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Preface

This issue is the first in a series of bulletins
describing statistical methods with demonstrated
potential for reducing sampling costs and increasing
information content of environmental data and
statistical analyses for site assessments, remedial
actions, and cleanups at U.S. Department of Energy
(DOE) sites.  The series is being sent to DOE HQ
managers, DOE national laboratory personnel,
statisticians in government, academia, and industry,
and other technical staff engaged or interested in the
design and implementation of cleanup activities at
DOE sites across the United States.  

The purpose of this effort is two-fold.  First, we
hope to encourage development of a common
knowledge base of efficient statistical methods in
order to facilitate the communication, evaluation,
and selection of site-specific optimal sampling plans
using the U.S. Environmental Protection Agency
(EPA) Data Quality Objectives (DQO) process
(EPA 1993, 1994).  Indeed, promoting and
improving the DQO process is the primary
motivation for developing this DQO Statistics
Bulletin series.  Second, we want to stimulate the
further development and application of statistical
methods for environmental remedial actions and
cleanups.

Plans are to issue a bulletin every 3 months.
Each short, reader-friendly bulletin will include an
overview discussion and one or more examples

illustrating the featured topic, method, or subject
area.  Key references will be provided, but no
attempt will be made to provide in-depth
discussions of underlying statistical theory.

This effort is being implemented by the Pacific
Northwest Laboratory (PNL) for DOE's Laboratory
Management Division (EM-26).  We invite all
readers from other DOE national laboratories,
government agencies, academia, and industry to
participate.  If you are interested in collaborating on
an issue, please contact any of us at addresses listed
on page 2.  

--Richard O. Gilbert, bulletin manager

Featured in this issue:  Ranked Set
Sampling

Ranked set sampling (RSS) is a potentially
very useful statistical sampling design for
environmental pollution problems.  The method 

Uses auxiliary information such as judgment,
historical data, or new field screening data to
limit the amount of more expensive and
defendable additional sample data that must be
collected to meet established DQOs.

Should be useful if the auxiliary information is
already available or can be obtained at very
little cost.
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1.0  Introduction

McIntyre (1952) introduced ranked set sampling
when he estimated the mean of pasture hay
production by using visual estimations of hay
production ("prior information") in combination
with harvesting and weighing a limited number of
plots.  The early published papers on RSS also
focused on estimating the mean.  It has been shown
(e.g., Patil et al. 1992b, 1994a, 1994b) that the
precision of the mean estimated using RSS is
expected to be greater than that of a mean
estimated using the same number of measurements
obtained using simple random sampling.  That is,
we get more "bang for the buck."  From a cost
perspective, RSS has the potential for estimating
the mean with required precision and confidence (as
specified in the DQOs) at less cost than if data are
obtained using simple random sampling.

The RSS methodology can be easily applied to
environmental pollution data.  RSS consists of first
selecting m sampling units (e.g., soil samples, 1-m2

parcels of ground, the air drawn through an air
sampler during a 5-minute time period) from the
target population (geographical area or time period
of interest) using simple random sampling.  After
these units have been selected, inexpensive auxiliary
information is used to rank (order from smallest to
largest) the selected units with regard to the
expected concentration of the pollutant in each unit.
Once the units are ranked, a specific procedure
(detailed in Section 2) is used to select a subset of
the ranked units.  These selected units are then
measured for the pollutant of interest.  The
measurements are then used to estimate the true
mean, µ, for the site.  

The ranking of sampling units might be
accomplished using expert judgment based on
knowledge of operational history at the site,
previous data obtained at the site, an inexpensive
auxiliary measurement, visual inspection of
sampling units, or some combination of these
methods.  Field screening techniques such as
portable in situ detector or fiber-optic readings may
be particularly effective at ranking units if the
reading of a unit is a reasonably good indicator of
the pollutant concentration in the unit.  Patil et al.
(1994b) suggest that, at hazardous waste sites,
sampling units can be ranked according to their
approximate contamination levels as revealed by
visual cues such as defoliation and soil
discoloration, special chemically responsive papers,
electromagnetic readings, and remotely sensed data.

It should be noted that the estimated mean is
not computed using auxiliary measurements that
may be used to do the ranking.  Instead, the
estimated mean is computed using the usual
("accurate") measurements needed to achieve the
quality requirements specified in the DQOs.

