, and acetone monooxygenase activity was significantly lower in the

pregnant rats than in the nonpregnant rats (Casazza et al. 1990). Administration of acetone in the

drinking water for 5 days increased the acetone monooxygenase activity, but the activity was lower

than in acetone treated nonpregnant rats. Immunoblot analysis showed that cytochrome P-45OIIEl

decreased progressively during pregnancy and rapidly returned to normal after parturition. The

decrease in P-45011El was accompanied by a gradual decrease in P-450IIEl mRNA. The results

indicated that liver P-45011El is suppressed in the pregnant rat, while the levels still respond to

acetone induction. A pretranslational mechanism was suggested for P-450IIEl suppression.

Serum levels of endogenous acetone were 26 µmol/mL in 20-day pregnant rats and 14 µmol/mL in the

pooled blood from litters of fetal siblings (Casazza et al. 1988). No increase in maternal blood

acetone was seen on day postpartum day 1, but the levels in pups were markedly increased.

Measurable levels of serum acetol and 1,2-propanediol were also found in the 2- to 3-day-old pups.

Injection of acetol into the pups resulted in a nine-fold increase in 1,2-propanediol levels. The results

demonstrate the acetone is normally present in newborn rats, and that the pups are able to metabolize

acetone to 1,Zpropanediol soon after birth.

Acetone added to the culture system increased the incorporation of methionine into cytochrome

P-450IIEl in rabbit hepatocytes, indicating that the acute phase of acetone induction of this enzyme

partly involves an increased rate of P-450IIEl protein synthesis (Kraner et al. 1991).

Xenobiotic metabolizing activities associated with cytochrome P-45011El were elevated in liver

microsomes from acetone treated rats (Menez et al. 1990). Coadministration of phorbol myristate

acetate, an activator of protein kinase c, with acetone suppressed P-450IIEl content and the activities

of the associated oxidases, indicating that the induction of P-450IIEl by acetone involves inhibition of

protein kinase c.

Acetone inhibited the tumor promoting activity of phorbol myristate acetate following initiation with

dimethylbenz[a]anthracene on mouse skin (Weiss et al. 1988).
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N-nitrosodimethylamine demethylase activity in rat hepatoma was increased by treating the rats with acetone

(Hu et al. 1990).

The levels of hepatic N7-methylguanine and O6-methylguanine DNA adducts were significantly

increased by treatment of rats with 10% acetone in drinking water for 10 days (Cunningham and Gold

1992).
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3. CHEMICAL AND PHYSICAL INFORMATION

3.1 CHEMICAL IDENTITY

Data pertaining to the chemical identities of acetone, the simplest aliphatic ketone, are listed in

Table 3-l.

3.2 PHYSICAL AND CHEMICAL PROPERTIES

The physical and chemical properties of acetone are given in Table 3-2. The physical properties of

acetone, such as high evaporation rate, low viscosity, and miscibility with water and several organic

solvents make it suitable for use as a solvent (Krasavage et al. 1982). Because of its ability to

undergo addition, oxidation/reduction, and condensation reactions, acetone is used as a raw material in

the chemical synthesis of many commercial products (Nelson and Webb 1978).
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4.1 PRODUCTION

In 1991, 12 companies at 14 locations produced acetone in the United States. The U.S. manufacturers of

acetone in 1991, their respective manufacturing sites, and production capacities are shown in Table 4-l (SRI

1992).

Exxon Chemical Americas also produced acetone in the United States in 1990 (USITC 1991).

Table 4-2 lists the companies that process acetone and the intended use and maximum amounts of the chemical

stored on site.

The reported total production volume of acetone in the United States was 2,330 million pounds in 1990

(USITC 1991). Historically, the reported growth of acetone demand was 2.1% per year during the 1980’s and

is expected to grow at a rate of 2.5% per year through 1994 (CMR 1990).

Most acetone is manufactured by one of two processes, cumene peroxidation or isopropanol

dehydrogenation (SRI 1991). In the peroxidation process, cumene is oxidized to hydroperoxide, which

is cleaved to yield acetone and phenol. In the dehydrogenation process, isopropanol is catalytically

dehydrogenated to yield acetone and hydrogen (Nelson and Webb 1978). Relatively small quantities

of acetone are recovered as a byproduct from the production of hydroquinone and oxidation of

propylene oxide (SRI 1991).

4.2 IMPORT/EXPORT

The amount of acetone exported by the United States has increased in recent years. Export volume in

1987 was 5% of total production volume (CMR 1987). By 1990, export volume had increased to an

estimated 138 million pounds, or 6% of the 2,330 million pounds produced (CMR 1990). The United

States imported 110 million pounds of acetone in 1989, and import volume is expected to increase

through 1994, due to a projected increase in domestic demand.
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4.3 USE

Acetone is used primarily as an intermediate in chemical production and as a solvent (Nelson and

Webb 1978). In 1989, 40% of the available acetone was used in the production of methyl

methacrylate, methacrylic acid, and higher methacrylates; 20% was used as a solvent; 13% was used in

the production of bisphenol A; 10% was used in the production of methyl isobutyl ketone and methyl

isobutyl carbinol; 6% was used in drug and pharmaceutical applications; 5% accounted for

miscellaneous uses; and 6% was exported (CMR 1990).

4.4 DISPOSAL

A small amount of acetone is regenerated from solvent wastes produced during its use by reclaiming

processes (Kupferschmid and Perkins 1986). Acetone can be removed from waste water by air

stripping (HSDB 1992), but the vapor phase acetone generated during stripping requires a suitable

disposal method. The three methods commonly used for the disposal of waste containing acetone are

underground injection, burial in sanitary landfill, and incineration. The underground injection of

acetone-containing waste is allowed under the amended Section 148.10 of Code of Federal Regulations

(EPA 1991b). The land disposal of waste waters containing spent acetone is allowed under Section

268.41 of the Code of Federal Register as long as the concentrations of acetone and other permissible

spent cosolvents in the waste do not exceed 0.05 and 0.59 mg/L, respectively (EPA 1988a).

Incineration under controlled conditions (to attain complete combustion) is one of the better methods

of disposal for acetone, and incineration is easier when acetone is mixed with a more flammable

solvent. The suitable methods for the destruction of acetone are fluidized bed incineration at a

temperature of 450-980°C and residence times of seconds or rotary kiln incineration at 820-1,600ºC

and residence times of seconds (HSDB 1992).
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5.1 OVERVlEW

Acetone is emitted into the atmosphere both from natural and anthropogenic (man-made) sources.

Natural sources of emission include plants and trees (Graedel et al. 1986; Isidorov et al. 1985; Khalil

and Rasmussen 1992), volcanic eruptions (Isidorov et al. 1990), forest fires (Graedel et al. 1986), and

insects and microbes (Graedel et al. 1986). Acetone is also produced endogenously and expired in

human breath (Conkle et al. 1975). Some important anthropogenic sources of acetone in the air

include vehicular exhaust (Graedel et al. 1986), chemical manufacturing (Graedel et al. 1986), tobacco

smoke (Manning et al. 1983), wood burning and pulping (Graedel et al. 1986), refuse and polyethylene

combustion (Graedel et al. 1986; Hodgkin et al. 1982; NAS 1976), petroleum production (Graedel et

al. 1986), certain landfill sites (Hodgson et al. 1992; LaRegina et al. 1986), and solvent use (Graedel

et al. 1986). The sensitized photoreaction of dissolved organic matters naturally produces acetone in

seawater (Mopper and Stahovec 1986). Chemical manufacturing industries (Abrams et al. 1975),

energy-related industries (Mohr and King 1985), and user industries (Abrams et al. 1975) release

acetone to surface waters. Acetone is released into groundwater mainly as a result of leaching from

municipal and industrial landfills (Brown and Donnelly 1988). The principal sources of acetone in soil

are municipal and industrial discharge in landfills (EPA 1988b). Another source is atmospheric

deposition (Grosjean and Wright 1983). Acetone is released in soil from natural sources, such as

disposed agricultural and food wastes and animal wastes (Graedel et al. 1986).

Acetone has been identified in at least 560 of the 1,350 hazardous waste sites that have been proposed

for inclusion on the EPA National Priorities List (NPL) (HAZDAT 1991). However, the number of

sites evaluated for acetone is not known. The frequency of these sites within the United States can be

seen in Figure 5-l. Of these sites, 559 are located in the United States and 1 is located in the

Commonwealth of Puerto Rico (not shown).

The two processes that are important in determining the fate of acetone in the atmosphere are reaction

with hydroxyl radicals and photolysis. The estimated half-life of acetone in the air due to

combinations of these two reactions is 22 days (Meyrahn et al. 1986). Because of this reasonably long

half-life, acetone is transported long distances from its source of emission. Wet deposition transports
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atmospheric acetone to surface water and the terrestrial surface (Grosjean and Wright 1983). The most

important fate determining process for acetone in water is biodegradation (Rathbun et al. 1982).

Because of its high water solubility, acetone does not adsorb significantly to sediment and suspended

solids in water. Acetone does not bioconcentrate in aquatic organisms (Rustung et al. 1931), and there

is no data on acetone biomagnification in aquatic and terrestrial food chains. Biodegradation is the

most important degradative process for acetone in sediment and soil (Rathbun et al. 1982). The

important transport processes of acetone in soil are volatilization to the atmosphere and leaching into

groundwater.

