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Motivation
High-throuhgput biology is yielding a vast amount of 
data the genome, transcriptional regulation and 
proteome of many microbial organisms. 

Yet, the complete metabolic network of even the 
simplest fully sequence living system has not been 
elucidated

We want to develop computational inference methods 
to  enhance the pace of metabolic pathway discovery



Objectives
Elucidating metabolic pathways through 
computational inference over biomolecular data

Two intertwined predictive goals ...

Analysis: Piecing together plausible views of microbial 
metabolic pathways

Engineering: Rationally designing new metabolic 
capabilities 

Application to specific biological problems and 
experimental collaboration



Why Computational Inference ?
Traditional methods for experimental 
determination of pathways are labour-intensive and 
time-consuming

There is no high- throughput experimental strategy 
yet for pathway discovery

With the availability of whole microbial genomes it 
is possible to theoretically identify putative 
proteins and their functions, computationally

Computational reconstruction of pathways is 
feasible



Benefit of Computation

Understanding the complexity of biological systems 
requires an integrative approach

Informatics  is key for representing biochemical 
concepts and making them amenable to 
computation

Computational approaches are crucial for inference 
over biological knowledge

We are developing such a computational 
framework to support metabolic inference



Challenges to Pathway Inference

Many proteins in microbial genomes have not be 
functionally characterized 

Piecing together functional characterizations of 
enzymes into plausible metabolic pathways is not 
straightforward

Many microbial organisms have new enzymes and 
novel pathways -- how do we identify these ?



The Pathway Inference Problem

Given and input compound and an output 
compound, find a series of enzyme-catalyzed 
transformations that convert the input to the 
output

For example: What is the pathway from alpha-d-
glucose to pyruvate in E.coli ?

In E.coli this series of enzyme catalyzed 
transformations is known as glycolysis



Are Most Metabolic Pathways in 
Microbes  Known ?

Not really ! 

For example, H.pylori  is  responsible for 
peptic ulcers;  treatments exist but there  
is no cure 

There are many open questions about its  
its  intermediary metabolic pathways 

How is glucose metabolised in H.pylori ? 



Glucose metabolism ....

In H.pylori EDP is preferred over glycolysis



Beyond Reference Pathways ...

Even reference or standard pathways are not 
always followed precisely in microbial organisms

In many organisms alternative biochemical routes 
or detours have been observed (Cordwell, 1999) 

These alternative pathways can use known or 
unknown enzymes

How do we infer such pathways in general 
computationally ?



Levels of Complexity in Pathway 
Inference

I. Known pathway but some key enzymes are missing 
(from annotation)

i. Homologues  have  d iverged  and undetectab le  by  
sequence s imilarity.  

ii.Enzyme(s)  from another superfamily catalyze steps in 
pathway.  

iii.There is  a  non - obvious pathway detour



Levels of Complexity in Pathway 
Inference (cont)

II. When no known pathway exists between two 
compounds then the inference is harder. Consider,

i. A new sequence of known enzyme-catalyzed 

transformations are involved

ii.A biochemical pathway must be identified, de novo.  
That is ,  a  plausible  sequence of  novel  enzymatic  
functions must be identified



Pathway inference begins with a 
relevant  metabolic abstraction ...

We represent biochemistry rationally to enable 
computations with it and to define novel types of 
biocatalytic functions

This representation is the basis for: \

Integrating available biomolecular and biochemical 

data

Making inferences about functions and pathways 



How We Represent Metabolism

We have developed a computational representation 
of metabolism that resolves biocatalysis into two 
parts:

The chemical component  captures  the  chemical  nature  
o f  the  underlying transformations between compounds.

The biological component captures  the  enzymatic  roles  
o f  gene products  in terms of  speci f ic  transformations 



Metabolism, Chemically
We abstract metabolism as a hyperdim. state-space 
in which compounds are points and transformations 
are state-transitions

Each compound is represented in symbol ic terms by 
its chemical structure components.  Eg: carbon 
dioxide 

x(CO2) =  ((C 1)(O 2)(C=O 2)) 

The representation also includes the molecular 
graph to infer adjacency of any atom or bond

We have 10,429 compounds from KEGG



(Bio)Chemical Transformations
Transformations are state-transitions captured by 
vector differences between states

Transformation between alpha-D-glucose-6-
phosphate (adg6p) and alpha-D-glucose (adg) is 
represented as:

T(adg6p,adg) = x(adg6p)- x(adg)                         

= ((P 1)(O 4)(P-O 3))

We build transformations from 5,241 reactions



Compounds have chemical 
successors

ALPHA-D-GLUCOSE



Enzyme-catalyzed transformations

Each transformation is associated with  enzymes 

Enzymes are described by EC numbers, gene 
names

Enzymes can catalyze multiple transformations

We have around 3,081 defined enzymes 



Whole Organism Data

For each organism, we have the complete set of 
putative proteins and their assigned functions, 
including:

Enzymes

Transporters

We also have all sequence data from SwissProt and 
GenBank

We have the complete  genomes for  100 organisms



Computing with metabolism

By integrating a large amount of metabolic 
information we can now make inferences with it:

Predict  metabol ic  pathways  f rom genomic  data  by  
f inding plausible  b iochemical  routes

Predict  biocatalytic  functions from protein 
superfamilies to suggest possible  functions of  putative 
prote in  ( f rom genomic  data)



Inferring Metabolic Pathways

Since the sequencing of the first microbial 
genome, H.influenza, a number of computational 
methods have been developed to reconstruct 
reference pathways. Eg. Magpie, PathoLogic, and 
WIT

Reconstruction is an important starting  point for 
understanding pathways in an organism but there 
are generally many missing enzymes and gaps in 
such pathways

We needed strategy to infer new pathways



Inferring New Pathways Through 
Known Enzymes

Consider our of metabolism: compounds are  states, 
transformations are state-transitions, and 
compounds have chemical successors 

We elucidate a metabolic pathway computationally 
by state-space search 

Each predicted pathway is series of state-transitions 

This produces a combinatorially large number of 
possible solutions. How can we pick a reasonable 
subset ? 



