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Introduction

Energy Criterion for Fatigue
Strength of Wood Structural
Members
This report describes a mathematical model for fatigue strength of cellulosic materials
under sinusoidal loading. The model is based on the Reiner-Weissenberg thermody-
namic theory of strength in conjunction with a nonlinear Eyring’s three-element
model. This theory states that failure depends on a maximum value of the intrinsic
free energy that can be stored elastically in a volume element of the material. The
three-element mechanical model, which consists of a linear spring in series with a
parallel array of another linear spring and an Eyring dashpot, provides a good
description of theological material properties. The strength model system was able
to predict rupture occurrence of polymers and wood structural members under con-
stant and ramp loading with satisfactory results. For sinusoidal loading, the present
study shows that the strength model system can predict time at fracture as a function
of applied mean stress, amplitude of cyclic stress, and stress frequency. Numerical
examples with model parameters evaluated for small Douglas-fir beams are pre-
sented.

Wood structural members exhibit time-dependent rupture be-
havior. The design of these members requires an appropriate
consideration of the effect of load duration. The estimation of
load-duration effects for specified loading conditions is usually
obtained from empirical mathematical models whose parame-
ters are determined from creep rupture test data. In the present
study, we developed a mathematical model for time-dependent
strength of wood structural members under sinusoidal load with
low heat generation due to cyclic stressing. The analysis is
based on the Reiner-Weissenberg energy criterion and is an
extension of a recent paper that considers the viscoelastic effects
due to constant and ramp loading on strength of wood (Liu and
Schaffer, 1995).

The effects of sinusoidal loading on time-dependent strength
of polymeric filaments were analyzed by Coleman (1956) and
Coleman and Knox (1957), and on wood by Liu et al. (1994).
Their mathematical models were based on the theory of reaction
rate for fracture of solids proposed by Tobolsky and Eyring
(1943). Common features of their models include (a) models
for sinusoidal load and constant load are identical in form and
(b) fatigue life is independent of stress frequency. The model
in the present study also has the same features when used on
wood, but stress frequency is contained in the mathematical
formulation.

The Reiner-Weissenberg thermodynamic theory of strength
(Reiner, 1964) was first applied to the study of time-dependent
fracture of wood under various loading conditions by Bach
(1973). The theory states that failure depends on a maximum
value of the intrinsic free energy that can be stored elastically
in a volume element of the material. In conjunction with the
strength theory, Bach used a linear mechanical model consisting
of a series arrangement of a spring, a Kelvin chain, and a
dashpot to represent the material theological properties. He also
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modified the theory by neglecting the instantaneously stored
energy so that stress relaxation rupture would be possible. No
quantitative or numerical verification of the model was at-
tempted.

A critical strain-energy-density failure criterion with a linear,
viscoelastic, four-element Burger model was reported by Frid-
ley et al. (1992). Their approach was similar to Bach’s in that
both used an energy failure criterion in conjunction with a linear
theological mechanical model.

With the linear mechanical model proposed by Bach (1973)
replaced by a three-element model consisting of a spring in
series with a parallel array of another spring and an Eyring
dashpot (Fig. 1) (Reichardt et al., 1946), the Reiner-Weissen-
berg theory has successfully predicted the creep rupture time
of polymers (Cherry and Teoh, 1983; Teoh, 1990; Teoh et al.,
1992), tropical wood polymer composites (Teoh et al., 1987;
Boey and Teoh, 1990), and wood (Liu and Schaffer, 1995).
The model (Fig. 1) is an alternative to Eyring’s three-element
model, which was considered to be the most successful when
it was introduced (Morton and Hearle, 1962). In the case of
creep rupture, the strength model system has the special features
to predict (a) the upper stress limit at which the material rup-
tures immediately upon application of load and (b) the lower
stress limit, or threshold stress, at which the material can sustain
the applied load indefinitely. In the case of rupture due to sinu-
soidal load, these special features also define the allowable mag-
nitudes of the mean stress, the amplitude of the cyclic stress,
and stress frequency.

