UNITED STATES ARMY ENVIRONMENTAL HYGIENE AGENCY
 ABERDEEN PROVING GROUND, MD 21010-5422

GUI DE FOR FI SH KI LL I MESTI GATI ONS

Approved fcr public rel ease; distribution unlimited.

UNCLASSI FIED
security classification of this page (mhen Dea Entored)

17. DISTRIBUTION STATEMENT (ot the abetrect entored in Block 20, il difteremt from Report)
10. SUPPLEMENTARY NOTES
19. KEY woRDS (Continue an teveted dda II naceedery and Identliy by bloek number)

Fish kill
Whter quality
Water pollution
Al gal bl oons

This technical guide was written to serve as an aidin sol ving fish kills locally by Army installations and give specific guidance on this Agency's role in assisting with fish kill investigations. Possible causes of fish kills, possible preventive neasures, and preparing for/conducting fish kill investigations are the maj or topics di scussed.

SUBJ ECT: Guide for Fi sh Kill Investigations, USAEHA Techni cal Guide No. 116

SEE DI STRI BUTI ON

Subject docunent is furni shed to serve as an aid to installation level personnel in sol ving fish kills and gi ves specific guidance on this Agency's role in assisting with fish kill investigations. Request this Technical Guide be revi ewed and forwarded to those activities under your command.

FOR THE COMMANDER:

1 Incl
as

DI STRI BUTI OX
COMMANDERS
DARCOM (DRCSG) (125 cy)
FORSCOM (AFEN-FE) (70 cy)
TRADOC (ATEN) (70 cy)
HSC (HSPA-P)(5 cy)
VESCOM (Surgeon) (I O cy)
MDW (ANSU) (10 cy)
USACC (ACC- PA S) (5 cy)
DI RECTOR
DLA (DLA-WS) (50 cy)
SUPERI NTENDENT
USMA (5 cy)
CF:
Cdr, 10th Med Lab (AEMML-PM) (3 cy)
Cdr, USA Pacific EHEA (3 cy)
Codr, ea MEDCEN/MEDDAC (PVNTMED Actv) (2 cy)

HSE-EW-A/WP Technical Gui de
GI DE FOR FI SH KI LL I MESTI GATI ONS

PREFACE

1. This Agency, due to the nature of its mission and responsibilities in envi ronnent al heal th, recei ves requests from various Army activities in CONUS and OCONUS for assi stance in sol ving the cause of fish kills. Prior to 23 October 1974 the US Army Envi ronnental Hygi ene Agency (USAEHA) had no formal organi zed approach to handling these kills, and there was no Army activity to which such requests could be adequatel y referred. Requests for fish kill assi stance cane by letter or tel ephone to various USAEHA di vi si ons. Mbre often than not, the di visi on recei ving the request did not have the expertise to sol ve the problem and sought assi stance from other di visi ons. Thi s lack of an organi zed approach proved unsatisfactory. On 23 October 1974, USAEHA activated the Subhuman Vertebrate Coordi nating Committee which is an Agency group that handles requests for assistance in ani mal kills. Mbst requests are satisfactorily handled by tel ephone, and others are referred to nore Iocal Army activities that can handle these requests.
2. The Subhuman Vertebrate Coordinating Comittee was formed primarily in response to Agency requests for assi stance infish kills. The committee is chai red by a veteri nary pathol ogi st and the nenbers incl ude aquatic bi ol ogists, entonol ogists, and chemists from the three Agency di vi si ons that provide anal ytical support for this comittee's activities. It is the policy of this Agency to use a multidisciplined approach when handling fish kilis, as expertise in one scientific discipline often does not lend the scope needed to sol ve the problem at hand. Si nce the inception of this committee, up to seven fish kills per year have been handled by formal reports. Mbre fish kills have been adequately handled by the use of infornal tel ephone consultations with various committee nenbers and representatives of the requesting organization than through formal Agency studi es.
3. This fish kill manual was written and compiled by M. Carl Bounkamp, an aquatic biol ogist on the staff of this Agency's Water Quality Engineering Di vision, and edited by the Agency Subhuman Vertebrate Coordi nating Comittee. This guide was written with the intention that it will serve as an aid in sol ving fish kills locally by Army installations and gives specific guidance on this Agency's role in assisting with fish kill investigations.
HSE-EWA VP Techni cal Gui de Guide for Fish Kill Investi gations

CONTENTS

Paragraph Page
I. US ARM EMM RONMENTAL HYG ENE AGENCY'S ROLE IN FI SH KI LL I MESTI GATI ONS 1
II. I NTRODUCTI ON 2
III. OBJ ECTI VES 3
IV. POSSI BLE CAUSES OF FI SH KI LLS 3
A. Natural Fish Kills 3
B. Man-i nduced Fish Kills 11
V. POSSI BLE PREVENTI VE MEASURES 12
VI. PREPARI NG FOR A FISH KI LL I MESTI GATI ON 13
VI. FI ELD I MNESTI GATI ON 13
APPENDI X A . FI SH AND I MERTEBRATE KI LL MESSAGE FORM A-I
APPENDIX B - FISH AND I MERTEBRATE KI LL EVALLATI ON FORM FOR FI ELD I MESTI GATI ON B-I
APPENDI X C - SYMPTOMS EXH BI TED BY FI SH EI THER PARASI TI ZED OR DI SEASED C-I
APPENDIX D - RECOMMENDATI ONS FOR SAMPLI NG AND PRESERVATI ON OF SAMPLES D. 1
APPENDI X E - BASIC COUNTI NG PROCEDURES FOR I MESTI GATI NG FISH KI LLS E-I
APPENDIX F , GOSSARY F-1
APPENDIX G - SELECTED BI BLI OGRAPHY G-1

HSE-EWA UP Techni cal Gui de
Guide for Fi sh Kill Investi gations
I. US ARM EMM RONMENTAL HYG ENE AGENCY' S ROLE IN FISH KILL INVESTIGATIONS.
A. Support is available through the USAEHA Subhuman Vertebrate Coordi nating Committee for investigating Army installation fish kills. Requests for this Agency's assi stance should be made by tel ephone and letter request to: Chi ef, Pat hol ogy and Ani mal Care Branch, Toxi col ogy Divi si on (Chai rnan, Subhuman Vertebrate Coordi nati ng Committee), AUTOVON 584-3980 Commercial 301 671-3980, after duty hours AUTOVON 584-3816, Commercial 361 671-3816.
$\begin{array}{ll}\text { ADDRESS: } & \text { Commander } \\ & \text { US Army Envi ronnent al Hygi ene Agency } \\ & \text { ATTN HSE-LT, C, PACB } \\ & \text { Aberdeen Provi ng Ground, MD } 21010\end{array}$
Requests for assi stance should incl ude, when applicable:

1. Fish and Invertebrate Kill Message Form (Appendi $\mathbf{x ~ A) ~}$
2. Fi sh and Invertebrate Kill Eval uation Formfor Field I nvesti gation (Appendi x B)
3. The number and size of samples to be submitted
4. The probable number and types of anal yses requi red
5. The date the samples will be recei ved by USAEHA
6. Method of shi pnent to USAEHA

HSE-EW A VP Techni cal Gui de
Guide for Fish Kill Investi gations
B. Imediately after USAEHA receives notification of a fish kill with a complete history, the Agency cormittee with fish kill responsibility meets. At this neeting, deci si ons are made as to the approach to take to incl ude the appropriate laboratory tests needed. This is whit is absol utel y essential that a complete, accurate history of the subject kill be presented to this Agency as soon as possible. Laboratory tests are expensi ve and timeconsuming. Performing unnecessary procedures would be a waste of Army resources.
c. This Agency has laboratory capabilities to perform aquatic bi oassays, gross and microscopic pathol ogy eval uations, and chemical eval uations of organic and i norganic pollutants, to incl ude heavy netal s, pesticide and herbici de procedures on water, sedi nent, and bi ol ogi cal speci nens. USAEHA has a very limited microbi ol ogy capability and Iaboratories that nould support fish kill investigations are not arranged to provide a highly restricted chai n of custody.
D. Interim and final reports are prepared by the Agency Subhuman Vertebrate Coordi nating Committee. This committee is composed of a veterinary pathol ogist, an aquatic biol ogist, an entonol ogist, and two chemists. After receipt of samples, a letter of acknow edgenent is sent within $\mathbf{3}$ days to the contributing organization. Fi nal reports should leave this Agency no later than 45 days after sample recei pt. Interim reports are sent when thi s 45-day deadli ne cannot be net. Meani ngf ul tel ephonic contact bet ween the requesting organi zation and this Agency is encouraged.
E. USAEHA does not routinely provi de personnel to requesting agencies, but can on a limited basis, depending on this Agency' s udgnent and availability of funds. Sample contai ners can be provided by USAEHA, but usually this is handled at the local level.
F. Once the cause of a kill is known, if applicable, cl eanup and preventive neasures should be addressed. Thi s Agency has the necessary expertise to consult in this area and assi stance should be sought through the Chai rnan, Subhuman Vertebrate Coordi nating Committee (AUTOVON 584-3980, Comercial 301 671-3980).

