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In general, if an experiment could have been analyzed
as an analysis of covariance, but, instead, the values of the

A predictor sort experiment is one in which experimental
units are allocated on the basis of the values of a predic-

covariate are used to define blocks, the experiment is based
on predictor sort sampling.

tor variable that is correlated with the response. Standard
ANOVA analyses of predictor sort experiments can lead

Predictor sort experiments are quite common in wood

to confidence intervals whose actual coverages are poor
strength research. For example, a scientist might be inter-
ested in the effects of fire retardants on wood strength.

matches to nominal coverages. Correct coverages can be
obtained by adjusting confidence interval lengths by appro-

Typically the scientist obtains a random sample of lum-

priate factors, or by performing analyses of covariance.
ber from a particular species of wood. Then the lumber is
sorted by modulus of elasticity (MOE) which can be mea-

KEY WORDS: Analysis of covariance; Analysis of vari- sured non-destructively and is known to be well correlated

ance; Blocked analysis of variance: Concomitant variable; with modulus of rupture. If there are K fire retardants to be

Predictor sort sampling.
compared, the lumber specimens with the K largest MOE
values are randomly assigned to the K retardant treatments,
then the K specimens with the next largest MOE values are
randomly assigned to the K treatments, and so on. Wood
scientists motivate this procedure by stating that it makes

1. INTRODUCTION
pre-treatment strength distributions “reasonably equivalent”
among the K groups of test specimens. Depending upon

This article identifies errors that are likely to be made in their level of statistical sophistication the scientists go on
confidence interval calculations in predictor sort ANOVA to analyze the resulting data via unblocked or blocked anal-
experiments. Predictor sort sampling in the context of hy- yses of variance, or analyses of covariance.
pothesis testing is discussed in Verrill (1993). As noted in Verrill (1993) (see also David and Gun-

To perform a predictor sort, it is necessary to find a pre- nik 1997), the correlations among the order statistics of
dictor that can be measured prior to the start of an ex- the predictor induce correlations among the responses
periment and is well correlated with the response being so that the standard ANOVA assumptions are not satis-
investigated. Experimental units are then sorted and allo- fied for a predictor sort experiment. Verrill demonstrates
cated on the basis of this predictor. For example, in a one- that blocked ANOVAs are still essentially valid and that
way predictor sort ANOVA that compares K treatments, simply modified unblocked ANOVAs can also be per-
the specimens associated with the top K predictor values formed on predictor sort datasets. However, one must
are randomly assigned to the K treatments, then the spec- be careful with power calculations. A program that per-
imens associated with the next largest K predictor values forms predictor sort power calculations and specimen al-
are randomly assigned to the K treatments, and so on. If locations can be run over the World Wide Web. See
there are I such groups of specimens, this allocation process http://www1.fpl.fs.fed.us/ttweb.html.
yields a two-way ANOVA in which each of the I blocks is The current article establishes that standard ANOVA

composed of specimens with similar predictor values. In analyses of predictor sort experiments can yield confidence
agricultural experimentation, typical predictors are weight intervals whose actual coverages are poor matches to nom-

and age in the case of animal subjects. Past plot yields can inal coverages. The article then discusses techniques that

be used to form blocks in the case of field studies. In the can correct this problem.

behavioral sciences, predictors such as IQ, hours of train-
ing, or performance on a pre-test have been used to form

2. POOR CONFIDENCE INTERVAL COVERAGE

blocks. If the predictor sort nature of an experiment is neglected,

Predictor sort experiments are discussed by Cox (1958, then the confidence interval that is constructed for the re-

example 3.3); Steel and Torrie (1960, sec. 8.2); Kirk (1968, sponse associated with level of factor 1 is

sec. 5.1); Finney (1972, sec. 13.17); Ostle and Mensing
(1975, example 11.3); Myers (1979, chap. 6); and Snedecor (1)

and Cochran (1989, example 6.13.1). where t is the appropriate critical value, and s is the root
mean residual sum of squares from the ANOVA. Verrill

Steve Verrill is Mathematical Statistician, U.S. Department of Agricul- (1993) established that in a predictor sort case, if the prob-
ture Forest Products Laboratory, Madison, WI 53705 (E-mail: steve@ws10. lem is treated as a ANOVA with I replicates
fpl.fs.fed.us). per cell, the mean residual sum of squares converges in
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Figure 1. Unblocked ANOVA, Confidence Interval Inflation Factor. Figure 2. Blocked ANOVA, Confidence Interval Deflation Factor.

