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Preface

I hope you were stimulated by the discussion of
ranked set sampling (RSS) in our first issue of the
DQO Statistics Bulletin (Gilbert 1995a). This
second issue begins with Nancy Hassig’s highlights
of two products from the DQO Training and
Support Project:

DQO Training and Information Center
on the Internet

DQO Video: Software Tools Useful in
Implementing the DQO Process

Next, our feature article, written primarily by
Joanne Wendelberger (Los Alamos National
Laboratory), discusses statistical tools and
approaches for analyzing data sets that contain
nondetects. Joanne's contribution is complemented
by a discussion of the need for using the DQO
planning process and the Data Quality Assessment
(DQA) data evaluation process when nondetects are
expected to be a problem.

I am interested in receiving any comments (pro
or con) you may have on this issue. Also, if you
wish to contact Joanne Wendelberger, you may do
so at 505-665-4840 (phone), 505-667-4470 (fax),
or joanne@lanl.gov (e-mail).

Because of budget reductions at DOE, the
DQO Statistics Bulletin is not funded beyond the
current issue. Do any of you know of funding
sources that might support the continued publication
of the Bulletin? If so, please give me a call.

-- Richard O. Gilbert, bulletin manager

DQO Training and Support
Project Highlights

DQO Training and Information Center on the
Internet

A DQO Home Page on the Internet has been
established so that you can obtain more information
about the DQO process. The Home Page contains
a wide variety of multimedia material on training,
case study results, topical papers, and downloadable
software. The Home Page can be accessed using
any web browser such as Netscape or Mosaic. The
URL is

http://terrassa.pnl.gov:2080/DQO/home.html

Note that "DQO" are the only letters that are
capitalized. This Home Page is supported by DOE's
Laboratory Management Division and is on a server
at the Pacific Northwest National Laboratory in
Richland, Washington.
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comments, and article contributions.
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e-mail ba_pulsipher@pnl.gov

Richard O. Gilbert, bulletin manager
Phone 509-375-2979, fax 509-375-3614
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DQO Video: Software Tools Useful in The three software-tool case-study
Implementing the DQO Process combinations are

A 23-minute video gives an introduction to three cadmium-contaminated fly ash waste
software tools that can be useful in implementing using DEFT (Decision Evaluation
Step 7 of the DQO process: Optimize the Sampling Feasibility Trials) software
Design. The tools presented have logic for
calculating a sample size or grid spacing based on This case study is taken from Appendix B of
user-supplied input. Key inputs include desired USEPA (1994a). The DEFT software was
limits on decision errors, the way the sample data developed by EPA Quality Assurance Division;
will be used to make decisions, and assumptions contact John Warren at (202) 260-9464.
about the site. Users develop these inputs while
working through the DQO process. The video Waterville Municipal Landfill Superfund
demonstrates each of the tools using a case-study Site using POWER software
that identifies the problem, assumptions, and
decisions to be made. This case study is from Appendix II of USEPA

(1993). The software code, Statistical POWER
Analysis: A Computer Program (ISBNS-008-8),
was developed by Borenstein and Cohen (1988) for
the National Institutes of Mental Health through the
Small Business Innovative Research Program. It is
available from Lawrence Erlbaum Associates, Inc.,
at 201- 666-4110 (phone).

Leadbury Superfund Site with
ELIPGRID-PC software

This case study is from Appendix II of USEPA
(1993). The ELIPGRID-PC software was
developed by Jim Davidson, Oak Ridge National
Laboratory, Grand Junction, for the U.S.
Department of Energy. Contact Jim at 303-248-
6259 to obtain a copy of the software and the
accompanying report (Davidson 1995).
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Feature article:

NONDETECTS: PLANNING AND
STATISTICAL ANALYSES TO
MITIGATE THEIR EFFECTS

1.0 INTRODUCTION

Before proceeding, some definitions will be
helpful:

nondetects - measurements reported by the
analytical laboratory as being less than some
reporting limit or some defined detection limit
for individual samples

less-than values - nondetects reported by
the laboratory in the form of being less
than the reporting or detection limit, for
example, "< 1.2," where 1.2 is the
detection limit for the sample

left-censored data sets - data sets that
contain nondetects, where nondetects are
defined as above - The reference to left
refers to the left-hand tail of the data
distribution.

