EXECUTIVE SUMMARY

The Environmental Management Science Program (EMSP) was established by Congress in 1996 under the Department of Energy (DOE) Environmental Management (EM) Office of Science and Technology to "develop and fund a targeted long-term basic research program that will result in transformational or breakthrough approaches for solving the Department's environmental problems." The EMSP is a partnership between the Department of Energy (DOE) Office of Basic and Applied Research and the Office of Science, and funds competitively awarded research that seeks scientific understanding leading to reduced remediation risks, costs, or schedules, and helping to solve currently intractable problems. As such, EMSP supports research that leads directly to the fulfillment of the following EMSP research objectives:

- Provide scientific knowledge that will revolutionize technologies and clean-up approaches to significantly reduce future costs, schedules, and risks
- "Bridge the gap" between broad fundamental research that has wide-ranging
 applicability such as that performed in DOE's Office of Science and needsdriven applied technology development that is conducted in EM's Office of
 Science and Technology
- Focus the nation's science infrastructure on critical DOE environmental management problems.

The intent of this *EMSP Communication Products Summary* is to provide information concerning varied research transition activities. Research transitions are measures of how successfully the program has transitioned knowledge gained from research projects to other areas. These measures may be in the form of actual transfers of new knowledge or data gained through research products or processes to other areas within EM, such as Focus Areas and Crosscutting Programs, or may be more general knowledge transfer measures found in similar research programs, such as collaborations, numbers of student researchers, peer reviewed papers and presentations (communication products), or consultations.

Since 1996, the EMSP has funded over 300 basic research projects at 90 universities, 13 national laboratories, and 22 other governmental and private laboratories in 39 states and 7 countries. Many of these projects have generated sufficient technical data and identified specific, potential field applications to warrant movement into the applied R&D arena. Communications products from EMSP-funded projects, with total quantities in each category as follows:

•	Type of Publication/Presentation	<u>Total</u>	
	Journal Articles	674	
	Media Reports	1	
	Other (Encyclopedias, manuscripts)	45	
	Papers	38	
	Patent disclosures and applications	37	

Posters	60
Presentations	833
Press Releases	6
Proceeding Contributions	185
Reports	68
Theses/Dissertations	52

The information presented in this volume is an attempt to capture research publications and other communications products as of October 31, 2001, and, therefore, should not be considered to be a complete or accurate listing. Research transition activities for EMSP-funded projects are documented in *Research Accomplishments for the Environmental Management Science Program*.

TABLE OF CONTENTS

INTRODUCTION	1
EMSP COMMUNICATION PRODUCTS	5
Deactivation and Decommissioning	5
Analytical Chemistry and Instrumentation	5
Biogeochemistry	6
Engineering Science	7
Inorganic Chemistry	11
Materials Science	12
Separations Chemistry	18
Health/Ecology/Risk	
Analytical Chemistry and Instrumentation	20
Health / Risk	
Low Dose Radiation	33
High-Level Waste	35
Actinide (Heavy Element) Chemistry	35
Analytical Chemistry and Instrumentation	
Engineering Science	55
Geochemistry	58
Hydrogeology	59
Inorganic Chemistry	
Materials Science	63
Separations Chemistry	79
Mixed Waste	
Analytical Chemistry and Instrumentation	96
Engineering Science	
Inorganic Chemistry	103
Materials Science	
Microbial Science	107
Separations Chemistry	107
Nuclear Materials	
Actinide (Heavy Element) Chemistry	115
Engineering Science	
Materials Science	117
Spent Nuclear Fuel	125
Engineering Science	125
Geochemistry	126
Separations Chemistry	131
Subsurface Contamination	132
Actinide (Heavy Element) Chemistry	132
Analytical Chemistry and Instrumentation	
Biogeochemistry	
Engineering Science	
Geochemistry	158
Geophysics	171

Health / Risk	188
Hydrogeology	191
Inorganic Chemistry	
Microbial Science	
Plant Science	
Separations Chemistry	223

RESEARCH ACCOMPLISHMENTS FOR THE ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM

INTRODUCTION

The Environmental Management Science Program (EMSP) is a partnership between the Department of Energy (DOE) Office of Basic and Applied Research and the Office of Science. The mission of the EMSP is to develop and fund a targeted long-term basic research program that will result in transformational or breakthrough approaches for solving the Department's environmental problems. The EMSP funds competitively awarded research that seeks scientific understanding leading to reduced remediation risks, costs, or schedules, and helping to solve currently intractable problems. The sites will use the understanding gained through EMSP-supported research to improve their cleanup efforts. Implementing these approaches will lead to reductions in cleanup costs, as well as reductions in risks to workers and the public. The Environmental Management Science Program (EMSP) has funded over 300 basic research projects at 90 universities, 13 national laboratories, and 22 other governmental and private laboratories in 39 states and 7 countries.