The levels of acetone in ambient air and water are generally low. The concentration of acetone in the

atmosphere in remote areas is <1 ppb (volume per volume [v/v]) (1 ppb=0.00l ppm) (Cavanagh et al.

1969; Arnold et al. 1986). Its mean concentration in the atmosphere of rural areas is <3 ppb (Shepson

et al. 1991; Snider and Dawson 1985). The mean concentration of acetone in urban air in the United

States is 6.9 ppb (Shah and Singh 1988). Acetone concentration in indoor air in the United States is

generally slightly higher than outdoor air (8.0 ppb versus 6.9) (Shah and Singh 1988), due to the use

of household consumer products containing acetone. The concentration of acetone in open seawater

near the Bahamas was 0.35 ppb (Kieber and Mopper 1990). The concentration of acetone in the

Potomac River in Virginia was below the detection limit of 40 ppb (Hall et al. 1987), and the level

will be higher in water receiving industrial and municipal discharge containing acetone. An industrial

landfill leachate in Michigan contained 62 ppm acetone (Brown and Donnelly 1988). An acetone

concentration <3,000 ppb was detected in a drinking water well in New Jersey (Burmaster 1982). The

level of acetone in finished drinking water is generally low (Coleman et al. 1976; Keith et al. 1976),

and the reported concentration in drinking water from Seattle, Washington, was 1 ppb (Keith et al.

1976). A concentration of 6 ppb acetone was detected in the sediment of a creek adjacent to a landfill

in Louisville, Kentucky (Stonebraker and Smith 1980). Acetone has been detected in the volatile

components of several fruits and vegetables (Bartley and Schwade 1989; Lovegren et al. 1979).

The general population is exposed to acetone by inhaling ambient air and by ingesting drinking water

and food containing acetone. No data for the total daily intake of acetone for the general population

were located. There is a great deal of evidence that workers in certain industries, such as certain paint,

plastic, artificial fiber, and shoe factories are exposed to much higher levels of acetone than the

general population (Kawai et al. 1990a; Pezzagno et al. 1986). Professional painters, and commercial

and household cleaners are also likely to be exposed to higher acetone concentrations than the general
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population. Among the general population, smokers, frequent users of nail polish removers and people

who live near certain landfill sites (emitting higher than ambient levels of acetone) or other industrial

sources of emission are susceptible to higher exposure concentrations of acetone.

5.2 RELEASES TO THE ENVIRONMENT

5.2.1 Air

Acetone is emitted into the atmosphere both from natural and anthropogenic (man-made) sources.

Natural sources of emission include plants and trees. Acetone has been detected in a number of plant

volatiles including onions, grapes, cauliflower, tomatoes, wild mustard, beans, and peas (HSDB 1992),

and emissions have been detected from a variety of trees including willow, aspen, birch, balsam

poplar, oak, fir, pine, juniper, cedar, and cypress (Isidorov et al. 1985; Khalil and Rasmussen 1992).

Acetone is produced endogenously and released as a component of human breath (Conkle et al. 1975;

Krotoszynski 1977; Trotter et al. 1971). Volatiles from animal wastes, microbes, and insects are also

examples of natural sources of acetone in the air (Graedel et al. 1986). In addition, forest fires and

volcanic eruptions emit acetone into the atmosphere (Graedel et al. 1986; Isidorov et al. 1990).

Some important anthropogenic sources of acetone in the air are automobile and diesel exhaust (Barber

and Lodge 1963; Jonsson et al. 1985; Lloyd 1978), chemical manufacture (Graedel et al. 1986),

tobacco smoke (Manning et al. 1983), wood burning and pulping (Graedel et al. 1986; Kleinienst et al,

1986; Lipari et al. 1984), polyethylene burning (Hodgkin et al. 1982), refuse combustion (NAS 1976),

petroleum production (Graedel 1978), certain landfill sites (Hodgson et al. 1992; LaRegina et al. 1986;

Militana and Mauch 1989), and solvent uses (Medinilla and Espigares 1988). Acetone is also formed

in the atmosphere from the photochemical oxidation of propane (Arnold and Ziereis 1986; Singh and

Hanst 1981) and possibly from propylene oxide and epichlorohydrin (Spicer et al. 1985). Atmospheric

emissions are also likely from several consumer products including nail polish removers, particle board

(Tichenor and Mason 1988), carpet backing (Hodgson et al. 1993), some paint removers (Hahn and

Werschulz 1986), and a number of liquid/paste waxes or polishes (Knoeppel and Schauenburg 1989;

Sack et al. 1992). Certain detergents/cleansers (Knoeppel and Schauenburg 1989; Sack et al. 1992),

adhesives, and carburetor and choke cleaners (EPA 1989) are also known to contain acetone.
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Acetone released into air from facilities in each state in the United States that manufactured or

processed acetone during 1990 are listed in Table 5-l (TR190 1992). According to TR190 (1992), an

estimated total of 180 million pounds of acetone, amounting to 96.7% of the total environmental

release, was discharged to the air from manufacturing and processing facilities in the United States in

1990. The TRI data should be used with caution since only certain types of facilities were required to

report. This is not an exhaustive list. From the monitoring data on levels of acetone in pristine areas

and urban/suburban areas (see Section 5.4.1), it seems likely that the total emission of acetone in the

atmosphere from anthropogenic sources exceeds the total emission from natural sources.

5.2.2 Water

Acetone is released into surface water as waste water from certain chemical manufacturing industries

(Gordon and Gordon 1981; Hites and Lopez-Avila 1980; Jungclaus et al. 1978). It is also released in

water from energy-related industries, such as coal-gasification (Mohr and King 1985; Pellizzari et al.

1979) and oil shale processing (Hawthorne and Sievers 1984; Pellizzari et al. 1979). Acetone was

found in 27 of 63 effluent waters from a wide range of chemical industries in the United States (Perry

et al, 1979). A survey of industrial effluents indicates that acetone was detected in effluents from

various industrial products such as, paper, plastic, pharmaceutical, specialty cleaning and polishing

products, paint and allied products, gum and wood chemicals, cyclic intermediates, industrial organic

chemicals, gypsum products, and paper board products (Abrams et al. 1975).

Acetone is released to groundwater as a result of leaching from municipal and industrial landfills

(Brown and Donnelly 1988; Gould et al. 1983; Sawhney and Raabe 1986; Steelman and Ecker 1984;

Stonebraker and Smith 1980). Leaching from polyethylene distribution pipes may be a source of

acetone in drinking water (Anselme et al. 1985). One of the sources of acetone in seawater is the

sensitized photoreaction of dissolved organic matters (Mopper and Stahovec 1986). The releases of

acetone to water from facilities that manufactured or processed acetone in states within the United

States during 1990 are reported in Table 5-l (TR190 1992). According to TR190 (1992), an estimated

total of 1.28 million pounds of acetone, amounting to 0.7% of the total environmental release, was

discharged to the water from manufacturing and processing facilities in the United States in 1990. In

addition, these facilities discharged an estimated 12.2 million pounds of acetone, amqunting to 6.6% of

the total environmental release to municipal waste water of publicly owned treatment works (POTW)

in 1990 (TR190 1992).
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5.2.3 Soil
Acetone leaches readily in soil (see Section 5.4.3). Therefore, the detection of acetone in leachate and

groundwater from municipal and industrial landfills indicates the source of acetone in landfill soils is

municipal and industrial discharge. Information regarding the release of acetone from facilities that

manufactured or processed the compound in 1990 is reported in Table 5-l (TR190 1992). Table 5-l

shows that the amount of acetone released into soil from these facilities accounts for 0.1% of the total

environmental release of acetone. Other sources of acetone released into soil include disposal of

agricultural and food waste, animal wastes (see Section 5.2.1), and atmospheric wet deposition.

Household septic tank effluents are another source of acetone in soil because these effluents containing

acetone are discharged into the soil (DeWalle et al. 1985). According to the HAZDAT of ATSDR,

acetone was detected in 43% of the soil from Superfund sites tested for acetone (HAZDAT 1991).

The information used from the HAZDAT includes data from NPL sites only.

5.3 ENVIRONMENTAL FATE

5.3.1 Transport and Partitioning

Organic compounds with ambient vapor pressure >10-4 mmHg should exist almost entirely in the vapor

phase (Eisenreich et al. 1981). Since the vapor pressure of acetone is 181.72 mmHg at 20°C (see

Table 3-2), acetone should exist exclusively in the vapor phase in the atmosphere. Furthermore, the

collection methods used for the quantification of acetone in the atmosphere (Jarke et al. 1981; Juttner

1986; LaRegina et al. 1986) indicate that atmospheric acetone exists as vapor. Due to the atmospheric

half-life, which is on the order of days (see Section 5.3.2.1), acetone will be transported long distances

in the air. Although not a large sink (Chatfield et al. 1987), small amounts of acetone will be

removed from the atmosphere by wet deposition (Grosjean and Wright 1983), which will transport

acetone from the atmosphere to surface water and soil.

