United States Environmental Protection Agency Office of Prevention, Pesticides and Toxic Substances (7401) EPA 744-R-00-010 August 2000 www.epa.gov

Sampling and Analysis of Consumer Garden Products That Contain Vermiculite

FOREWORD

EPA'S INVESTIGATION OF ASBESTOS-CONTAMINATED VERMICULITE

The Environmental Protection Agency has conducted sampling of vermiculite products, primarily those used in gardening, to determine if products currently on the market contain asbestos, and if so, whether consumers are at risk from using these products. To evaluate the risk posed by compounds such as asbestos, EPA needs to determine if the contaminant is present in certain products and also whether people come in contact with sufficient quantities to cause harm. Asbestos poses a risk to people if fibers become airborne and are inhaled into the lungs. As described in more detail below, and in the accompanying reports, the results of this investigation indicate that the potential exposure to asbestos from vermiculite products poses only a minimal health risk to consumers, although workers may face more serious risks.

Vermiculite is produced from mined ore and is used in agricultural and horticultural products as well as in insulation and construction applications. As a first step in the process, the Agency purchased and began testing a limited number of vermiculite products available in garden stores in the Seattle area to determine if they were contaminated with asbestos. Sixteen products were tested using widely-recognized standard protocols and asbestos was detected in five of them. However, only three of these contained enough asbestos to allow EPA to quantify the percentage of asbestos reliably.

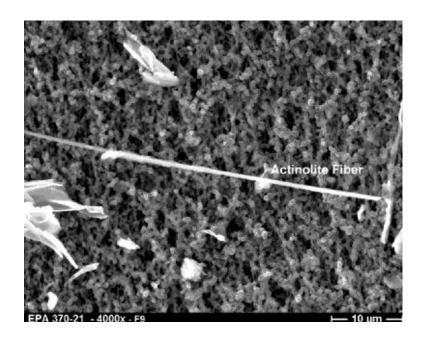
To determine whether the asbestos fibers in these three products could become airborne and present a potential exposure hazard during use, EPA's Seattle office placed the products into a glove box, a small, enclosed metal box with gloves, and handled them as they would during normal use. EPA collected and analyzed air samples, and determined that one of the products tested generated relatively high levels of asbestos. This finding prompted the Seattle office to recommend that consumers refrain from using that particular vermiculite chemical packaging material. This product is apparently no longer available to consumers at garden stores.

EPA then decided to expand the scope of its analysis, to include additional vermiculite products available nationally, and to calculate the risk posed in cases where airborne asbestos fibers were detected during product handling. The Agency, through its expert contractors, purchased and analyzed 38 products from around the country and detected asbestos in 17 of them. Of these, only five contained quantifiable levels of asbestos. EPA scientists, along with the contractors, then conducted two simulated consumer use scenarios. One simulation was performed indoors in a "still air" environment (a 10'x10'x10' enclosure) in an attempt to represent consumer use in a small garage or greenhouse. The other simulation was performed outside in open air.

As described in the attached report, there is a lot of variability in the observed results. In some cases, one sample of a product indicated the presence of asbestos while another did not. This variability is likely due to a number of factors including the following: (1) the asbestos content of the vermiculite products appears to be very close to the technological limit of detection, so one test might detect the presence of asbestos while a second one would not; (2) only a very small portion (0.01 grams) of each product is actually viewed under the microscope, although individual bags may

contain up to several cubic meters; (3) the bagged product is not homogeneous; (4) different processing facilities use different dust removal techniques; (5) there are differences in the asbestos content of vermiculite ore from different mines; and (6) asbestos content varies throughout the vermiculite deposits in each mine.

The results of this investigation indicate that consumers face only a minimal health risk from using vermiculite products at home or in their gardens. Vermiculite may, however, present more serious risks in an occupational setting, where the duration and frequency of exposures are likely to be significantly greater. EPA is concerned about potential occupational exposures and has provided this report to OSHA to assist that agency in evaluating the hazards to workers from vermiculite.


To further reduce the low risk associated with the occasional use of vermiculite products during gardening activities, EPA recommends that consumers:

- Use vermiculite outdoors or in a well-ventilated area.
- Avoid creating dust by keeping vermiculite damp during use.
- Avoid bringing dust into the home on clothing.

Although EPA does not endorse the use of any particular product, consumers may choose to use:

- Premixed potting soils, which ordinarily contain more moisture and less vermiculite than pure vermiculite products and are less likely to generate dust.
- Soil amendment materials other than vermiculite, such as peat, sawdust, perlite, or bark.

The following reports describe the sampling and analysis of vermiculite products conducted by EPA. The first attachment is the report of the sampling conducted by EPA's Seattle office. The second is the report of the national sampling performed for EPA by its contractor, Versar, Inc.

July 26, 2000

U.S. Environmental Protection Agency Region 10, Office of Environmental Assessment Investigation and Engineering Unit Seattle, WA

> Jed Januch and Keven McDermott Investigators

ACKNOWLEDGMENTS

We received tremendous support and assistance from many of our co-workers at EPA. We would like to thank the following EPA Region 10 staff who contributed significantly to the quality of the Region 10 Investigation of Asbestos in Vermiculite: Lorraine Edmond, M.S., David Frank, Ph.D., Richard Mednick, J.D., David Terpening, Marion "Doc" Thompson, Michael Watson, Ph.D., Philip Wong, P.E., and Bruce Woods, Ph.D. We sincerely appreciate the contributions of Robert Jordan, Ph.D., EPA headquarters, who provided technical assistance.

We would also like to thank Susan Davis, Washington State Department of Ecology, and John Harris, MPH, and his staff at Lab/Cor, Inc. for analyzing our samples. We greatly appreciate the efforts of Janine Rees, Washington State Department of Labor and Industries, who helped design the air monitoring protocols used in the investigation.

Our special thanks to Rene Fuentes, P.E., EPA Region 10, Phillip Peters, MSPH, Washington State Department of Labor and Industries, and Christopher Weis, Ph.D., EPA Region 8, for their peer review of the Region 10 Investigation of Asbestos in Vermiculite report. Their technical expertise and attention to detail was invaluable in crafting our final report.

TABLE OF CONTENTS

EXECUTIVE SUMMARY

INTRODUCTION

PHASE I

Properties of Vermiculite Properties of Asbestos Summary of Interviews

PHASE II

Bulk Samples of Vermiculite Products Summary of Analysis of Bulk Samples

PHASE III

Collection of Air Monitoring Samples Summary of Analysis of Air Monitoring Samples

CONCLUSIONS

REFERENCES

EXECUTIVE SUMMARY

In January 2000 the Environmental Protection Agency Region 10 office in Seattle, Washington, began testing a limited number of lawn and garden products that contain vermiculite to see if these products were contaminated with asbestos. The investigation was prompted by calls from citizens who became concerned after reading a series of articles in the Seattle Post-Intelligencer about asbestos contaminated vermiculite. Many callers specifically asked if vermiculite products currently sold in the Seattle area contained asbestos, and if consumers could be exposed to asbestos when using these products.

Sixteen different products containing vermiculite were purchased at Seattle area retail stores. The products selected were available either regionally or nationally. Samples from the products were analyzed using two different types of microscopes. Five of the products were contaminated with asbestos.

Three of the five products that contain measurable amounts of asbestos underwent further testing. EPA investigators worked with these products in a confined area to simulate how a typical consumer might use them, while air monitoring samples were taken. This was done to determine whether asbestos present in the vermiculite could become airborne during use and possibly expose the consumer to asbestos. One of the three asbestos-contaminated products tested by Region 10 released asbestos fibers into the air. The other two products tested did not.

The results of the EPA Region 10 investigation show some vermiculite products currently on the market contain asbestos. The amount and types of asbestos found in the vermiculite products tested by Region 10 varies. Because consumers have no way of knowing which vermiculite products contain asbestos and which do not, EPA Region 10 recommends that consumers follow basic precautions to reduce potential exposure to asbestos when handling vermiculite.

INTRODUCTION

Vermiculite is the name of a mineral that has been mined commercially in the United States since the early 1920s. Vermiculite is often found with other minerals including various forms of asbestos. There are four active vermiculite mines in the United States. A fifth mine in Libby, Montana, closed in 1990, but ore may have been shipped from the mine until 1992.¹

The Libby mine, formerly owned and operated by the W.R. Grace and Company, was known to contain deposits of fibrous tremolite asbestos. Between 1980 and 1991 there were several studies conducted for or by the Environmental Protection Agency dealing with sampling and analysis of vermiculite, the potential for exposure to asbestos through consumer and occupational use of vermiculite, and possible health effects associated with exposure to asbestos-contaminated vermiculite. These studies indicated that other vermiculite mines in the United States may also be contaminated with asbestos.²

In November 1999 the Seattle Post-Intelligencer published a detailed series of articles about the vermiculite mine in Libby, Montana, and the miners and their families who died or became ill from exposure to asbestos in the vermiculite ore.³ As a result of these articles EPA Region 10 received numerous calls from citizens who feared they might have been exposed to asbestos while working with vermiculite or from having it as insulation in their homes. Many callers specifically asked if vermiculite from the Libby mine is still being sold, whether the vermiculite insulation in their homes presents a health hazard, and whether vermiculite from other mines that is currently sold is also contaminated with asbestos.

These calls were referred to the Investigation and Engineering Unit (IEU) of the Office of Environmental Assessment. IEU investigators routinely receive tips and calls from citizens with environmental concerns or complaints, and conduct follow-up investigations. Because of the nature and volume of calls, the IEU began an investigation to see if vermiculite products currently sold in the Seattle area contain asbestos and, if so, could the asbestos present in those products become airborne during use.

