ARSENIC 1

1. PUBLIC HEALTH STATEMENT

This public health statement tells you about arsenic and the effects of exposure.

The Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites in the nation. These sites make up the National Priorities List (NPL) and are the sites targeted for long-term federal cleanup activities. Arsenic has been found in at least 1,014 of the 1,598 current or former NPL sites. However, the total number of NPL sites evaluated for this substance is not known. As more sites are evaluated, the sites at which arsenic is found may increase. This information is important because exposure to this substance may harm you and because these sites may be sources of exposure.

When a substance is released from a large area, such as an industrial plant, or from a container, such as a drum or bottle, it enters the environment. This release does not always lead to exposure. You are exposed to a substance only when you come in contact with it. You may be exposed by breathing, eating, or drinking the substance, or by skin contact.

If you are exposed to arsenic, many factors determine whether you'll be harmed. These factors include the dose (how much), the duration (how long), and how you come in contact with it. You must also consider the other chemicals you are exposed to and your age, sex, diet, family traits, lifestyle, and state of health.

1.1 WHAT IS ARSENIC?

Arsenic is an element that is widely distributed in the earth's crust. Elemental arsenic is ordinarily a steel grey metal-like material that sometimes occurs naturally. However, arsenic is usually found in the environment combined with other elements such as oxygen, chlorine, and sulfur. Arsenic combined with these elements is called inorganic arsenic. Arsenic combined with carbon and hydrogen is referred to as organic arsenic. Understanding the difference between inorganic and organic arsenic is important because the organic forms are usually less harmful than the inorganic forms.

Most inorganic and organic arsenic compounds are white or colorless powders that do not evaporate. They have no smell, and most have no special taste. Thus, you usually cannot tell if arsenic is present in your food, water, or air.

Inorganic arsenic occurs naturally in soil and in many kinds of rock, especially in minerals and ores that contain copper or lead. When these ores are heated in smelters, most of the arsenic goes up the stack and enters the air as a fine dust. Smelters may collect this dust and take out the arsenic as arsenic trioxide. However, arsenic is no longer produced in the United States; all the arsenic we use is imported.

Presently about 90% of all arsenic produced is used as a preservative for wood to make it resistant to rotting and decay. The preservative is chromated copper arsenate (CCA) and the treated wood is referred to as "pressure-treated." In the past, arsenic was primarily used as a pesticide, primarily on cotton fields and in orchards. Inorganic arsenic compounds can no longer be used in agriculture. However, organic arsenicals, namely cacodylic acid, disodium methylarsenate (DSMA), and monosodium methylarsenate (MSMA) are still used as pesticides, principally on cotton. Small quantities of arsenic metal are added to other metals forming metal mixtures or alloys with improved properties. The greatest use of arsenic in alloys is in lead-acid batteries used in automobiles. Another important use of arsenic compounds is in semiconductors and light-emitting diodes.

To learn more about the properties and uses of arsenic, see Chapters 3 and 4.

1.2 WHAT HAPPENS TO ARSENIC WHEN IT ENTERS THE ENVIRONMENT?

Arsenic occurs naturally in soil and minerals and therefore it may enter the air, water, and land from wind-blown dust and may get into water from runoff and leaching. Volcanic eruptions are another source of arsenic. Arsenic is associated with ores mined for metals, such as copper and lead, and may enter the environment during the mining and smelting of these ores. Small amounts of arsenic also may be released into the atmosphere from coal-fired power plants and incinerators because coal and waste products often contain some arsenic.

Arsenic cannot be destroyed in the environment. It can only change its form, or become attached or separated, from particles. It may change its form by reacting with oxygen or other molecules present in air, water, or soil, or by the action of bacteria that live in soil or sediment. Arsenic released from power plants and other combustion processes is usually attached to very small particles. Arsenic contained in wind-borne soil is generally found in larger particles. These particles settle to the ground or are washed out of the air by rain. Arsenic that is attached to very small particles may stay in the air for many days and travel long distances. Many common arsenic compounds can dissolve in water. Thus, arsenic can get into lakes, rivers, or underground water by dissolving in rain or snow or through the discharge of industrial wastes. Some of the arsenic will stick to particles in the water or sediment on the bottom of the lakes or river, and some will be carried along by the water. Ultimately most arsenic ends up in the soil or sediment. Although some fish and shellfish take in arsenic which may build up in tissues, most of this arsenic is in a form (often called "fish arsenic") that is less harmful.