The complete miscibility of acetone in water suggests that partitioning of acetone from the water

column to sediments and suspended solids in water is not significant. The estimated low value of 0.73

for log Koc (see Table 3-2) also suggests that adsorption of acetone to sediments and suspended solids

is not significant. In the absence of water, acetone vapor adsorbs rather strongly to the clay

component of soil by hydrogen bonding (Goss 1992; Steinberg and Kreamer 1993). The sorption is
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dependent on relative humidity, and increasing the humidity decreases sorption drastically. In water

saturated soil or sediment, only organic carbon, as indicated by Koc, and not hydrogen bonding may

control the sorption of acetone (Steinberg and Kreamer 1992). The experimental adsorption studies

with kaolinite, monkmorillonite, and stream sediments showed very little or no loss of acetone from

water to the adsorbents (Rathbun et al. 1982). The transport of acetone from the water column to the

atmosphere depends on the Henry’s law constant. The Henry’s law constant for acetone is 4.26x10-5

atm-m3/mol (see Table 3-2). Therefore, volatilization of acetone from water, although not very fast, is

significant (Thomas 1982). The volatilization rate of a chemical depends on the characteristics of the

chemical and the water and on other ambient conditions (e.g., water depth, suspended solid

concentration, water current, wind speed, temperature). Based on an estimation method (Thomas

1982) and a Henry’s law constant value of 4.26x10-5 atm-m3/mol, the volatilization half-life of acetone

from a model river 1 m deep, flowing at a current of 1 m/second with a wind velocity of 3 m/second

is about 18 hours. The mean volatilization coefficient for acetone in a model outdoor stream was in

the range of 7.15x10-4 to 14.8x10-4/minute (Rathbun et al. 1989, 1991). Therefore, the volatilization

half-life of acetone from the model stream is in the range of 7.8-16.2 hours. It was concluded that

volatilization will control the fate of acetone in water (Rathbun et al. 1989, 1991). Results of a

laboratory study (Rathbun et al. 1982) also concluded that volatilization. is one of the important fate

determining processes for acetone in streams.

The log Kow value of -0.24 (see Table 3-2) suggests that bioconcentration of acetone in aquatic

organisms is not significant. The measured bioconcentration factor for acetone in adult haddock

exposed to acetone under static conditions at 7-9°C was <l (Rustung et al. 1931). No data regarding

the biomagnification potential of acetone in aquatic organisms were located; however, the low Kow

value suggests that biomagnification of acetone from animals of lower to higher trophic level is

unlikely.

The two significant transport properties for acetone in soil are volatilization and leaching. Leaching

transports acetone from soil to groundwater. The rate of leaching from soil by rainwater depends on

the sorption characteristics of acetone in soil. Since acetone may be controlled by Koc in water-

saturated soil and has a low Koc value, sorption of acetone in such soil will be weak. The low

retention ability will permit acetone to leach into groundwater. A sorption study with moist clay soils

indicates that aqueous acetone causes swelling in these soils (Green et al. 1983), and this process may

allow the retention of a small fraction of acetone. Groundwater monitoring studies (see Section 5.4.2)
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at landfill sites provided evidence of the importance of acetone leaching from soil. Volatilization

transports acetone from soil to the atmosphere. The volatility rate of acetone from soil depends on the

soil characteristics (moisture content, soil porosity, etc.). Since the acetone is weakly sorbed to soil,

the volatility depends primarily on the moisture content of the soil. In dry soil, the volatilization rate

from soil surfaces is high due to the high vapor pressure of acetone. In moist soil, the rate of

volatilization is similar to acetone in water and depends on the Henry’s law constant. Acetone

volatilizes moderately under these conditions. The detection of acetone at higher concentrations in

downwind air of a landfill site, compared to upwind air (Militana and Mauch 1989), indicates the

importance of volatilization as a transport process in soil.

No data regarding the transport of acetone from soil to plants were located.

5.3.2 Transformation and Degradation

5.3.2.1 Air

The reactions of acetone vapor with nitrogen oxides, hydroxyl radicals (OH), singlet molecular oxygen

(1∆g, singlet atomic oxygen (O[3P]), and nitrate radicals have been studied. Given the second order

rate constants for the reactions of acetone with 1∆g (Datta and Rao 1979) and O(3P) (Lee and Timmons

1977), and the concentrations of singlet molecular and atomic oxygen in the atmosphere (Graedel

1978), these reactions are insignificant in determining the fate of acetone in the atmosphere. The

reaction of acetone with nitrate radicals in the atmosphere was also determined to be insignificant

(Boyd et al. 1991). Smog chamber studies with acetone and nitrogen oxides conclude that acetone has

low reactivity in terms of ozone and nitrogen dioxide formation and that the rate of disappearance of

acetone by this process is low (Altshuller and Cohen 1963; Dimitriades and Joshi 1977; Yanagihara et

al. 1977). The photochemical oxidation of acetone in the presence of nitrogen oxides produces small

amounts of peroxyacetic acid and peroxyacetyl nitrate (Hanst and Gay 1983).

The two significant processes in determining the fate of acetone in the atmosphere are reaction with

hydroxyl radicals and photolysis. The rate constant for the reaction of hydroxyl radicals with acetone

at 25°C is in the range of 2.2-5.0x10-13 cm3/molecule-second (Cox et al. 1980; Cox et al. 1981;

Meyrahn et al. 1986). The estimated average lifetime of acetone due to reaction with hydroxyl

radicals is 44.5 days (Meyrahn et al. 1986). The probable pathways for the reaction of acetone with
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hydroxyl radicals in the troposphere have been postulated, and methylglyoxal is the primary product of

this reaction (Altshuller 1991). Acetone underwent significant photolysis with an artificial light (cutoff

wavelength of 270 nm) with a maximum emission intensity of 300 nm (Fujiki et al. 1978). Besides

free radicals, the primary products of acetone photolysis in sunlight are carbon dioxide and

acetylperoxynitrate (Altshuller 1991). The lifetimes of acetone due to photolysis under cloudless

conditions at 40º N latitude, and at sea level during winter and summer are estimated to be 83 and

19 days, respectively (Martinez et al. 1992). Other investigators have estimated that the average

atmospheric lifetime of acetone due to photolysis at 40º N latitude is 115.7 days/year (Meyrahn et al.

1986). The estimated average lifetime of acetone at 40º N due to combined hydroxyl radical reaction

and photolysis is 32 days/year (Meyrahn et al. 1986), corresponding to a half-life of 22 days. Due to

the pressure dependence of the quantum yield, the rate of photodissociation will increase as altitude

increases, whereas the reaction rate with hydroxyl radicals will decrease because temperature decreases

at higher altitudes. Therefore, the lifetime of acetone in the atmosphere will remain approximately

constant with respect to altitude. However, the rate will show a pronounced dependence on latitude

with greater losses of acetone occurring near the equator, compared to the poles (Meyrahn et al. 1986).

5.3.2.2 Water

Based on the rate constant for the reaction of acetone with hydroxyl radicals in water at pH 7

(5.8-7.7x107/M-second) (Anbar and Neta 1967) and the concentration of hydroxyl radicals in eutrophic

waters (3x10-17M) (Mill and Mabey 1985), this reaction will not be significant in water. When

distilled water or natural water containing acetone were exposed to sunlight for 2-3 days, no

photodecomposition of acetone was observed (Rathbun et al. 1982). Therefore, photolysis of acetone

in water is not an important process.

Many aerobic biodegradation screening studies with mixed microorganisms from waste-treatment plant

effluents, activated sludge, or sewage have examined the biodegradability of acetone (Babeu and

Vaishnav 1987; Bhattacharya et al. 1990; Bridie et al. 1979; Ettinger 1956; Gaudy et al. 1963; Hatfield

1957; Heukelekian and Rand 1955; Lamb and Jenkins 1952; Price et al. 1974; Stafford and Northup

1955; Thorn and Agg 1975; Urano and Kato 1986a, 1986b). These studies indicate that acetone is

easily biodegradable with acclimatized microorganisms or after a suitable lag period (≈ l day) (Urano

and Kato 1986a, 1986b), as long as the initial concentration of acetone is not at a toxic level. For

example, acetone at a concentration of 500 mg/L was toxic to microorganisms when biooxidation of
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acetone by activated sludge was attempted (Gerhold and Malaney 1966). Biodegradation of acetone

was much slower in seawater than in fresh water (Takemoto et al. 1981). After a suitable lag period

(5 days), acetone biodegraded quantitatively under anaerobic conditions with anaerobic acetate

enriched culture medium (Chou et al. 1979). A biodegradation study of acetone in natural water

collected from Lago Lake near Athens, Georgia, determined that the biodegradation kinetics is

multiphasic in nature and depends on the substrate concentration. The determined rate of degradation

was faster at higher initial concentrations (the maximum concentration used was 0.5 mg/L) (Hwang et

al. 1989).