It is well known that many environmental data
sets contain nondetects. These nondetects indicate
a loss of information that create problems for
decision makers when action levels (e.g., a
concentration value above which remedial action is
needed) are near the detection or reporting limit.
The best way to mitigate this problem is to use

the DQO process (USEPA 1993, 1994a)

the data quality assessment (DQA)
process (USEPA 1995)

statistical analysis tools developed
specifically for left-censored data sets.

1.1 Data Quality Objectives Process

Before data are collected, the first step in
handling data analysis problems caused by
nondetects is to use the DQO planning process to
determine the DQOs and the impact that nondetects
could have in their achievement. If all nondetects are
expected to be less than some threshold value or
action level, then they may not be a critical concern.
In other cases, 1) better measurement methods may
be developed to reduce or eliminate nondetects in
future studies; and 2) the format used by analytical
laboratories to report analytical results should be
reviewed and improved, if necessary, to ensure that
information about the uncertainty in each
measurement is documented and reported.

1.2 Data Quality Assessment Process

Once data are in hand, the DQA process
(USEPA 1995) is used to determine if the collected
data meet the established DQOs. For example, the
number of nondetects values reported may be
greater than expected when the DQOs were
specified, or the laboratory reporting procedures
may not meet requirements. If there are too many
nondetects, it may not be possible to achieve the
tolerable limits on decision errors that were
specified by decision makers in Step 6 of the DQO
process. Changes to the sampling plan and/or
laboratory measurement and reporting procedures
may then be required.

1.3 Statistical Analysis

The statistician, as a member of the study team
implementing the DQO/DQA processes, will
provide guidance on which statistical tools should
be used to analyze data sets that contain nondetects.
The goal is to use statistical tools that use all the
information contained in the entire data set,
including the nondetects. (Yes, nondetects do
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contain some information.) This approach provides a key parameter in determining the detection limit
the decision maker with maximum information for and other limits. The lack of standardization should
making correct data-driven decisions. be addressed during the DQO process.

Many papers that discuss the statistical analysis In actual practice, the exact nature of the
of censored data sets have appeared in the statistical nondetect values may be unknown. In this case, the
literature. Many ideas in these papers can be analyst knows only that the measured value is less
applied, sometimes with modifications, to than or equal to the specified detection limit.
environmental left-censored data sets (see, for USEPA (1989b, 1992a, 1992b) describes some of
example, Akritas et al. 1994; Helsel and Hirsch the types of nondetect values that can occur with
1992; Atwood et al. 1991; Millard and Deverel analytical data and makes some limited suggestions
1988), as discussed in Sections 4 through 6 below. about how to treat this type of data.

2.0 DetectionLimits

When chemical analyses of environmental
samples are conducted, measured values may fall
below some specified limit. In this case, the
analytical laboratory often reports measurement
results as being less than the limit of detection. The
detection limit may be either an actual instrument or
measurement detection limit, or a reporting limit the
laboratory uses. Detection limits have been defined
in different ways by different authors for different
analytical methods and in different situations. Limits
may or may not have a statistical basis. Detection
limits may vary for sample and reference
(background) data sets or even for individual
observations. Gibbons (1994) describes and
critiques methods for computing the method
detection limit. His criticisms of the method by
Glaser et al. (1981) are of particular interest, as that
method appears to be the basis of the method in 10
CFR 136, Appendix B.

An important step in determining how to handle
nondetects is to understand the type of detection
limit being used. Many different definitions of
nondetect values appear in the scientific literature
(Currie 1984, 1968). In addition, there is a lack of
standardization regarding the time period, number
of samples, technicians, instruments and laboratories
for which samples should be analyzed to determine
the variance in the analysis method. This variance is

We note that Clark and Whitfield (1994)
review the sources of uncertainty in environmental
data and the conceptual basis of various limits of
detection. They recommend a procedure for
reporting laboratory analysis results when
nondetects are present. Their paper provides a
useful perspective on issues discussed in this
Bulletin.