For more information on how arsenic behaves in the environment, see Chapter 5.

1.3 HOW MIGHT I BE EXPOSED TO ARSENIC?

Arsenic is found naturally in the environment. You may be exposed to arsenic by eating food, drinking water, or breathing air. Children may also be exposed to arsenic by eating dirt. You may also be exposed by skin contact with soil or water that contains arsenic. Analytical methods used by scientists to determine the levels of arsenic in the environment generally do not determine the specific form of arsenic present. Therefore, we do not always know the form of arsenic a person may be exposed to. Similarly, we often do not know what forms of arsenic are present at hazardous waste sites. Some forms of arsenic may be so tightly attached to particles or embedded in minerals that they are not taken up by plants and animals.

The concentration of arsenic in soil varies widely, generally ranging from about 1 to 40 parts of arsenic to a million parts of soil (ppm) with an average level of 5 ppm. However soils in the vicinity of arsenic-rich geological deposits, some mining and smelting sites, or agricultural areas where arsenic pesticides had been applied in the past may contain much higher levels of arsenic.

The concentration of arsenic in natural surface and groundwater is generally about 1 part in a billion parts of water (1 ppb) but may exceed 1,000 ppb in mining areas or where arsenic levels in soil are high. Groundwater is far more likely to contain high levels of arsenic than surface water. Surveys of U.S. drinking water indicate that about 80% of water supplies have less than 2 ppb of arsenic, but 2% of supplies exceed 20 ppb of arsenic. Levels of arsenic in food range from about 20 to 140 ppb. However, levels of inorganic arsenic, the form of most concern, are far lower. Levels of arsenic in the air generally range from less than 1 to about 2,000 nanograms (1 nanogram equals a billionth of a gram) of arsenic per cubic meter of air (less than 1–2,000 ng/m³), depending on location, weather conditions, and the level of industrial activity in the area. However urban areas generally have mean arsenic levels in air ranging from 20 to 30 ng/m³, most of which is attached to small particles.

You normally take in small amounts of arsenic in the air you breathe, the water you drink, and the food you eat. Of these, food is usually the largest source of arsenic. Fish and seafood contain the greatest amounts of arsenic, but this is mostly the organic form of arsenic that is less harmful. Children are likely to eat small amounts of dust or dirt each day, so this is another way they may be exposed to arsenic. The total amount of arsenic you take in from these sources is generally about 50 μ g each day. The level of inorganic arsenic (the form of most concern) you take in from these sources is generally about 3.5 μ g/day.

In addition to the normal levels of arsenic in air, water, soil, and food, you could be exposed to higher levels in several ways, such as the following:

CSome areas of the United States contain unusually high natural levels of arsenic in rock, and this can lead to unusually high levels of arsenic in soil or water. If you live in an area like this, you could take in elevated amounts of arsenic in drinking water. Children may be taking in arsenic because of hand to mouth contact or eating dirt.

CSome hazardous waste sites contain large quantities of arsenic. If the material is not properly disposed of, it can get into surrounding water, air, or soil. If you live near such a site, you could be exposed to elevated levels of arsenic from these media.

CIf you work in an occupation that involves arsenic production or use (for example, copper or lead smelting, wood treating, pesticide application), you could be exposed to elevated levels of arsenic during your work.

CIf you saw or sand arsenic-treated wood, you could inhale some of the sawdust into your nose or throat. Similarly, if you burn arsenic-treated wood, you could inhale arsenic in the smoke.

CIf you live in a formerly agricultural area where arsenic was used on crops, the soil could contain high levels of arsenic.

CIn the past, several kinds of products used in the home (rat poison, ant poison, weed killer, some types of medicines) had arsenic in them. However, most of these uses of arsenic have ended, so you are not likely to be exposed from home products any longer.

You can find more information on how you may be exposed to arsenic in Chapter 5.

1.4 HOW CAN ARSENIC ENTER AND LEAVE MY BODY?

If you swallow arsenic in water, soil, or food, most of the arsenic may quickly enter into your body. The amount that enters your body will depend on how much you swallow and the kind of arsenic that you swallow. This is the most likely way for you to be exposed near a waste site. If you breathe air that contains arsenic dusts, many of the dust particles settle onto the lining of the lungs. Most of the arsenic in these particles is then taken up from the lungs into the body. You might be exposed in this way near waste sites where arsenic-contaminated soils are allowed to blow into the air. If you get arsenic-contaminated soil or water on your skin, only a small amount will go through your skin into your body, so this is usually not of concern.