In a laboratory experiment with natural stream water and sediment, no acetone was lost in 338 hours

under sterile conditions in closed flasks. However, with nonsterile natural sediment, 100% of the

acetone was lost in 500 hours following a lag period of 90 hours. (Rathbun et al. 1982). The authors

of this study concluded that biodegradation was one of the important processes for the loss of acetone

in streams. Significant loss of acetone due to biodegradation was not observed in a later study where

acetone was injected continuously in an outdoor model stream (Rathbun et al. 1988, 1989, 1991,

1993). Attempts to induce biodegradation by adding glucose and a nutrient solution containing

bacteria acclimated to acetone were unsuccessful. The authors concluded that the residence time of

acetone in the model stream (6 hours) was too short for the bacteria to become acclimated in the water

before initiation of biodegradation. However, this explanation may not be valid if attached bacteria,

rather than free-floating bacteria, dominate the biodegradation process. As an alternative explanation,

the authors indicated that the observed limitation in the nitrate concentration in the stream may be

responsible for the lack of acetone biodegradation.

5.3.2.3 Sediment and Soil

The biodegradation studies discussed in Section 5.3.2.2 indicate that biodegradation of acetone in

sediment and soil will be significant. However, laboratory or field data examining the biodegradability

of acetone in soil are lacking. No evidence was located to suggest that any degradation process other

than biodegradation is important in sediment and soil.
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5.4 LEVELS MONITORED OR ESTIMATED IN THE ENVIRONMENT

5.4.1 Air
Acetone is a volatile compound and is stable in air. Therefore, some monitoring data for the levels of

acetone in air are available. The levels of acetone in urban, rural, and remote areas in the United

States and the level in the troposphere are shown in Table 5-2.

It is obvious from Table 5-2 that the concentration of acetone in the air around urban areas will be

higher than rural and remote areas because of higher emission rates from a larger number of sources.

Besides these data, air monitoring data from an urban area (Tulsa, Oklahoma), a rural area (Rio Blanco

County, Colorado), and a remote area (Smoky Mountain, Tennessee) are also available (Arnts and

Meeks 1981). These data are not presented in Table 5-2 because the samples were collected in Tedlar

bags that are known to contaminate air samples with acetone. As a result, the reported acetone

concentrations were consistently higher than the values given in Table 5-2. Table 5-2 also indicates

that the indoor concentration of acetone is generally higher than the outdoor concentration. Other

investigators reported similar results (Jarke et al. 1981). The reason for the higher indoor air

concentration is the use of acetone-containing consumer products inside homes. The potential for

intrusion of acetone present as soil gas into a house adjacent to a landfill by diffusive and advective

routes was found to be low (Hodgson et al. 1992). However, only a single house was studied, and the

ambient air in the basement of the house was estimated on two separate occasions and found to be 12

and 82 ppb (v/v).

5.4.2 Water

In a National Organics Reconnaissance Survey (NORS) by EPA involving drinking water supplies

from 10 cities in the United States, acetone was qualitatively detected in all 10 water samples. The 10

cities in this survey were Cincinnati, Ohio, Miami, Florida, Ottumwa, Indiana, Philadelphia,

Pennsylvania, Seattle, Washington, Grand Forks, North Dakota, Lawrence, Kansas, New York, New

York, Terrebonne Parrish, Louisiana, and Tucson, Arizona (Bedding et al. 1982; Coleman et al. 1976;

Keith et al. 1976). The determined concentration of acetone in one of the drinking water samples

(Seattle, Washington) was 1 ppb (Keith et al. 1976). Acetone has also been detected in water from

several artesian wells adjacent to a landfill in Wilmington, Delaware and at a concentration of 0.3 ppb
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in finished drinking water from one of the wells (DeWalle and Chian 1981). The concentration of

acetone was <3,000 ppb in a drinking water well in New Jersey (Burmaster 1982; Steelman and Ecker

1984).

The concentration of acetone in open ocean water (Tongue of the Ocean, Bahamas) was 6 nM (0.35

ppb) (Kieber and Mopper 1990) whereas the reported mean concentrations in seawater from Straits of

Florida and the Eastern Mediterranean were 20 and 30 ppb, respectively (Corwin 1969). The

concentration of acetone in the Potomac River, VA was below the detection limit of 40 ppb (Hall et

al. 1987). Acetone has been detected in the effluent from a textile plant (Gordon and Gordon 1981)

and in effluent water from a specialty chemicals manufacturing plant at a concentration of

200-230 ppm (Jungclaus et al. 1978). The compound has also been detected in groundwater, leachate,

and run-off waters from landfill sites (Brown and Donnelly 1988; DeWalle and Chian 1981; Gould et

al. 1983; Sawhney and Raabe 1986; Stonebraker and Smith 1980). The concentration of acetone in an

industrial landfill leachate in Michigan was in the range of 0.05 to 62.0 ppm (Brown and Donnelly

1988). However, the quality of the reported data is uncertain. Acetone was detected at a mean

concentration of 56 ppb in a landfill leachate in Orange County, Florida (Hallbourg et al. 1992).

5.4.3 Sediment and Soil

There are few data regarding the level of acetone in soil and sediment. Acetone has been detected in

43% of the soil samples in Superfund sites for which acetone determination has been made so far.

The maximum concentration of acetone in soils from Vega Alta Public Supply well sites in Puerto

Rico was 9,500 ppb (ATSDR 1988). The mean concentration of acetone in soil from Summit

National Site, Ohio, was 9,484 ppb (dry weight) (EPA 1988b). Acetone has been qualitatively

detected in river sediment that received effluents from a specialty chemicals manufacturing plant (Hites

and Lopez-Avila 1980). A concentration of 6 ppb µg/kg) acetone was detected in the sediment of a

creek adjacent to a landfill in Louisville, Kentucky (Stonebraker and Smith 1980). Because of its high

water solubility and low sediment adsorption coefficient, most acetone in an aquatic system will be

found in water, rather than in sediment.
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5.4.4 Other Environmental Media

Acetone has been qualitatively detected as a volatile component of a number of foods including blue

cheese (Day and Anderson 1965), baked potatoes (Coleman et al. 1981), roasted filbert nuts (Kinlin et

al. 1972), meat (Grey and Shrimpton 1967; Shahidi et al. 1986), and nectarines (Takeoka et al. 1988).

In a study carried out in Czechoslovakia, the concentrations of acetone in samples of milk and cream

culture were 79.5 and 0.11 mg/l00 kg, respectively (Palo and Ilkova 1970). Acetone also has been

qualitatively detected in breast milk of working mothers, although the study did not identify whether

the concentrations of acetone were higher than normal physiologic levels (Giroux et al. 1992).

Acetone has been qualitatively detected in 8 of 12 mothers’ milk samples collected from two locations

in New Jersey, Bridgeville, Pennsylvania, and Baton Rouge, Louisiana (Pellizzari et al. 1982). In kiwi

fruit, the acetone concentration comprised 0.2% of total volatile components (Bartley and Schwade

1989). The concentrations of acetone in dry legumes, such as beans (mean of several varieties), split

peas, and lentils were 880, 530, and 230 ppb, respectively (Lovegren et al. 1979). The level of

acetone in headspace volatiles of Bisbee Delicious apples ranged from 111 to 912 pL/kg-hour

(Mattheis et al. 1991). The percent of acetone (of the total) in commercial concentrated aqueous

orange essences ranged from 0.003 to 0.009 (Moshonas and Shaw 1990).

Acetone has been detected in occasional rain samples collected in Hanover, Germany (Levsen et al.

1990). The authors were not sure whether the detection of acetone in the rain water was due to

contamination of samples during analysis. The concentration of combined acetone and acrolein was

0.05 ppm in a rain water sample from Los Angeles, California (Grosjean and Wright 1983). The

investigators could not separate acetone from acrolein by the method used for the determination of

carbonyl compounds.

5.5 GENERAL POPULATION AND OCCUPATIONAL EXPOSURE

Acetone is endogenously produced by all humans. The general population is exposed to acetone by

inhaling ambient air, ingesting food, and drinking water containing acetone. Dermal exposure to

acetone may result from skin contact with certain consumer products (e.g., certain nail polish

removers, paint removers, and household cleaning and waxing products) (see Section 5.2.1). However,

no quantitative data for dermal exposure to acetone from consumer products were located. Assuming

concentrations of acetone are 8.0 ppb (18.99 µg/m3) in indoor air and 6.9 ppb (16.38 ug/m3) in outdoor
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air (Shah and Singh 1988) and that a person inhales 15 m3/day of indoor air and 5 m3/day of outdoor

air, the estimated inhalation rate of acetone is 0.37 mg/day. No experimental or estimated data were

located regarding the daily intake of acetone in the general population in the United States from

ingestion of drinking water and food. However, if the concentration of acetone in drinking water is <1

ppb (see Section 5.4.2), the daily intake for acetone (assuming a person consumes 2 L of drinking

water/day) from this source would be negligible.

The acetone concentrations in body fluids and expired air of healthy and diabetic patients are given in

Table 5-3. The concentration of acetone in whole blood does not differ from that in plasma (Gavin0

et al. 1986). Even in healthy subjects, the level of acetone in blood/plasma varies with fasting or

nonfasting conditions and depends on the weight of the subject. Generally, the blood/plasma acetone

concentrations are higher in fasted than nonfasted subjects and higher in subjects who are not obese,

compared to obese subjects (Haff and Reichard 1977).

