Genome-scale analysis for new metabolic engineering procedures

NSF/ME 2003

Bernhard Palsson Department of Bioengineering UCSD

University of California, San Diego Department of Bioengineering

Genetic Circuits Research Group http://gcrg.ucsd.edu

Outline

- ¥ Progress with constraints-based models
- ¥ Predicting adaptive evolution
- ¥ Model-driven systems biology

University of California, San Diego Department of Bioengineering Genetic Circuits Research Group http://gcrg.ucsd.edu

E. coli on a pin

The intracellular environment is very complex and counterintuitive

From <u>The Machinery of Life</u>, David S. Goodsell, Springer-Verlag, New York, 1993.

University of California, San Diego Department of Bioengineering

Viscosity $^{-1000} \times H_2O$ Pressure (osmotic) $^{-500}$ atm Electrical gradient $^{-300,000}$ V/cm

University of California, San Diego Department of Bioengineering ts et al, 1st edition

Genetic Circuits Research Group http://gcrg.ucsd.edu senetic Circuits Research Group

Modern Modeling Approaches

- ¥ Need to integrate diverse data types (genomic, trancriptomic, proteomic, metabolomic, phenomic,...)
- ¥ Must be easily scalable to cell or genome-scale
- ¥ Account for inherent biological uncertainty

Constraints-based Analysis

Process of Constraints-based Model Building and Analysis

I. Update on Constraints-Based Modeling

- ¥ Method development
- ¥ Reconstruction of regulatory networks
- ¥ Integration of multiple data types

University of California, San Diego Department of Bioengineering Genetic Circuits Research Group http://gcrg.ucsd.edu

Genetic Circuits Research Group

University of California, San Diego Department of Bioengineering Genetic Circuits Research Group http://gcrg.ucsd.edu

Constraints-Based Models

Organism	Year	Genes	Reactions	Metabolites
Escherichia coli (core)	1990	24	14	17
Escherichia coli	1993	250	146	118
Escherichia coli	1998	306	317	305
Haemophilus influenzae	1999	362	488	343
Escherichia coli (v1.0)	2000	695	720	436
Helicobacter pylori	2002	291	388	339
Escherichia coli (regulated)	2002	149	113	63
Saccharomyces cerevisiae	2002	957	1294	801
Escherichia coli (v1.1)	2003	906	1043	594

 Other metabolic networks have been reconstructed for: Bacillus subtilis, Streptococcus pneumoniae, Pseduomonas aeruginosa, Geobacter sulfurreducens, Mycobacterium tuberculosis, Anabaena, and Plasmodium falciparum.

University of California, San Diego Department of Bioengineering Genetic Circuits Research Group http://gcrg.ucsd.edu

Integrated whole cell models

Reconstruction of Regulatory Networks: Reconciling Bottom-Up and Top-Down Data

Network Parameters	E. coli	S. cerevisiae
Regulatory Genes	123	109
Target Genes	762	418
Regulatory Interactions	1468	945

University of California, San Dieg Department of Bioengineering Genetic Circuits Research Group http://gcrg.ucsd.edu

Genetic Circuits Research Group http://gcrg.ucsd.edu Reconstructing regulatory networks

History of Constraints-Based Models of E. coli

Genetic Circuits Research Group

II. Adaptive Evolution of *E. coli* and in silico Predictions

Genetic Circuits Research Group

Growth on acetate: in silico vs. in vivo results

Growth on Acetate: Life on the edge

E. coli can Optimize its Growth Rate on Glycerol

Glycerol metabolism related genes in E.coli K12 MG1655

MACAW Alignment of glpR-1 wild-type, E1 and E2

Genetic Circuits Research Group

Summary

- ¥ A number of phenotypes with optimality properties have been determined in wt *E. coli* K-12
- \notin *E. coli* can find new optimal solutions
 - —algorithm unknown
- ¥ Many biologically equivalent solutions exist
- ¥ *E. coli* 'forgets' and appears to have 'limited memory
- ¥ There seem to be conflicting optima
- ¥ Knock-out can be evolved towards new optimal functions *a priori* predicted by *in silico* model

Jniversity of California, San Diego Department of Bioengineering Genetic Circuits Research Group http://gcrg.ucsd.edu NSF BES-0120363 NSF MCB-9873384 NIH R01 GM57089 NSF BES-9814092 NIH R01 GM62791

Support

University of California, San Dieg Department of Bioengineering Genetic Circuits Research Group http://gcrg.ucsd.edu

Papers can be accessed from..

http://systemsbiology.ucsd.edu

Genetic Circuits Research Group http://gcrg.ucsd.edu