If you are exposed to arsenic, your liver changes some of this to a less harmful organic form. Both inorganic and organic forms leave your body in your urine. Most of the arsenic will be gone within several days, although some will remain in your body for several months or even longer.

You can find more information on how arsenic enters and leaves your body in Chapter 2.

1.5 HOW CAN ARSENIC AFFECT MY HEALTH?

To protect the public from the harmful effects of toxic chemicals and to find ways to treat people who have been harmed, scientists use many tests.

One way to see if a chemical will hurt people is to learn how the chemical is absorbed, used, and released by the body; for some chemicals, animal testing may be necessary. Animal testing may also be used to identify health effects such as cancer or birth defects. Without laboratory animals, scientists would lose a basic method to get information needed to make wise decisions to protect public health. Scientists have the responsibility to treat research animals with care and compassion. Laws today protect the welfare of research animals, and scientists must comply with strict animal care guidelines.

Inorganic arsenic has been recognized as a human poison since ancient times, and large oral doses (above 60,000 ppb in food or water) can produce death. If you swallow lower levels of inorganic arsenic (ranging from about 300 to 30,000 ppb in food or water), you may experience irritation of your stomach and intestines, with symptoms such as stomach ache, nausea, vomiting, and diarrhea. Other effects you might experience from swallowing inorganic arsenic include decreased production of red and white blood cells which may cause fatigue, abnormal heart rhythm, blood-vessel damage resulting in bruising, and impaired nerve function causing a "pins and needles" sensation in your hands and feet.

Perhaps the single most characteristic effect of long-term oral exposure to inorganic arsenic is a pattern of skin changes. These include a darkening of the skin and the appearance of small "corns" or "warts" on the palms, soles, and torso. A small number of the corns may ultimately develop into skin cancer. Swallowing arsenic has also been reported to increase the risk of cancer in the liver, bladder, kidneys, prostate, and lungs. The Department of Health and Human Services (DHHS) has determined that inorganic arsenic is a known carcinogen. The International Agency for Research on Cancer (IARC) has determined that inorganic arsenic is carcinogenic to humans. Both the EPA and the National Toxicology Program (NTP) have classified inorganic arsenic as a known human carcinogen.

If you breathe high levels of inorganic arsenic, you are likely to experience a sore throat and irritated lungs. You may also develop some of the skin effects mentioned above. The exposure level that produces these effects is uncertain, but it is probably above 100 micrograms of arsenic per cubic meter ($\mu g/m^3$) for a brief exposure. Longer exposure at lower concentrations can lead to skin effects, and also to circulatory and peripheral nervous disorders. There are some data suggesting that inhalation of inorganic arsenic may also interfere with normal fetal development, although this is not certain. An important concern is the ability of inhaled inorganic arsenic to increase the risk of lung cancer. This has been seen mostly in workers exposed to arsenic at smelters, mines, and chemical factories, but also in residents living near smelters and arsenical chemical factories. People who live near waste sites with arsenic may have an increased risk of lung cancer as well.

If you have direct skin contact with inorganic arsenic compounds, your skin may become irritated, with some redness and swelling. However, it does not appear that skin contact is likely to lead to any serious internal effects.

Despite all the adverse health effects associated with inorganic arsenic exposure, there is some evidence that the small amounts of arsenic in the normal diet (10–50 ppb) may be beneficial to your health. For example, animals fed a diet with unusually low concentrations of arsenic did not gain weight normally. They also became pregnant less frequently than animals fed a diet containing a normal amount of arsenic. Further, the offspring from these animals tended to be smaller than normal, and some died at an early age. However, no cases of arsenic deficiency in humans have ever been reported.

Almost no information is available on the effects of organic arsenic compounds in humans. Studies in animals show that most simple organic arsenic compounds (such as methyl and dimethyl compounds) are less toxic than the inorganic forms and that some complex organic arsenic compounds are virtually non-toxic. However, high doses can produce some of the same effects. Thus, if you are exposed to high doses of an organic arsenic compound, you might develop nerve injury, stomach irritation, or other effects, but this is not known for certain.

You can find more information on the health effects of inorganic and organic arsenic in Chapter 2.

1.6 HOW CAN ARSENIC AFFECT CHILDREN?

This section discusses potential health effects from exposures during the period from conception to maturity at 18 years of age in humans.