Workers in industries that manufacture and use acetone can be exposed to much higher concentrations

of acetone than the general population. For example, the concentrations of acetone in the breathing

zone air in a paint factory, a plastics factory, and an artificial fiber factory in Italy were >3.48 mg/m3

(Pezzagno et al. 1986). The concentration of acetone in the breathing zone air of a fiber-reinforced

plastic plant in Japan, where bathtubs were produced, was <108 mg/m3 (Kawai et al. 1990a). The

inhalation exposure for workers to acetone in a shoe factory in Finland ranged from 25.4 to

393.4 mg/m3 (Ahonen and Schimberg 1988). Concentrations of acetone in the breathing zone air in

shoe factories in Italy were also high (Brugnone et al. 1978). The concentration of acetone in the

breathing zone air of a solvent recycling plant in the United States ranged from not detected to

43 mg/m3 (Kupferachmid and Perkin 1986). High levels of acetone were detected in the occupational

air in other industries including chemical, plastic button, and paint manufacturing industries in Italy

(Ghittori et al. 1987). Isopropyl alcohol is known to oxidize in the liver and is converted to acetone

(Kawai et al. 1990b). Therefore, occupational exposure (printing plants) or accidental ingestion of

isopropyl alcohol also produce acetone in expired air, blood, and urine. The National Occupational

Exposure Survey (NOES) statistically estimated that 1.51 million workers were potentially exposed to

acetone in the United States in 1980 (NIOSH 1989). The NOES database does not contain data on the

frequency, duration, concentration, or route of exposure of workers to chemicals.
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5.6 POPULATIONS WITH POTENTIALLY HIGH EXPOSURES

Workers in industries that manufacture or use acetone are one segment of the population at an

especially high risk of acetone exposure compared to the general population (see Section 5.5).

Professional painters and commercial and household cleaners (certain detergents, cleansers, waxes, or

polishes contain acetone) are also likely to be exposed to acetone at higher concentrations than the

general population, although experimental data regarding the extent of exposures for this segment of

workers were not located. Among the general population, high exposure to acetone may occur among

several subgroups. Cigarette smoke contains <0.54 mg acetone/cigarette (Manning et al. 1983);

therefore, smokers are exposed to higher concentrations of acetone than nonsmokers. The content of

acetone in certain nail polish removers is high; therefore, individuals who frequently use nail polish

removers are exposed to higher levels of acetone than the general population. People who live near

landfill sites that emit acetone or those who live near industrial sources of emission (e.g., refinery,

incinerator, close to high vehicular traffic areas) are also susceptible to higher exposure concentrations

of acetone than the general population that does not reside near these sites. People who consume

contaminated well water (see Section 5.4.2) as drinking water are subject to high exposures. People

who consume food containing acetone excessively would also be subject to high exposure, especially

if associated with other risks.

5.7 ADEQUACY OF THE DATABASE

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with

the Administrator of EPA and agencies and programs of the Public Health Service) to assess whether

adequate information on the health effects of acetone is available. Where adequate information is not

available, ATSDR, in conjunction with the NTP, is required to assure the initiation of a program of

research designed to determine the health effects (and techniques for developing methods to determine

such health effects) of acetone.

The following categories of possible data needs have been identified by a joint team of scientists from

ATSDR, NTP, and EPA. They are defined as substance-specific informational needs that if met would

reduce the uncertainties of human health assessment. This definition should not be interpreted to mean

that all data needs discussed in this section must be filled. In the future, the identified data needs will

be evaluated and prioritized, and a substance-specific research agenda will be proposed.
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5.7.1 Identification of Data Needs

Physical and Chemical Properties. Information regarding the physical and chemical properties

of acetone necessary to predict its environmental fate and transport processes in the environment is

available (see Table 3-2). However, experimental determination of a value for the soil sorption

coefficient of acetone from water would be helpful in assessing the potential for leaching and volatility

of acetone in different soils.

Production, Import/Export, Use, Release, and Disposal. Data regarding the past and present

production volume for acetone and the projected future trend (increase/decrease) in the production

volume are known (CMR 1990). In 1990, the reported total production volume of acetone in the

United States was 2,330 million pounds (USITC 1991). Recent export and import data for acetone

would be helpful. The use pattern of acetone is known. Acetone is present in several household

consumer products, but by far a larger amount of acetone is used in industry. Acetone is naturally

present in many fruits and vegetables, and there is no information available to indicate that acetone is

present in food as a contaminant, due to food processing or packaging. Air is the most likely

environmental medium in which significant quantities of acetone contamination will occur during its

production and use (TRI90 1992). More data on the rate of acetone release from household consumer

products would be useful. The regulations governing the disposal of acetone are well defined.

However, more information about the proportion of discarded acetone recovered from recycling, and

the proportion lost due to evaporation, ground burial, and incineration would be useful in determining

the relative importance of the different routes of exposure.

According to the Emergency Planning and Community Right-to-Know Act of 1986, 42 U.S.C. Section

11023, industries are required to submit chemical release and off-site transfer information to the EPA.

The Toxics Release Inventory (TRI), which contains this information for 1988, became available in

May of 1990. This database will be updated yearly and should provide a list of industrial production

facilities and emissions.

Environmental Fate. The environmental fate of acetone, for the most part, has been well studied

(see Section 5.3). Acetone will undergo transport from one environmental medium to another

(Grosjean and Wright 1983; Rathbun et al. 1982). Due to its reasonably long half-life in air (22 days)

(Meyrahn et al. 1986) and restricted volatilization from groundwater, the atmosphere and groundwater
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may act as sinks for acetone. More experimental data regarding the rate of sorption and

biodegradation of acetone in soil and its biodegradability in groundwater would be useful to assess the

relative importance of the different fate processes.

Bioavailability from Environmental Media. Acetone is readily absorbed in the lung and

gastrointestinal tract following inhalation and ingestion. Acetone can also be absorbed from the skin

(see Section 2.3). The low value for Koc (see Table 3-2) and a moderate value for Henry’s law

constant (Rathbun and Tai 1987) suggest that bioavailability of acetone from contaminated water and

soil as a result of skin contact may be significant. However, quantitative data regarding the rate and

extent of dermal absorption of acetone from contaminated water and soil are lacking. The high water

solubility and low Koc value for acetone suggest that bioavailability from ingested soil (e.g., children

playing at or near contaminated sites) will be high, but quantitative absorption data are lacking. Data

on bioavailability of acetone from ingested plant food were not located but would be helpful.

Food Chain Bioaccumulation. Acetone does not bioaccumulate in aquatic organisms. There is no

indication of biomagnification of acetone along the aquatic food chain. Studies indicating the potential

for acetone transfer from soil and plants and biomagnification in terrestrial food chains would be

useful to confirm its potential for food chain bioaccumulation.

Exposure Levels in Environmental Media. Data regarding the level of acetone in ambient air

are available (Lagrone 1991; Shah and Singh 1988; Snider and Dawson 1985). There is a paucity of

data regarding the level of acetone in drinking water (Bedding et al. 1982; Coleman et al. 1976; Keith

et al. 1976). More comprehensive data on the levels of acetone in the air and water consumed by

people who live near acetone-containing hazardous waste sites would be useful in estimating the daily

intake from these sources. Although the levels of acetone in the volatile components of several fruits

and vegetables are available (see Section 5.4.4), development of data regarding the level of acetone in

the total diet would be useful. There are few data regarding the level of acetone in background soil

samples.

Reliable monitoring data for the levels of acetone in contaminated media at hazardous waste sites are

needed so that the information obtained on levels of acetone in the environment can be used in

combination with the known body burden of acetone to assess the potential risk of adverse health

effects in populations living in the vicinity of hazardous waste sites.
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Exposure Levels in Humans. The levels of acetone in blood/plasma and urine of healthy people,

occupationally exposed groups, and diabetic patients are available (see Table 5-3 and Section 5.5).

However, data on the levels of acetone in body fluids or tissues of general populations living near sites

with higher (than normal) exposure potential (e.g., hazardous waste sites) were not located. This

information is useful for assessing the need to conduct health studies on these populations.

Exposure Registries. No exposure registries for acetone were located. This substance is not

currently one of the compounds for which a subregistry has been established in the National Exposure

Registry. The substance will be considered in the future when chemical selection is made for

subregistries to be established. The information that is amassed in the National Exposure Registry

facilitates the epidemiological research needed to assess adverse health outcomes that may be related

to exposure to this substance.

5.7.2 On-going Studies

No on-going study that would fill the data gaps regarding the transport and fate of acetone in the

environment or that evaluates its exposure potential in general population groups susceptible to higher

levels of exposure was located.

As part of the Third National Health and Nutrition Evaluation Survey, the Environmental Health

Laboratory Sciences Division of the National Center for Environmental Health and Injury Control,

Centers for Disease Control, will be analyzing human blood samples for acetone and other volatile

organic compounds. These data will give an indication of the frequency of occurrence and

background levels of these compounds in the general population.
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The purpose of this chapter is to describe the analytical methods that are available for detecting, and/or

measuring, and/or monitoring acetone, its metabolites, and other biomarkers of exposure and effect to

acetone. The intent is not to provide an exhaustive list of analytical methods. Rather, the intention is

to identify well-established methods that are used as the standard methods of analysis. Many of the

analytical methods used for environmental samples are the methods approved by federal agencies and

organizations such as EPA and the National Institute for Occupational Safety and Health (NIOSH).

Other methods presented in this chapter are those that are approved by groups such as the Association

of Official Analytical Chemists (AOAC) and the American Public Health Association (APHA).