Failure Condition and Theological Model
Reiner and Weissenberg (Reiner, 1964) postulate that failure

of a viscoelastic material with negligible volumetric changes
depends on a maximum value of the intrinsic free energy that
can be stored elastically in the volume element of the material.
The intrinsic free energy may be called the strain work WC,
“strain” denoting the recoverable part of deformation. Failure
will occur at the time tf when

(1)

where the over-dot ( ‘ ) denotes derivative with respect to time
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Fig. 1 An alternative to Eyring’a three-element mechanical model (Rei-
chart et al., 1946)

t, w is rate of stress-work done on the material, ~ is rate of
dissipation of nonelastic energy, and R 1 is a material constant,
which may be called the resilience of the material. Equation
(1) may be called the failure condition.

In conjunction with the failure condition, a theological model
needs to be developed describing the mechanical behavior of
the material under load. Such a model consists of a linear spring
in series with a parallel array of another linear spring and an
Eyring dashpot (Fig. 1). The latter linear spring is anelastic
because the Eyring dashpot as described in Eq. (5) is art element
describing the activated rate process of plastic deformation
(Fotheringham and Cherry, 1978a, b). The strain work in Eq.
(1) will be obtained directly from the strain energy stored in
the two linear springs in Fig. 1. The model has been successfully
applied to predict creep rupture of polymers, wood polymer
composites, and wood, as mentioned previously.

Applied Stresses
Consider a sinusoidal stress applied to the mechanical model

in Fig. 1,

where σ c is constant mean stress, σ 0 is amplitude of cyclic
stress, ω is circular frequency, t is time, and Ø is phase angle.
The quantity tan Ø is the loss factor and is another way of
characterizing the viscous effect (Morton and Hearle, 1962).

It is convenient to analyze the mechanical responses associ-
ated with the constant and cyclic stress components separately.

stress coefficient, which may vary with the type of loading (Liu
et al., 1994).

The strain rate in Eq. (5) can also be obtained from Eq. (4)
as

Since 6. = 0, we obtain from Eqs. (5) and (6)

where tf is time and ac and zr.fi. are stresses at failure. Time to
failure tf = 0 when UC = ZT,XC, that is, the anelastic spring is not
taking any load. For the evaluation of the integrals in Eq. (7),
r~c needs to be determined first.

(b) Cyclic stress, σσ 00, , sin (ω t + +). With σ σ ap = σ 0 sin
(ω t + +),  the stresses in Fig. 1 and their corresponding strains
are denoted with a subscripts replacing the subscript c, indicat-
ing an association with the constant stress in the related parame-
ters. Thus, we also define

where ε 0 is the amplitude of the strain and

(9)

For low heat generation or plastic energy dissipation, consider
the linear, low stress region of the hyperbolic sine viscosity
relation in Eq. (9) (Krausz and Eyring, 1975). We therefore
obtain from stress equilibrium of the mechanical model

where

and

(11)

(12)

Equation (10) shows

We note tan @ in Eq. (12) contains the circular frequency
ω, and σ 0 and ε 0 are related by Eq. (13).

(a) Constant Stress, σ σ c. With σ σ ap = σ  σ c, we can define
the recovery stress acting on the anelastic spring as σ re,c and
the effective stress acting on the Eyring dashpot as σ ef,c. The
following strains are likewise defined

Strain Energy
Strain energy stored elastically in a volume element of the

material can be calculated by

(3) (14)

and in which the limits of integration depend on the form of the
(4)      strain rate. Evaluation of the strain energy for the two linear

springs can again be made separately using the mechanical
where Ee and Ea are the moduli of the elastic and anelastic responses associated with the stress components described pre-

viously.
equal to the strain rate of the anelastic spring:

(a) Elastic Spring. The stress acting on the elastic spring
(5)           can be written as
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and the corresponding strain as

