Aromatic Amino Acid Biosynthesis in Archaeoglobus fulgidus

H.G. Monbouquette & J.C. Liao, Chemical Engineering, **I. Schröder**, Microbiology & Molecular Genetics, UCLA, Los Angeles, CA 90095

- Discover novel enzymes for metabolic engineering of aromatic synthesis pathways
- Conduct first analysis of aromatic biosynthesis in Archaea
- Clone, express, and characterize the thermostable aromatic biosynthesis enzymes of *A. fulgidus*
- Implement LC/MS and DNA microarrays as complementary tools for functional proteomics

Aromatic Biosynthesis Pathways Lead to Industrial Products

Not all metabolites (bold) are shown. **E4P**, D-erythrose-4-phosphate; **PEP**, phosphoenolpyruvate; **DAHP**, 3-deoxy-D-*arabino*-heptulosonate-7-phosphate; **DHQ**, 3-dehydroquinate; **DHS**, 3-dehydroshikimate; **PABA**, *p*-aminobenzoic acid; **PHB**, *p*-hydroxybenzoic acid; **Phe**, phenylalanine; **Tyr**, tyrosine; **Trp**, tryptophan.

Archaeoglobus fulgidus

- Marine Archaeon
- Isolated from hydrothermal vents, oil wells
- Optimal growth at ~85 °C
- Genome is sequenced: 2,436 ORFs, 1,290 with no assigned biological role
- Energy: lactate + $1.5SO_4^{2-}$ + $4H^+ \rightarrow 3CO_2$ + $1.5H_2S$ + $3H_2O$

Shikimate Pathway Likely Contains Three Novel Enzymes

III III

A. fulgidus ORFs (AF#) where identified. **E4P**, D-erythrose-4-phosphate; **PEP**, phosphoenolpyruvate; **DAHP**, 3-deoxy-D-*arabino*-heptulosonate-7-phosphate; **DHQ**, 3-dehydroquinate; **DHS**, 3-dehydroshikimate; **EPSP**, 5-enolpyruvoylshikimate-3-phosphate

A Novel Trifunctional Chorismate Mutase/Prephenate Dehydratase/Prephenate Dehydrogenase?

UCIA

No aromatic aminotransferase genes (*tyrB*) genes identified on the *A. fulgidus* genome

A Novel PRA Transferase/IGP Synthase?

A. fulgidus ORFs (AF#) where identified. **PRA**, phosphoribosyl anthranilate; **CDRP**, 1-(o-carboxyphenylamino)-1-deoxyribulose-5-phosphate; **IGP**, indoleglycerol phosphate

All Identified Genes Cloned, Many Soluble Overexpression Products

AF#	Enzyme	Gene S	Size (bp)	AA's	MW _{calc}	Solubility	Comments
AF0228	DHQ dehydratase	aroD	588	196	22206.99	Soluble	
AF2327	Shikimate dehydrogenase	aroE	807	269	29136.83	Soluble	
AF1497	EPSP synthase	aroA	1248	416	45085.29	Insoluble	monomer
AF0670	Chorismate synthase	aroC	1080	360	39262.66	Soluble	homotrimer
AF0227	Chor/preph/preph	pheA	1860	620	70946.38	Soluble	trifunctional
AF0409	Asp aminotransferase	aspB-4	1158	386	43140.16		homodimer
AF2129	Asp aminotransferase	aspB-2	1137	379	42698.89	Soluble	homodimer
AF1623	Asp aminotransferase	aspB-3	1170	390	43615.06	Soluble	homodimer
AF2366	Asp aminotransferase	aspB-1	1119	373	41703.09	Insoluble	homodimer
AF1603	Anthranilate synthase I	trpE	1233	411	46345.54	Insoluble	
AF1602	Anthranilate synthase II	trpG	534	178	19592.77		
AF1604	PRA transf/IGP synth	trpD	1638	546	59327.61	Insoluble	bifunctional
AF1601	PRA isomerase	trpF	597	199	22017.2	Soluble	monomer
AF1599	Trp synthase α subunit	trpA	744	248	27299.98	Soluble	
AF1600	Trp synthase β subunit	trpB-2	1191	397	43744.69	Soluble	

Cloning & Enzyme Characterization Results

- Putative gene for bifunctional, PRA transferase/IGP synthase (AF1604) contains a stop codon between functionalities
- Product of gene for hypothetical trifunctional chorismate mutase/prephenate dehydratase/prephenate dehydrogenase (AF0227) shows dehydrogenase activity
- Shikimate dehydrogenase partially purified and characterized
- Shikimate dehydrogenase and trifunctional enzyme clones sent to collaborators at NIST for crystal structure determination

Properties of *A. fulgidus* Shikimate Dehydrogenase (Preliminary)

- $M_r \sim 32 \text{ kDa}$; $M_{calc} = 29.1 \text{ kDa} (E. \text{ coli } M_{calc} = 29.4 \text{ kDa})$
- K_{m, NADP}(87 °C, pH 7.5) = 120 ± 10 μM (*E. coli*, pH 8.5, 31 μM)
- K_{m, NAD}(87 °C, pH 7.5) = 8.5 ± 0.8 mM
- $K_{m, shik}(87 \text{ °C}, pH 7.5) = 160 \pm 10 \ \mu\text{M}$ (*E. coli*, pH 8.5, 55 \ \mu\text{M})
- T_{opt} ~ 90 °C; pH_{opt} ~ 7.5 (*E. coli* pH 8.5)
- Spec. Act. >300 U/mg; Retains ~20% of activity at 60 °C
- $t_{1/2}(87 \text{ °C}) \sim 1 \text{ hr; } t_{1/2}(60 \text{ °C}) \sim 6.5 \text{ hr}$

Zymograms for Novel Enzyme Separation and Activity-Based Detection

General Procedure

- Separate native proteins by electrophoresis
- Incubate gel with detection components at 85 °C

Comments

- Sensitive
- Separates proteins
- Detects isozymes
- Requires clever assay design
- Must purify protein for Nterminal sequence

Coordinated Use of DNA Microarrays and Activity-Based LC/MS Enzyme Assays

Expression Level Changes for *E. coli* Growth on Acetate vs. Glucose

Concluding Remarks and Goals

- Early success cloning and expressing *A. fulgidus* genes in *E. coli*
- Continued characterization of cloned gene products
- DNA microarrays can resolve <2-fold expression levels
- Further improve standardization, normalization, and statistical analysis of DNA microarray data
- Coordinate application of DNA microarrays and LC/MS for enzyme/pathway discovery
- Focus on identification of novel genes/enzymes in shikimate pathway

- NIST (70NANBOH0064)
- NSF (BES-9911718)

Acknowledgements