Additionally, analytical methods are included that modify previously used methods to obtain lower

detection limits, and/or to improve accuracy and precision.

6.1 BIOLOGICAL MATERIALS

Some of the more recent methods for determining the presence of acetone in different biological media

are reported in Table 6-1. Prior to the 1960s acetone was considered to be present in only

insignificant amounts in hyperketonic states in healthy people. Therefore, the concentration of acetone

in biological fluids was rarely measured. The effort to develop analytical methods for the

determination of acetone in body fluids increased when it was found that the level of acetone in

diabetic patients with severe hyperketonaemia may indeed be significant (Trotter et al. 1971). The

parent acetone or its reduction/derivatization product is almost exclusively determined by GC/FID

method, although derivatized products can be determined by high-performance liquid chromatography

with ultraviolet or fluorescence detectors (Brega et al. 1991; Vairavamurthy et al. 1992). Since the

reference acetone values for healthy unexposed people are 0.034-0.120 mmol/L, with a mean of

0.075 mmol/L in plasma, and 0.034-0.095 mmol/L, with a mean value of 0.052 mmol/L in urine

(Brega et al. 1991), the available methods have adequate sensitivity to determine the levels of acetone

in biological samples of both healthy and diabetic people (Gavin0 et al. 1986; Kobayashi et al. 1983;

Phillips and Greenberg 1987; Trotter et al. 1971). The determination of acetone in blood is difficult

because acetone is generated as a metabolite from acetoacetate (major metabolite is βhydroxybutyrate),

and the quantity produced depends on storage time even when the blood samples are stored

at 4°C (Trotter et al. 1971). In addition, acetylacetone present in the plasma is thermally degraded to
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acetone inside the injection port and on the column, if a gas chromatographic method is used for

quantification (Gavino et al. 1986; Trotter et al. 1971).

Two methods that have been used to eliminate the interference from acetylacetone are enzymatic

conversion of acetoacetate to 3-hydroxybutyrate and chemical reduction of acetone to 2-propyl alcohol

(Gavin0 et al. 1986; Haff and Richard 1977). Another factor that makes determination of acetone

unreliable is the increased evaporative loss of acetone from the samples as the time of storage is

prolonged (Trotter et al. 1971). Acetone was detected in several brands of heparin (Powell et al.

1985). Therefore, determination of acetone in heparinized blood may give erroneous results if the

heparin is contaminated with acetone.

6.2 ENVIRONMENTAL SAMPLES

Some of the analytical methods for determining acetone in environmental samples are reported in

Table 6-2. In addition to these methods, personal sampling methods have been developed in Japan for

the determination of acetone in the workplaces (Uchida et al. 1990). There is no unique method that

can be used for the determination of low levels of acetone in unpolluted environmental samples. As in

the case of biological samples, the sensitivity of acetone detection in environmental samples can be

enhanced by derivatization. Such a method, which uses 2,4-dinitrophenylhydrazine as a derivatizing

agent, has been applied for the determination of extremely low levels of acetone in open ocean sea

water (Kieber and Mopper 1990). A new method based on the reaction of mercuric oxide with

carbonyl compounds has been applied for the determination of low levels of acetone in unpolluted

atmosphere (O’Hara and Singh 1988). A good review of the methods presently used for the

determination of acetone in the atmosphere is available (Vairavamurthy et al. 1992). Unlike in

biological samples, acetylacetone may not be present in most environmental samples. If acetylacetone

is detected in an environmental sample, thermal degradation inside the gas chromatographic system

(injection port and column oven) may produce erroneous results unless this interference is eliminated.

As in the case of biological samples, proper precautions in sample handling during collection and

analysis, and storage of environmental samples should be taken to minimize contamination and

evaporative loss. It has been suggested that ambient water containing low levels of acetone be

sampled upwind of sources of contamination (e.g., smoke stack or other sources of emissions) and that

the operator stand downwind of the samples while withdrawing them (to minimize contamination from

operator’s breath) (Kieber and Mopper 1990).
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6.3 ADEQUACY OF THE DATABASE

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with

the Administrator of EPA and agencies and programs of the Public Health Service) to assess whether

adequate information on the health effects of acetone is available. Where adequate information is not

available, ATSDR, in conjunction with the NTP, is required to assure the initiation of a program of

research designed to determine the health effects (and techniques for developing methods to determine

such health effects) of acetone.

The following categories of possible data needs have been identified by a joint team of scientists from

ATSDR, NTP, and EPA. They are defined as substance-specific informational needs that if met would

reduce the uncertainties of human health assessment. This definition should not be interpreted to mean

that all data needs discussed in this section must be filled. In the future, the identified data needs will

be evaluated and prioritized, and a substance-specific research agenda will be proposed.

6.3.1 Identification of Data Needs

Methods for Determining Biomarkers of Exposure and Effect. The concentration of

acetone in expired air, blood, and urine can serve as indicators of recent exposure to acetone (Ghittori et al.

1987; Pezzagno et al. 1986; also see Section 2.5.1.). Concentrations of acetone similar to those

produced from occupational exposure are also produced in blood and urine as a result of inhalation

and ingestion of isopropyl alcohol (may be present as a contaminant in some alcoholic beverages)

(Kawai et al. 1990b) and in patients with diabetes mellitus (Dobson et al. 1968; Trotter et al. 1971).

Among urine, alveolar air, and blood, the strongest correlation was found between the time-weighted

average breathing zone air concentration and urinary acetone level when the concentration of acetone

in breathing zone air exceeded 15 ppm (v/v) (Fujino et al. 1992; Kawai et al. 1992). Analytical

methods of adequate sensitivities are available for determining acetone in blood, urine, and expired air

at background levels in the population and levels at which biological effects occur (Gavin0 et al. 1986;

Kobayshi et al. 1983; Phillips and Greenberg 1987; Trotter et al. 1971). Although the precision and

accuracy of the analytical methods have not always been reported (e.g., Robayashi et al. 1983), these

values are satisfactory in cases where they have been reported (Haff and Reichard 1977; Holm and

Lundgren 1984; Mangani and Ninfali 1988; Trotter et al. 1971).
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Biological monitoring has not been used to associate acetone exposure levels with specific effects that

can be quantified in humans (see Section 2.5.2). Clinical tests for nonspecific effects of acetone

exposure (see Section 2.9.2) are available (Johansson et al. 1988; Lupulescu et al. 1972, 1973; Tosti et

al. 1988). Since acetone exposure itself can be quantified in biological tissues, there does not appear

to be a need to improve existing clinical tests or develop additional test procedures to detect effects of

acetone exposure.

Methods for Determining Parent Compounds and Degradation Products in
Environmental Media. Methods for determining low levels of acetone found in ambient air are

available (Ants and Meeks 1981; Cavanagh et al. 1969; O’Hara and Singh 1988; Shepson et al. 1991;

Snider and Dawson 1985). Methods are also available for determining low levels of acetone found in

natural waters (Kieber and Mopper 1990). The concentrations of acetone found in volatile components

of several foods have also been determined (Bartley and Schwede 1989; Day and Anderson 1965;

Takeoka et al. 1988). The degradation products formed as a result of photochemical reactions of

acetone in air in the presence or absence of nitrogen oxides have been identified (Altshuller and

Bufalini 1971; Boule et al. 1987; Hanst and Gay 1983; Meyrahn et al. 1986). However, products from

the reaction of acetone with hydroxyl radicals and O(3P) remain unidentified (Cox et al. 1980; Lee and

Timmons 1977), although it has been postulated that methylglyoxal may be the principal product of

the reaction with hydroxyl radicals (Altshuller 1991). It would be helpful to determine the products

formed from the gas phase reaction of acetone with hydroxyl radicals in order to assess the potential

health effect implications of these products.

6.3.2 On-going Studies

No on-going studies that could free the data gap regarding the products formed from the reactions of

acetone with atmospheric oxidants (e.g., hydroxyl radicals, O[3P]) were found.

The Environmental Health Laboratory Sciences Division of the National Center for Environmental

Health and Injury Control, Centers for Disease Control, is developing methods for the analysis of

acetone and other volatile organic compounds in blood. These methods use purge-and-trap

methodology, high resolution gas chromatography, and magnetic sector mass spectrometry which gives

detection limits in the low parts per trillion (ppt) range.
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7. REGULATIONS AND ADVISORIES

National and State regulations and guidelines are listed in Table 7-1.

An acute-duration inhalation MRL for acetone of 26 ppm was derived. The MRL is based on a

LOAEL value of 237 ppm for 4 hours for neurobehavioral effects in humans in an experimental study

by Dick et al. (1989). Intermediate and chronic inhalation MRLs of 13 ppm were derived based on a

LOAEL value of 1,250 ppm for neurological effects in humans in a 6-week study by Stewart et al.

(1975).

An intermediate-duration oral MRL for acetone of 2 mg/kg/day was derived. The MRL is based on a

NOAEL value of 200 mg/kg/day for macrocytic anemia in rats in the 13-week drinking water study

(Dietz et al. 1991; NTP 1991). The LOAEL was 400 mg/kg/day.