3.0 Examplesof Left-Censored
Data Sets

Table 1 shows two cesium-137 ( Cs) data137

sets that contain less-than values. These data are
part of larger data sets collected at a study site and
a background area at the Los Alamos National
Laboratory by staff of the Environmental
Restoration Program during site assessment
activities. At the time these data were collected, a
screening level of 4 picocuries per gram (pCi/g) was
being used as an upper bound on acceptable levels
of Cs. The detection limits are well below the137

screening level, so the data are adequate for this
type of screening comparison.

In addition to comparing data to fixed
screening levels, comparisons are frequently made
to data from a relevant background area. In Table 1,
the detection limits of background data are generally
lower than the detection limits for the contaminated
site data. Also, there tends to be a
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Table 1. Cs Site and Background Data137

Site, pCi/g Background, pCi/g

<0.05 <0.10 <0.21 <0.21 0.08 0.08 0.11 0.09

<0.09 <0.15 <0.09 <0.16 0.14 0.16 0.20 0.18

<0.15 <0.23 <0.11 0.33 0.12 0.09 0.06 0.09

0.36 1.28 1.22 0.43 0.28 0.13 0.17 0.40

0.40 0.30 0.43 0.30 <0.01 0.15 0.12 0.10

0.26 <0.14 9.72 0.65 0.23 0.17 0.38 <0.02

0.75 <0.11 <0.12 <0.12 0.28 <0.05 0.03 0.05

lower frequency of nondetects in the background During the DQO process, investigators must
data set than in the site data set. These phenomena clearly state the problem at hand and identify the
suggest there may have been differences in the decision that must be made. After identifying
analytical processes and censoring mechanisms for important factors and defining the study domain, the
the two data sets. This, in turn, raises questions stakeholders and investigators develop a decision
about how to conduct a statistically defensible rule and specify uncertainty limits. This uncertainty
comparison of the site and background data. assessment should address the possibility of

The potential for obtaining less-than values
during the data collection process leads to many Selection of a design for collecting data (Step
important questions. Examples include 7 of the DQO process) must consider the

How will nondetects be handled if a methods that might be used and whether a decision
comparison to a fixed value is required? can be made from the resulting data. Historical
(See Section 4.3.) information may be useful for determining the likely

How will two different populations be limits may vary depending on the concentration
compared? (See Section 4.4.) levels encountered because of factors such as

How will risk assessment calculations be Stakeholders and planning team members must take
performed in the presence of nondetects? care to ensure that the methods selected will yield
(See Section 4.5.) data with appropriate detection limits for the

How will trend analyses or spatial
analyses be affected by nondetects? (See
Section 4.6.)

obtaining nondetect values.

anticipated detection limits of different measurement

range of values that will be encountered. Detection

dilution ratios required to perform the analyses.

decision of interest.
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4.0 StatisticalMethods
for Data Sets

ContainingLess-ThanValues

There are two general approaches to statistically
analyzing data sets that contain less-than values:

Replace each less-than value with a
substitute (replacement) value.

Employ statistical techniques that can
handle less-than data in some acceptable
way.

A commonly used replacement method is to
replace each less-than value with half the detection
limit for that sample. Other commonly used
replacement values are zero or the detection limit
itself. Also, if there are several less-than values with
the same detection limit, the values might be evenly
spaced between 0 and the detection limit or
according to some specified probability distribution
such as a normal or log-normal distribution. Each
method has the potential for introducing bias into
the statistical data analysis results, which could lead
to inappropriate decisions by decision makers.

The second approach—employing statistical
techniques that can handle data sets with less-than
values—is generally preferred over the use of
replacement values. Techniques used in this second
approach are discussed below.

4.1 Data Summaries

Environmental investigations can result in the
collection of large volumes of chemical analysis
data. A single environmental sample may be
subdivided and analyzed for hundreds of different
radiological or chemical constituents. Depending on
the size of the site under investigation, the number
of samples collected may range from less than 10 to
several hundred.