The investigation had three distinct phases. In Phase I, investigators gathered information about vermiculite by reviewing available literature and conducting interviews. This information was used to help design the sampling and analytical protocols used in subsequent phases. In

¹ U.S. Geological Survey, Vermiculite Minerals Yearbook, 1990. Michael J. Potter

² See references 5,8,9, and 10

³ Andrew Schneider, Senior National Correspondent, (November 18, 1999). "Uncivil Action: A town left to die", *Seattle Post-Intelligencer*. p.1 Section A

Phase II, investigators purchased sixteen different vermiculite products, took samples from each product, and had the samples analyzed to see if asbestos was present. Those products that were found to contain measurable amounts of asbestos went through additional testing. In Phase III, investigators simulated the use of the contaminated products in a contained area while taking air monitoring samples, and had those samples analyzed to see if asbestos present in the bulk material became airborne during use.

PHASE I

During Phase I geologists with the Region 10 Office of Environmental Assessment assisted IEU investigators in identifying historical and technical literature about vermiculite mines and potential for asbestos contamination at those mines. The documents reviewed by IEU investigators are listed in the references section of this report. Region 10 geologists are also investigating the feasibility of using various analytical methods to trace vermiculite in consumer products to the mines from which it originated.

PROPERTIES OF VERMICULITE

Vermiculite is defined as a hydrated magnesium-aluminum-iron sheet silicate mineral of various compositions.⁴ After vermiculite ore has been mined and crushed, it is sized and sorted, at which point it becomes known as vermiculite concentrate. The concentrate is shipped to processing plants, where it is expanded or exfoliated by heating it in a furnace to temperatures ranging between 1,600 to 2,000 degrees Fahrenheit.⁵ After exfoliation its appearance is similar to a small, brown, accordion-shaped granule.

Vermiculite is resistant to combustion. Un-exfoliated vermiculite is used in various manufacturing processes including gypsum wallboard, paper products, coatings and cinder blocks. Exfoliated vermiculite is absorbent and lightweight. It is used in fireproofing, insulation, as a carrier for agricultural chemicals, as an ingredient in lawn and garden products, as a packaging material and as an underlayment for swimming pools.

Vermiculite deposits are found in similar geologic settings around the world. Many contain asbestiform minerals as contaminants. There are four active vermiculite mines in the United States. Two are located in the Enoree district of South Carolina, one in Louisa County Virginia, and one in Dillon, Montana. Previous geological studies, cited in references 3, 4, and 5 of this report, have established that all four of these mines contain asbestiform minerals.

⁴ <u>Vermiculite</u>, Bureau of Mines Bulletin #675, 1985

⁵ Vermiculite Association, <u>http://vermiculite.org/aboutvermiculite.htm</u> (2/9/00)

PROPERTIES OF ASBESTOS

Asbestos is the name given to six different types of fibrous minerals that occur naturally in the environment.⁶ The technical names for the six types of asbestos are listed in the Code of Federal Regulations.⁷ Asbestos minerals are divided into two major groups - serpentine and amphibole, which differ from each other both physically and chemically.⁸ The minerals in both groups are made up of fibers that vary in length and diameter. The amphibole group includes fibrous actinolite and tremolite, which are commonly associated with vermiculite as naturally occurring contaminants.

Asbestos has been mined for use in many types of manufactured products, including roofing and flooring materials, cement board, brake and transmission components, gaskets, pipe insulation, and heat-resistant fabrics. In these manufactured products asbestos is deliberately added as an ingredient.

Adverse health effects associated with exposure to asbestos have been known for many years. During the twentieth century the link between asbestos exposure and chronic respiratory disease has been clearly established. Inhalation of asbestos fibers has been shown to cause asbestosis, and can lead to increased risk of lung cancer and mesothelioma.⁹

The Environmental Protection Agency and the Occupational Safety and Health Administration are the two primary federal agencies that have promulgated regulations designed to reduce potential exposure to asbestos in the environment and in the workplace. Additional regulations have also been developed by state and local governments for the same purpose.

SUMMARY OF INTERVIEWS

Since the media coverage about asbestos in vermiculite began in November 1999, EPA Region 10 has received dozens of calls from citizens around the country, who were concerned that they might have been exposed to asbestos while working with vermiculite products. Calls came from hobby and professional gardeners, a hospital technician who uses vermiculite in prosthetic devices for children, several laboratory workers, people who installed vermiculite

⁶ Toxicological Profile for Asbestos, ATSDR, Atlanta, GA

⁷ 40 CFR Part 61 Subpart M section 61.141 "Asbestos means the asbestiform varieties of serpentine (chrysotile) riebeckite (crocidolite), cummingtonite-grunerite, anthophyllite, and actinolite-tremolite."

⁸ Asbestos NESHAP Inspection and Safety Procedures Workshop, Student Manual, APTI Course, Second Edition (Revised 1999)

⁹ Toxicological Profile for Asbestos, ATSDR, Atlanta, GA

insulation in their attics, construction workers who used vermiculite, and former employees of vermiculite expansion plants. Many of the callers were from the Pacific Northwest, but some were from as far away as Florida, Tennessee, and Michigan. Callers described how they used vermiculite and discussed their specific health concerns. The information collected from the callers was important to help understand how vermiculite is processed and how individuals handle products that contain vermiculite. A summary of the information provided by these callers is included in Appendix 1 of this report.

PHASE II

Phase II of this investigation was designed to identify vermiculite products available to consumers through retail outlets in the Seattle metropolitan area, and to determine if the products selected for analysis are contaminated with asbestos. This was a limited study that looked at a relatively small number of products. The study was not statistically based. The information collected in Phase II was intended to help determine which products warranted further testing in Phase III, and to provide the rationale for future statistically based studies.

BULK SAMPLES OF VERMICULITE PRODUCTS

IEU investigators visited nine retail stores in the Seattle metropolitan area that sell lawn and garden products. Sixteen different vermiculite products were selected from store shelves and purchased. The selection was based on available products. There was no attempt made to target specific brands or manufacturers. Seven of the products contained vermiculite as the primary ingredient. The nine other products were potting soils that contained vermiculite as well as other ingredients. One of the sixteen products selected was Zonolite Chemical Packaging Vermiculite, which while labeled for use as a packaging material, was offered for sale to consumers in two different retail stores for home gardening use.

Prior to taking samples from the sixteen products, IEU investigators examined the different analytical methods used to analyze bulk materials for asbestos content. After consultation with Region 10 quality assurance staff and the microscopists who would later analyze the samples, IEU investigators made the decision to analyze bulk samples using a bulk test method for determination of asbestos in building materials.¹⁰

The sixteen vermiculite products were delivered under chain of custody to the Manchester Environmental Laboratory (MEL), located in Port Orchard, Washington, where they were sampled under a fume hood to prevent possible release of asbestos fibers. The samples were

¹⁰ Method for the Determination of Asbestos in Bulk Building Materials, EPA600-R-93-116, Research Triangle Institute, July 1993

analyzed at MEL using stereo microscopic examination to determine homogeneity and preliminary fiber identification. Polarized light microscopy (PLM) was used to determine the optical properties of fibers and provide qualitative identification of suspect fibers. Samples were also analyzed at Lab/Cor, Inc. in Seattle, WA, using transmission electron microscopy (TEM) to positively identify and quantify the amount and type of asbestos present in the samples.

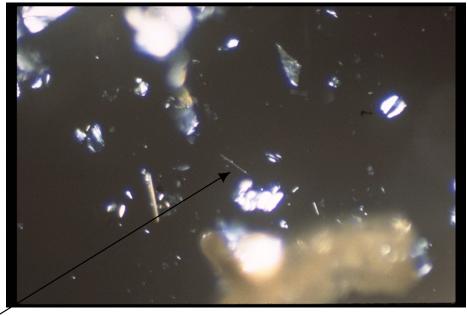
Three different groups of samples were taken from the sixteen products. MEL analyzed the first and second set of samples as rinsed residues. MEL did not analyze a third set of samples. Lab/Cor, Inc. analyzed the first and second set of samples it received as dust or particulate. The third set of samples sent to Lab/Cor, Inc. were analyzed as rinsed residues. The technique of preparing rinsed residue samples for analysis is described in the following section of this report.

The first group of samples were taken using an EPA technique for sampling dry products in bags.¹¹ These samples were intended to be representative or typical of the vermiculite product in the containers (bags). For this group of samples a hollow plastic tube approximately one inch in diameter was inserted diagonally through a hole in each bag, and cross sections of the contents were drawn out of the plastic tubes into new clean 4-ounce glass jars. For larger bags a stainless steel tube was used to remove the vermiculite from the bag. The jars containing the vermiculite products were labeled with laboratory sample numbers and EPA custody seals were placed over the lids of the containers. The samples were handled under standard chain of custody and submitted for analysis. One set from the first group of samples was sent to MEL for analysis, the other set was sent to Lab/Cor, Inc. Both MEL and Lab/Cor, Inc. received a quality assurance duplicate of two of the sixteen products. The bags of product from which the samples were taken were marked with laboratory sample numbers and stored in a locked sample custody area at MEL.

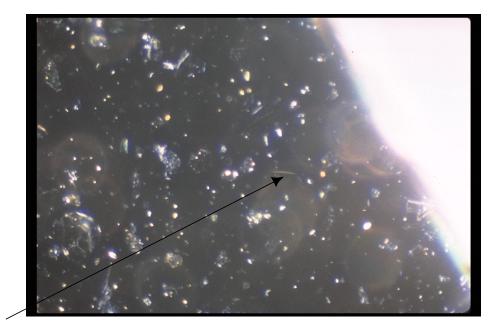
The second group of bulk samples was taken from three of the vermiculite products (Whitney Farms Vermiculite, Zonolite Chemical Packaging Vermiculite, and Therm-O-Rock Vermiculite) that were shown to be contaminated with asbestos during analysis of the first group of samples. For this group of samples approximately one to two quarts of vermiculite were taken from the bottom of the bag after it had been moderately shaken. The vermiculite was separated through a series of USA Standard Testing Sieves (size No.10 and No.35) so a sample of the fine material at the bottom of the bag could be segregated from the larger particles of vermiculite. The fines were collected in a pan at the bottom of the lower sieve and transferred into new, clean 2-ounce glass jars. Duplicate samples from the three products were delivered to both the MEL and Lab/Cor, Inc. under standard chain of custody and submitted for analysis. Cole's Cactus Mix was not included in this group because other components of the mix made it difficult to sift.