II. I NIRODUCTI ON

A. Fish and invertebrates (insects and crustaceans) make excellent water quality nonitors. When fish die and float to the surface, it is apparent that all is not well. It is unfortunate that invertebrates are not so apparent to the passi ve observer as fish are. Invertebrates are generally nore sensitive to pollution and wouldindicate a problem before it becones so devastating. However, in the event of a fish kill, the condition of the invertebrate population could be very important in narrowing the probable
causes. For instance, fish di seases nould not affect the invertebrates, whereas pollution would.
B. Man's activities directly or indirectly cause situations that result in water quality problens that can lead to the death of fish or numerous other aquatic organisns. The majority of fish kills can be prevented or their extent greatly reduced by use of a few preventive practices. A thorough, accurate, and timely onsite investigation can greatly increase the ability to determine the cause of a fish kill; thus, naking it easier to prevent another occurrence. The possible legal implications and liabilities associ ated with fish kills are becoming nore complex and stringent which al so increases the necessity for a thorough and accurate investigation.
C. One of the greatest obstacles to a concl usi ve investigation of aish kill is the inability to arrive on the scene soon enough. Speed is of utnost importance in the initial phases of any fish kill investigation. Often, the cause of a kill can never be resol ved if the proper data are not collected while the' fish are still dying or very shortly thereafter. Toxi cants disperse, fish deteriorate, conditions change, fish are blown or drift away from the affected area, and concl usi ve evi dence becones hard, if not impossible, to find if tine is allowed to el apse.
D. Si nce it is imperative that investigation, response be so-short and USAEHA has a lack of immediately available personnel, it is reconmended that installation personnel carry out the onsite investigation. This guide, plus support furni shed by USAEHA, Aberdeen Provi ng Ground, MD 21010, whi ch provi des consul tative, anal ytical , and bi ol ogi cal services to Army installations, should be sufficient to determine a cause for nost fish kil 1 s .

III. OBJ ECTI VES.

A To make people aware of the types of data that should be collected in a fish kill investigation.
B. To gi ve gui dance on how to be prepared for and to prepare for a fish kill investí gation.
C. To gi ve gui dance on how to carry out an onsite fish kill i nvesti gati on.
IV. POSSI ble CAUSES OF FISH K LLS.

A Natural Fish Kills.

1. Disease is one natural cause of fish kills. There are certain conditions that must be present for a fish to becone di seased or parasitized. Generally, all three must be present for di sease to occur:
a. STRESS - may be caused by handl ing, croudi ng, low water I evel, lack of food, excessi ve noi se, turbulence, excessi ve or sudden change in temperature, pH , or other water quality characteristic.
b. CAUSATI VE AGENT - nay be vi ral, bacterial, or a parasite. There is generally nothing that can be done in nature to control this factor as these agents can be ubi quitous in the aquatic envi ronnent.
c. SUSCEPTI BI LITY - in many instances the size is very important. Al so invol ved may be the general body condition; i.e., fish are generally weakest in late winter and early spring (spawning) and are nore, subj ect to becoming di seased or parasitized. Symptons exhibited by fish either parasitized or di seased is presented in Appendix C.
2. Al gal bloons can cause the following conditions leading to fish kills:
a. One of the nost frequent causes of fish kills in ponds and, to a lesser degree, in lakes is al gal bloons. Al gae are ubi quitous in the aquatic envi ronnent. Thus, the onl y thing preventing al gal bloons is the lack of one or nore essential requi rements for an al gal bloom to occur. The primary ingedientr for an al gal blomare sufficient nutrients, sunlight, and temperature. Nitrogen and phosphorous are generally the nutrients that limit al gal grouth in the warm weather nonths when Iight and temperature are sufficient. In isol ated cases, micronutrients or sone other physical condition such as a toxicant, pH , turbidity, or rapid mixing can limit growth.
b. Al gae are the prinary producers in the aquatic envi ronment, thus produci ng much of the oxygen and food for the organisns living there. Al gae, bacteria, and aquatic organi sns all respire and use oxygen. At ni ght, or when al gae die, respiration becones greater than the photosynthetic production of oxygen, and an oxygen deficit can occur, When oxygen diffusi on or natural aeration cannot replenish this deficit fast enough, oxygen level s can fall bel ow that required to sustain aquatic life. Certain fish can tol erate lower oxygen levels than others as indicated in Table 1. Under Iow oxygen conditions, fish can generally be seen gul ping air at the surface or I ying j ust under the surface gul ping water that is in contact with the air, thus obtai ning sone oxygen from diffusi on.
c. There are generally six ways al gal boons can lead to fish kills.
(1) First, persistent cloudy weather during a blom condition causes oxygen production through photosynthesis to fall behi nd the rate of respiration. If the oxygen deficit is great enough, a fish kill occurs.

HSE-EW-A/WP Techni cal Gui de
Gui de for Fish Kill Investi gations

TABLE 1. LETHAL LEVELS OF DI SSOLVED OXYGEN FOR SELECTED FISHES

Scientific Nane Comon Nane	Si ze	DO mg/L*	Deat hs	Temp ${ }^{\circ} \mathrm{C}$
Aloss sapi di ssi ma Anerican shad	$6-7 \mathrm{~cm}$	0.9-1 .4	50\%	21-23
Chaenobryttus gul osus Warmouth	13 cnt	0.4-1 . 6	100\%	21-32
$\frac{\text { Ctenopharyngodon idella }}{\text { Grass carp }}$	1. 8-78 g	0.2-0.6	100\% r range	12-18
Cyprinus carpio Carp	$\begin{aligned} & 8 \mathrm{~cm} \\ & 2 \mathrm{yr} \end{aligned}$	$\begin{aligned} & 0.4-1.2 \\ & 0.3-0.8 \end{aligned}$	$\begin{gathered} 50 \% \\ \text { 100\% range } \end{gathered}$	$\begin{gathered} 10-16 \\ 5-8 \end{gathered}$
Esox lucius Northern pi ke	1-2 yr	0.5-1.6	50\%	15-25
Ictal urus punctatus	j uveni le	0.8-0.9	ave	25-35
Leponis cyanel I us Green sunfish	t	1.5	100\%	4
gepolit sb o s u s Pumpki nseed	-	3.1 0.9	$\begin{aligned} & 100 \% \\ & 100 \% \end{aligned}$	15 4
$\frac{\text { bepponirs ochir us }}{\text { Bl uegi II }}$	$\begin{array}{r} 5 \mathrm{~cm} \\ 2-6 \mathrm{cmt} \end{array}$	$\begin{gathered} 0.9 \\ 0.6-1.1 \end{gathered}$	$\begin{array}{r} 50 \% \\ 100 \% \end{array}$	$\begin{gathered} 30 \\ 24-30 \end{gathered}$
M cropterus dol oni eui Snall nouth bass	4 g	0.5-1 . 2	50\%	11-27
M cropterus Sal noi des Largenouth bass	$\begin{gathered} \mathrm{t} \\ \mathrm{t} \\ 4-14 \mathrm{~g} \end{gathered}$	$\begin{gathered} 2.3 \\ 3.1 \\ 0.9-1.4 \end{gathered}$	$\begin{aligned} & 100 \% \\ & 100 \% \\ & \text { ave 50\% } \end{aligned}$	$\begin{gathered} 4 \\ 15 \\ 25-35 \end{gathered}$
Notropis cornutus Common shi ner	I-2 yr	0.5-1 . 0	50\%	12-27

See foot notes, page 6.