In Equation (15), for ease of integral calculation in Eq. (14),
we have introduced the unit step function ∆ (t) with the proper-
ties (Flügge, 1967)

and

where δ (t) is the Dirac delta function with the properties

Substituting Eqs. (15) and (16) into Eq. (14) and integrating
from ω t = 0 to 2 π when the integrand is a function of ω. (We
note in a complete cycle with ω t increasing from 0 to 2 π, the
elastically stored strain energy is 0; when the number of cycles
is large, we need to consider whole cycles only.) or from O to
the upper limit of strain when the integrand is independent of
ω, we obtain the strain energy

(17)

(b) Anelastic Spring. The stress acting on the anelastic
spring can be written as

(18)

and the corresponding strain as

(19)

The strain energy obtained likewise from Eq. (14) is

(20)

Fatigue Life

Equations (22) to (26) agree with the results presented by Liu
and Schaffer (1995) for the case of constant load where S0 =
0. Equations (25) and (26) define the allowable magnitudes of
σ C, σ 0, and ω, which serve as a basis for design considerations.

Numerical Examples and Discussion

The test data on bending strength of small, clear Douglas-fir
beams under constant load reported by Wood (1951) were used
to evaluate the model parameters. Wood’s data are represented
by

where σ u = 53.1 MPa, assumed as the ultimate or short-term
strength of Douglas-fir, and tf is in seconds.

For constant load, Do in Eq. (22) must be set equal to O
before tf is calculated using Eq. (24). The model parameters
thus evaluated are (Liu and Schaffer, 1995)

Since The numerical results are plotted in Fig. 2.

(23) Because of the small magnitude of K 1, the phase angle @
evaluated from Eq. (12) stays close to π /2 for practical values

fatigue failure time can now be obtained from Eq. (7) as of ω and ,β s. We therefore set @ = π /2. To demonstrate the
effect of variations of d. and m. on lifetime tf, we also assign
values for ~c and ~. in Eqs. (22) to (24) as follows:

(28)

With these input data, results from Eq. (24) are presented in
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Therefore, the effect of frequency on fatigue life for these

Fig. 3. Clearly, the lifetime increases with a decreasing value
of ~. for any given value of Do, and with a decreasing value
of a. for any given value of ~,. The effect on lifetime of ω,
though masked by the smallness of K 1 in Eq. (12), is equivalent
to that of =., as can be seen from Eqs. (12) and (22). This
also explains the uncertainties of the fatigue test data on wood
with respect to frequency as reported by Kohara and Okuyama
(1992).

In Liu et al. (1994), a parameter defining the fraction of
unbroken bonds must be determined from cyclic fatigue tests
to be used for fatigue-life prediction. In the present study, all
model parameters can be evaluated from creep tests only. In-
deed, the parameter β s in Eq. (9) needs also to be determined
from cyclic fatigue tests, but its effect is obliterated when the
phase angle stays at π /2.

Conclusions
We applied the Reiner-Weissenberg strength theory together

with an Eyring’s three-element mechanical model to predict the
fatigue life of wood structural members under sinusoidal load.
The Reiner-Weissenberg strength theory postulates that elastic
energy stored viscoelastically prior to rupture is independent of
the loading path. The parameters in the derived mathematical
model are evaluated from a corresponding model for constant
load, for which test data of Douglas-fir beams under constant
bending load are available. The models for sinusoidal load and
constant load are identical in form.

Our results indicate that fatigue life under cyclic bending
load for a polymeric material such as Douglas-fir wood has the
following characteristics:

1. For a given mean stress, fatigue life increases with a
decrease in amplitude of cyclic stress.

2. For a given amplitude of cyclic stress, fatigue life in-
creases with a decrease in mean stress.

3. Stress frequency has an effect on fatigue life through the
phase angle only. For Douglas-fir wood and materials
having similar properties, the phase angle stays at π/2.

materials is not significant.
Our mathematical model includes two special features: (a)

relative magnitude of mean stress, amplitude of cyclic stress,
phase angle, and hence stress frequency, are limited by Eq.
(25), which defines the state of immediate rupture, and (b)
threshold state corresponding to a fatigue life of infinity is de-
fined by Eq. (26). These features are of considerable interest
in development of building codes and assessing residual life.
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