¹¹ Pesticide Product Enforcement Manual 1994 Chapter on Sampling

The technique used for the second group of samples was designed to isolate and analyze the fines that accumulate in the bottom of the bag. This was done to see if asbestos detected in a bag of vermiculite was evenly distributed throughout the bag or was present in higher concentrations in the lower fractions of the bag. These samples were not intended to be representative of the contents of the bag as a whole.


A third set of samples was prepared by MEL for Lab/Cor, Inc. MEL split the rinsed residue samples from group two, which consisted of samples taken previously from Whitney Farms Vermiculite, Zonolite Chemical Packaging Vermiculite, and Therm-O-Rock Vermiculite. This set of samples was analyzed by Lab/Cor, Inc. using TEM.

Bulk Sample Preparation and Analysis performed by the Manchester Environmental Laboratory¹²


MEL analyzed bulk samples using a rinsed residue technique intended to isolate and identify asbestos in vermiculite. To prepare the rinsed residue, a 40 ml sub-sample of vermiculite was placed into a beaker. The vermiculite was rinsed with 80 ml of deionized water in an attempt to wash any loose asbestos fibers from the vermiculite matrix. After the vermiculite floated to the surface, 7 ml of water was extracted from the bottom of the beaker using a syringe and was injected into a crucible. The crucible was covered and placed in a drying oven at 68^o centigrade for two to three days until all the water had evaporated. The residue that remained in the bottom of the crucible was then scraped out and placed onto a microscope slide and a drop of 1.605 refractive index oil was added. Any remaining residue was scraped into a small vial for possible future use.

Using a Nikon Opti-Phot Pol microscope at 400X magnification, the sample was scanned for the presence of fibers with an aspect ratio greater than five to one (5:1). Cleavage fragments were not counted as fibers because many are too small to see and positively identify using PLM. Straight, needle-like fibers that were identified as possible actinolite/tremolite fibers were checked for diagnostic optical properties such as angle of extinction, sign of elongation, and central stop dispersion staining. If asbestos was found, a determination of "PNQ" (Present Not Quantified) or "TRACE" (a trace of the subject parameter was present) was reported. Rinsed residues of positive samples were sent to Lab/Cor, Inc. for confirmation using TEM analysis.

¹² Susan E. Davis, laboratory technician - microscopist, Washington Department of Ecology

Actinolite fiber in Zonolite Chemical Packaging Vermiculite viewed by PLM¹³

Tremolite fiber in Whitney Farms Vermiculite viewed by PLM¹⁴

¹³ Sample number 54205. Fiber is 20 to 22 microns in length

¹⁴ Sample number 54203. Fiber is 10 to 15 microns in length

Bulk Sample Preparation and Analysis performed by Lab/Cor, Inc.¹⁵

For each sample of vermiculite collected by IEU investigators, Lab/Cor, Inc. took sub-samples from at least three randomly selected areas within that sample. The sub-samples were weighed (*Raw Material Weight*) on an analytical balance (0.1 milligram sensitivity), ashed in a muffle furnace at 480° Centigrade to remove the organic component, and weighed again (*After Ash Weight*). After a brief dissolution of the acid soluble component in concentrated hydrochloric acid, the suspension was immediately diluted in about 20 ml of 0.2 micron (µm) - filtered deionized water, and filtered through a dry pre- weighed 0.1 micron poly-carbonate (PC) filter. After drying, the filter was weighed again (*After Hydrolysis Weight*) and processed using a preparation technique described in a draft EPA report entitled "Methodology of the Measurement of Airborne Asbestos by Electron Microscopy".¹⁶

The samples were coated with a thin film of carbon in a vacuum evaporator. After dissolution of the filter debris in 1-methyl-2-pyrrolidinone, the sample was placed on a 200 mesh copper TEM grid and examined under a Philips 410 transmission electron microscope equipped with energy dispersive x-ray spectroscopy (EDAX PV9800 X-ray analyzer). Samples were scanned at magnification of approximately 500X using an accelerating voltage of 100KV. The magnification was increased to 10,000X to identify any smaller asbestos fibrils (a small, slender fiber) that might be present.

TEM analysis was used for confirmation of particulate morphology as viewed at high magnification. Electron diffraction was used to identify mineral structure and energy dispersive spectroscopy (EDS) was used to provide chemical composition of particulates. After confirmation of the principal mineral type by diffraction and EDS, a visual estimate of the concentration of asbestos relative to non-asbestos was determined. Fibers of any length with an aspect ratio of at least 5:1 and proper chemistry were counted as asbestiform regulated mineral types. Cleavage fragments may have been identified as asbestiform regulated mineral fibers in this analysis.

The first PLM analysis of samples taken from bags of four products, Scotts Vermiculite, Whitney Farms Vermiculite, Zonolite Chemical Packaging Vermiculite, and Therm-O-Rock Vermiculite, revealed traces of asbestos. The initial TEM analysis of two duplicate samples obtained from a bag of Zonolite Chemical Packaging Vermiculite revealed the product contained 0.56% and 0.47% asbestos. Analysis of a sample obtained from the bag of Coles Cactus Mix contained 0.45% asbestos. The types of asbestos detected by using both PLM and TEM belong

¹⁵ John Harris, LAB/COR, Inc., Seattle, Washington

¹⁶ Yamate, G., S.C. Agarwall, R.D. Gibbons, ITT Research Institute, "Methodology of the Measurement of Airborne Asbestos by Electron Microscopy." Draft report, US EPA Contract 68-02-3266, July 1984

to the amphibole group and were reported specifically as either tremolite or actinolite. Copies of the results of PLM analysis of bulk samples from the MEL are included in Attachment 1. Copies of the results of TEM analysis of bulk samples by Lab/Cor, Inc. are included in Attachment 2.

The second set of samples taken from material that had settled to the bottom of the bags of Zonolite Chemical Packaging Vermiculite and Therm-O-Rock Vermiculite revealed a higher concentration of asbestos than the initial samples taken from the upper parts of the same bags. Using TEM analysis the sifted samples of Zonolite Chemical Packaging Vermiculite contained 1.88% asbestos, the sample of Therm-O-Rock Vermiculite contained 0.33% asbestos.

The rinsed residues of Zonolite Chemical Packaging Vermiculite and Therm-O-Rock Vermiculite were analyzed using both PLM and TEM. Tremolite fibers were identified by PLM, but were not quantified due to limitations of magnification. These same residues were sent to Lab/Cor, Inc. for TEM analysis. Analysis of the residue sample of Therm-O-Rock Vermiculite using TEM revealed 0.30% asbestos. Analysis of duplicate quality assurance samples of Zonolite Chemical Packaging Vermiculite using TEM revealed 0.10% and 2.79% asbestos. This illustrates the apparent variability in concentrations of asbestos that can exist in splits of the same sample.

ORIGIN OF ASBESTOS CONTAMINATED VERMICULITE PRODUCTS

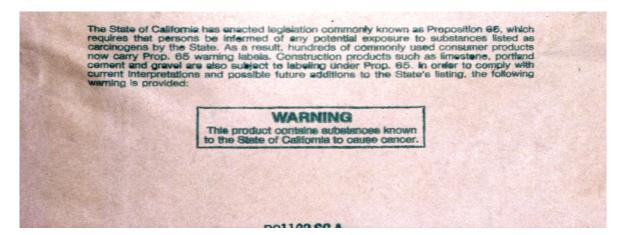
Zonolite Chemical Packaging Vermiculite was produced from ore from the W.R. Grace mine in Libby, Montana, which closed in 1990.¹⁷ Therm-O-Rock West obtains vermiculite ore from the W.R. Grace mine in Enoree, S.C., and from a mine in South Africa, and processes the ore into the finished product sold as Therm-O-Rock Vermiculite.¹⁸ L&L Nursery Supply, Inc., which formulates Cole's Cactus Mix, uses Therm-O-Rock Vermiculite in its products that contain vermiculite.¹⁹

SUMMARY OF ANALYSIS OF BULK SAMPLES

Sixteen vermiculite products currently available for purchase by consumers in the Seattle metropolitan area were examined for asbestos content using two different types of microscopic analysis, PLM and TEM. Three products contained measurable amounts of asbestos using TEM analysis: Zonolite Chemical Packaging Vermiculite, Therm-O-Rock Vermiculite, and Cole's Cactus Mix. Four of the sixteen products sampled contained trace amounts of asbestos using PLM analysis: Zonolite Chemical Packaging Vermiculite, Therm-O-Rock Vermiculite, Scott's

¹⁷ Telephone conversation with William Corcoran, W.R. Grace and Company, April 4, 2000

¹⁸ Telephone conversation with Ron Dobkin, owner, Therm-O-Rock West, February 24, 2000


¹⁹ Interview with Dan Froli, general manager, L&L Nursery Supply, Inc., Fife, WA, February 18, 2000

Vermiculite, and Whitney Farms Vermiculite. Asbestos was observed in Zonolite Chemical Packaging Vermiculite and Therm-O-Rock Vermiculite using both PLM and TEM. The analytical results for bulk samples are summarized in Table 1 on the following page.