HSE-EWA VP Techni cal Gui de Guide for Fish Kill Investigations

Sci entific Nane Common Nane	Si ze	DO mg/L*	Deaths	Temp ${ }^{\circ} \mathrm{C}$
Oncorhynchus ki sutch	Yearling	1.2-1 . 6	50\%	14
Coho sal mon	$4-11 \mathrm{~cm}$	1.1-1 . 7	0-833	12-20
Oncorhynchus nerka	Adul t	2.3-2.7	most	21-23
Sockeye sal mon				
Perca f lavescens	10 cm	0.5-1 . 2	50\%	10-20
Yel l ow perch	yearling	0.4-0.9	100\%	11-23
Pi mephal es pronel as	3.6 cm	1.0	none	18-26
Fathead min nnow 1.0				
Ponoxis ni gronacul at us	t	4.3	100\%	26
Black crappi e	\dagger	1.4	100\%	4
Sal no clarki	11-17 cm	1.2-1.4	50\%	11
Cutthroat trout				
Sal no gai rdneri i	6 mo	1.3-1.6	50\%	13-20
Rai nbow trout	10 cm	2.4-3.1	50\%	16-20
Sal no sol ar	fingerling	1.5	threshol d	15
Atlantic salmon	yearling	1.9	threshol d	16
Sal no trutta	yearling	1.5-2.5	50\%	9-21
Brown trout	2.9 g	3.2	50\%	22-24
Sal vel i nus fonti nal is	fingerling	1.0-1.8	50\%	9
Brook trout	yearling	1.6-2.6	50\%	12-21

[^0](2) Second, occasi onally an al gal bloom will experience a rapid die- off rate and the decomposition of al cells will deplete the oxygen supply.
(3) Thi rd, sone forns of al gae float to the surface forming a scum I ayer that i mpedes light penetration. Thus, photosynthesis only occurs near the surface, and di ssol ved oxygen (DO) decreases at lower depths where respiration and decomposition are still occurring.
(4) Fourth, scumforming al gae nay suffer rapid die offs due to injury sustai ned fromintense sunlight or ot her causes. Subsequent degradation of al material causes depletion of di ssol ved oxygen.
(5) Fifth, al gaci des are soneti nes used to stop an al gal boom and subsequent decomposition causes oxygen depletion. If use of an al gacide is deened necessary, only a portion of the water body should be treated at a tine. Using an al gaci de is like nowing a lawn it must be repeated periodically. Generally, it would be better to renove the nutrient source. Treat the ail nent rather than the symptom
(6) Fi nally, toxins produced by certain species of al gae will sonetimes cause a fish kill. Generally, this phenonenon occurs in the marine envi ronment with di noflaqel lates. However, toxicity occasionally occurs in fresh water and is generally caused by the breakdown products of proteins cont ai ned in bl ue-green al gae.
d. There are a few characteristics one can look for in determining if an al gal bloom could have caused a fish kill. Discol oration of the water, ot her than silt load, may indicate a blom Most blons will give a greeni sh col or that is often described as a "pea soup" green. However, sone species of Anabaena cause a bright bl ue col or, while speci es of Trachel ononas may cause a reddi sh to brown col or. Generally, when such conditions exist and an object cannot be di stingui shed nore than a few inches into the water, a blom could be occurring. DO and pH will go hi gh ($D 0$ of $10 \mathrm{mg} / \mathrm{L}$ or above, pH 10 or above) during midday, and both will drop substantially during the night, reaching a low about daybreak ($\mathrm{DO} 0.5 \mathrm{mg} / \mathrm{L}, \mathrm{pH} 5-7$).
e. If an al gal blomis suspect for a fish kill, one should try to l ocate the source of the nutrients. Vater samples of any point di scharge should be collected and anal yzed for nutrients (Appendi x D). Other possible sources may be agricultural, golf course or Iaw runoff, intentional fertilization of ponds for fish production, septic tank leachate, or tributary streans that recei ve sewage treat nent effluent or other nutrient-rich water.
f. Many times, the source of nutrients can be determined during the investigation. If a certain source is suspect, a water sampling schene should be implemented to confirm or di sprove the suspicion (paragraph VII.D). In cases where an apparent source of nutrients cannot be found, samples should be collected frominfluent streans to pi npoint the area from which the nutrients origi nate.
g. When an al gal boomis suspect for a fish kill, a representative al gal sample shoul d be collected (paragraph VII.E). Very often even a representative sample will not hel p the p ycologist to be concl usi ve. In nost fish kills, notification of the kill to the proper authorities cones so I ate that comprehensi ve al gal anal yses becone futile. Neverthel ess, only with representative al gal samples can the phycol ogi st have the opportunity to confirman al gal boom as the causative agent of a fish kill.
h. A representative al gal sample should not be collected where al gae have accumul ated because of wi nd action. surface with no cl umps of surface al gae. It should be collected bel ow the If surface al gae are suspect for a kill, a separate sample should be taken of the surface scum Aliter of water collected per site is sufficient for a sample.
i. The presence of a species of al gae known to be toxic is not proof it was the causative agent, nor are high numbers of al gae proof that the al gae depl eted the oxygen. The oxygen should be neasured at dawn and, if levels are sufficient ($4-5 \mathrm{ppm}$ for warmater fish), testing for toxicity could be performed. One could place sone unaffected fish in a tank of oxygenated water that previ ously killed fish to see if they survive. Even a bi oassay will not prove that toxic al gae killed the fish; but identification of toxic al gae in large numbers al ong with the bi oassay nould be rather strong evi dence.
j. Al gae are normally not a problemin a river system. Most of the al gae are attached. The nature of flowing water is such that plankton does not becone abundant. Al so, with the turbulence of the water, a larger portion of oxygen can be provided by aeration. Streans can handle a hi gher bi ochemi cal oxygen denand (BOD) loadi ng than standing water. Thus, unl ess a streamis novi ng very sl owly or a hi gh BOD loading is added to the stream oxygen depletion will not occur. However, discharges are nornally in streans, and high BOD I oadi ng can occur.
3. Oxygen depl etion due to ice and snow cover can be another cause for fish kills. At low temperatures, water can hold much nore oxygen, and respi ration is greatly sl owed. But when ice forns, surface aeration can no Ionger provi de any oxygen to the system The oxygen present at the tine of ice fornation, pl us what is produced in photosynthesis and any oxygenated water entering the system must last until spring breakup. If the ice and
snow cover reduce light penetration enough to sl ow photosynthesis so that less oxygen is produced than respired, oxygen concentration can fall. If oxygen is depl eted to the point where fish can no longer survive, there is a fish kill. The snow and ice must be very thick, the water shallow, and the ice cover prol onged for such a kill to occur.
4. Oxygen depletion or pH changes due to pl ant respiration or organi c decomposition can be a contributing factor in fish kills. The decomposition of organic natter denands alot of oxygen and lowers the pH. The fish nould normally die from oxygen depletion. However, the lower pH would contribute to the stress on the fish.
5. Abrupt temperature changes do not occur very often in natural waters, but thermal effluent and reservoi rel eases could be a problem leading to fish kills. Naturally, a sei che could bring cold water to the surface that could cause a temperature change of several degrees. Oxygen depletion in the hypol imi on could drive col dwater fish into surface waters that are too warmfor their survi val. Fi sh have a tol erance level above whi ch they cannot survi ve. Table 2 gi ves sone temperat ure criteria for sel ected fish. * Val ues vary consi derably according to acclimation temperature or whether or not the fish are under sone additional stress.
6. Spring or fall turnover can bring toxic materials or oxygen-free water to the surface causing a kill. This type of fish kill will happen when the water is a uniform temperature throughout, and wave action brings hypol imetic water to the surface. Many toxic naterials becone nore sol uble in a reduci ng (oxygen- deficient) envi ronment.
7. High wi nds can cause a sei che novenent in which toxic or DOfree hypol imetic water is brought to the surface even agai nst thermal density gradi ents leading to a fish kill. The sei che could cause temperature or salinity changes al so.
8. Salinity changes can al so cause fish kills. Large quantities of rain or long periods without rain can cause such changes. In estuari es where this generally occurs, the fish normally nove with the change and avoid probl ens. However, fish are sometimes restricted in their novenent or changes occur too rapidly.