Heuristic Search
Heurisic search is an informed search technique 
that uses a best-first algorithm to explore a state-
space to find a pathway from initial to final state. 

As opposed to blind search (BFS or  DFS) ,  
informed search methods use an evaluation 
function (F) to measure the cost of a path

F can be calculated in different ways:

Greedy - minimize cost to goal (F=H)

A* - minimize sum of cost so far (G) and cost to goal 
(F=G+H)



Metabolic Pathways by Search
To predict metabolic pathways by heuristic search, 
we must calculate the heuristic evaluation function, F

In general, there are complex factors that determine 
the cost of a pathway. We wanted a simple concept to 
compute F

We decided to test the chemical distance between 
states to estimate biochemical cost of a pathway from 
x(0) to x(L), where x(m) is an intermediate state in 
the pathway:

F(0,m,L) = G(0,m) + H(m,L)



PathMiner

Based on this algorithm, have developed 
PathMiner, an interactive computational framework 
for automated metabolic pathway elucidation 

A* search used in PathMiner always finds a 
pathway that is optimal in F, not the shortest 
pathway, and A* search is significantly faster 
than blind search

We are using PathMiner for elucidating

Microbial pathways from genomic annotations

Synthetic pathways for engineering



PathMiner Web Interface



PathMiner Applications

We are testing PathMiner by investigating 
pathways in different microbes: H.pylori, 
D.radiodurans and S.oneidenosis  MR-1

In H.pylori we found a number of pathways that are 
congruent with experimentally determined 
pathways, including:

Glucose  metabo l i sm

Pentose  phosphate  pathway

TCA



PEP to Chorismate



Pentose-phosphate pathway 



On-going Work

It is important to consider pathways in the context 
of broader biochemical processes. 

One way to elucidate the pathways in an organism 
is to analyze the complete network using functional 
annotations of genes and known transporters

We have built a complete network visualizaiton of 
D.radiodurans,  which we are using to analyze gaps 
and putative proteins that can fil l  those gaps.



Whole Metabolism: D.radiodurans



Inferring Biocatalytic Functions

Given the large amount of sequence data how 
accurately can we infer biocatalytic roles ?

By systematically computing the correlation of 
known enzymatic functions with sequence 
similarity we find:

Only 35% of enzymatic functions can be assigned with 
confidence

There are many cases of false positives and false 
negatives



Describing Enzymatic Functions

We begin with a widely used classification scheme, 
the Enzyme Commission (EC) nomenclature 

The EC defines six broad biocatalytic categories 

Each category has four levels of specification

There are about 3,500 specific reaction types across 
all known enzymes

Though not exhaustive, it covers most enzymes



Example: EC 1.2.3.4

An EC function is a string of four digits, each 
number signifying the level in the hierarchy. E.g. 
EC 1.2.3.4 is oxalate oxidase:

Class 1: Oxidoreductase

Sub-class 2: Acts on aldehyde or oxo group of donor

Sub-sub-class 3: The acceptor is oxygen

Serial number 4: The specific reaction: oxalate+O2<=> 

hydrogen peroxide+CO2



EC Overview



Limitations of the EC
The EC classification is manually derived the 
differences between levels are not consistent across 
the functional categories

The scheme does not capture function uniquely. 
(Eg. Enzymes that transfer groups share 
characteristics with ligases)

The hierarchical organization does not allow 
complex functions to share multiple characteristics. 
(Eg. A transferase is like a ligase)

These factors make EC identifiers difficult to 
compute with



Many Functionally Divergent Enzymes are 
Homologous



Many functionally similar enzymes are 
non-homologous



Challenges to function inference

Protein function is a property of three dimensional 
structure and it is hard to make inferences from 
linear sequence

Biocatalytic function definitions based on the EC 
are not always precise and computable

Specific issues:

Distant homologues are hard to identify

Proteins in superfamilies have divergent functions 

We need sensit ive and speci f ic  methods



Use Machine Learning (ML)

Machine Learning (ML) can be used to induce 
rules that can characterize proteins according to 
functional classes

Strategy:

Identify superfamilies as relevant data sets for training 
as they contain examples of divergent functions

Functionally relevant representations of proteins 
based on conserved modules 

Induction algorithms to infer hypothesis about the 
correlation between the proteins and their biocatalytic 
functions



Dihydrofolate Reductase (DHFR)



Glutathione Reductase (GSR)



Function Inference 

We have built classifiers for the inference of the 
biocatalytic potential of a putative protein

Efficiently annotate each ORF in a genome with 

putative enzymatic functions

Vary the sensitivity and specificity of function inference

Search for plausible protein candidates with a 
biocatalytic function



Summary

We can infer metabolic pathways from genomic 
data, or just synthetic pathways, through heuristic 
search

We can accurately assign enzymatic functions to 
putative proteins by machine learning. 

By combining function inference with pathway 
search, we can improve predictions further
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