probability to σσ2
Y as I increases to infinity. If the problem coverages produced by standard ANOVA analyses are unac-

is treated as as one involving I blocks with 1 replicate per ceptable. Unfortunately, there are many situations in which
cell, the mean residual sum of squares converges in proba- the correlation between the predictor and the response can
bility to (1 – ρρ2)σσ 2

Y, where ρ ρ is the correlation between the be quite high; for example, when the predictor is a mea-
predictor used in the sort and Y. surement made on an individual before a treatment and the

In the theorem established in Section 4, it is shown that response is a similar measurement made on the same indi-
the appropriate large sample value for s in (1) is vidual after the treatment.

3. HEURISTIC JUSTIFICATION OF THE
THEOREM

rather than σσY or This discrepancy is the
source of the coverage problems.

Let

To keep things relatively simple, let us focus on a one-
way situation with I blocks and K treatments. We can think
of a predictor sort specimen allocation in the following
manner. A response value, Y, associated with a specimen
is given by

and

In Figure 1 values of are plotted. These R
values approximate the factor by which confidence interval
sizes are incorrectly inflated when a standard unblocked
ANOVA is performed in a predictor sort case.

where (X – µX)/σσX and Z are independent N(0,1)’s. Prior
to the experiment we have values for X. We rank the speci-
mens on the basis of their associated X values and then ran-

In Figure 2 values of Rb (ρ, ρ, K) are plotted. These values
approximate the factor by which confidence interval sizes
are incorrectly deflated when a standard blocked ANOVA
is performed in a predictor sort case.

In Figure 3 values of

are plotted. These values approximate the actual confidence

2 × Φ(ΦΦ(Φ-1(.975) × Ru b((ρ,ρ,K)) – 1

levels that are associated with nominal 95% confidence in-
tervals in the unblocked case.

Finally, in Figure 4 values of

2 × Φ(ΦΦ(Φ-1(.975) × Rb (ρ,ρ,K)) – 1

are plotted. These values approximate the actual confidence
levels that are associated with nominal 95% confidence in-
tervals in the blocked case.

From these plots it is clear that, given a predictor sort de-
sign, for higher ρ ρ values, the confidence interval lengths and

Figure 3. Unblocked ANOVA, Actual Coverage of a Nominal 95%
confidence Interval.
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domly allocate the top K specimens to the first block, the
next K to the second block, and so on. Let Y11 , . . . , YI1 be
the responses for the specimens that receive the first treat-
ment. We are interested in a confidence interval on µY + µ1 ,
where µ1 is the effect of the first treatment. We take as our
estimate of this value

where the Z’s are iid N(0,1) and independent of the W’s,
and Wi 1 is randomly drawn from the ith block of (X -
µX )/σ)/σX ’s. Then

Thus, to convince ourselves that the theorem makes sense,
we only need to be able to understand how

(2)

We have

the centered and scaled X’s/IK) = 1/IK

since this is just the variance of an average of IK iid
N(0,1)‘s. Now the claim is that, since we require one ob-
servation from each of the I blocks of adjacent X order

Figure 4. Blocked ANOVA, Actual Coverage of a Nominal 95% Con-
fidence Interval.

statistics in our sum of I W’s, our average of I W’s is
a close enough approximation to the average of all IK
(X – µ X)/σX ’s that result (2) holds. This intuitive closeness
is established rigorously in the proof of the Theorem.

4. THE THEOREM

Theorem 1. Assume that the predictor variable and the
variable of interest, Y, have a joint bivariate normal dis-
tribution with correlation ρ. ρ. Denote the variance of Y by
σσ 2

Y . Suppose that there are I blocks and F factors with
K1, . . . , KF levels. Let the allocation of samples be as de-
scribed in Section 1. (For a multiple factor case, enough
adjacent experimental units would be chosen at a time to
provide one additional observation for each cell.) Let
be the standard estimate of mean response for the level
of factor 1. Then

as I → ∞. ∞. The analogous results hold for factors 2, . . . , F.

Proof: We have

where the
{1,. . . , KF}. are a randomization of the ith group of order
statistics from 
are iid N(0,1), and the X’s and Z’s are independent.

To establish (3), we need only show that
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Now by the Lemma established in the appendix of Verrill
(1993),

Here is the largest value in the ith group
of adjacent X order statistics, is the
smallest order statistic in this group, X(1) is the smallest
overall order statistic, and is the largest. Re-
sults (5) and (6) establish (4).