[^1]table 2. temperaivre criteria for growth and survival of fish [$\left.{ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)\right]$

Speciet	Henime Thily moricta emperatare tor gxertis	 deurviwal of intert
Alarte	-	-
Atmetc malth	20 (6)	23 (73)
tienouch mufialo	-	\cdots
Heck exapple	11 (1)	\rightarrow
H1uedill	32 (90)	35 (93)
atook treut	19 (66)	24 (13)
Hapen malbeed	\cdots	\cdots
krena erout	17 (H^{3})	34 (33)
84F\%	-	$=$
Chmal eatfioh	12 490)	35 (33)
coll melegt	18 (4)	34 (19)
Enertid alutoer	30 (4)	\cdots
Fethent minum.	-	-
Fredmencer drum	-	-
Luht herriag (cfetoy	$17(63)^{6}$	38 (77)
Lehe whicultah	-	-
Lelay freut	-	∞
Largatruch bats	32 (90)	34 (93)
Worehate pite	24 (12)	10 (4)
Mreplinened	-	**
	-	-
Emater kroue	10 (46)	14 (75)
Sauger	25 (11)	-
Selleauth beat	79 (6)	--
Smenilquath buttala	\cdots	
Abataga eelman	18 (64)	22 (12)
Axriped teap	-	
Thramifio ahad	-	
Milay*	23 (71)	
Heter bate	-	
[他ite cxappld	28 (63)	
Lused pareh	\square	\cdots
Mate anotur	20. $(12)^{\text {e }}$	\cdots
Tellow preth	29 (E4)	-

Acelevieted sceordtan to equetion

chased on data tor larvat.

HSE-EWA VP Techni cal Gui de Guide for Fish Kill Investigations
9. Severe storns, water level fluctuations, turbidity, siltation, or runoff can al so cause fish kills.
10. Physi ol ogi cal changes such as spawning can cause fish kills. Sal non, Al ewi ves, and shad are of ten found after spawning.
11. Fish can al so die of old age, but the numbers affected at any one time are usually small and normally occur under stressful conditions.
B. Man-i nduced Fi sh Kills.

1. Industrial wastewater di scharges could contain a wide range of toxi c substances. Some of the toxi cants could be metal-plating wastes, armunition or expl osi ve wastes, sol vents, grease and oils, acidic or al kaline wastes, photographic wastes, organic compounds, pesticides, or Pol ychl ori nated Bi phenyl s (PCB) to name a few Al so industrial wastes can have a hi gh BOD or chemi cal oxygen denand (COD), causi ng oxygen depl etion.
2. Donestic wastevater di scharges could contain a wide variety of toxi cants, especially if industrial wastewater goes to the sewage treat nent plant. However, donestic wastewater normally contributes nutrients (nitrogen and Phosphorous), detergents, BOD and, if chl orinated, sone toxic chl orine and chl oram nes. Nutri ents can cause eutrophication, al gal bloons and, eventually, oxygen depletion. Detergents disrupt gill tissue and oxygen transfer. A BOD greater than the assimilation capacity of the recei ving water can al so cause oxygen depletion. Chl orine can be toxic at very low levels. In EPA Quality Criteria for Mater,* it is recommended that total resi dual chl ori ne not exceed $0.002 \mathrm{mg} / \mathrm{L}$ for sal mon and $0.01 \mathrm{mg} / \mathrm{L}$ for other aquatic life.
3. Agriculture and rel ated activities can cause fish kills through poor control of pesticides, fertilizers, or organic waste products. Most contributions from agriculture hould be in the runoff. However, direct contamination is highly possible. Spraying of ditch banks, pond edges, or wind drift of sprays into the water can cause direct contamination. Al so, pesticide contai ners that are rinsed out, di scarded, or used for floats in water bodi es can cause fish kills. Fertilizers and organic wastes can cause problens similar to those of donestic wastewater di scharges.
4. Temporary activities such as pesticide-spraying, construction, and spills should be considered in the event of a fish kill. Army
[^2]HSE-EWA WP Techni cal Gui de
Guide for Fish Kill Investigations
installations generally have an extensive spraying program have denuded areas for several different reasons, and have large quantities of potentially dangerous compounds stored or shi pped.
5. Whter mani pulation such as dans can cause fish kills. If hypolimetic water is rel eased, it could possibly be oxygen- deficient, too cold, toxic, or too hi gh in carbon di oxide. Whter falling over a dam and allowed to entrap air that is then pulled to great depths will become supersaturated with gases causing gas-bubble di sease in fish commonly called "pop eye" di sease. Water manipulation-can al so stop migration and spawning, and alter habitat conditions so that fish populations could drastically change or be eliminated without physically killing a fish.
6. Other possible causes of fish kills could be explosions, abrupt water-level fluctuations, extrene turbidity, or siltation. Also, it nay not al ways be j ust one factor, but a conbi nation of stresses, that add up to a nortality. If a water body lies near an impact area, be sure to check previ ous firing schedules and the possibility of expl osi ons.
v. POSSI ble preventi ve measures. It is the responsibility of the installation to prevent nan- caused fish kills. If a fish kill gets of the installation, the commander could be held legally and nonetarily responsible for danages due to negligence. To prevent such a situation, there are a few precautions that should be taken.
A. Be sure that all wastenater is properly treated bef ore di scharge or proper correcti ve neasures have been taken.
B. Be sure there is an adequate spill prevention program and stress the need for immediate reporting of accidental rel eases or spills of potentially toxic or hazardous materials.
C. Be sure there is an adequate cl eanup plan, and that it is implemented in a timel y manner. This plan should include notification of the office responsible for fish kill investigati ons so that advanced preparation for an i nvestigation can be accompl ished.
D. Be sure the pesticides-sprayi ng program has adequate precautions agai nst contaminating surface waters either directly or through runoff.
E. Try to avoid having recreational reservoi rs that recei ve di scharges or nutrient loading. Al so, whenever possible, have di scharge outfalls in large streans that have Iarge dilution and assimilation capacities.
F. Implement these preventive neasures through an active and vigorous base-wide education program

VI. PREPARI NG FOR A FISH KILL INVESTIGATION.

A. There is al ways the possi bility of legal liability associated with a fish kill. Thus, the investigator's report nay be subject to the scrutiny of judge and j ury. Both planning and conduct of the investigation must be done with great care. A carefully-devel oped, routine field procedure should be available for imedi ate activation whenever a fish kill is reported.
B. Speed is of the utnost importance in a concl usi ve investigation. One should collect as much information as feasible while the fish are still dying or as soon as possible thereafter. One val uable source of information is the informant. He was the first to observe the dead or dying fish and, thus, could be very hel pf ul in the investigation. One should fill out a Fish and I nvertebrate Kill Message Form (Appendi x A) as compl etel y as possible before the informant has a chance to get away, It would al so be very hel pf ul if the informant could participate in the field investigation. Mich tine could be saved in locating the kill and answering questions.
C. The next step is to devel op a pl an for this particular kill. Secure maps of the area to be investigated. US Geol ogical Survey maps are best if available. Otherwise, use the nost detailed nap available. Determine the area of the fish kill and access points to be used. Al so locate possible i ndustrial, munici pal , agricultural or other possibe sources of pol ution. Determine the type and number of samples to be taken, how the logi stics will be handled, and what transportation will be needed.
D. An in-depth study of a fish kill requires equi pment and qualified personnel. However, the need for quick response nakes it necessary to be ready in advance and nake do with people and resources available. A check list of equi prent is presented in Table 3. If personnel and equi pment are not available for an in-depth study, do as thorough a job as possible. If USAEHA assi stance is requi red, see paragraph I (USAEHA Role in Fish Kill I nvestigations) of this manual.

VII. FI ELD I MESTI GATI ON

A. Have the proper people onsite and informthe proper authorities. I nvite the informant to accompany the investigation team The information he may possess could be very hel pf ul. If the commander so deens it, a representative should be informed and invited from the State agency in charge of fisheries and/ or water pollution control. Take al ong the Fish and I nvertebrate Kill Eval uation Form for Fi el d Investi gati on (Appendi x) and complete it onsite.