Children are exposed to arsenic in many of the same ways that adults are. Since arsenic is found in the soil, water, food, and air, children may take in arsenic in the air they breathe, the water they drink, and the food they eat. Since children tend to eat or drink less of a variety of foods and beverages than do adults, ingestion of contaminated food or juice or infant formula made with arsenic-contaminated water may represent a significant source of exposure. In addition, since children often play in the dirt and put their hands in their mouths and sometimes intentionally eat dirt, ingestion of contaminated soil may be a more important source of arsenic exposure for children than for adults. In areas of the United States where natural levels of arsenic in the soil and water are high, or in areas in and around contaminated waste sites, exposure of children to arsenic through ingestion of soil and water may be significant. In addition, contact with adults who are wearing clothes contaminated with arsenic (e.g., with dust from copper- or lead-smelting factories, from wood-treating or pesticide application, or from arsenic-treated wood) could be a source of exposure. Because of the tendency of children to taste things that they find, accidental poisoning from ingestion of pesticides is also a possibility. Thus, although most of the exposure pathways for children are the same as those for adults, children may be at a higher risk of exposure because of their lack of consistent hygiene practices and their curiosity about unknown powders and liquids.

Children who are exposed to arsenic may have many of the same effects as adults, including irritation of the stomach and intestines, blood vessel damage, skin changes, and reduced nerve function. Thus, all health effects observed in adults are of potential concern in children. We do not know if absorption of arsenic from the gut in children differs from adults. There is some information suggesting that children may be less efficient at converting inorganic arsenic to the

less harmful organic forms. For this reason, children may be more susceptible to health effects from inorganic arsenic than adults.

At present, there is no convincing evidence that inhaled or ingested arsenic can injure pregnant women or their fetuses, although studies in animals show that large doses of arsenic that cause illness in pregnant females can also cause low birth weight, fetal malformations, and even fetal death. Arsenic can cross the placenta and has been found in fetal tissues. Arsenic is found at low levels in breast milk.

You can find more information about how arsenic can affect children in Sections 2.7 and 5.6.

1.7 HOW CAN FAMILIES REDUCE THE RISK OF EXPOSURE TO ARSENIC?

If your doctor finds that you have been exposed to significant amounts of arsenic, ask whether your children might also be exposed. Your doctor might need to ask your state health department to investigate.

If you use arsenic-treated wood in home projects, personal protection from exposure to arsenic-containing sawdust may be helpful in limiting exposure of family members. These measures may include dust masks, gloves, and protective clothing. If you live in an area with a high level of arsenic in the water or soil, substituting cleaner sources of water and limiting contact with soil (for example, through use of a dense groundcover or thick lawn) would reduce family exposure to arsenic. By paying careful attention to dust and dirt control in the home (air filters, frequent cleaning), you can reduce family exposure to contaminated dirt. Some children eat a lot of dirt. You should prevent your children from eating dirt. You should discourage your children from putting objects in their mouths. Make sure they wash their hands frequently and before eating. Discourage your children from putting their hands in their mouths or other hand-to-mouth activity. Since arsenic may be found in the home as a pesticide, household chemicals containing arsenic should be stored out of reach of young children to prevent accidental poisonings. Always store household chemicals in their original labeled containers; never store household

chemicals in containers children would find attractive to eat or drink from, such as old soda bottles. Keep your Poison Control Center's number by the phone.

It is sometimes possible to carry arsenic from work on your clothing, skin, hair, tools, or other objects removed from the workplace. This is particularly likely if you work in the fertilizer, pesticide, glass, or copper/lead smelting industries. You may contaminate your car, home, or other locations outside work where children might be exposed to arsenic. You should know about this possibility if you work with arsenic.

Your occupational health and safety officer at work can and should tell you whether chemicals you work with are dangerous and likely to be carried home on your clothes, body, or tools and whether you should be showering and changing clothes before you leave work, storing your street clothes in a separate area of the workplace, or laundering your work clothes at home separately from other clothes. Material safety data sheets (MSDS) for many chemicals used should be found at your place of work, as required by the Occupational Safety and Health Administration (OSHA) in the U.S. Department of Labor. MSDS information should include chemical names and hazardous ingredients, and important properties, such as fire and explosion data, potential health effects, how you get the chemical(s) in your body, how to properly handle the materials, and what to do in the case of emergencies. Your employer is legally responsible for providing a safe workplace and should freely answer your questions about hazardous chemicals. Your state OSHA-approved occupational safety and health program or U.S. OSHA can answer any further questions and help your employer identify and correct problems with hazardous substances. Your state OSHA-approved occupational safety and health program or U.S. OSHA will listen to your formal complaints about workplace health hazards and inspect your workplace when necessary. Employees have a right to seek safety and health on the job without fear of punishment.