The Region 10 investigation showed that bulk samples taken from vermiculite are not homogeneous. Concentrations of asbestos in vermiculite vary between products and within samples taken from the same product. The asbestos may also stratify and concentrate on the bottom of the bags of vermiculite during shipping, storage, and handling. Sampling methods and sample preparation can affect whether asbestos is found and what concentration is measured.

Products that contain measurable quantities of asbestos when analyzed by TEM

Warning statement on the back of a bag of Zonolite Chemical Packaging Vermiculite

PRODUCTS	SAMPLE #	<u>PLM</u>	<u>PLM</u>	<u>TEM</u>	<u>TEM</u>	<u>TEM</u>
		Group 1	Group 2 Sifted Residue	Group 1	Group 2 Sifted	Group 3 Sifted Residue
Shultz Vermiculite, 8 qt.	54202	ND		ND		
Professional Jiffy Mix Potting Soil, 8qt.	54208	ND		ND		
Sam's Choice Professional Potting Soil, 10 lb.	54209	ND		ND		
Black Gold Vermiculite, 12 qt.	54200	ND		ND		
Therm-O-Rock, 4 cubic ft.	54207	Trace	ND	ND	0.33%	0.30%
Scotts Vermiculite, 8 qt.	54204	Trace		ND		
Whitney Farms Vermiculite, 4 qt.	54203	Trace	ND	ND	ND	ND
Black Gold Seedling Mix	54216	ND		ND		
Country Cottage Professional Seed Starter, 8 qt.	54215	ND		ND		
Zonolite Chemical Packaging Vermiculite, 19 lb.	54205 54206- QA	Trace Trace	PNQ	0.56% 0.47%	1.88%	0.10% 2.79%
Scotts Progro Professional Potting Mix, 25 qt.	54217	ND		ND		ND
Coles Vermiculite	54201	ND		ND		
Coles African Violet Mix, 4 qt.	54213	ND		ND		
Coles Cactus Mix, 4 qt.	54214	ND		0.45%		
Coles Lighthouse Plant Mix, 8 qt.	54210	ND		ND		
Schultz Seed Starter	54211 54212- QA	PNQ ND		ND ND		
Zonolite (bag #2)	104200		ND		ND	

TABLE 1

ND none detected

present but not quantified quality assurance

PNQ QA

PHASE III

Once the analysis of bulk samples identified which vermiculite products contained asbestos, the next step was to determine if the asbestos in the vermiculite could become airborne during use and present a potential exposure hazard for individuals who work with the asbestoscontaminated vermiculite. Multiple tests were conducted using the three vermiculite products that had been found to contain measurable quantities of asbestos as determined by TEM analysis. Each product was subjected to simulated use that was typical of how a consumer might handle the product. Air monitoring samples were taken during the simulations.

All analytical data presented in the air monitoring section of this report was generated by Lab/Cor, Inc., which is accredited through the National Voluntary Laboratory Accreditation Program (NVLAP) administered by the Department of Commerce under the National Institute of Standards and Technology (NIST).²⁰ NVLAP accreditation certifies that the laboratory has met an established level of competence. It does not guarantee the accuracy of the analytical results.

COLLECTION OF AIR MONITORING SAMPLES

To determine what activities would be simulated, IEU investigators considered information provided by citizens reporting how they used various products, the purpose for which the product was intended, and a study conducted by the W.R. Grace and Company that was provided to the Consumer Product Safety Commission on April 1, 1980.²¹ A copy of the letter from E. S. Wood, Executive Vice President of W. R. Grace & Co. Industrial Chemicals Group to the United States Consumer Product Safety Commission with attached report entitled <u>User</u> Exposure to Fibrous Tremolite in Vermiculite Consumer Products dated April 1, 1980 is included in Attachment 3.

There are several protocols that can be used for analyzing air samples to determine the number of asbestos fibers present in a volume of air. IEU investigators conducted a literature search to become familiar with various analytical methods. The final decision on what methodologies to use for analysis of air samples taken during Phase III was based on consultation with an industrial hygienist from the Washington State Department of Labor and Industries, Region 10 quality assurance staff, and the analysts at Lab/Cor, Inc.

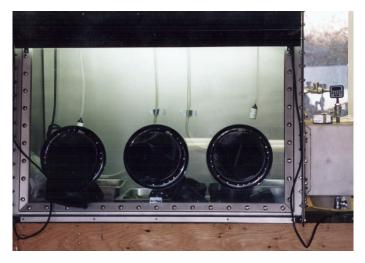
²⁰ NVLAP criteria are published in the Code of Federal Regulations (CFR, Title 15, Part 285)

²¹ Letter from E. S. Wood, Executive Vice President of W. R. Grace & Co. Industrial Chemicals Group to the United States Consumer Product Safety Commission with attached report entitled <u>User Exposure to</u> <u>Fibrous Tremolite in Vermiculite Consumer Products</u> dated April 1, 1980

The primary method selected for analyzing air monitoring samples taken during Phase III is the National Institute of Occupational Safety and Health (NIOSH) method 7402²² which is used to determine levels of asbestos in ambient air in the workplace. For comparison, a second method was selected which is used to monitor levels of asbestos in schools under the Asbestos Hazards Emergency Response Act (AHERA). The AHERA method²³ is described in the Code of Federal Regulations (CFR). Both methods are used to analyze for asbestos fibers or structures that become captured in air filters that are connected to air monitoring pumps. The air monitoring is conducted for a set period of time while pumps draw a predetermined volume of air through the filters. After successful sampling and analysis, the number of fibers per cubic centimeter of air can be determined. A comparison of the two methods is shown in Table 2.

TABLE 2

<u>Method</u>	<u>Filter Size</u>	<u>Volume of Air</u>	Counting Rules
NIOSH 7402	0.45 to 1.2 μm	0.5 to 16 liters per minute	> 5.0 µm in length≥ 3:1 aspect ratio
AHERA	$\leq 0.45 \ \mu m$	≥1 liter per minute	≥ 0.5 µm in length ≥ 5:1 aspect ratio


Comparison of NIOSH method 7402 and AHERA method.

In Phase III IEU investigators simulated the use of Coles Cactus Mix as a potting soil, the use of Zonolite Chemical Packaging Vermiculite and Therm-O-Rock Vermiculite in preparation of a potting soil, and the use of Zonolite Chemical Packaging Vermiculite in packing laboratory samples. The Zonolite Chemical Packaging Vermiculite was tested as a component of potting soil because EPA observed this product being sold at two Seattle area stores that sell retail garden supplies.

The simulated use of vermiculite products was conducted in a work space inside a stainless steel Kewaunee Scientific Equipment (KSE) glove box. The workplace dimensions were approximately 4 feet long by 3 feet high with a depth of 21 inches at the top and 27 inches at the bottom. The glove box is equipped with a front glass viewing panel and fluorescent lighting allowing observation of the work area.

²² Asbestos by TEM, NIOSH Manual of Analytical Methods, Fourth Edition, 8/15/94

²³ Asbestos-Containing Materials in Schools, 40 CFR Part 763, sub-part E

Kewaunee Scientific Equipment glove box equipped with air-monitoring cassettes

The product use simulations and air sampling took place between February 15, 2000, and April 14, 2000. In some of the product use simulations the air filters became overloaded with dust and particulate matter during air monitoring. Because of this overloading, the analytical methods used for samples collected under the NIOSH 7402 and AHERA protocols had to be modified to include indirect sample preparation as outlined in the "Methodology of the Measurement of Airborne Asbestos by Electron Microscopy."²⁴

This modification has the potential to disrupt and fragment fibers, possibly resulting in a higher number of structures or fibers per cubic centimeter than were originally present. It was understood that the indirect sample preparation could affect the fiber count. However, during the initial stages of the investigation, it was essential to determine whether asbestos had been released into the air. Precise quantification would be determined later through adjustment of the duration of sampling and the flow rate of the air monitoring equipment.

During project simulations based on the NIOSH method 7402 protocol, the ambient air over the work space was monitored with two calibrated Gilian Hi Flow pumps attached with Tygon tubing to 25 mm Zefon air monitoring cassettes with 0.8 µm mixed cellulose ester (MCE) filters. The air monitoring cassettes were suspended inside the glove box approximately 18 inches above the surface of the work area to simulate the breathing zone of an average person. Air samples were collected during simulations at durations between 15 and 30 minutes, with the pumps set to draw approximately 1 to 3 liters of air per minute. The different durations and flow

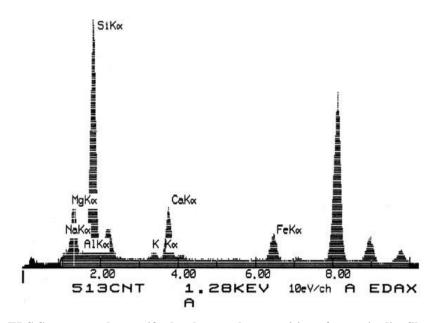
²⁴ See footnote 16

rates are allowed by the NIOSH method 7402 to provide optimum loading of the filter cassettes. To adjust the sampling duration, some of the air filters used during monitoring at the different durations and flow rates were viewed under PLM to determine if the filters were overloaded.

For tests using the AHERA protocol, the ambient air inside the glove box was monitored using two calibrated Allegro Industries High Volume Sampling Pumps attached with Tygon tubing to 25 mm Zefon air monitoring cassettes with 0.45 μ m MCE filters. Air samples were collected during simulations for 100-minute durations with the pumps set to draw approximately 11 liters of air per minute.

Pumps were calibrated with either a Gilian "Buck" Calibrator or a Gilian "Gilibrator" calibration device. The flow rate for each pump was recorded before and after each sample was collected. The average of before and after values reported to the laboratory was written on the labels placed on the air monitoring cassettes and documented on the chain of custody forms.