HSE-EW A VP Techni cal Gui de Gui de for Fish Kill I nvesti gations

TABLE 3. CFECKLIST OF EQU PMENT FOR FISH KILL INVESTIGATIONS

Gener al

1. Maps
2. DO neter or kit
3. pH meter or kit
4. Ther nonet er
5. Whter Sampler
6. Sampl e cont ai ners (Appendix D)
7. I ce chests or insul ated cont ai ners
8. Wet ice
9. Daglei se
10. Boat
11. Mbt or
12. Paddl es
13. Life preservers
14. Waterproof notebook
15. Wat er proof I abel s
16. Waterproof narker
17. Portable light source
18. Paper towel s
19. Alumi num foil
20. I nsul at ed shi ppi ng cont ai ners
21. Pl astic bags, assorted sizes
22. Camer a
23. Fi I m

Fi sh

1. Dipnets
2. Sei nes
3. Net s
4. Rake
5. Tubs
6. Wei ght scal e
7. Measuring board
8. Fi sh counting forns
9. Dissecting kit Formalin
10. Scale envel opes

Bent hos

1. Dredge sampl er
2. Surber sampl er
3. Drift net sampl er
4. Kicknets
5. Quart or pi nt wi denouth cont ai ners
6. 95-percent al cohol
7. Si eves

Pl ankt on
I-quart jars

HSE-EW A WP Techni cal Gui de Guide for Fish Kill Investigations
B. Type and Extent of Fish Kill.

1. Make a reconnai ssance of the kill area to get a feel for what may have caused the kill, how extensi ve the kill is, and whether it is, indeed, a kill. A fish kill can be minor (l-100 fish), noderate (100-1000 fish), or maj or (1000 fish and above). If a kill is solarge that counting all the dead fish is not feasible, an estimate must be made. Estimates obtai ned using the following procedures will be conservative and very sel dom represent nore than a fraction the fish killed. These estimates are based solely on the number of fish visible at a point in time. Many may not be visible because they are not floating, hidden by debris, blown or drifted away, taken by scavengers, decomposed, not yet dead, or overl ooked (human error).
2. When subsampling to estimate the number of dead fish, bi as may be introduced. In order to produce unbi ased results, certain sample principles must be followed.
a. The fish kill area is di vided into smaller areas (units) in which the number of dead fish are counted and the number expanded to represent the total area.
b. These sample units must be chosen at random
c. Preci si on depends on sample size. The nore units counted, the nore preci se the estimate will be.
3. Counting procedures for streans and Iakes, as presented by the South Carolina Department of Health and Envi ronmental Control,* are presented in Appendi x E.
c. Try to pinpoint the possible cause or causes of the fish kill.
4. General observations of the behavi or, condition, I ocation, and ki nds of organi sns dying; water conditions; weat her conditions; di scharge locations; and any other pertinent infornation can hel p narrow the possi bilities.
[^3]HSE-EWA WP Techni cal Gui de Gui de for Fish Kill Investigations
2. General water quality data such as DO , pH , temperature, and conductivity can al so be usef ul tool s in determing the direction of the investigation. Anything that will eliminate possibilities can lessen the extent of the investigation.
D. Collect water and sedi nent samples for chemical and pesticide anal yses.

1. Map out a sampling pl an that will maximize the anount of i nf onnati on for the number of sampl es. The water and sedi nent sampl es should be fromthe sane locations as DO, pH, temperature, and conductivity. While it is better to have too many samples than too few, an effort should be made not to overload the laboratory with samples because of poor sampling procedures. A sample should be collected both inside and outside the kill area. Any point discharge that nay be suspect in the kill should have the outfall sampl ed al ong with any other sampl es that nould be needed to prove that particular di scharge did or did not cause the fish kill. With a di scharge to a stream one sample should be collected above the outfall, one at the outfall, one far enough bel ow the outfall for mixing, and one far enough downstream to be out of the kill area. With a di scharge to a lake, samples must be taken at increasing di stances from the outfall, with one outside the kill area. Take into consideration possible currents, especially an estuary or large lake.
2. After contacting Coordinating Chai rman (paragraph IA), consult with Chi ef, Whter and Whste Chemistry Branch regarding chemistry (AUTOVON 584-2208, Commercial 301 671-2208) and Chi ef, Pesticide Monitoring Branch regarding pestici des and PCB's (AUTOVON 584-3613, Commerci al 301 671-3613) bef ore coll ecting the samples, unl ess doi ng so would cause an unti mel y del ay. They will give you insight into what samples are needed and how much water and sedi nent nould be needed for your particular situation. S a mple collection and preservation nethods are presented in Appendi x D. Because many chemical paraneters must be anal yzed shortly after collection, and nost installations have a laboratory, it is encouraged that the installation do. whatever paraneters they have the capability for. This Agency can supply any additional support needed. The water and sedi nent samples for pesticide and PCR anal yses should be collected inl-liter, glass bottles with Teflon@cap lines or al uninumfoil (dull side to sample). The bottles should be rinsed with pH-2 sulfuric acid water, rinsed thoroughly with distilled water, acet one-rinsed, al lowed to air dry, and then capped. In al I sampling, be sure contai ners are well label ed with pernanent ink and Iabel s.
[^4]HSE-EWA VP Techni cal Gui de Guide for Fi sh Kill Investi gations

E. Bi ol ogi cal Sampl es.

1. Collect Bi ol ogical Samples. The extent of the fish kill will hel p determine the number of organi sns needed for a representative sample. In nost cases, 10 indi vi dual s of each speci es should be collected. If the kill affects fewer than 10 organisns per species, collect all affected. Never collect decomposed fish. Collect dying fish whenever possibe or fish with pink still left in their gills. Use good judgnent in collecting organi sns whether fish, aquatic insects, crayfish, clans, etc. The larger the organism the snaller the nunber needed to nake a representative sample. Organi sns should be collected as soon as possible, wrapped in al umi num foil with the dull side toward the sample, placed inside plastic bags or other contai ners, and frozen as soon as possible. The process should be repeated collecting samples from outside the kill area but within the same body of water, if possible. This will be mach nore difficult since the organisns will still be alive and hard to capture. Sei nes, gill nets, tramel nets, traps, traw s, el ectrofishing, trot lines, or other devices may be used for fish, and nets, dredges, and sieves for invertebrates. Collect liter of water for plankton, 2 gal ons for bi oassay; add no preservative; and freeze allowing head space for expansi on and resuspensi on.
2. Bi ol ogi cal samples can al so be submitted to this Agency for identification of speci es. These fish or invertebrates can be preserved in Io-percent formalin or 70 -percent al cohol and shi pped with the water samples.
F. Shi pnent of Samples. Before anything is sent, be sure all samples are narked as to sample type, preservative, filtered or unfiltered for water chemistries, location (sample site desi gnation), installation, collector, date and time of collection, and anal yses to be performed. A'l samples should be logged, a copy retai ned, and a copy sent with the sampl es. Al so, separatel y nail another copy of the log sheet and a map showing kill area and sampling locations al ong with copies of the Fish and Invertebrate Kill Message Form (Appendi x A\} and the Fish and Invertebrate Kill Eval uation Form for Field Investiqati on (Appendi x B). All frozen samples should be packed on dry ice and clearly marked "Frozen Speci mens Packed on Dry Ice." All others can be packed on wet ice or di vided as to samples requiring refrigeration and those not. Be sure label s will not becone illegible or ungl ued in water. Sampl es shoul d be sent on a Governnent Bill of Lading (GBL) by air express. Bef ore shi pping, contact Chi ef, Pathol ogy and Ani mal Care Branch (AUTOVON 584-3980, Comercial 301 671-3980) and provide the nane of the airline, the flight number, and the estimated tine of arrival.

HSE-EWA WP Techni cal Gui de
Guide for Fish Kill Investigations

APPENDIX A
FISH AND I MERTEBRATE KILL MESSAGE FORM

AEMA Form 30, I Âpr 80 (HSE-EW)

HSE-EW A VP Techni cal Gui de Guide for Fish Kill Investigations

APPENDIXB
FI SH AND I MERTEBRATE K LL EVALUATI ON FORM FOR FIELD I MESTI GATI ON

AEHA Form 29. TApr 80 (HSE-EW)

HSE-EW-A/WP Techni cal Gui de
Guide for Fi sh Kill I nvesti gations

APPENDI X C

HSE-EW-A/WP Techni cal Gui de

Guide for Fish Kill Investigations

Symptoms Exhibited by Fish Either Parasitized Or Diseased
Any one or combination of symptoms from the following three groups may indicate the presence of a disease or a parasite infestation.