Ideally, one would like the ranking process to
be perfect, in the sense that the sampling unit given
the rank of 1 does indeed have the smallest true
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concentration of the pollutant among the m units, To do this, we shall use the fact that the
the unit given the rank of 2 has the next largest true radionuclide Americium-241 (Am) is also present in
concentration among the m units, ..., and the unit surface soil in these areas.  Furthermore, Am has a
given the rank of m has the largest true positive correlation with Pu.  That is, if a soil
concentration among the m units.  Fortunately, the sample has a high concentration of Am, it is also
ranking process does not need to be perfect for RSS likely to have a high concentration of Pu.  Finally, it
to yield a more precise estimate of the mean than is known that Am concentrations in surface soil can
can be obtained using simple random sampling. be approximated at low cost using the FIDLER
Patil et al. (1994b) indicate that the relative (Field Instrument for the Detection of Low Energy
efficiency (precision) of RSS compared to simple Radiation), a hand-held gamma detector that gives
random sampling can be several hundred percent count-per-minute (cpm) readings of Am.
depending upon factors such as ranking accuracy,
number of samples, and the underlying population Suppose that an evaluation of sampling design
distribution. options has led to a decision to use RSS at one of

In Sections 2 and 3, we describe the RSS required precision of the mean Pu concentration in
method in detail and how it might be used to soil in that area can be achieved if m = 3 soil
estimate the mean plutonium concentration in soil at samples are collected and a measurement of Pu is
a DOE site.  Next, in Section 4, we discuss how to made on each sample using the "accurate"
replicate the RSS process.  Technical issues and measurement method.  (In actual fact, soil Pu
possible application of RSS in environmental studies measurements from weapons testing areas on the
are covered in Section 5.  Future activities with NTS can vary substantially, so more than 3 samples
regard to RSS are suggested in Section 6. would usually be required to estimate the mean.
References cited in this issue are listed in Section 7. We use 3 here for ease of illustration.)  Finally,

2.0  RSS Method

The RSS method is best illustrated via an
example based on an actual remediation site.

At several weapons testing areas on or adjacent
to the Nevada Test Site (NTS), the soil within
fenced areas is contaminated with plutonium-239
(Pu).  The Pu contamination resulted from
experiments in which assemblies of Pu were
chemically exploded to test for safety from nuclear
fission in the event a nuclear weapon is involved in
an accident (Gilbert et al. 1988).  

Suppose that the mean concentration of Pu in
surface soil must be estimated, to prepare for
making remedial action decisions in these areas.    

these NTS testing areas.  Suppose further that the

suppose that the ranking of sampling units (field
locations within the testing area) will be done using
properly calibrated FIDLER detectors that give cpm
readings of Am.

For this example, the first three steps of the
RSS ranking and soil-sample selection process are:

1. Select a set of m = 3 field locations (sampling
units) from the study site using simple random
sampling.  Call this set S .  At each of the 31

locations in set S , take a FIDLER reading of1

Am.  Rank the 3 locations.  That is, assign the
rank 1 to the location with the smallest FIDLER
reading, assign the rank 2 to the location with
the next largest FIDLER reading, and assign the
rank 3 to the location with the largest FIDLER
reading.  Collect a soil sample only at the
location that had the smallest FIDLER reading,
that is, at the location given the rank 1.  Do not
collect samples at the locations with ranks 2 and
3.
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2. Select a second set of m = 3 field locations
using simple random sampling.  Call this set S .2

Rank the 3 locations in S  using FIDLER2

readings.  Collect a soil sample only at the
location in set S  that has rank 2.  Do not2

collect soil samples at the locations in S  with2

ranks 1 and 3.

3. Select a third (and final) set of 3 field locations
using simple random sampling.  Call this set S .3

Rank the 3 locations in S  using FIDLER3

readings.  Collect a soil sample only at the
location in the set S  that has rank 3.  Do not3

collect soil samples at locations in S  with ranks3

1 and 2.

At this point, the required m = 3 soil samples
have been collected and the ranking and sample
selection process ends.  The m soil samples are
measured for Pu using the "accurate" method as
specified in the DQOs.  We denote the three Pu
measurements by x , x , and x .1 2 3

The true mean concentration, µ, of Pu for the
study area from which the three sets of samples
were selected at random is estimated by computing
the arithmetic mean (x̄) of the 3 Pu measurements:

The estimated variance of x̄, [s (x̄)], and2

standard error (SE) are computed using the usual
formulas:

The ranking and soil selection process can be
generalized to handle any number of m samples.
This is done by generalizing Steps 1 through 3 to
Steps 1 through m.  At the ith step, the process is