Prior to conducting project simulations, a work space background sample was collected between testing of each different product to determine if the work area was contaminated with particulate or asbestos fibers from the previous test. Also, quality control samples of the air monitoring cassettes and field blanks taken outside the glove box were obtained for quality assurance. A high efficiency particulate arrestance (HEPA) vacuum and damp cloth was used to clean the work space in the glove box between tests to remove any possible asbestos fibers between tests involving different products.


The activity that simulated potting plants involved emptying a container of soil into a plastic tub and manipulating the soil to break up clods. The soil was placed in 10 plastic 4- inch pots at several intervals. Next the pots were emptied back into the plastic tub and the work space was cleaned by sweeping loose spilled soil into a pre-cleaned dust pan and placing it back into the plastic tub. This simulation was run three times for 30 minutes and once for 100 minutes.

To simulate the preparation of potting soil, IEU investigators mixed 50% vermiculite and 50% peat moss. Bulk samples of the peat moss were analyzed and determined not to contain detectable asbestos fibers. The remainder of this simulation was similar to the previous simulation of potting plants. This simulation was run two times for 30 minutes and once for 100 minutes using the Zonolite Chemical Packaging Vermiculite, and three times for 15 minutes using Therm-O-Rock Vermiculite.

Vermiculite is used by laboratories around the country to pack chemicals and hazardous material samples for shipping. The vermiculite cushions jars to keep them from breaking and absorbs spillage if the containers leak during shipping. To simulate packing laboratory samples, four 8-ounce glass jars were placed into a stainless steel pan and covered with vermiculite. This simulation was repeated for durations of 30, 20, and 15 minutes.

Sample preparation and Analysis performed by Lab/Cor, Inc.²⁵

For the NIOSH method 7402 using TEM, samples were collapsed with acetone, and etched in a low temperature plasma etcher to remove the top surface of the filter and other organics. The samples were coated at high vacuum with a thin layer of carbon, placed on 200 mesh copper grids and allowed to dissolve in acetone until cleared of filter debris. The 200 mesh copper TEM grids were examined under a Philips 410 transmission electron microscope equipped with EDS. Air samples were scanned at magnification of approximately 990X using an accelerating voltage of 100KV. The magnification was increased to 10,000X for structure sizing. The NIOSH method 7402 counts structures or fibers if they are greater than 0.25 μ m in diameter with a minimum aspect (length to width) ratio of 3:1 and a length greater than 5.0 μ m.

EDS Spectra used to verify the elemental composition of an actinolite fiber collected during simulated use of Zonolite Chemical Packaging Vermiculite

An indirect analytical technique was applied to overloaded samples collected using NIOSH and AHERA protocols. The analysis was conducted in accordance with the draft method done under contract 68-02-3266 for EPA, July 1984 entitled "Methodology of the Measurement of Airborne Asbestos by Electron Microscopy."²⁶

²⁵ John Harris, LAB/COR, Inc., Seattle, Washington

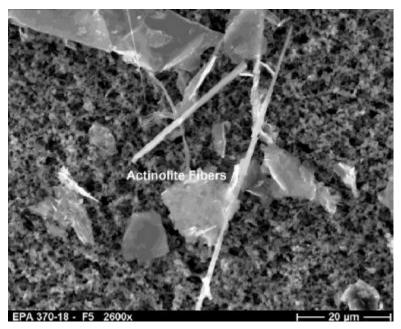
²⁶ See footnote 16

The sample filters were removed from sampling cassettes and placed into clean sonication dishes. After washing out each cassette cowl with particle-free, deionized water, the supernatant fluid was combined with each filter, placed in a sonication dish, and gently sonicated to release the particulate from the filter. After brief sonication, aliquots were drawn from the supernate and filtered onto 0.22 μ m MCE filters. Samples were coated at high vacuum with a thin layer of carbon, placed on 200 mesh copper grids, and allowed to dissolve in acetone until cleared of filter debris. The 200 mesh copper TEM grids were examined under a Philips 410 transmission electron microscope equipped with EDS. Air samples were analyzed at a screen magnification of approximately 17,621X using an accelerating voltage of 100KV. The sizing of grid openings was performed on the microscope at a magnification of approximately 550X. Counting rules for the draft method were modified to match the AHERA counting rules more closely. This method allows structures greater than 0.5 μ m in length with substantial parallel sides and an aspect ratio of 5:1 to be counted.

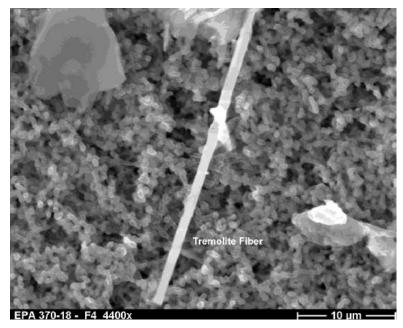
Before any air monitoring samples were taken using vermiculite products, quality assurance, quality control and work area background samples were collected and analyzed. None of these samples showed the presence of asbestos. This was an important part of the air monitoring procedure because it showed the work area and the filters used were free of asbestos to begin with, and there no cross contamination of the work area occurred when switching from one product to another.

No asbestos fibers were detected when air samples collected during the simulated use of Coles Cactus Mix and Therm-O-Rock Vermiculite were analyzed. Using the indirect method of analysis, asbestos was detected in air samples collected when Zonolite Chemical Packaging Vermiculite was used to simulate the preparation and use of potting soil and for sample packing.

Subsequent air monitoring samples were taken when Zonolite Chemical Packaging Vermiculite was used to simulate packing samples. The flow rates and sample times were reduced to avoid overloading the filters and allow for direct analysis under the NIOSH 7402 protocol. These air samples were run for 15 to 20 minutes at flow rates of 1 to 2 liters per minute and were repeated four times. The results of analysis ranged from 0.16 to 0.95 asbestos fibers per cubic centimeter of air. Complete results and supporting data for the air monitoring portion of this project are included in Attachment 4.


REGION 10 INVESTIGATION OF ASBESTOS IN VERMICULITE SUMMARY OF ANALYSIS OF AIR MONITORING SAMPLES

Three products were subjected to air monitoring during simulated use in a confined area. Two of the products, Cole's Cactus Mix and Therm-O-Rock Vermiculite, did not release airborne asbestos fibers during simulated use. The third product, Zonolite Chemical Packaging Vermiculite, did release airborne asbestos fibers during simulated use and therefore presents a potential for exposure to asbestos. Tables 3 and 4 summarize the results of analyses of air monitoring samples taken while simulating use of Zonolite Chemical Packaging Vermiculite in preparing and using potting soil and for packing samples.


Because of this potential for exposure to asbestos, EPA Region 10 advised consumers not to use Zonolite Chemical Packaging Vermiculite until further statistically based testing could be performed. EPA Region 10 also advised consumers to follow three basic precautions when working with products that contain vermiculite in order to reduce potential exposure to asbestos: 1) use vermiculite outdoors; 2) keep vermiculite damp to avoid generating dust; 3) avoid bringing dust from clothing into the home.

CONCLUSIONS

- Five vermiculite products tested during the Region 10 investigation contained asbestos.
- One asbestos-contaminated vermiculite product tested by Region 10 released airborne asbestos fibers when subjected to simulated use.
- Consumers have no way of knowing which vermiculite products are contaminated with asbestos and which are not.
- Analysis of asbestos-contaminated vermiculite products revealed a wide degree of variability in the amount and types of asbestos present in the samples.
- The variability of analytical results demonstrates a need for additional statistically based studies using more sensitive sampling and analytical methods.

Actinolite fibers in Zonolite Chemical Packaging Vermiculite viewed by SEM²⁷

Tremolite fiber in Zonolite Chemical Packaging Vermiculite viewed by SEM

²⁷ Scanning electron microscope

TABLE 3

ANALYTICAL METHOD:	Methodology of the Measurement of Airborne Asbestos
	by Electron Microscopy. (draft method)

PRODUCT:	Zonolite Chemical Packaging Vermiculite
-----------------	---

Sample #	Date	Description	Results of Analysis
		Potting Soil Preparation - AHERA Protocol	
74216	2/16/2000	Pump #3, 11.0 liters/minute for 100 minutes, Indirect analysis.	0.847 structures per cc
74217	2/16/2000	Pump #4, 11.0 liters/minute for 100 minutes, Indirect analysis.	0.564 structures per cc
		Potting Soil Prep - NIOSH 7402 Protocol	
104201	3/7/2000	Pump #1, 2.8 liters/minute for 30 minutes, Indirect analysis	0.202 structures per cc
104202	3/7/2000	Pump #5, 2.8 liters/minute for 30 minutes, Indirect analysis	0.373 structures per cc
104205	3/7/2000	Pump #1, 2.8 liters/minute for 30 minutes, Indirect analysis	0.380 structures per cc
104206	3/7/2000	Pump #5, 2.8 liters/minute for 30 minutes, Indirect analysis	0.080 structures per cc
		Sample Packaging Simulation - NIOSH 7402 Protocol	
104209	3/8/2000	Pump #1, 2.9 liters/minute for 30 minutes, Indirect analysis	6.960 structures per cc
104210	3/8/2000	Pump #5, 2.9 liters/minute for 30 minutes, Indirect analysis	8.170 structures per cc

cc = cubic centimeter

TABLE 4

ANALYTICAL METHOD: NIOSH 7402

PRODUCT:

Zonolite Chemical Packaging Vermiculite

Sample #	Date	Description	Results of Analysis
		Sample Packing Simulation	
154000	4/11/2000	Pump #5, 2.0 liters/minute for 20 minutes, direct analysis.	0.344 fibers per cc
154001	4/11/2000	Pump #1, 1.5 liters/minute for 20 minutes, direct analysis	0.352 fibers per cc
154002	4/11/2000	Pump #1, 1.5 liters/minute for 15 minutes, direct analysis	0.342 fibers per cc
154003	4/11/2000	Pump #5, 2.0 liters/minute for 15 minutes, direct analysis	0.160 fibers per cc
154008	4/13/2000	Pump #1, 1.0 liters/minute for 15 minutes, direct analysis	0.702 fibers per cc
154009	4/13/2000	Pump #5, 1.0 liters/minute for 15 minutes, direct analysis	0.477 fibers per cc
154010	4/13/2000	Pump #1, 1.0 liters/minute for 15 minutes, direct analysis	0.249 fibers per cc
154011	4/13/2000	Pump #5, 1.0 liters/minute for 15 minutes, direct analysis	0.948 fibers per cc

cc = cubic centimeter

REFERENCES

1) Bank (1980) <u>Asbestiform and/or Fibrous Minerals in Mines, Mills and Quarries</u>. Prepared for U.S. Department of Labor, Mine Safety and Health Administration. MSHA/IR-1111.