I. Behavioral Characteristics

A. Nervous twitching of fins.
B. Flashing or darting.
C. Drooping fins.
D. Failure to feed.
E. Weakness - lethargy
F. Gather in vegetation.
G. Gather in shallow water.
H. Gather at incoming water.
I. Convulsions.
J. Unusual fin postures.
K. Gasping at surface.
L. Operculum (gill covering) with rapid movement.
M. Abnormal position in water.
N. Abnormal swimming movement - DESCRIBE
II. External Surface of Fish
A. Gills

1. Any color other than the normal red.
2. Parasites attached.
3. Hemorrhage present.
4. Abnormal morphology.
5. Excess mucus.
B. Eyes
6. Containing worms.
7. Cloudy.
8. Hemorrhage present.
9. Exophthalmos- "POP EYE".
10. Cotton like covering,
C. Fins
11. Hemorrhage or lesions present.
12. Cotton like covering.
13. Frayed or missing.
14. Parasites attached.
D. Body
15. Excessive mucus production.
16. Cutaneous lesions and hemorrhage present.
17. Color changes.
18. Emaciation.
19. Deformed - bent, twisted, rigid.

> 6. Diarrhea.
> 7. Swollen bellies.
> 8. Pustules or blisters.
> 9. Cotton like patches.
E. Scales

1. Loose patches.
2. M ssi ng patches.
F. Mouth
3. Eroded or ulcerated.
4. Hemorrhage present.
5. Hyper-extended in death.
6. Cotton like patches.
III. Internal Parts of Fish
A. Muscle tissue
7. Hemorrhage or lesions present.
8. Other discoloration.
9. Grubs orworms present.
B. Body oavity
10. Body fluid any color other than clear.
11. Hemorrhage or lesions.
12. Air bladder hard, soft, partially filled.
13. Parasites present.
a. In body cavity.
b. In organs (i.e. liver, G.I. tract, etc.).
14. Gastro-intestinaltract
a. Empty or full.
b. Contents - what?
c. Parasites present.
15. Liver
a. Lesions present.
b. Color - should be light brown.
16. Kidney
a. Should not be spotted.
b. Should be dark red to purple.

HSE-EW-A/WP Techni cal Gui de
Guide for Fish Kill Investi gations

VISUAL SIGN

Found Extemally

1. Fish popeved; scales puffed with fluid (dropsy).
sloody wounds; blood under scales.

2. Red pusule on or near base of fins; threadlike body may prorrude fmm the wound.

3. Bloody area on body under the scales.

4. White or yellow cysts or sacs on gills or in mouth.

5. White pustules under skin of scales.
6. Paiches oi fuzzy grey-white mat on body and gills.

7. ¿rev-white slime on !he skin.

9 3lack spors under the skin of in the flesh

10. Eve deionmed: iish apparently blind.

CAUSERRECOMMENDATION

Varions tecteria (such as Aeromonas sp."). Commonily found in wath, Aeromonas normally does not infert fish. less they have undergone some stress. Fish with severe oopeye or dropsy probably will not bia. but can be seen dead of in distress along the shore. In some cases, open bloody wounds can result from the bacterial infection.

Anchor Worn (Lemaea sp.). This copepod buries only its anchor-shaped head into a fish's flesh. The remaining por: tion will ham freeffom the wound, where a red inflamed pustule may form. This parasite may drop off, leaving oniv the inflamed arean.

Firh Lowe (Argulus so.). This rarely setn copeood leaves a fish soon after it's removed from the water. It feeds on the blood by piercing the skin, destroying the protective mu* cous coat in rhe process. Thus, secondary infection from bacteria or fungus can result.
leh (IChthyophthirius so.). The most common protozoan encountered by fishermen, Ich appears as mobile whike spots or clusters on the skin or gills. II burrows undr the skin and may cause surface lesions. Individuals can be sten with a magnifying glass.
A. iErgesilus sp.). When numerous, these copepods can kill young fish. Their presence is indicated by V-shaped white egg sacs on the inner edges of the gills.
E. (Achtheres sp.) Larger than Ergasilus. this copepod attaches itself in the mouth or to the inner surface of the gills. Achtheres has a short plump body with ammike appendages that Cling to the rish.
C. Yellow Grub (Clinostomum so.). This laval fluke forms cream-colored cyse on the gills and under the skin in the mouth. It can - alilv be seen with a magnifying glass if cyst is bmkm .
(Ayzospotidia). The white cysts created by myxospondia hoid thousands of the microscopic protozoans. While certain species cause some important diseases in fish. none have been iound in Nebraska

Water Fungua (5aprolegnia sp.l. Usually found on fish injured by improper handling or other cause. When established. Water Fungus can kill a rish bv completelv covering it.

Columnaris Disease (Condrococcus columnaris). This bactertal iniection mav be iound on catiish, trout. and possibly otha soecies. Fraved fins and bloody wounds ate other indicators.

8lack Spot (Neascus sp.), the easiest disease to recognite. Black Spot is caused bv larval rlukes burrowing under the skin. pocarmg as small round orack spots, the crsts mav also be iound in the ilesh.

Eye Fluke (Dipiostomulum sD.!. These tinv iarval ilukes will not be seen, thev live in the fluid of the eve and evenwallv couse olindness. Eve mav be oozque or smnuken.

CAUSE/RECOMMENDATION

Lenchyt. Conspicuolis. blood-feeding external parasites. leeches produce a mali circular wound that remaint even though the reed moves or drops off.

Yellow Grub (Clinostomum sp.). Cream-colored cyst found in many parto of the body contain larval flukes that become adult in birds. Numbrous at timet, the Yellow Crub will etrerge if cys is broken in water.

White Grub (Hysteromorpha sp.). Smaller and lighter colored than the Yellow Crub. These larval fluka are most ofen found in catish.

Underown. An umusual problem apparenty found only I" walleye. Fii show na external symptoms or abnormal behavior. The rough, sandy flesh is found in varying intensity when fish is filleted but the flesh is always somewhat discoloner

Found Intanally

16. Large white flat worm in the body caviry.
 spong) wom encystid on the internal organs.
17. Round transparent cyse on the internal ompans.
18. Irregular white crsts in or on the intemal organs.
19. White, thread-like worms lying on or moving through the incemal ongans.
20. Tiny gold-brown cysts on the intemal organs.
21. White or orange worm in body caviry. adached to the intestine.
22. Whice. undulating worns emerging irom ruptured intestime.

gound Worms ($C_{\text {amala }}$ lanus so.i. Various roundworms are found throughout ine incustine. The species chat lives in the lower large intestine will occasionally extend from the anos.

Round Womb (Philomera sp.). Nomsilly found on caro. buffalo, and suckers, this adult roundworm lives just under the skin.

Tacuone (Liguid so). This larnal bopowom is found free in the body cavityof minnows. carp. suckers, and some other fish. It is uncodmonly large and may creare an abdominal bulge.
(Contracaecum so.). Found on the intemal organs or the wall of the body cavity, these larval roundworms arc immobile. They become adult in fish-eating birds. Ayme

White Crub (Nearcus so.). These larval flukes occasionally occur in quite large numbers.

Lavial spinyHended Worm or Larval Tapeworm. These cyst are larger, whiter, and not as round as those described in No. 18.

Laval taptworm. Some tapeworms are not found in cysts. Numerous worms may infect the ovaries of bass.

Larval Sowntworm. Ofter found in great numbers. these evst will give a sundy appearance to a iish's innards.

5pimwheaded Worm (Pomphorhynchus so.). Since most adult acanthocepinalans live inside the intestine they ate at seen by ïshermen. However, this species can be found .ying in the body cavity with its head buried in the intestine.

Intertinal Worms (Adult Heminths). Aduit flukes, tapenorms, roundworms, and spiny-headed worms will not nomaily be see by fishermert unless the intestine is acci- sentaily dat by cleaning.

HSE-EW A UP Techni cal Gui de Guide for Fish Kill Investi gations

I. Very sudden die-off (Causative agent usually environmental i.e. $\mathrm{pH}, \mathrm{DO}, \mathrm{etc}$; pesticides or other chemical agents)
II. Slow starting followed by rapid die-off (Causative agent usually viral or very virulent bacteria or other pathogen usually no lesions present on fish)
III. Slow die-off for several days or weeks followed by a rapid die-off (Causative agent usually a synergistic action of, combinations of numbers I, II, and/or IV)
IV. Slow gradual die-off. Only a few deaths daily (Causative agent usually low virulence bacteria, external parasites, or marginal environmental conditions -- lesions usually present on fish)

HSE-EW A VP Techni cal Gui de Guide for Fish Kill Investi gations

APPENDI X D
RECOMMENDATI ONS FOR SAMPLI NG AND PRESERVATI ON OF SAMPLES

HSE-EWA WP Techni cal Gui de
Gui de for Fi sh Kill Investi gations

TABLE D.I. PRESERVATI ON GROUPS FOR MATER ANALVSES

Listed bel ow are typical water anal yses USAEHA could conduct in the event of a fish kill. They are grouped according to maxi mum hol ding time, preservation requi renents, contai ner type, and sample vol une. These requi rements are presented in Table D. 2.