5. RECOMMENDATIONS FOR PRODUCING
PREDICTOR SORT CONFIDENCE INTERVALS

In the predictor sort case, there are three obvious solu-
tions to problems of incorrect confidence interval cover-
ages. Given the underlying relationship

where the predictor X is known, the best solution is to make
explicit use of X in an analysis of covariance. Provided that
model (7) holds, actual coverages will always equal nominal
coverages in this case.

Alternatively, in the unblocked case, one could obtain an
estimate of ρ from the data and then divide the root mean
residual sum of squares by Ru b (ρ, K). In the blocked case,
one would divide by Rb (ρ, K).

Figure 5. Simulation Results, K = 10, ρ ρ = .9, Dotted Lines at 1 -
coverage Equal to .04 and .06.

Simulations indicate that for I large enough any of these
methods suffice. However, for small I the latter two meth-
ods can yield poor results. Tables 1 and 2 provide guidance
on the number of replications needed to yield reasonable
results for the latter two methods. The values in the Tables
are the I values that will yield actual coverages that lie be-
tween .94 and .96 for one-way ANOVAs. These values were
estimated from simulation runs. In these simulation runs ρ
was estimated as the average of the cell sample correlations.

For example, to obtain the 11 value in the K = 10, ρ =
.9 cell of Table 1, 7 simulation results were smoothed: At
each of I = 2, 3, 5, 10, 20, 40, and 80, 4,000 trials were
performed. This yielded the seven coverage estimates .8720,
.8990, .9273, .9348, .9500, .9505, and .9507. A regression
program was used to fit the model

and then this model was used to estimate the I at which the
actual coverage first fell between .94 and .96. The data and
fits for the K = 10, ρ = .9 case are plotted in Figure 5.

As noted previously, the values in Tables 1 and 2 are ap-
propriate for one-way ANOVAs. For other ANOVAs they
are only rough guides. The simulation program that pro-
duced the coverage estimates that were used to develop the
tables can be run on additional cases over the World Wide
Web at http://www1.fpl.fs.fed.us/ttconf.html. It can han-
dle multiway ANOVAs.

ρ
K . 7 . 8 . 9 . 9 5 . 9 9

Table 1. I Needed to Ensure Coverage Between .94 and .96, One-Way
Unblocked ANOVAs, Dividing the Root Mean Residual Sum of Squares

by Rub(ρ,Κ)ρ,Κ)

2 2 2 4 4 4
4 3 3 2 2 2
6 4 4 6 7 11
6 4 5 11 11 1 9
10 4 5 11 2 0 2 0

Table 2. I Needed to Ensure Coverage Between .94 and .96, One-Way
Blocked ANOVAs, Dividing the Root Mean Residual Sum of Squares

by Rb(ρ,ρ,K )

ρ
K . 7 . 6 . 9 . 9 5 . 9 9

2 1 2 1 4 2 9 6 9 > 8 0
4 6 11 1 9 31 > 8 0
6 5 11 1 7 3 5 > 8 0
8 5 6 15 3 6 > 8 0
1 0 3 6 1 5 2 5 > 8 0

6. SUMMARY

It is important that statistics practictioners be able to rec-
ognize predictor sort situations. If specimens are ranked on
the basis of a measured characteristic that is believed to
be correlated with the response being investigated, and the
specimens are placed into blocks on the basis of this rank-
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ing, then the experiment needs to be treated as a predictor
sort experiment rather than as a simple randomized block
design.

Verrill (1993) discussed power calculations and hypoth-
esis testing in a predictor sort context. A program that
performs predictor sort power calculations and specimen
allocations can be run over the World Wide Web at
http://www1.fpl.fs.fed.us/ttweb.html.

Given a predictor sort experiment, if confidence inter-
vals are of interest, then a careful analysis of covariance
should be performed. Alternatively, in the unblocked case,
one could obtain an estimate of ρ ρ from the data and then
divide the root mean residual sum of squares by Ru b (ρ, ρ, K).
In the blocked case, one would divide by Rb (ρ, ρ, K). The
sample sizes that are needed to justify this alternate ap-
proach in the one-way case are given in Tables 1 and 2
for a variety of ρ ρ and K combinations. The nature of the
coverage in a particular case can be investigated via a sim-
ulation program that can be run over the World Wide Web
at http://www1.fpl.fs.fed.us/ttconf.html. This program can
simulate multiway ANOVAs.
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