2) Boltin, (1989) "Analysis for Asbestiform Amphiboles in Vermiculite Ore", <u>Microscope</u>, Carshalton Beeches, England.

3) Hunter, Charles E. <u>Vermiculite of the Southeastern States</u>. Symposium on Mineral Resources of the Southeastern United States. University of Tennessee Press. (1950). Pages 120-127.

4) Moatamed, Lockey, and Parry, (1985) "Fiber Contamination of Vermiculites: A Potential Occupational and Environmental Health Hazard", <u>Academic Press, Inc.</u>

5) Midwest Research Institute, Kansas City, MO. (1982) <u>Collection, Analysis and</u> <u>Characterization of Vermiculite Samples for Fiber Content and Asbestos Contamination.</u> Prepared for U.S. Environmental Protection Agency, EPA Report Number EPA 0717.

6) North and Chandler, (1953) <u>Vermiculite</u>. Prepared for U.S. Department of the Interior, Bureau of Mines. Information circular 7668.

7) U.S. Department of Health and Human Services, (2000) <u>Toxicological Profile for Asbestos</u>, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, GA.

8) U.S. Environmental Protection Agency, (1980) <u>Priority Review Level 1 - Asbestos-</u> <u>Contaminated Vermiculite</u>, Assessment Division, Office of Testing and Evaluation, Office of Pesticides and Toxic Substances, Washington, D.C.

9) U.S. Environmental Protection Agency. (1991) <u>Health Assessment Document for Vermiculite</u>. Office of Research and Development, Washington, D.C. EPA Report Number EPA/600/8-91/037

10) U.S. Environmental Protection Agency. (1985) <u>Exposure Assessment for Asbestos-</u> <u>Contaminated Vermiculite</u>. Prepared for U.S. Environmental Protection Agency by Versar, Inc., Springfield, VA. EPA Report Number EPA/560/5-85-013

11) U.S. Geological Survey, (1990), Vermiculite Minerals Yearbook, Potter, Michael J.

12) W.R. Grace and Company, Cambridge, MA. (1980), Memorandum to Consumer Product Safety Commission dated April 1, 1980.

Appendix 1

Summary of Interviews

A registered nurse from Tennessee said vermiculite is used routinely in southern states as an underlayment for swimming pools. She recently watched a crew install a pool in her backyard, and noticed they were coated with vermiculite dust. None of the workers wore respiratory protection. The dust drifted into her home and got onto her furniture. She said she intended to take samples of the dust, and had already purchased a HEPA filtered vacuum cleaner to eliminate dust that might be contaminated with asbestos.

A technician from a local children's hospital was has used vermiculite for years to make orthotics and prosthetic devices. She was concerned because the material safety data sheet from the manufacturer clearly stated the vermiculite came from the W.R. Grace and Company mine in Libby, Montana. The technician surmised that asbestos from the Libby vermiculite could have contaminated the work area where children are fitted for prosthetics and where employees spend much of their time working.

A laboratory assistant from a local community college said she routinely unpacks chemicals that arrive packed in vermiculite. This vermiculite is then saved in large bins for use in the school's greenhouses. She was concerned that young college-age students could be exposed to asbestos from vermiculite both in the laboratory and in greenhouses.

The owner of a preschool in Michigan called to ask for guidance in sampling vermiculite attic insulation. The caller said he and his wife had operated a preschool out of the building for twenty years, and he was upset to learn that young children attending his school might have been exposed to asbestos in the vermiculite. He subsequently took samples of the insulation and reported asbestos ranging from non-detect to 4% by weight using TEM analysis.

An employee from the EPA Region 10 laboratory reported that samples of hazardous materials and new chemicals arrive at the lab packed in vermiculite. He was worried that employees at the lab could be exposed to asbestos while unpacking samples and chemicals. The Region 10 lab subsequently decided to use alternative packaging materials when shipping, and to specify that incoming shipments not be packed in vermiculite.

An industrial hygienist with a city park district said the district uses large quantities of vermiculite in greenhouses. He said he intended to take air monitoring samples while greenhouse workers were using vermiculite to see if there was any measurable exposure to asbestos.

Two men who formerly worked in vermiculite exfoliation plants in the northwest called to provide details about the manufacturing process. One said he suffers significant impaired lung function and has been diagnosed with asbestosis. The other provided a report of a recent chest x-ray showing early signs of asbestos related disease.

An employee of a large manufacturing facility in the Seattle area reported the company made a decision around 1980 to stop accepting supplies or equipment shipped in vermiculite because of the likelihood that the vermiculite was contaminated with asbestos. The company decided vermiculite presented a health hazard to employees and was a "right to know" issue.

The EPA National Enforcement Investigations Center laboratory stopped using vermiculite to ship hazardous materials nearly twenty years ago in part because of the potential for asbestos contamination in vermiculite. Lab personnel were also concerned about the potential for vermiculite to aerosolize and spread contaminants into the air.

A large military facility in the Seattle area reported using vermiculite for many years to pack hazardous materials for shipment. Because of concern the employees may have been exposed to asbestos when handling vermiculite, the employees of the shipping department were enrolled in the medical monitoring program.

Two different contractors at a nuclear facility in the northwest reported using large quantities of vermiculite in handling and shipping hazardous materials. Industrial hygienists from both companies are conducting their own inquiries to determine if employees who work with vermiculite have been or are being exposed to asbestos.

A resident of Libby, Montana, learned that Region 10 was investigating asbestos contamination in vermiculite. On a trip to Seattle he brought samples of rocks from the mine to for Region 10 scientists to analyze. His father and two brothers had worked at the mine, he had not. His father died of asbestosis. His two brothers have both been diagnosed with asbestosis. Analysis of the rock sample by the Manchester Environmental Laboratory using PLM showed the sample was 80% tremolite asbestos by weight.²⁸ A copy of the results of analysis follow this appendix.

²⁸ MEL sample analysis report for sample identified as Libby #1 collected 5/17/00

5.51.00 13.20.47

Manchester Environmental Laboratory Report by Parameter for Project ATD-276A-

Project Code: ATD-276A Collected: 5/17/00 Project Name: VERMICULITÉ MINES Matrix: Solid Project Officer: , KATHY JOHNSON Sample Number: 00210760 Account Code: 0001B10P90102E Type: Station Description: Reg sample LIBBY #1 Result Units Qlfr GEN Parameter : Bulk Asbestos Analysis Method Prep Method: Analytes *200009 Actinolite UND *200006 Amosite UND *200007 Anthophyllite UND *200013 Cellulose UND *200005 Chrysotile UND *200010 Crocidolite UND *200011 Glass Fiber UND *200012 Mineral Wool UND *200008 Tremolite

80

%

00210760 Reg sample

Attachment 1

Remark Codes for Manchester Environmental Laboratory Generated Data

ASBESTOS ANALYSIS

<u>Remark</u>		
Codes		Definition
PNQ	_	The subject parameter was present in the sample but no quantifiable result was determined.
UND	_	The subject parameter was analyzed for but was undetected.
TRACE	—	A trace of the subject parameter was present.
NAF	—	The subject parameter was not analyzed for.

5/ 5/00 9:59.3T

Manchester Environmental Laboratory Combined Final Report for Project ESD-045A

Project Code: Project Name: Project Officer: Account Code: Station Description:	ESD-045A RETAIL HOME & GARDEN CENTE JED JANUCH 0001B10P40101C BLACK GOLD VERMICULITE	ERS 12QT	Collected: Matrix: Sample Number: Type:	1/31/00 Solid 00054200 Reg sample
---	--	-------------	--	--

			Result	Units	Qlfr
GEN					
Parameter Method	Bulk Asbesto	s Analysis			
Prep Method	d:				
Analytes	: *200009 *200006 *200007 *200013 *200005 *200010 *200011 *200012 *200008	Actinolite Amosite Anthophyllite Cellulose Chrysotile Crocidolite Glass Fiber Mineral Wool Tremolite			UND UND PNQ UND UND PNQ UND UND

00054200 Reg sample

Manchester Environmental Laboratory Combined Final Report for Project ESD-045A

Project Code: Project Name: Project Officer: Account Code: Station Description:	ESD-045A RETAIL HOME & GARDE JED JANUCH 0001B10P40101C COLES VERMICULITE	IN CENTERS	Collected: Matrix: Sample Number: Type:	1/31/00 Solid 00054201 Reg sample	
			Result	Units	Qlfr
GEN Parameter : Bulk Method : Prep Method: Analytes : *200 *200 *200 *200 *200 *200 *200 *200	0006Amosite0007Anthophyllite013Cellulose005Chrysotile010Crocidolite011Glass Fiber				UND UND UND PNQ UND UND UND UND UND