You can find more information about how arsenic can affect children in Sections 2.7 and 5.6.

1.8 IS THERE A MEDICAL TEST TO DETERMINE WHETHER I HAVE BEEN EXPOSED TO ARSENIC?

Several sensitive and specific tests can measure arsenic in your blood, urine, hair, or fingernails, and these tests are often helpful in determining if you have been exposed to above-average levels of arsenic. These tests are not usually performed in a doctor's office. They require sending the sample to a testing laboratory.

Measurement of arsenic in your urine is the most reliable means of detecting arsenic exposures that you experienced within the last several days. Most tests measure the total amount of arsenic present in your urine. Sometimes this can be misleading, because the nonharmful forms of arsenic in fish and shellfish can give a high reading even if you have not been exposed to a toxic form of arsenic. For this reason, laboratories sometimes use a more complicated test to separate "fish arsenic" from other forms. Because most arsenic leaves your body within a few days, analysis of your urine cannot detect if you were exposed to arsenic in the past. Tests of your hair or fingernails can tell if you were exposed to high levels over the past 6–12 months, but these tests are not very useful in detecting low-level exposures. If high levels of arsenic are detected, this shows that you have been exposed, but unless more is known about when you were exposed and for how long, it is usually not possible to predict whether you will have any harmful health effects

You can find more information on how arsenic can be measured in your hair, urine, nails, and other tissues in Chapters 2 and 6.

1.9 WHAT RECOMMENDATIONS HAS THE FEDERAL GOVERNMENT MADE TO PROTECT HUMAN HEALTH?

The federal government develops regulations and recommendations to protect public health. Regulations <u>can</u> be enforced by law. Federal agencies that develop regulations for toxic substances include the Environmental Protection Agency (EPA), the Occupational Safety and Health Administration (OSHA), and the Food and Drug Administration (FDA).

Recommendations provide valuable guidelines to protect public health but <u>cannot</u> be enforced by law. Federal organizations that develop recommendations for toxic substances include the Agency for Toxic Substances and Disease Registry (ATSDR) and the National Institute for Occupational Safety and Health (NIOSH).

Regulations and recommendations can be expressed in not-to-exceed levels in air, water, soil, or food that are usually based on levels that affect animals; then they are adjusted to help protect people. Sometimes these not-to-exceed levels differ among federal organizations because of different exposure times (an 8-hour workday or a 24-hour day), the use of different animal studies, or other factors.

Recommendations and regulations are also periodically updated as more information becomes available. For the most current information, check with the federal agency or organization that provides it. Some regulations and recommendations for arsenic include the following:

The federal government has taken several steps to protect humans from arsenic. First, EPA has set limits on the amount of arsenic that industrial sources can release into the environment. Second, EPA has restricted or canceled many of the uses of arsenic in pesticides and is considering further restrictions. Third, EPA has set a limit of 50 ppb for arsenic in drinking water. EPA has recently proposed lowering this value to 5 ppb. Finally, OSHA has established a permissible exposure limit (PEL), 8-hour time-weighted average, of 10 µg/m³ for airborne arsenic in various workplaces that use inorganic arsenic.

You can find more information on regulations and guidelines that apply to arsenic in Chapter 7.

1.10 WHERE CAN I GET MORE INFORMATION?

If you have any more questions or concerns, please contact your community or state health or environmental quality department or

ARSENIC 13 1. PUBLIC HEALTH STATEMENT

Agency for Toxic Substances and Disease Registry Division of Toxicology 1600 Clifton Road NE, Mailstop E-29 Atlanta, GA 30333

* Information line and technical assistance

Phone: 1-888-42-ATSDR (1-888-422-8737)

Fax: (404) 639-6359

ATSDR can also tell you the location of occupational and environmental health clinics. These clinics specialize in recognizing, evaluating, and treating illnesses resulting from exposure to hazardous substances.

* To order toxicological profiles, contact

National Technical Information Service 5285 Port Royal Road Springfield, VA 22161

Phone: (800) 553-6847 or (703) 605-6000