Select a set, S, of m field locations using simplei

random sampling.  Take a FIDLER reading at
each of the m locations in set S .  Rank the mi

locations in order of increasing FIDLER
readings.  Collect a soil sample at the location in
set S  that has rank I.  Do not collect a soili

sample at any of the other m-1 locations in S .i

Note that if m samples are needed to meet DQO
requirements, RSS requires that m  locations be2

ranked in the process of selecting m locations for
sample collection.  In the example above,
m  = 3  = 9 locations must be ranked in the process2 2

of selecting m = 3 soil samples.  Similarly, if m = 20
soil samples are needed to meet DQO requirements,
then m  = 20  = 400 locations must be ranked in the2 2

process of selecting m = 20 soil samples.  Clearly,
the number of units that must be ranked increases
rapidly as m increases.  Hence, it is very important
to use a low-cost ranking method unless m is very
small.
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Set S1 Set S2 Set S3

FIDLER Rank FIDLER Rank FIDLER Rank

20,000 1 20,000 1 40,000 1

45,000 2 90,000 2 50,000 2

120,000 3 230,000 3 100,000 3

3.0  Numerical Example

For the case of m = 3, suppose that the FIDLER
readings and their ranks obtained by applying Steps
1 through 3 are as shown in the table below.

Therefore, following the steps in Section 2, in
set S  a soil sample is collected at the location with1

FIDLER reading 20,000 cpm, in set S  at the2

location with FIDLER reading 90,000 cpm, and in
set S  at the location with FIDLER reading 100,0003

cpm.  Suppose the resulting three Pu measurements
for these samples are 12.4, 29.5, and 39.6 nCi/g,
respectively.  Then, using Equations (1), (2), and
(3), we obtain

x̄ = 27.2 nCi/g

SE = 7.9 nCi/g

That is, the estimate of the true mean Pu
concentration for the site is 27.2 nCi/g and the
standard deviation of that estimated mean (i.e., the
standard error) is 7.9 nCi/g.

4.0  Replicating the RSS Process

If desired, the basic RSS design as discussed in
Section 2 can be replicated r times.  When
replication is used, RSS involves ranking n = m r2

sampling units and collecting n = mr samples, where

r  1 and m  2.  Note that when r > 1, x̄, s (x̄), and2

SE may be computed using the same formulas
[Equations (1), (2), and (3)] as when r = 1, except
that m is replaced by n = mr wherever m appears in
the formulas.

Suppose that applying the DQO process
resulted in a decision that 12 samples were needed.
Using RSS, 12 samples could be selected in one of
two ways.  One is to first select 12 sets of 12
sampling units using simple random sampling for
each set.  Then one sample from each set is selected
using the ranking and selection process illustrated in
Section 2 for the NTS example.  For this RSS
design, (12)  = 144 locations would be ranked to2

select the 12 locations to be sampled.  An
alternative RSS design would be to first select 3
sets of 3 sampling units using RSS (as illustrated in
Steps 1, 2 and 3 in Section 2), and then to replicate
that entire process 4 times.  For that RSS design, a
total of 3  x 4 = 36 locations would be ranked, and2

a soil sample collected from 3 x 4 = 12 of those
locations.  

The choice between these two options would be
based on cost and the method expected to yield the
most information (smaller SE).  These evaluations
would be conducted as part of the DQO process.
Some guidance is given in Patil et al. (1994b, p.
177) based on the work of Takahasi and Wakimoto
(1968).  We find that, ignoring cost considerations,
the design m = 12 and r = 1 would result in a
smaller SE than if m = 3 and r = 4 were used.
However, more ranking is required for the m = 12
design, which could increase cost.  Also, for some
ranking procedures, ranking may become more
difficult as m increases, in which case there is
motivation to keep m small.  When ranking is done
by a concomitant variable, such as FIDLER
readings (Section 3), Patil et al. (1994b) indicate on
the basis of work by Stokes (1977) that m should be
chosen as large as is practical.
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5.0  Discussion

Interpretation and advice concerning the use of
RSS is provided in this section, where r = 1 without
loss of generality.

5.1  Unbiased Estimator of the True Mean

Takahasi and Wakimoto (1968) proved that the
arithmetic mean (x̄) of RSS sample data [Equation
(1)] is an unbiased estimator of the true mean, µ, of
the target population.  That is, by definition, if the
steps in the RSS process, including replications,
could be repeated K times (where K is very large),
the mean of the K arithmetic means (x̄) would equal
the true population mean.  This desirable property
is not unique to RSS.  It also applies to the standard
computing formulas for estimating the true mean
when data are collected using other designs,
including simple random sampling.  