EPA has verified a chronic oral reference dose (RfD) for acetone of 0.1 mg/kg/day (IRIS 1992). The

RfD is based on the NOAEL of 100 mg/kg/day for increased liver and kidney weights and

nephrotoxicity in rats in the 13-week gavage study by American Biogenics Corp. (1986).
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Acute Exposure - Exposure to a chemical for a duration of 14 days or less, as specified in the
Toxicological Profiles.

Adsorption Coefficient (Koc) - The ratio of the amount of a chemical adsorbed per unit weight
of organic carbon in the soil or sediment to the concentration of the chemical in solution at
equilibrium.

Adsorption Ratio (Kd) - The amount of a chemical adsorbed by a sediment or soil (i.e., the
solid phase) divided by the amount of chemical in the solution phase, which is in equilibrium
with the solid phase, at a fixed solid/solution ratio. It is generally expressed in micrograms of
chemical sorbed per gram of soil or sediment.

Bioconcentration Factor (BCF) - The quotient of the concentration of a chemical in aquatic
organisms at a specific time or during a discrete time period of exposure divided by the
concentration in the surrounding water at the same time or during the same period.

Cancer Effect Level (CEL) - The lowest dose of chemical in a study, or group of studies, that
produces significant increases in the incidence of cancer (or tumors) between the exposed
population and its appropriate control.

Carcinogen - A chemical capable of inducing cancer.

Ceiling Value - A concentration of a substance that should not be exceeded, even
instantaneously.

Chronic Exposure - Exposure to a chemical for 365 days or more, as specified in the
Toxicological Profiles.

Developmental Toxicity -The occurrence of adverse effects on the developing organism that
may result from exposure to a chemical prior to conception (either parent), during prenatal
development, or postnatally to the time of sexual maturation. Adverse developmental effects may
be detected at any point in the life span of the organism.

Embryotoxicity and Fetotoxicity - Any toxic effect on the conceptus as a result of prenatal
exposure to a chemical; the distinguishing feature between the two terms is the stage of
development during which the insult occurred. The terms, as used here, include malformations
and variations, altered growth, and in utero death.

EPA Health Advisory -An estimate of acceptable drinking water levels for a chemical
substance based on health effects information. A health advisory is not a legally enforceable
federal standard, but serves as technical guidance to assist federal, state, and local officials.

Immediately Dangerous to Life or Health (IDLH) - The maximum environmental
concentration of a contaminant from which one could escape within 30 min without any escape-
impairing symptoms or irreversible health effects.

Intermediate Exposure - Exposure to a chemical for a duration of 15-364 days, as specified in
the Toxicological Profiles.
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Immunologic Toxicity - The occurrence of adverse effects on the immune system that may result
from exposure to environmental agents such as chemicals.

In Vitro - Isolated from the living organism and artificially maintained, as in a test tube.

In Vivo - Occurring within the living organism.

Lethal Concentration (LO) (LCLO) - The lowest concentration of a chemical in air which has been
reported to have caused death in humans or animals.

Lethal Concentration (50) (LC50) - A calculated concentration of a chemical in air to which exposure
for a specific length of time is expected to cause death in 50% of a defined experimental animal
population.

Lethal Dose(LO) (LDLO)  - The lowest dose of a chemical introduced by a route other than inhalation
that is expected to have caused death in humans or animals.

Lethal Dose(50) (LD50) - The dose of a chemical which has been calculated to cause death in 50% of
a defined experimental animal population.

Lethal Time(50) (LT50) - A calculated period of time within which a specific concentration of a
chemical is expected to cause death in 50% of a defined experimental animal population.

Lowest-Observed-Adverse-Effect Level (LOAEL) - The lowest dose of chemical in a study, or
group of studies, that produces statistically or biologically significant increases in frequency or severity
of adverse effects between the exposed population and its appropriate control.

Malformations - Permanent structural changes that may adversely affect survival, development, or
function.

Minimal Risk Level - An estimate of daily human exposure to a dose of a chemical that is likely to
be without an appreciable risk of adverse noncancerous effects over a specified duration of exposure.

Mutagen - A substance that causes mutations. A mutation is a change in the genetic material in a
body cell. Mutations can lead to birth defects, miscarriages, or cancer.

Neurotoxicity - The occurrence of adverse effects on the nervous system following exposure to
chemical.

No-Observed-Adverse-Effect Level (NOAEL) - The dose of chemical at which there were no
statistically or biologically significant increases in frequency or severity of adverse effects seen
between the exposed population and its appropriate control. Effects may be produced at this dose, but
they are not considered to be adverse.

Octanol-Water Partition Coefficient (KOW) - The equilibrium ratio of the concentrations of a
chemical in n-octanol and water, in dilute solution.

Permissible Exposure Limit (PEL) - An allowable exposure level in workplace air averaged over
an 8-hour shift.
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q1*- The upper-bound estimate of the low-dose slope of the dose-response curve as determined by
the multistage procedure. The ql* can be used to calculate an estimate of carcinogenic potency, the
incremental excess cancer risk per unit of exposure (usually ug/L for water, mg/kg/day for food, and
ug/m3 for air).

Reference Dose (RfD) - An estimate (with uncertainty spanning perhaps an order of magnitude) of
the daily exposure of the human population to a potential hazard that is likely to be without risk of
deleterious effects during a lifetime. The RfD is operationally derived from the NOAEL (from animal
and human studies) by a consistent application of uncertainty factors that reflect various types of data
used to estimate RfDs and an additional modifying factor, which is based on a professional judgment
of the entire database on the chemical. The RfDs are not applicable to nonthreshold effects such as
cancer.

Reportable Quantity (RQ) - The quantity of a hazardous substance that is considered reportable
under CERCLA. Reportable quantities are (1) 1 pound or greater or (2) for selected substances, an
amount established by regulation either under CERCLA or under Sect. 311 of the Clean Water Act.
Quantities are measured over a 24-hour period.

Reproductive Toxicity - The occurrence of adverse effects on the reproductive system that may
result from exposure to a chemical. The toxicity may be directed to the reproductive organs and/or the
related endocrine system. The manifestation of such toxicity may be noted as alterations in sexual
behavior, fertility, pregnancy outcomes, or modifications in other functions that are dependent on the
integrity of this system.

RC50 - The calculated concentration that decreases the respiratory rate by 50%.

Short-Term Exposure Limit (STEL) - The maximum concentration to which workers can be
exposed for up to 15 min continually. No more than four excursions are allowed per day, and there
must be at least 60 min between exposure periods. The daily TLV-TWA may not be exceeded.

Target Organ Toxicity - This term covers a broad range of adverse effects on target organs or
physiological systems (e.g., renal, cardiovascular) extending from those arising through a single limited
exposure to those assumed over a lifetime of exposure to a chemical.

Teratogen - A chemical that causes structural defects that affect the development of an organism.

Threshold Limit Value (TLV) - A concentration of a substance to which most workers can be
exposed without adverse effect. The TLV may be expressed as a TWA, as a STEL, or as a CL.

Time-Weighted Average (TWA) - An allowable exposure concentration averaged over a normal 8-
hour workday or 40-hour workweek.

Toxic Dose (TD50) - A calculated dose of a chemical, introduced by a route other than inhalation,
which is expected to cause a specific toxic effect in 50% of a defined experimental animal population.
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Uncertainty Factor (UF) - A factor used in operationally deriving the RfD from experimental data.
UFs are intended to account for (1) the variation in sensitivity among the members of the human
population, (2) the uncertainty in extrapolating animal data to the case of human, (3) the uncertainty in
extrapolating from data obtained in a study that is of less than lifetime exposure, and (4) the
uncertainty in using LOAEL data rather than NOAEL data. Usually each of these factors is set equal
to 10.
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APPENDIX A

USER’S GUIDE

Chapter 1

Public Health Statement

This chapter of the profile is a health effects summary written in nontechnical language. Its intended audience
is the general public especially people living in the vicinity of a hazardous waste site or substance release. If
the Public Health Statement were removed from the rest of the document, it would still communicate to the lay
public essential information about the substance.

The major headings in the Public Health Statement are useful to find specific topics of concern. The topics are
written in a question and answer format. The answer to each question includes a sentence that will direct the
reader to chapters in the profile that will provide more information on the given topic.

Chapter 2

Tables and Figures for Levels of Significant Exposure (LSE)

Tables (2-1, 2-2, and 2-3) and figures (2-l and 2-2) are used to summarize health effects by duration of
exposure and end point and to illustrate graphically levels of exposure associated with those effects. All entries
in these tables and figures represent studies that provide reliable, quantitative estimates of No-Observed-
Adverse-Effect Levels (NOAELs), Lowest-Observed-Adverse-Effect Levels (LOAELs) for Less Serious and
Serious health effects, or Cancer Effect Levels (CELs). In addition, these tables and figures illustrate
differences in response by species, Minimal Risk Levels (MRLs) to humans for noncancer end points, and
EPA’s estimated range associated with an upper-bound individual lifetime cancer risk of 1 in 10,000 to 1 in
10,000,000. The LSE tables and figures can be used for a quick review of the health effects and to locate data
for a specific exposure scenario. The LSE tables and figures should always be used in conjunction with the
text.

The legends presented below demonstrate the application of these tables and figures. A representative example
of LSE Table 2-1 and Figure 2-l are shown. The numbers in the left column of the legends correspond to the
numbers in the example table and figure.