An important step in the statistical analysis of
large data sets is to summarize or "describe" the
data. The presence of less-than values can make this
a nontrivial task. Indeed, the numerical value of
sample (descriptive) statistics such as the mean,
median, standard deviation, maximum, and
minimum can be misleading when less-than values
are present.

As USEPA (1989b) urges,

"Do not simply omit the nondetected results..."

Clearly, omission of less-than values (or more
generally, nondetects) can seriously bias summary
statistics computed from the data. To convey
meaningful information, the summary must meet at
least one of three criteria:

Provide separate information for
detected data and less-than values.

Follow a specified procedure for
replacing less-than values with proxy
values prior to computing sample
statistics.

Use statistical techniques to provide
estimates of sample quantities based on
the full data set (detects and
nondetects).

The method of handling nondetects may also
depend on what type of constituent is being
examined. When a number of closely related
constituents are being considered, the replacement
of nondetects may be achieved from a multiple
constituent standpoint. For example, one method
proposed for polycyclic aromatic hydrocarbons
(PAHs), which tend to occur together, is to set all
nondetects to zero if there are no detected PAHs in
a given sample, and to set all nondetects to their
corresponding detection limits if one or more of the
PAHs is present above a detection limit.
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Data summaries and descriptive statistics for based on assuming that the underlying data
data sets containing nondetects are discussed further distribution is known. The data values are plotted
by Helsel (1990) and Helsel and Cohn (1988). against the percentiles of the assumed distribution.

4.2 Estimation

Typically, statistical estimation in the
environmental setting involves estimating sample
statistics (such as the mean, standard deviation, and
percentiles) using representative data from a 4.3 Comparisons to Fixed Values
specified population. These estimates may be
needed to check for trends over time as part of a In some cases, individual values or sample
long-term monitoring program. The estimates may means must be compared to specified fixed levels to
also be needed to make inferences using statistical make a decision about whether further action is
tests, confidence limits, or tolerance limits. required. If the detection limit is well below the

A replacement approach (discussed on page 6) or no impact on the decision. However, in some
would use standard formulas to calculate sample cases, the detection limit may be only slightly below
statistics after substituting values such as zero, one or even above the decision level. Comparisons can
half of the detection limit, or the detection limit be difficult in this situation.
itself for the less-than values. Most authors,
including Helsel and Hirsch (1992) and Atwood et When a simple comparison cannot be made
al. (1991), do not recommend using these because of the presence of nondetects, alternative
techniques. However, Atwood et al. (1991) evaluation methods may be used. For example,
indicated that substitution may be appropriate when historical knowledge of the site and the frequency of
the goal is to perform tests of statistical hypotheses detected values in the data set may be considered in
rather than to estimate population parameters. making inferences. Comparisons may involve simply

Other estimation techniques have been statistical tests to determine whether the mean or
proposed, most of which involve either maximum some population quantile is above the allowable
likelihood estimation or probability plotting limit. Exceedance criteria may be used to examine
techniques. So-called "robust" versions of these the probability of obtaining various numbers of
techniques reduce the impact of misspecification of values above a threshold value under specified
the underlying distribution. Maximum likelihood assumptions about the underlying population.
techniques assume that the data come from a USEPA (1989a) describes the use of simple
probability distribution that can be written down exceedance-based rules. See also Leadbetter (1993).
using a specific parametric form. Likelihood Using exceedance-based rules that focus on the high
equations are then generated from the assumed values in the upper tail of the data distribution may
probability distribution. These equations are then avoid the problems encountered with analyses that
maximized to obtain parameter estimates. Specific require all values to be above the detection limit.
estimation techniques are discussed in Gilbert
(1995b) and Wendelberger (1995).

