Metabolic Engineering of Microorganisms

Degradation of Organophosphate Contaminants

Synthesis of Isoprenoids

Metabolic Engineering Working Group

January 31, 2003

Jay D. Keasling Department of Chemical Engineering University of California, Berkeley

Degradation of organophosphates

Goal -

- to develop the experimental and theoretical methods to introduce multiple, heterologous, biodegradation pathways into a single organism
- to optimize the flux through those pathways for the remediation of toxic or recalcitrant organic contaminants.

Justification

Pesticides

- ~ 60,000 tons of organophosphate pesticides are produced annually in the US
- U.S. Geological Survey reported 54.4% of groundwater sites sampled were contaminated with pesticides (1998)

Chemical Warfare Agents

- Chemical Weapons Convention calls for destruction of all chemical warfare stockpiles (1993)
- 30,000 metric tons of chemical agents to be destroyed in US

Parathion Degradation Background

- One of the most highly toxic compounds certified by EPA
- 4-7 million pounds are produced annually in the U.S.

A 3 piece puzzle:

- Past work on parathion degradation has focused on initial hydrolysis
- Gene coding for parathion hydrolase (*opd*) has been cloned & sequenced from both *Pseudomonas* and *Flavobacterium*
- Two forms of *opd*: Native – contains coding region for N-terminal leader sequence
- "Modified" coding region for leader sequenced removed

Parathion Hydrolysis			Parathion — PNP DETP
Plasmid	nAWW01	nAWW02	nAWW04
Promoter:	P _{taclac}	P _{taclac}	Print of P _{tac}
opd gene type:	"modified"	native	native
<i>E. coli</i> DH5α:	Spec. Activity (µM/hour-OD)	Spec. Activit (µM/hour-OD	y Spec. Activity D) (μM/hour-OD)
No induction	36.8	3.8	6.3
Full induction	88.5	10.2	13.9
P nutida $KT2\Lambda\Lambda$).		

P. putida KT2442:____

No induction ______ Full induction _____

1.7
1.8

6.9	
7.3	

Specific Degradation Rate:66 μmole/min-gDCWSpecific Growth Rate:0.23 hour -1

resistance

Biodegradation of parathion in suspended culture

Effect of PNP on cell growth

growth was inhibited by PNP

Flow cell for culturing biofilms

Development of a coculture biofilm for parathion biodegradation

red: P. putida KT2440

yellow/green: E. coli SD2

black: voids within the biofilm

Biofilm engineering

yellow/green: *E. coli* SD2 attached to glass sphere with PLL

red: P. putida KT2440

- strains were sequentially applied

• Parathion is utilized as a carbon and energy source

- Parathion forms DNAPL, but is still bioavailable
- Measurement of aqueous phase parathion concentration is not a good indicator as to whether parathion degradation is occurring

DETP Degradation

• *Comamonas acidovorans* is capable of utilizing DETP as a P-source:

C. acidovorans growth and BNP disappearance

Purification and characterization of phosphodiesterase

- The phosphodiesterase was purified to homogeneity
 - Monomer of 65 KDa
 - Most active toward phosphodiesters, less activity on phosphomonoesters and phosphotriesters
- N-terminal sequenced
- Degenerate primers synthesized
- Gene cloned
 - Low homology to nucleotide phosphodiesterases
- Overexpression in *E. coli* results in high phosphodiesterase activity and growth on diethyl phosphate as a sole phosphate source

Protein production

Induction studies

What's left?

- Combine all genes for complete mineralization of paraoxon.
- Identify, purify, and characterize the gene encoding the enzyme that catalyzes P=S to P=O.
- Combine all genes into a single organism for parathion degradation.

Isoprenoids

- Extremely diverse family of compounds
- Includes carotenoids and terpenoids

Goal -

- to engineer the isoprenoid precursor pathways for enhanced production
- to introduce into *E. coli* the genes for carotenoid and terpenoid synthesis
- to evolve terpene cyclase genes

A multi-faceted approach

Construction of synthetic mevalonate pathway operons

Assembly of rcAmorphadiene Cyclase

- Take gene sequence from patent
- Optimize sequence for expression in desired host
- Synthesize 84 oligonucleotides of ~40 basepairs each
- Assemble into complete gene using the polymerase chain reaction (PCR)

Screen clones by GC-MS

Expression of plant mono- sesqui- and diterpenes cyclases in *E. coli*

GPP ➡Monoterpene **Myrcene synthase** Arabidopsis thaliana FPP Sesquiterpenes 5-epi-aristolochene Tobacco GGPP ➡ Diterpene **d**-cadinene cotton ent-Kaurene cyclase fungi **Vetispiradiene** Hyoscyamus muticus **Casbene cyclase Castor bean**

Acknowledgements

- Students and Post-docs:
 - Andy Walker
 - Eric Gilbert
 - Sundiep Tehara
 - Stacie Cowan
 - Syd Withers
- Funding Sources
 - -ONR
 - -NSF

- -Vincent Martin
- -Christina Smolke
- -Artem Khlebnikov
- -Seon-Won Kim
- –Doug Pitera