5.2  Estimating the True Variance of x̄

If data are obtained using RSS, Equation (2) is
an unbiased estimator of the true variance of x̄ only
if the number of samples collected for accurate
measurements is reasonably large.  In particular, if
m is small, s (x̄) computed using Equation (2) will2

tend on the average to be too large (Stokes 1980).
This bias is likely to be unimportant if, say, m  20,
unless the population is highly skewed.  However,
this issue needs further study.

5.3 Relative Precision of RSS Compared 
to Simple Random Sampling

RSS yields more precise statistical estimates
than does simple random sampling.  The estimated
mean (x̄) based on m measurements obtained using
RSS will be more precise than the estimated mean
based on m measurements obtained using simple
random sampling.  In particular, Takahasi and

Wakimoto (1968) determined that when the ranking
is perfect, the relative precision (RP) of RSS
compared to simple random sampling is between 1
and (m+1)/2; that is,

where

    Variance of x̄ When Data Are Obtained
    Using Simple Random Sampling

RP = 
    Variance of x̄ When Data Are

     Obtained Using RSS

The upper limit [RP = (m+1)/2] is attained only
when the underlying distribution of the data is
rectangular (i.e., when all values between a lower
and upper bound are equally likely to be measured).
Hence, for that distribution, almost (m+1)/2 times
as many measurements on units selected using
simple random sampling are required to equal the
precision of the RSS estimator based on m samples
(Patil et al. 1994a).  For any other specific
underlying distribution, the RP will lie between the
limits given above in Equation (4).  The lower limit
(RP = 1) occurs when ranking is of no value, that is,
when ranking is no better than assigning ranks at
random to the initial set of randomly selected units.
This latter result indicates that we never lose any
precision by ranking the initial set of randomly
selected units, no matter how poor the ranking may
be.  Of course, the increase in RP is purchased at
the cost of ranking the units.  Such costs must be
considered when deciding whether to use RSS.

Table 1 in Patil et al. (1994b) gives the RP of
RSS relative to simple random sampling for various
population distributions (including normal,
rectangular, exponential, gamma, Weibull, and
triangular).  The Patil et al. table indicates that
RP = 1.914 if the population has a normal
distribution with mean 0 and standard deviation 1,
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0.1 0.5 1.0

m = 3 RP 1.90 1.70 1.34

m = 10 RP 4.73 3.58 2.06

and if RSS with m = 3 measurements will be used to
compute x̄ (as was the case for the NTS example
we presented in Section 2).  That is, the true
variance of x̄ when 3 measurements obtained using
simple random sampling will be used to compute x̄
is almost twice as large as the true variance of x̄
when the 3 measurements are obtained using the
RSS procedure.  If m = 5 measurements will be
used, then RP increases to 2.77.  Similar results are
obtained for all distributions in Table 1 of Patil et al.
(1994b).  Hence, it appears that in practice it would
be wise to use RSS instead of simple random
sampling unless the cost of the ranking process used
in RSS is prohibitively high.

 Patil et al. (1994b) also determined the RP when
the population distribution is lognormal.  Their
Table 2 indicates that the RP decreases as the
standard deviation of the logarithms increases, that
is, as the skewness or coefficient of variation of the
lognormal distribution increases.  For example,
when m = 3 or 10 and the data have a lognormal
distribution with standard deviation,  (in
logarithmic units), they obtained

When ranking is imperfect, it is still true that
RP  1.  However, as the errors in ranking become
large, the RP will move closer to 1.  When the
ranking variable is a measured quantity (e.g., the
FIDLER cpm readings in our NTS example), the
RP will depend on how well the ranking variable
and the variable of interest (Pu concentrations in the
example) are correlated (David and Levine 1972;
Stokes 1977; Patil et al. 1994a, 1994b).

5.4 Statistical Methods Available for Use 
on Data Obtained Using RSS

The objective of collecting environmental data
often extends beyond simply estimating the true
mean.  Other objectives include computing 95%
confidence limits for the true mean, estimating
trends over time or space, or testing whether a risk-
based or background-based cleanup standard has
been attained by remedial actions.  Many of these
alternative applications have not yet been fully
developed for RSS.  However, methods have
recently been developed to 1) test for a difference in
the median concentration of two populations using
a modified Wilcoxon Rank Sum test (Bohn and
Wolfe 1992, 1994), and to 2) estimate the
cumulative distribution function (cdf) and a
confidence band for the cdf (Stokes and Sager
1988).  Bohn and Wolfe (1992) show that RSS can,
in some situations, lead to a more powerful
Wilcoxon Rank Sum test.  Stokes and Sager (1988)
show that RSS is more efficient than simple random
sampling for estimating the cdf. 