Probability plotting techniques, which are easier
to use than maximum likelihood methods, are also

If the assumed distribution is, in fact, correct, the
data plot will be linear, and parameter estimates may
then be obtained graphically from the plot.
Probability plotting techniques are described in, for
example, Gilbert (1987) and Ott (1995).

decision level, the nondetect values will have little

flagging values above allowable limits or using

4.4 Comparing Populations

Nondetect values can pose an especially
difficult problem when the goal is to compare two
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different populations. For example, data collected are the Gehan test and the Peto-Prentice test, which
from an area suspected of being contaminated might were included in Latta's (1981) Monte Carlo study
be compared to data collected from some suitable of several nonparametric approaches. Millard and
background area that is otherwise similar, but Deverel (1988) used computer simulations to
presumed to be uncontaminated. Because the values evaluate these two tests and several other
sampled from the two populations may involve nonparametric tests for comparing two populations
different censoring mechanisms and different limits when there are multiple detection limits.
of detection, care must be taken to arrive at valid
conclusions. USEPA (1994b) discusses several Also potentially appropriate for environmental
methods for comparing sample and reference applications is a quantile test developed by Johnson
populations and provides some advice on dealing et al. (1987). This method examines the upper tail
with nondetects. behavior of two populations by computing the

One simple approach is to apply standard the combined data sets would come from one of the
parametric techniques such as the two-sample t test populations when the two populations in fact have
(Iman and Conover 1983), with nondetects replaced the same distribution. This method can detect
by substitute values. Davis (1994, p. 848) discusses differences in the upper tails of the two distributions
comparing two populations for this replacement if the number of samples is reasonably large. In
approach. A preferred approach may be to use environmental applications, extreme values are often
nonparametric techniques. These do not depend of most interest. As nondetects tend to occur in the
upon assuming a specific underlying data lower (left) end of the distribution, the quantile test
distribution as do parametric techniques. Helsel in Johnson et al. (1987) can be used in the presence
(1987) discusses the advantages of nonparametric of nondetect data, provided that the nondetect
techniques for assessing environmental data. Some values are not among the n largest values. USEPA
nonparametric methods can handle nondetect values (1994b) shows how to use the quantile test in
directly. Others may require the replacement of tandem with the WRS test to improve the chances
nondetect values, but that replacement approach of detecting when site concentrations are larger than
may have less impact on results than what occurs background concentrations. Hardin and Gilbert
for parametric approaches. In other cases, the (1993) used computer simulations to evaluate the
nonparametric techniques can handle nondetect performance of the quantile test relative to the WRS
values if certain assumptions may be made; for and other two-sample tests.
example, that all the nondetect values are less than
all values above the detection limits. Helsel and Hirsch (1992) discuss additional

The nonparametric Wilcoxon Rank Sum (WRS) including the use of tobit regression and
test (Gilbert 1987; USEPA 1994b) may be used to contingency table analysis for comparing or
compare data from two populations. The test is estimating relationships among populations.
effective for detecting when the median of one Contingency table analysis is particularly useful
population is greater than that of the other when data sets contain a large proportion of
population. An example is comparing site data to nondetects.
background data (Table 1). The test consists of
ranking the combined data from the two populations
and then using the sum of the ranks from one of the
populations as the test statistic. The WRS test may
be modified to handle less-than values. Examples

probability that k out of the n largest values from

data analysis methods for left-censored data sets,

4.5 Risk Assessment

If contaminants are found at a site, a risk
assessment may be performed to decide if
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remediation is required. Risk assessment involves
summarizing contaminant concentrations over areas
called exposure units that represent physical areas of
a size encountered by individuals under a given land
use scenario. The risk assessment process included
using sample information about average
contaminant concentrations to determine whether a
particular area poses a human health risk.

Because of uncertainty in estimating the average
exposure to a pollutant received over time, the
USEPA uses the 95% upper confidence limit (UCL)
on the mean concentration in computing the intake
of chemicals into the body (USEPA 1989b, pp. 6-
19). To examine the impact of nondetect values on
the risk assessment, consider the formula used in
computing the 95% UCL on the mean of a normal
distribution from a sample of size n:

UCL= x + t s/n0.95,n-1
1/2

where x is the sample mean, s is the sample standard
deviation, and t is the 95th percentile of the t0.95,n-1

distribution with n-1 degrees of freedom.
Replacement of nondetect values by their detection
limits is generally regarded as conservative when
estimating the true mean because it will provide an
estimate of the true mean that is greater than or
equal to the estimated mean that would be obtained
if the nondetect values were replaced by actual
measurements. However, this replacement method
will produce a smaller than desired standard
deviation. The overall impact of replacing
nondetects by their detection limits will depend on
the relative magnitudes of the differences in the
resulting estimated mean and standard deviation
from their values that result from the replacement of
the nondetects. If a replacement method is used, the
resulting impact on the computed UCL should be
determined. If the particular replacement method
used affects the computed UCL to such an extent
that decisions about the site could be affected, this
is a warning that additional information is needed to
make the decision.