PRESERVATI ON GROUP A
Col or Nitrate- Nitrogen Nitite-Nitrogen

Sulfite
Surfactants
Turbi dity
Phosphorous-Ortho (filtered and keep in separate 250 mL bottle)
PRESERVATI ON GRCUP B
Acidity Al kalinity Chl ori de

Resi due, Tot al Specific Conductance Sul fate

PRESERVATI ON GROUP C
Ammoni a
Kj ehl dahl and Organi c Nitrogen Nitrate and Nitrite-Nitrogen

Organi c Cabron Phenol s Phosphorous, Total

PRESERVATI ON GROUP D
OI and Grease
PRESERVATI ON GROUP E
Cyani de, Total
PRESERVATI ON GROUP F

Al uni num
Cadmi um
Chroni um har dness

Copper Iron Lead

Nickel
Si I ver Zinc and Others

PRESERVATI ON GROPP G
Mercury
PRESERVATI ON GROUP H
Pes:icides/Herbicides/PCB's/Organics

HSE-EW-A/WP Techni cal Gui de
Guide for Fish Kill Investigations

TABLE D. 2. SAMPLE VOLUME, HOLD NG TI ME, AND PRESERVATI ON REQU REMENTS FOR THE PRESERVATION GROPS GIVEN IN TABLE D.I

Group	M ni mum Vol une(I)	Cont ai ner Type(2)	Preservation(3)	Hol di ng Ti ne
A	$1,000 \mathrm{~mL}$	P,G	Cool, $4^{\circ} \mathrm{C}$	48 hours
B	1,000 mL	P	Cool, $4^{\circ} \mathrm{C}$	7 days
C	250 nil	P	Cool, $4^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{SO}_{4}$ to $\mathrm{pH}>2$ or add $0.5 \mathrm{~mL} 1: 1$ sulfuric acid(4) to 250 mL sample	28 days
D	$1,000 \mathrm{~mL}$	G	Cool, $4^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{SO}_{4}$ to $\mathrm{pH}>2$ or add $2 \mathrm{~mL} 1: 1$ sulfuric acid to $1,000 \mathrm{~mL}$ sample	28 days
E	250 mL	P, G	Cool $4^{\circ} \mathrm{C}, \mathrm{NaOH}$ to $\mathrm{pH}<12$ (Add $40 \% \mathrm{NaOH}$ sol uti on dropwise to pH 12)	14 days
F	250 mL	P, G	HNO3 to $\mathrm{pH}>2$ or add $1 \mathrm{~mL} 1: 1$ nitric acid(4) to 250 mL sample	6 months
G	125 mL .	P, G	HNO3 to $\mathrm{pH}>2$, $\mathbf{0 . 0 5 \%} \mathrm{K}_{2} \mathrm{Cr}_{7} \mathrm{O}_{5}$ or add 0.2 mLL of $0.1 \% \mathrm{~K}_{2} \mathrm{Cr}_{7} \mathrm{O}_{5}$ in 0.5\% HNO sol ution	28 days
H	$\begin{aligned} & \mathbf{1 , 0 0 0} \mathrm{mL} \\ & \mathbf{2 , 0 0 0} \mathrm{~mL} \\ & \mathbf{2 , 0 0 0} \mathrm{~mL} \\ & \hline \end{aligned}$	$\begin{aligned} & G(5) \\ & G(5) \end{aligned}$	Sedi ments, cool $4^{\circ} \mathrm{C}$ Pesticides, cool, $4^{\circ} \mathrm{C}$ Organics, cool, $4^{\circ} \mathrm{C}$	7 days 7 days 7 days

(1) If sampl es are to be anal yzed by a laboratory other than USAEHA 1000 mL
(1 qt) should be collected wherever $250 \mathrm{~mL}(8 \mathrm{oz})$ is listed.
(2) New pol yethyl ene (P) or cl ean gl ass (G)
(3) Do not add preservative if it will cause an adverse or unsafe reaction with the sample, especially with industrial process samples; for example, in cyanide plating sol ution DO NOT add sulfuric acid. Contact USAEHA for gui dance in these situations.
(4) $1: 1$ acid sol ution. $M x$ equal vol unes of concentrated acid (sulfuric or nitric) and distilled water (add acid to water).
(5) The bottles should be rinsed with $\mathrm{pH}-2$ sulfuric acid nater, distilled water-ri nsed, acetone-rinsed, air-dried, and capped using a Teflon or al uminum foil liner (dul 1 side toward sample).

HSE-EWA UP Techni cal Gui de Gui de for Fi sh Kill Investigations

APPEIIDIX E

BASIC COUNTI NG PROCEDURES FOR INVESTIGATING FISH KILLS

HSE-EWA WP Techni cal Gui de Guide for Fish Kill Investigations

PART I

BASIC COUNTING PROCEDURES FOR
INVESTIGATING FISH KILLS IN STREAMS

A 100-yard count is made every one-half mile beginning with a randomly chosen site within the first half-mile section of kili area. The first count is randomly chosen by a series of two coin tosses. The first toss determines whether the count will be made within the first or last quar-ter-mile of the first half-mile of kill area, The second toss determines whether the count will be within the first or last $\mathbf{1 0 0}$-yards of the previously determined quarter-mile section.

The additional counts should then be made at each halfomile interval throughout the region of the kill. If access limitations make exact, half-mile intervals difficult, approximate intervals can be determined taking advantage of access points. However, be sure that the intervals are evenly spaced including at least one counting section within each successive half-mile kill area. If access points rather than measured half-mile intervals are used, randomness of selection of counting section must be insured. Therefore, it is arbitrarily suggested that, in such cases, the investigator begin the 100 yard count 40 yards above the access point and proceed upstream.

The count will consist of the following steps:

1. Identify, count, and determine inch groups of all fish in each 100 -yard segment.
2. By using a map and map measurer, determine the exact length of the kill area if not done during the field investigation. Divide the tctal number of yards counted (add all 100-yard segments counted) into the total length of the kill for an exact ratio of fish counted to total fish killed. This is the expansion factor.
3. Multiply the total number of each size group of each species by the expansion factor arrived at in Item 2. These figures represent the total estimated numbers killed.

In order to facilitate use of this method an example is included below:

	Speci es	Number	Inch Group
1st 100 yards	Bluegill	140	1
		120	2
		60	3
		30	4
		25	5
		30	6
		10	7
		5	8
		420	
2nd 100 yards	Bluegill	100	1
		80	2
		40	3

HSE-EW-A/WP Techni cal Gui de Gui de for Fi sh Kill Investigations

PART II

BASIC COUNTING PROCEDURES FOR
 INVESTIGATING FISH KILLS IN LAKES

first, the overall. limits of the kill in the lake should be determined

HSE-EW-A/WP Techni cal Gui de Gui de for Fish Kill Investi gations

by cursory inspection. For purposes of counting, the kill should be divided into two subsamples: (1) those windrowed near shore, or otherwise accumulated along the shoreline; and (2) those found in open water. Figures obtained from each of these subsamples will be expanded independently and added for a total sum of fish killed. Fish should be identified and sized in the same manner described in the stream counting procedure. This method isapplicable to wide, navigable streamsas well as lakes.

1. Shoreline Count: The bulk of the dead fish (usually over $\mathbf{7 5 \%}$) will be found along the shoreline. The principle of the counting method here is similar to that for stream kills. Count a 300foot length of shoreline per $1 / 2 \mathrm{mile}$ of shoreline included in the kill. A minimum of three shoreline counts should be made. If the body of water is linear in such a way that the kill area is or resembles a tide stream, the first count should begin where the first dead fish occurs. In this situation, counts should be made on both sides of the "strean". If an irregularly shaped body of water is involved, the first count should be determined arbitrarily. The width of the $\mathbf{3 0 0} \mathbf{- f o o t}$ counting strips should be consistent but may be the choice of the investigator, Expand the sample figures obtained in the same manner as described in the stream counting procedure.
2. Open Water Count (see figures 1 and 2): The principle to be used will involve transect counts of a given width, each transect count being taken a given constant distance from and parallel to the next. Make transect samples at approximately 300-foot intervals throughout the length of the kill (T). This interval (w + y) may have to be lengthened for large kills. The width (w) of each sample should be constant but may be the choice of the investigator. A total of 20 feet is practical (10 feet either side of center of boat) for the width (w). Following is a table showing 7. area counted using various intervals and a 20-foot transect width (w).