Many EMSP projects have generated sufficient technical data and identified specific, potential field applications to warrant movement into the applied R&D arena. Based on the technical strength of his work for Project #81897 (renewal of #64535), *Millimeter-Wave Measurements of High Level and Low Activity Glass Melts*, Dr. Paul P. Woskov, Massachusetts Instutite of Technology, has received an R&D 100 Award for the creation of a new device that uses coherent millimeter waves to measure the viscosity of high temperature melts. Viscosity is an important property in the creation of high-level and low activity glass waste forms. This device has a greater viscosity measurement range than its competitors, is more accurate, and can withstand higher temperatures. It has a broad range of applications in non-EM Programs as well (see cover photo).

The information contained in this document has been gathered from various sources, such as interactions with EMSP staff, proceedings from EMSP workshops and technical conferences, principal investigators, the Project Tracking System, EMSP Project Annual Reports, and literature searches. The information presented is an attempt to capture research transition activities and therefore should not be considered to be a complete or accurate listing. This document contains the best available data as of October 31, 2001.

Problem Areas Addressed by EMSP Research

The EMSP focuses on the key EM problem areas defined in the *EM Research and Development Program Plan*. These problem areas are grouped by waste area, representing the scope of cleanup facing EM. These areas are the basis for developing science and technology investments. The focus areas link both research and technology development to these eight problem areas:

- <u>Deactivation and Decommissioning</u> research advances science to solve
 environmental problems associated with placing equipment and structures in a
 desired end state. Desired end states include complete removal and
 remediation of the facility, release of the facility for unrestricted use, or
 release of the facility for restricted use.
- <u>High-Level Waste</u> research advances science to solve environmental problems associated with storage tanks containing highly radioactive wastes, which include organic and inorganic chemical compounds in solid, colloidal, slurry, and liquid phases.
- <u>Mixed Low-Level Waste (MLLW) /Transuranic Waste (TRU)</u> research advances science to solve environmental problems associated with very limited treatment options and disposal capacities.
- <u>Nuclear Materials</u> research advances science to solve environmental
 problems associated with unstable materials, such as plutonium metals and
 oxides, highly enriched uranium and nuclides of other actinide elements, and
 the long-term storage of stabilized materials.
- <u>Spent Nuclear Fuel</u> research advances science to solve environmental problems associated with safely and efficiently managing spent nuclear fuel from both domestic and foreign reactors.
- <u>Subsurface Contamination</u> research can assist the Department in solving
 environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals, and dense, nonaqueous phase liquids.
- Health, Ecology, and Risk is a crosscutting problem area; therefore, the research investment will impact cleanup work across the Department of Energy (DOE) complex. There is scientific uncertainty about the levels of risk to human health and the environment at the end stages of the DOE cleanup effort. Accurate risk analyses require thorough knowledge of contaminant characteristics, basic ecological processes and principles, rates at which contaminants move through ecosystems, and health and ecological effects. In particular, better knowledge of radionuclide and toxic chemical transport dynamics and the potential effects of long-term exposure to low levels of radionuclides, in combination with other contaminants, is needed to assist the DOE in its efforts to protect the public, workers, and the environment. This research would also improve the understanding of threatened and damaged ecosystems and processes to restore their viability and quality.
- <u>Long-Term Stewardship</u> research supports issues that impact the Department in assessing site conditions after a site is closed and a remedy has been implemented. Long-term stewardship research is necessary to support the Department's commitment to protect human health and the environment after site closure for sites where cleanup to levels acceptable for unrestricted use is not possible.

Science Categories

EMSP research is classified further within each problem area based upon the type of science being conducted. Science classifications include the following:

- Actinide Chemistry including uranium, americium, and plutonium
- Analytical Chemistry and Instrumentation includes sensor development and diagnostics such as non-destructive examination
- Biogeochemistry studies such as oxidation/reduction and biological degradation
- Engineering Science research such as robotics and remote sensing
- Geochemistry that focuses on reactions within the subsurface
- Geophysics that included advanced characterization methods
- Health Science research on dose assessment, bio-markers, and risk estimates
- Hydrogeology that targets subsurface transport mechanisms and predictive modeling
- Inorganic Chemistry including tank waste speciation and metals remediation
- Low Dose Radiation to understand the health effects of low doses of radiation
- Materials Science which studies phenomena such as corrosion, glasses and other waste forms
- Microbial Science research on areas such as bio-remediation and microbial transport
- Plant Science area such as phytoremediation
- Separations Chemistry that focuses on high level tank waste treatment alternatives.

DOCUMENT LAYOUT

This volume catelogues publications and other communications products from EMSP-funded research by EMSP Problem Area and Science Category, and includes the project number, title, name of the principal investigator, and a brief description of the respective project. Research transition activities, as well as projects success posters, fact sheets, and workshop summaries, are documented in *Research Accomplishments for the Envornmental Management Science Program*.

Communication Products. This section provides a list of publications by EMSP project. Journal articles, papers, reports, presentations, posters, and media reports are considered publications for the purposes of this summary. To date, 2001 communications products have resulted from EMSP funded research.

Transitions between Problem Areas are indicated by oversized, bold text on a shaded background, with associated science categories appearing as bold text preceded by a shaded horizontal rule, as follows.

EMSP PROBLEM AREA

EMSP Science Category

Photos and illustrations are placed throughout the document to coincide with information regarding the EMSP research project to which they apply.