4.6 Trend Detection

Changes and trends over time are often
important in environmental decision making. The
presence of nondetect data complicates the process
of looking for trends. Gillom et al. (1984) examined
the effect of nondetects on the ability to detect
trends. In general, nonparametric tests for trend
(Gilbert 1987) are capable of handling a moderate
number of nondetects.

Neerchal and Brunenmeister (1994) describe a
weighted regression approach as a modification of
the replacement approach. The novel aspect of this
approach is that the detection limit is used as a
measure of data precision. Conservative lower
bounds on the precision of trend estimates are
provided. Their approach incorporates application-
specific information into the data analysis process,
thus adding to the information typically used in
estimating trends.

4.7 Spatial Analysis

Spatial analyses may be used to analyze data
that contains location information. Kriging is one
spatial averaging technique which has been applied
to environmental data. Kriging has been described in
detail by Cressie (1991). Cox and Piegorsch (1994)
discuss the use of kriging as a method of combining
data to estimate nondetect values in spatial data. An
important feature of this approach is that it may be
used to combine data collected at locations from
different sampling schemes.

5.0 AlternativeApproaches

Alternatives to the use of traditional detection
limits have been proposed for use with
environmental data. These innovative approaches
try to incorporate additional information available
about the data collection process and the behavior
of the measurements.
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Lambert et al. (1991) reexamined the detection selecting appropriate statistical data
limit problem from a new perspective. Instead of analysis methods.
looking at fixed detection limits, they considered
functions that quantify the probability of acceptance The selection of an appropriate statistical
and the probability of detection. Information on the analysis method depends on the decision that is
actual measured values associated with nondetect being made using the data. Other important factors
values was used to show that common reporting to consider are the frequency of nondetects,
practices used by analytical laboratories can throw magnitudes of the detection limits relative to
out valuable information. This approach is radically decision values, amount of data, chemical analysis
different from the typical use of detection limits and techniques being used, complexity of the available
leads to different analysis needs. statistical methods, and resources available for data

Gibbons (1995) discusses a calibration approach
as an alternative to estimating a method detection Selection of methods for handling nondetects
limit using a single concentration point design. must be determined within the DQO framework to
Instead of looking at single detection limits derived ensure that the resulting estimates are useful for
from data collected at a single concentration, the decision-making. If the nondetects are small in
calibration approach examines variability of magnitude or low in frequency, the method of
measurements over a range of concentration values. handling the nondetects will probably have minimal
This approach requires more information than the impact on the final outcome of the analysis.
traditional assessment of variability at a single However, if the detection limits are close to
concentration value, but the calibration is useful important decision values, or if the frequency of
over a broader concentration range. nondetects is high, the treatment of the nondetect

6.0 Discussion
and Needed Developments

Nondetect issues considered during the DQO
process should include

developing consistent definitions and
determination of detection limits among
analytical laboratories

improved data reporting procedures by
analytical laboratories

greater interaction among statisticians and
laboratory personnel at early planning
stages

improved field and laboratory
measurement procedures to detect
smaller amounts of contaminants

analysis.

values can greatly influence resulting decisions. The
complexity of the available methods and the
resources available for data analysis must also be
considered.

Further investigation of statistical methods for
handling nondetects should be considered in several
areas, including

evaluating methods via computer
simulation guided by experiences with
actual environmental data

developing guidelines for deciding when
simple methods are appropriate

developing methods to handle multiple
detection limits

integrating existing statistical methods
with environmental applications.
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