•

-

00054201 Reg sample

-

Manchester Environmental Laboratory Combined Final Report for Project ESD-045A

Project Code:	ESD-045A		Collected:	1/31/00
Project Name:	RETAIL HOME & GARDEN (CENTERS	Matrix:	Solid
Project Officer:	JED JANUCH		Sample Number:	00054202
Account Code:	0001B10P40101C		Type:	Reg sample
Station Description:	SCHULTZ VERMICULITE	8QT		- ·

		Result	Units	Qlfr
GEN				
Parameter : Bulk Ast	estos Analysis			
Method :	-			
Prep Method:				
Analytes : *200009	Actinolite			UND
*200006	Amosite			UND
*200007	Anthophyllite			UND
*200013	Cellulose			PNQ
*200005	Chrysotile			UND
*200010	Crocidolite			UND
*200011	Glass Fiber			UND
*200012	Mineral Wool			UND
*200008	Tremolite			UND

Project Code: Project Name: Project Officer: Account Code:	ESD-045A RETAIL HOME & GARDEN CENTERS JED JANUCH 0001B10P40101C		Collected: Matrix: Sample Number: Type:	
	WHITNEY FADA (CHERA) (COM AND	4QT	Туре:	Reg sample

			Result	Units	Qlfr
GEN					
Parameter Method Prep Method	: Bulk Asbest :	tos Analysis			
Analytes	: *200009 *200006 *200007 *200013 *200005 *200010 *200011 *200012 *200008	Actinolite Amosite Anthophyllite Cellulose Chrysotile Crocidolite Glass Fiber Mineral Worl Tremolite			UND UND UND UND UND UND UND TRACE

-

Manchester Environmental Laboratory Combined Final Report for Project ESD-045A

Project Name: Project Officer: Account Code:	ESD-045A RETAIL HOME & GARDEN JED JANUCH 0001B10P40101C SCOTTS VERMICULITE	CENTERS QT	Collected: Matrix: Sample Number: Type:	1/31/00 Solid 00054204 Reg sample
--	--	---------------	--	--

			Result	Units	Qlfr
GEN					
Parameter Method	: Bulk Asbesto :	s Analysis			
Prep Metho	od:				
Analytes	: *200009	Actinolite			UND
	*200006	Amosite			UND
•	*200007	Anthophyllite			UND
	*200013	Cellulose			UND
	*200005	Chrysotile			UND
	*200010	Crocidolite			UND
	*200011	Glass Fiber			UND
	*200012	Mineral Wool			UND
	*200008	Tremolite			TRACE

57 5700 9:59:37

.

Manchester Environmental Laboratory Combined Final Report for Project ESD-045A

Project Code: Project Name: Project Officer: Account Code: Station Description:	ESD-045A RETAIL HOME & GARDEN (JED JANUCH 0001B10P40101C ZONOLITE VERMICULITE	CENTERS 19LB	Collected: Matrix: Sample Number: Type:	1/31/00 Solid 00054205 Reg sample
---	--	-----------------	--	--

- <u>n neenu -</u> .			Result	Units	Qlfr
GEN				•	
Parameter Method Prep Metho	: Bulk Asbesto	s Analysis			
Analytes	: *200009	Actinolite			
	*200005	Amosite			UND
	*200007	Anthophyllite			UND
	*200013	Cellulose			UND
	*200005	Chrysotile			UND
	*200010	Crocidolite			UND
	*200011	Glass Fiber			UND
•	*200012	Mineral Wool			UND
	*200008	Tremolite			UND TRACI

Project Code: Project Name: Project Officer: Account Code: Station Description:	ESD-045A RETAIL HOME & GARDEN C JED JANUCH 0001B10P40101C ZONOLITE VERMICULITE	ENTERS 19LB	Collected: Matrix: Sample Number: Type:	1/31/00 Solid 00054206 Reg sample
---	--	----------------	--	--

•			Result	Units	Qlfr
GEN				·	
Parameter Method	: Bulk Asbesto	s Analysis		·	
Prep Method	d:				
Analytes	: *200009	Actinolite			UND
	*200006	Amosite			UND
	*200007	Anthophyllite			UND
	*200013	Cellulose			UND
	*200005	Chrysotile		•	UND
	*200010	Crocidolite			UND
	*200011	Glass Fiber			
	*200012	Mineral Wool			UND
	*200008	Tremolite			UND TRACE

Project Code:	ESD-045A	Collected:	1/31/00
	RETAIL HOME & GARDEN CENTERS	Matrix:	Solid
Project Officer:	JED JANUCH	Sample Number:	00054207
Account Code:	0001B10P40101C	Type:	Reg sample
Station Description:	THERMO ROCK 4 CUBIC FT	••	3p-+

			Result	Units	Qlfr
GEN		· · · ·		•	
Parameter Method	: Bulk Asbesto :	s Analysis			
Prep Metho	d:				
Analytes	: *200009	Actinolite			UND
	*200006	Amosite			UND
	*200007	Anthophyllite			UND
	*200013	Cellulose			UND
	*200005	Chrysotile			UND
	*200010	Crocidolite			UND
	*200011	Glass Fiber			UND
	*200012	Mineral Wool			
	*200008	Tremolite			UND TRACE

Project Code:	ESD-045A	Collected:	1/31/00
Project Name:	RETAIL HOME & GARDEN CENTERS	Matrix:	Solid
Project Officer:	JED JANUCH	Sample Number:	oona
Account Code:	0001B10P40101C	Type:	Reg sample
Station Description:	PROF. JIFFY MIX 8QT	. 1	rug sample

		••••••••••••••••••••••••••••••••••••••	Result	Units	Qlfr
GEN					
Parameter	: Bulk Asbesto	s Analysis			
Method Prep Metho	: Dd:				
Analytes	: *200009	Actinolite			UND
	*200006	Amosite			UND
	*200007	Anthophyllite			UND
	*200013	Cellulose			PNQ
	*200005	Chrysotile			UND
	*200010	Crocidolite			UND
	*200011	Glass Fiber			UND
	*200012	Mineral Wool			UND
	*200008	Tremolite			UND

Project Code: Project Name: Project Officer: Account Code: Station Description:	ESD-045A RETAIL HOME & GARDEN CE JED JANUCH 0001B10P40101C SAMS COICE POTTING SOIL	NTERS	Collected: Matrix: Sample Number: Type:	1/31-00 Solid 00054209 Reg sample
Station Description:	SAMS COICE POTTING SOIL	IOLB		

			Result	Units	Qlfr
GEN					
Parameter Method	: Bulk Asbesto	s Analysis			
Prep Metho	d:				
Analytes	: *200009	Actinolite			UND
	*200006	Amosite			UND
	*200007	Anthophyllite			UND
	*200013	Cellulose			UND
	*200005	Chrysotile			UND
	*200010	Crocidolite			UND
	*200011	Glass Fiber			UND
	*200012	Mineral Wool			UND
	*200008	Tremolite			UND

Project Code: Project Name: Project Officer: Account Code: Station Description:	ESD-045A RETAIL HOME & GARDEN CEN JED JANUCH 0001B10P40101C COLES HOUSE PLANT MIX 80		Collected: Matrix: Sample Number: Type:	1/31/00 Solid 00054210 Reg sample
---	--	--	--	--

			Result	Units	Qlfr
GEN					
Parameter Method Prep Methoo	: Bulk Asbesto : 1:	os Analysis			
Analytes	: *200009 *200006 *200007 *200013 *200005 *200010 *200011 *200012 *200012	Actinolite Amosite Anthophyllite Cellulose Chrysotile Crocidolite Glass Fiber Mineral Wool Tremolite			UND UND PNQ UND UND UND UND UND

Project Code: Project Name: Project Officer: Account Code: Station Description:	ESD-045A RETAIL HOME & GARDEN CENTERS JED JANUCH 0001B10P40101C SCHULTZ SEED STARTER 5.4 LB	Collected: Matrix: Sample Number: Type:	1/31/00 Solid 00054211 Reg sample
---	---	--	--

<u> </u>	<u></u>			Result	Units	Qlfr
GEN						
Parameter Method Prep Method:	Bulk Asbesto	s Analysis				
Analytes :	*200009 *200006 *200007 *200013 *200005 *200010 *200011 *200012 *200008	Actinolite Amosite Anthophyllite Cellulose Chrysotile Crocidolite Glass Fiber Mineral Wool Tremolite	· · · · · · · · · · · · · · · · · · ·			PNQ UND UND UND UND UND UND UND

57 5700 9:59:37

Manchester Environmental Laboratory Combined Final Report for Project ESD-045A

Project Code: Project Name: Project Officer: Account Code: Station Description:	ESD-045A RETAIL HOME & GARDEN CENT JED JANUCH 0001B10P40101C SCHULTZ SEED STARTER 5.4 L	Sample Number: Type:	1/31/00 Solid 00054212 Reg sample
---	---	-------------------------	--

			Result	Units	Qlfr
GEN					
Parameter Method	: Bulk Asbesto :	s Analysis			
Prep Metho	d:				
Analytes	: *200009	Actinolite			UND
	*200006	Amosite			
	*200007	Anthophyllite			UND
	*200013	Cellulose			UND
	*200005	Chrysotile			PNQ
	*200010	Crocidolite			UND
	*200011	Glass Fiber			UND
	*200012	Mineral Wool			UND
	*200008	Tremolite			UND UND

Project Code: Project Name:	ESD-045A RETAIL HOME & GARDEN CENTERS	Collected:	1/31/00
Project Officer: Account Code:	JED JANUCH . 0001B10P40101C	Matrix: Sample Number:	
Station Description:		Туре:	Reg sample

			Result	Units	Qlfr
GEN					
Parameter Method	: Bulk Asbesto :	os Analysis		·	
Prep Metho	od:				
Analytes	*200009	Actinolite			UND
	*200006	Amosite			UND
	*200007	Anthophyllite			UND
	*200013	Cellulose			
	*200005	Chrysotile			PNQ
	*200010	Crocidolite			UND
	*200011	Glass Fiber			UND
	*200012	Mineral Wool			UND
	*200008	Tremolite			UND UND