LEGEND

See LSE Table 2-1

(1). Route of Exposure One of the first considerations when reviewing the toxicity of a substance using
these tables and figures should be the relevant and appropriate route of exposure. When sufficient data
exist, three LSE tables and two LSE figures are presented in the document. The three LSE tables
present data on the three principal routes of exposure, i.e., inhalation, oral, and dermal (LSE Table 2-
1, 2-2, and 2-3, respectively). LSE figures are limited to the inhalation (LSE Figure 2-1) and oral (LSE
Figure 2-2) routes.

(2). Exposure Duration Three exposure periods: acute (14 days or less); intermediate (15 to
364 days); and chronic (365 days or more) are presented within each route of exposure. In this
example, an inhalation study of intermediate duration exposure is reported.
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(3). Health Effect The major categories of health effects included in LSE tables and figures are death,
systemic, immunological, neurological, developmental, reproductive, and cancer. NOAELs and
LOAELs can be reported in the tables and figures for all effects but cancer. Systemic effects are
further defined in the “System” column of the LSE table.

(4). Key to Figure Each key number in the LSE table links study information to one or more data points
using the same key number in the corresponding LSE figure. In this example, the study represented by
key number 18 has been used to define a NOAEL and a Less Serious LOAEL (also see the two “18r”
data points in Figure 2-l).

(5). Species The test species, whether animal or human, are identified in this column.

(6). Exposure Frequency/Duration The duration of the study and the weekly and daily exposure regimen
are provided in this column. This permits comparison of NOAELs and LOAELs from different
studies. In this case (key number 18), rats were exposed to [substance x] via inhalation for 13 weeks, 5
days per week, for 6 hours per day.

(7). System This column further defmes the systemic effects. These systems include: respiratory,
cardiovascular, gastrointestinal, hematological, musculoskeletal, hepatic, renal, and dermal/ocular.
“Other” refers to any systemic effect (e.g., a decrease in body weight) not covered in these systems. In
the example of key number 18, one systemic effect (respiratory) was investigated in this study.

(8) NOAEL A No-Observed-Adverse-Effect Level (NOAEL) is the highest exposure level at which no
harmful effects were seen in the organ system studied. Key number 18 reports a NOAEL of 3 ppm for
the respiratory system which was used to derive an intermediate exposure, inhalation MRL of 0.005
ppm (see footnote “b”).

(9). LOAEL A Lowest-Observed-Adverse-Effect Level (LOAEL) is the lowest exposure level used in the
study that caused a harmful health effect. LOAELs have been classified into “Less Serious” and
“Serious” effects. These distinctions help readers identify the levels of exposure at which adverse
health effects first appear and the gradation of effects with increasing dose. A brief description of the
specific end point used to quantify the adverse effect accompanies the LOAEL. The “Less Serious”
respiratory effect reported in key number 18 (hyperplasia) occurred at a LOAEL of 10 ppm.

(10). Reference The complete reference citation is given in Chapter 8 of the profile.

(11). CEL A Cancer Effect Level (CEL) is the lowest exposure level associated with the onset of
carcinogenesis in experimental or epidemiological studies. CELs are always considered serious
effects. The LSE tables and figures do not contain NOAELs for cancer, but the text may report doses
which did not cause a measurable increase in cancer.

(12.) Footnotes Explanations of abbreviations or reference notes for data in the LSE tables are found in the
footnotes. Footnote “b” indicates the NOAEL of 3 ppm in key number 18 was used to derive an MRL
of 0.005 ppm.
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(13). Exposure Duration The same exposure periods appear as in the LSE table. In this example, health
effects observed within the intermediate and chronic exposure periods are illustrated.

(14). Health Effect These are the categories of health effects for which reliable quantitative data exist. The
same health effects appear in the LSE table.

(15). Levels of Exposure Exposure levels for each health effect in the LSE tables are graphically displayed
in the LSE figures. Exposure levels are reported on the log scale “y” axis. Inhalation exposure is
reported in mg/m3 or ppm and oral exposure is reported in mg/kg/day.

(16). NOAEL In this example, 18r NOAEL is the critical end point for which an intermediate
inhalation exposure MRL is based. As you can see from the LSE figure key, the
open-circle symbol indicates a NOAEL for the test species (rat). The key number 18
corresponds to the entry in the LSE table. The dashed descending arrow indicates the
extrapolation from the exposure level of 3 ppm (see entry 18 in the Table) to the MRL of
0.005 ppm (see footnote “b” in the LSE table).

(17). CEL Key number 38r is one of three studies for which Cancer Effect Levels (CELs) were
derived. The diamond symbol refers to a CEL for the test species (rat). The number 38
corresponds to the entry in the LSE table.

(18). Estimated Upper-Bound Human Cancer Risk Levels This is the range associated with the
upper-bound for lifetime cancer risk of 1 in 10,000 to 1 in 10,000,000. These risk levels are derived
from EPA’s Human Health Assessment Group’s upper-bound estimates of the slope of the cancer
dose response curve at low dose levels (ql*).

(19). Key to LSE Figure The Key explains the abbreviations and symbols used in the figure.

Chapter 2 (Section 2.4)

Relevance to Public Health
The Relevance to Public Health section provides a health effects summary based on evaluations of existing
toxicological, epidemiological, and toxicokinetic information. This summary is designed to present
interpretive, weight-of-evidence discussions for human health end points by addressing the following
questions.

1. What effects are known to occur in humans?

2. What effects observed in animals are likely to be of concern to humans?

3. What exposure conditions are likely to be of concern to humans, especially around hazardous
waste sites?

The section discusses health effects by end point. Human data are presented first, then animal data.  Both are
organized by route of exposure (inhalation, oral, and dermal) and by duration (acute, intermediate, and
chronic). In vitro data and data from parenteral routes (intramuscular, intravenous, subcutaneous, etc.) are also
considered in this section. If data are located in the scientific literature, a table of genotoxicity information is
included.
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The carcinogenic potential of the profiled substance is qualitatively evaluated, when appropriate, using existing
toxicokinetic, genotoxic, and carcinogenic data. ATSDR does not currently assess cancer potency or perform
cancer risk assessments. Marls for noncancer end points if derived, and the end points from which they were
derived are indicated and discussed in the appropriate section(s).

Limitations to existing scientific literature that prevent a satisfactory evaluation of the relevance to
public health are identified in the Identification of Data Needs section.

Interpretation of Minimal Risk Levels

Where sufficient toxicologic information was available, MRLs were derived. MRLs are specific for
route (inhalation or oral) and duration (acute, intermediate, or chronic) of exposure. Ideally, MRLs can
be derived from all six exposure scenarios (e.g., Inhalation - acute, -intermediate, -chronic; Oral -
acute, -intermediate, - chronic). These MRLs are not meant to support regulatory action, but to
acquaint health professionals with exposure levels at which adverse health effects are not expected to
occur in humans. They should help physicians and public health officials determine the safety of a
community living near a substance emission, given the concentration of a contaminant in air or the
estimated daily dose received via food or water. MRLs are based largely on toxicological studies in
animals and on reports of human occupational exposure.

MRL users should be familiar with the toxicological information on which the number is based.
Section 2.4, “Relevance to Public Health,” contains basic information known about the substance.
Other sections such as 2.6, “Interactions with Other Chemicals” and 2.7, “Populations that are
Unusually Susceptible” provide important supplemental information.

MRL users should also understand the MRL derivation methodology. MRLs are derived using a
modified version of the risk assessment methodology used by the Environmental Protection Agency
(EPA) (Barnes and Dourson 1988; EPA 1989a) to derive reference doses (RfDs) for lifetime exposure.

To derive an MRL, ATSDR generally selects the end point which, in its best judgement, represents the
most sensitive human health effect for a given exposure route and duration. ATSDR cannot make this
judgement or derive an MRL unless information (quantitative or qualitative) is available for all potential
effects (e.g., systemic, neurological, and developmental). In order to compare NOAELs and
LOAELs for specific end points, all inhalation exposure levels are adjusted for 24hr exposures and all
intermittent exposures for inhalation and oral routes of intermediate and chronic duration are adjusted
for continuous exposure (i.e., 7 days/week). If the information and reliable quantitative data on the
chosen end point are available, ATSDR derives an MRL using the most sensitive species (when information
from multiple species is available) with the highest NOAEL that does not exceed any adverse
effect levels. The NOAEL is the most suitable end point for deriving an MRL. When a NOAEL is
not available, a Less Serious LOAEL can be used to derive an MRL, and an uncertainty factor of (1,
3, or 10) is employed. MRLs are not derived from Serious LOAELs. Additional uncertainty factors
of (1, 3, or 10 ) are used for human variability to protect sensitive subpopulations (people who are
most susceptible to the health effects caused by the substance) and (1, 3, or 10) are used for interspecies
variability (extrapolation from animals to humans). In deriving an MRL, these individual
uncertainty factors are multiplied together. Generally an uncertainty factor of 10 is used; however, the
MRL Workgroup reserves the right to use uncertainty factors of (1, 3, or 10) based on scientific
judgement. The product is then divided into the adjusted inhalation concentration or oral dosage
selected from the study. Uncertainty factors used in developing a substance-specific MRL are
provided in the footnotes of the LSE Tables.
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