Metabolic Engineering of Methylobacterium extorquens AM1

S. J. Van Dien and M. E. Lidstrom University of Washington Seattle, WA

- •Methanol is inexpensive, soluble in water, clean
- •Methanol is produced from natural gas, but can be produced from agricultural wastes
- •Methylotrophic bacteria are amenable to genetic manipulation
- Goal: to develop process strains for converting methanol to chemicals and materials biologically using methylotrophic bacteria and metabolic engineering

Potential Products

- Amino acids
- Industrial enzymes and cofactors
- Proteins for novel materials applications
- Polyhydroxyalkanoates (PHAs)
- Polysaccharides (viscosifiers)
- Carotenoids

Methylobacterium extorquens AM1

- **a**-proteobacterium
- Grows on one-carbon compounds (methanol, methylamine)
- Also grows on multi-carbon compounds (succinate, pyruvate)
- Substantial toolkit for genetic analyses
 - » 110 genes identified
 - » 75 of those involved in methylotrophy
 - » 6x genome sequence complete
 - » Cloning and expression vectors available

Methylotrophic Metabolism

Issues for Metabolic Engineering

- Increase serine cycle flux by improving efficiency of formaldehyde handling
- Decrease by-product formation
 - » Poly-b-hydroxybutyrate is 40 wt.% of cell during methanol growth
 - » Carbohydrate is 12 wt.%, part of which is secreted
- Re-direct central metabolism toward essential precursors

- Use flux balance analysis to develop a model of AM1 central metabolism
- Use model in conjunction with genome sequence and experiments to reconstruct growth on multicarbon compounds
- Use ¹³C-tracing and GC-MS to improve accuracy of model predictions
- Test metabolic engineering effort using a model product

- 68 reactions and 65 metabolites
- Growth on methanol, succinate, or pyruvate
- Experimental measurement of cell macromolecular composition
 - » Used *E. coli* biosynthetic reactions to calculate precursor requirements (EcoCyc, Pramanik and Keasling 1997)
- Calculated elementary modes (Schuster et al, 1999)
 - » Gives all extreme solutions, including optimal solution(s)
 - » Examined elementary modes to explore metabolic capabilities of the cell
 - » Choose elementary modes based on enzyme activity and mutant data

Simulation Results- Methanol Growth

Simulation Results- Pyruvate Growth

Phenotypes of in silico Mutants

Construction of Insertional Mutants

Make suicide plasmid with pAYC61

Select on MeOH or Succinate medium containing Kan

Screen colonies on Tet plates

Single crossovers (Tet^R) -

Double crossovers (Tet^s) -

contain both mutant and wild type gene

contain only mutant gene, and have mutant phenotype

Mini-TnphoA Transposon Mutagenesis

- The mini TnphoA transposon inserts into the genome creating random insertion mutations.
- These mutations are selected for by growth on methanol with tetracycline resistance.
- Once identified, the mutants are screened for slow or no growth on pyruvate and succinate

Phenotypes of Selected Mutant Strains

- Growth yields are within range of measured values
- Cells are NADH-limited during methanol growth, and ATP-limited when grown on non-C1 substrates
- Model correctly predicts most mutant phenotypes tested
- Used model in conjunction with mutant analysis to begin metabolic reconstruction of non-methylotrophic growth

- Goal: use ¹³C-label analysis to gain more information about internal fluxes
- Method (Christensen and Nielsen, 1999)
 - » Grow cells with given ratios of labeled/unlabeled substrate
 - » Isolate total protein, hydrolyze, and analyze derivatized amino acids by GC-MS
 - » Amino acids can be directly linked to their precursors
 - » Write balance equations on each possible isotopomer of each metabolite

GC-MS Results- Alanine Spectra

Acknowledgments

We thank the NSF/EPA Metabolic Engineering Program for financial support

> NSF grant # BES9819957 EPA grant # G8H20574

Laboratory and technical assistance:

Melinda Hough (Tn5 mutagenesis) Yoko Okubo (directed insertional mutants) Tim Strovas and Martin Sadilek (GC-MS)