Recommended interval	$w(f t$.	$\begin{gathered} \text { interval (ft. }) \\ (w+y) \end{gathered}$	\% fish counted
	20	200	10.0
	20	300	6.7
	20	600	3.3
	20	900	2.2
	20	1200	1.7
	20	2000	1.0

A bar extending to both sides of the boat and spanning the sample width (w) would be helpful in delineating the sample area as the investigator crosses the lake. The length (1) of the transects is the distance from shore to shore minus the width of shoreline count strips at each shore, You need only a total tally of fish counted. There is no need of keeping individual transect counts separate. The first count is made at the point

HSE-EW-A/WP Techni cal Gui de Gui de for Fi sh Kill Investi gations

along distance (T) where the first fish is found or otherwise chosen arbitrarily. Depending on the shape of the lake, two approaches may be applied in completing the open water count:
A. The first approach applies best to wide streams, main stream reservoirs, and lakes of relatively constant breadth (see Figure 1). Under these conditions, the transect length (1) need not be determined. The total length of the kill (T) need not be determined until after the counting procedure. Simply. count transects at estimated constant intervals (e.g. w+y = 300 ft.), keeping track of the number of transects you counted. The number of transects made should afterwards be divided into total kill length (T/No. of transects made) for a check of your actual, average interval (w + y). Then, proceed to calculate total estimated fish in open water.
$\frac{\mathbf{w}+\mathbf{y} \text { (actual) }}{\mathbf{w}} \mathbf{x} \begin{gathered}\text { Total fish } \\ \text { counted }\end{gathered}=$ Total fish in open water
EXAMPLE
Width of transect (w) $=20$ feet
Estimated sampling interval (w+y) =300 feet
Estimating 300-foot intervals, you count a total of 540 fish in 19 transects.
Checking later, you find from notes and a mapthat the kill area is one mile long. A $\mathbf{3 0 0}$-foot interval would only call for 17.6 transects in a mile, so you must determine your actual interval for purposes of making calculations:
Actual (adjusted) interval $(w+y)=\frac{5,280}{19}=278$ feet
Total fish in open water $=\frac{\mathbf{2 7 8}}{\mathbf{2 0}} \quad \times 540=7,506$
B. Odd-shaped lakes and storage reservoirs do not lend themselves to the above method because of extreme variances in the length of transect3 (1). In these lakes (see Figure 2) where transects would not average a fairly constant length (1), area should be the basis of computation. With this approach, the length (1) of the transects needs to be determined from a map as well as the acreage of the kill area. The following computations will yield the open water estimate on a total, and per acre basis:

2. Acreage considered \quad in shoreline $\operatorname{sampling} \frac{\text { Feet of shoreline } \mathbf{X} \text { width of shoreline sample strip }}{43,560}$
3. Open water acreage $=$ Total acreage $\boldsymbol{-}$ acreage considered in shoreline sampling (2)
4. Fish dead/acre open water $=\frac{\text { Total fish counted }}{\text { acreage sampled (1) }}$
5. Total fish dead Fish dead/acre \times Open water in open water open water (4) \times acreage (3)
EXAMPLE (see Figure 2):
Fish were counted in transacts atabout 300 -footintervals in a 13.1 acre lake. 300 fish were counted in total,
w = 20 feet
Number of transects =6
$1_{1} 400 \mathrm{ft}$.
$1_{2} 800 \mathrm{ft}$.
131000 ft .
14900 ft .
15850 ft .
16600 ft .

1. Acreage sampledm $\frac{20(400+800+1000+900+850+600)}{43,560}=2.089$ acres
2. Acreage considered in shoreline $=\frac{7000 \mathrm{ft} \mathbf{x} .10 \mathrm{ft}}{43,560}=1.6$
3. Openwater acreage $=13.1-1.6=11.5$ acres
4. Fish dead/acre open water $=\frac{300}{2.089}=\mathbf{1 4 4} \mathbf{f i s h}$
5. Total fish dead in open water $=144 \times 11.5=1,656$ fish

Figures obtained from open water estimate are added to those from the shoreline estimate for a total number of fish killed in the lake.

HSE-EW-A/WP Techni cal Gui de
Gui de for Fi sh Kill I nvesti gations

E- 7

HSE-EW-A/WP Technic cal Gui de
Guide for Fish Kill Investigations

HSE-EWA WP Techni cal Gui de Guide for Fish Kill Investigations

APPENDIX F

G_OSSARY

BOD Bi ochemi cal Oxygen Denand - the anount of oxygen required as a result of microbial decomposition usually for 5 days at $20^{\circ} \mathrm{C}$ in water

COD

DO
EPA US Envi ronmental Protection Agency
Hypolimion the cold, dense water bel ow the thenocline in a water body
Necropsy the examination of a dead body, incl uding di ssection; a post nortem exami nat ion; an autopsy
$\begin{array}{ll}\text { Parasite } & \begin{array}{l}\text { an organi smthat lives on or in another organism(the host) } \\ \text { and receives benefit (such as food) whi le causing harm to the } \\ \text { host }\end{array}\end{array}$
PCB Pol ychl ori nated Bi phenyl - a highly toxic and accumul ative organi c compound

Sei che a wave that oscillates in lakes, bays or gulfs as a result of sei smic or wi nd di sturbance

Thernocline the layer of water in which temperature change is rapid, causing a density barrier between warm surface water and the col d hypol i mion

Ubi qui tous being everywhere
USAEHA
US Army Envi ronmental Hygi ene Agency

HSE-EWA VP Techni cal Gui de
Gui de for Fi sh Kill Investi gations

APPENDI X G

SELECTED BI BLI OGRAPHY

1. Aneri can Public Heal th Association, Standard Methods for the Examination of Water and Whstewater, 14th ed., Aneri can Public Health Association, Whshi ngt on, DC, 1976.
2. Bi ernacki, Edward, Fish Kills Caused by Pollution in 1975, EPA, Whishi ngt on, DC, 1977.
3. Di vi si on of Techni cal Support, Investigating Fish Mrtalities, Federal Whter Pollution Control Administration, US Departnent of the Interior, 1970.
4. Doane, T. R., J. M Li vi ngston and J. T. Lang, Guide to On-Site Investigations of Fish Kill Incidents, US Air Force Occupational and Envi ronmental Heal th Laboratory, Brooks Air Force Base, TX, 1978.
5. Eddy, Samuel, How to Know the Freshwater Fi shes, William C. Brown Company, Publ i shers, Dubuque, IA, 1969.
6. Envi ronnental Mbnitoring and Support Laboratory, Methods for Chemical Anal ysi s of Whter and Whstes, EPA, Ci nci nnati, OH, 1979.
7. Fi sh Kills Caused by Pol I ution in 1974, EPA, VAshington, DC, 1974.
8. Whrren, Charl es E., Bi ol ogy and Whter Pollution Control, W. B. Saunders Company, Phil adel phi a, PA, 1971.

[^0]: * From Doudor off, P. and D. L. Shumway, Di ssol ved Oxygen Requi rements of Freshmater Fi shes, Food and Agriculture Organi zation of the United Nations, Rone, 1970.
 t Fi sh were not allowed access to the surface.

[^1]: - Brungs, W. A and B. R. Jones, Temperature Criteria for Freshwater Fi sh: Protocol and Procedures, US Envi ronnental Protection Agency (EPA) Publication 600/3-77-061, 1977.

[^2]: * Quality Criteria for Whter, Document Nb, EPA-440/9-76-023, 1976.

[^3]: * Di vi si on of Bi ol ogi cal and Speci al Servi ces, Manual for Fi sh Kill I nvestigations, South Carol ina Department of Heal th and Envi ronnental Control, Bureau of Fi el d and Anal ytical Servi ces, 1979.

[^4]: (®) Teflon is a registered tradenark of E. I. DuPont de Nenours and Company, Vilmington, DE. Use of tradenarked nane does not imply endorsenent by the US Arm, hut is intended only to assist in identification of a specific product.