Patil et al. (1994b) review the theory, methods,
and applications of RSS.  They also demonstrate the
use of RSS for improving the formation of
composite samples.  To our knowledge, their article
gives the most complete review of RSS currently
available.

Patil et al. (1992b) discuss applications of RSS
to ecological data analysis.  They also examine the
relative precision of RSS to simple random
sampling when the data follow the lognormal,
Poisson, logarithmic, or binomial distribution.
Graphs of the relative precision illustrate the
superior performance of RSS compared to simple
random sampling when data have these
distributions.

Patil et al. (1992c) examine the performance of
RSS compared to simple random sampling,
stratified random sampling, and systematic sampling
when the population has a trend.  They found that
RSS provides a more precise estimator of the true
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mean than simple random sampling when a trend is may be whether the soil in an area can be stored in
present.  Also, they found that in some cases, the some engineered landfill for a fixed time period.
performance of RSS for estimating a mean was The main issue may have to do with a hazardous
better than if stratified random sampling and component of the waste.  However, as a side issue,
systematic sampling were used.  Patil et al. (1994a, if the average Pu is greater than some level, the
1994b) illustrate the effectiveness of RSS relative to engineered landfill is not even an option for
simple random sampling by using polycholorinated consideration.
biphenyls (PCB) data from 19 gas pipeline sites in
Pennsylvania.  

A trio of recent publications shows how to use
RSS to estimate parameters of several probability
distributions (Lam et al. 1994; Fei et al. 1994; Sinha
et al. 1994).

5.5 DQO Environmental Applications of the true mean or to estimate the true mean with
RSS Data

A possible environmental application of RSS is
in deciding how to dispose of sealed drums that
contain heterogeneous waste of unknown
concentrations.  In situ detector readings might be
used to rank randomly selected sets of drums before
a subset of those drums is selected for detailed
inspection.  Another application might be in
deciding which samples archived in storage should
be measured for a new pollutant of interest.  If
aliquots from these stored samples had previously
been measured for other pollutants or natural
constituents, those data might be useful for ranking
randomly selected sets of stored samples in the RSS
process.

RSS could also be used to resolve side issues.
For example, in working through the DQO process,
many side issues and secondary decisions may be
required before the DQO team can begin work on
the primary decision.  As the team works through
the multiple issues at a site, the cost-effective RSS
approach can be used to provide estimates of
average concentrations for these secondary or
supporting issues.  These averages can be used to
provide support for saying "yes, this may be a
problem area and must be considered further."  In
the Pu example in Section 2, the primary decision

5.6  Double Sampling

A sampling design called linear regression
double sampling [discussed, e.g., in Cochran
(1977), Gilbert and Eberhardt (1976), and Gilbert
(1987, Ch. 9)] also makes use of auxiliary data such
as FIDLER readings to obtain a better estimate of

reduced cost.  The approach is to estimate the linear
relationship (using regression analysis) between two
types of measurements made on the same units:
measurements made using an inexpensive but
fallible method and measurements made using an
expensive "accurate" method.  The linear regression
line and the variability in the data about the line are
then used to estimate the mean and its standard
error.  Double sampling works well if the cost of
the inexpensive data is sufficiently low compared to
the cost of the "accurate" measurement method and
if the positive correlation between the two types of
measurements is sufficiently large.  Patil et al.
(1993) studied the precision of RSS relative to
double sampling.  They concluded that for the
population model they considered, RSS performed
approximately the same as double sampling unless
the positive correlation was larger than 0.85.  In
that case, double sampling gives a more precise
estimate of the true mean.

6.0  Future Activities

This issue of the DQO Statistics Bulletin has
indicated that RSS offers considerable potential for
obtaining better estimates of the true mean with
little, if any, increase in costs or, alternatively, to
obtain an equally precise estimate of the mean for
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less cost.  However, the potential for using RSS for
other purposes should be explored.  RSS needs
further evaluation to determine where it may be
used to best advantage to reduce costs and improve
performance of site management and cleanup.

Some suggested topics for further study are

developing statistical tests that have improved
performance when RSS is used

developing a procedure for computing
confidence limits on the true mean using RSS
samples

incorporating composite sampling with RSS to
achieve additional savings in sample analysis
costs 

developing a procedure for specifying the
optimal number of samples for estimating a
mean or percentiles of a distribution or for
testing hypotheses.

Additional research topics are discussed by Patil et
al. (1992a).
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