Project Code: Project Name: Project Officer: Account Code: Station Description:	ESD-045A RETAIL HOME & GARDEN CENTERS JED JANUCH 0001B10P40101C COLES CACTUS MIX 4QT	Collected: Matrix: Sample Number: Type:	1/31/00 Solid 00054214 Reg sample	
---	--	--	--	--

<u> </u>		<u></u>		Result	Units	Qlfr
GEN						
Parameter Method	:	Bulk Asbesto	s Analysis			
Prep Metho	: bc					
Analytes	:	*200009	Actinolite			UND
		*200006	Amosite			UND
		*200007	Anthophyllite			UND
		*200013	Cellulose			PNQ
		*200005	Chrysotile			UND
		*200010	Crocidolite			UND
		*200011	Glass Fiber			UND
		*200012	Mineral Wool			UND
		*200008	Tremolite			UND

Project Code:	ESD-045A	Collected:	1/31/00
Project Name:	RETAIL HOME & GARDEN CENTERS	Matrix:	Solid
Project Officer:	JED JANUCH	Sample Number:	00054215
Account Code:	0001B10P40101C	Type:	Reg sample
Station Description:	COUNTRY COTTAGE SEED STARTER	8QT	~ ('

·····	————————————————————————————————————	—	Result	Units	Qlfr
GEN					
Parameter Method	: Bulk Asbesto	s Analysis			
Prep Metho					
Analytes	: *200009	Actinolite			UND
	*200006	Amosite			UND
	*200007	Anthophyllite			UND
	*200013	Cellulose			PNQ
	*200005	Chrysotile			UND
	*200010	Crocidolite			
	*200011	Glass Fiber			UND
	*200012	Mineral Wool			UND
					UND
	*200008	Tremolite			UND

Project Code: Project Name: Project Officer: Account Code: Station Description:	ESD-045A RETAIL HOME & GARDEN CENTERS JED JANUCH 0001B10P40101C BLANK GOLD SEEDLING MIX 16QT	Collected: Matrix: Sample Number: Type:	1/31/00 Solid 00054216 Reg sample	
---	--	--	--	--

			Result	Units	Qlfr
GEN					-
Parameter : Method : Prep Method :	Bulk Asbesto	s Analysis			
Analytes :	*200009 *200006 *200007 *200013 *200005 *200010 *200011 *200012 *200008	Actinolite Amosite Anthophyllite Cellulose Chrysotile Crocidolite Glass Fiber Mineral Wool Tremolite			UND UND PNQ UND UND UND UND UND

5/ 5/00 9:59:37

Manchester Environmental Laboratory Combined Final Report for Project ESD-045A

Project Code: Project Name: Project Officer: Account Code: Station Description:	ESD-045A RETAIL HOME & GARDEN CENTERS JED JANUCH 0001B10P40101C SCOTTS PROGRO 25QT	Collected: Matrix: Sample Number: Type:	1/31/00 Solid 00054217 Reg sample
---	--	--	--

			Result	Units	Qlfr
GEN					
Parameter Method	: Bulk Asbesto	s Analysis			
Prep Method	d:				
Analytes	: * 200009	Actinolite			
	*200006	Amosite			UND
	*200007	Anthophyllite			UND UND
	*200013	Cellulose			
	*200005	Chrysotile			PNQ
	*200010	Crocidolite			UND
	*200011	Glass Fiber			UND
	*200012	Mineral Wool			UND
	*200008	Tremolite			UND UND

Project Code: ESD-045.	Collected:	1/31/00
Project Name: RETAIL	HOME & GARDEN CENTERS Matrix:	
Project Officer: JED JANK		Solid
Account Code: 0001B10F	CHSample Number:'40101CType:	
Station Description: WHITNE	Y FARMS VERMICULITE - FRED MEYER	Reg sample

		Result	Units	Qlfr
GEN Parameter : Bulk Asbestos Method : Prep Method: Analytes : *200009 *200006 *200007 *200013 *200013 *200010 *200011 *200012 *200008	s Analysis Actinolite Amosite Anthophyllite Cellulose Chrysotile Crocidolite Glass Fiber Mineral Wool Tremolite	Kesuit	Units	Qlfr UND UND UND UND UND UND UND UND UND UND

Project Code:	ESD-045A	Collected:	1/31/00
Project Name:	RETAIL HOME & GARDEN CENTERS	Matrix:	Solid
Project Officer:	JED JANUCH	Sample Number:	00054219
Account Code:	0001B10P40101C	Type:	Reg sample
Station Description:	ZONOLITE - BURDIC FEED		- 1

		A	Result	Units	Qlfr
GEN					
Parameter	: Bulk Asbesto	s Analysis			
Method					
Prep Metho	d:				
Analytes	: * 200009	Actinolite			UND
	*200006	Amosite			UND
	*200007	Anthophyllite			UND
	*200013	Cellulose			UND
	*200005	Chrysotile			UND
	*200010	Crocidolite			UND
	*200011	Glass Fiber			UND
	*200012	Mineral Wool			UND
	*200008	Tremolite			PNQ

Project Code: Project Name: Project Officer: Account Code: Station Description:	ESD-045A RETAIL HOME & GARDEN CENTERS JED JANUCH 0001B10P40101C THERMO ROCK CARPINITO BROS	Collected: Matrix: Sample Number: Type:	1/31/00 Solid 00054220 Reg sample	
---	--	--	--	--

······			Result	Units	Qlfr
GEN					
Parameter Method	Bulk Asbesto	s Analysis			
Prep Method	đ:				
Analytes	: *200009	Actinolite			UND
	*200006	Amosite			UND
	*200007	Anthophyllite			UND
	*200013	Cellulose			UND
	*200005	Chrysotile			UND
	*200010	Crocidolite			UND
	*200011	Glass Fiber			PNQ
	*200012	Mineral Wool			· UND
	*200008	Tremolite			UND

-

Project Code: Project Name: Project Officer: Account Code: Station Description:	ESD-045A RETAIL HOME & GARDEN CENTERS JED JANUCH 0001B10P40101C ZONOLITE - CHUBBY & TUBBY	Collected: Matrix: Sample Number: Type:	3/ 7/00 Solid 00104200 Reg sample
---	---	--	--

			Result	Units	Qlfr
GEN					
Parameter Method	: Bulk Asbesto	s Analysis			
Prep Method	d:				
Analytes	: *200009 *200006 *200007 *200013 *200005 *200010	Actinolite Amosite Anthophyllite Cellulose Chrysotile			UND UND UND PNQ UND
	*200010 *200011 *200012 *200008	Crocidolite Glass Fiber Mineral Wool Tremolite			UND UND UND UND

Attachment 2

Lab/Cor, Inc.

A Professional Service Corporation in the Northwest

Report Number: 000109

Client InformationProject Name:Retail Home and Garden
CentersProject No.:ESD-045 AP. O. No.:0Y0107NASX-

Tracking Information						
Login:	Feb 3, 2000	By: DJ				
Reviewed:	Feb 11, 2000	By: JH				
Final Review:	May 25, 2000	By: TMM				

Report Date: May 25, 2000

Analysis Information					
Sample Type: Analysis Type: Reference No.:	Bulk Semi-Quantitative EPA/600/R-93/116 68-02-3266				

FINAL TABLE Transmission Electron Microscopy – Semi-Quantitative – Bulk Sample Analysis

Lab/Cor Sample No.	Client Sample No.	Description	Regulated Asbestiform Mineral Type	Weight Percent	Other Components	Weight Percent	Prepped By	Prep Date(s)	Analyst	Analysis Date
000109-01	54200	Black Gold Vermiculite / 12 Qt. / Carpinito Bros.	None Detected		Organics Acid Solubles Other Nonasbestos	25.00 40.58 34.42	DW DW	02/04/00 02/07/00	GG	02/08/00
000109-02	54201	Cole's Vermiculite / 12 Qt./ Eagles (Lowes)	None Detected		Organics Acid Solubles Other Nonasbestos	1.32 47.53 51.15	DW DW	02/04/00 02/07/00	GG	02/09/00
000109-03	54202	Scholtz Vermiculite / 8 Qt./ Wallmart	None Detected		Organics Acid Solubles Other Nonasbestos	0.00 46.84 53.16	DW DW	02/04/00 02/07/00	GG	02/08/00
000109-04	54203	Whitney Farms / 14 Qt./ Fred Meyers	None Detected		Organics Acid Solubles Other Nonasbestos	0.68 45.27 54.05	DW DW	02/04/00 02/07/00	GG	02/08/00
000109-05	54204	Scotts Vermiculite / 8 Qt./ Wallmart	None Detected		Organics Acid Solubles Other Nonasbestos	0.19 84.45 15.36	DW DW	02/04/00 02/07/00	GG	02/09/00
000109-06	54205	Zonolite Vermiculite / 19 Lb./ Burdie Feeds Inc.	Actinolite	0.56	Organics Acid Solubles Other Nonasbestos	1.46 42.98 55.00	DW DW	02/04/00 02/07/00	GG	02/09/00
000109-07	54206	Zonolite Vermiculite / 19 Lb./ Burdie Feeds Inc.	Actinolite	0.47	Organics Acid Solubles Other Nonasbestos	2.05 51.17 46.31	DW DW	02/04/00 02/07/00	GG	02/09/00
000109-08	54207	Therm-ORock Verm /4 Cu. Ft./ Carpinito Bros.	None Detected		Organics Acid Solubles Other Nonasbestos	5.49 60.14 34.37	DW DW	02/04/00 02/07/00	GG	02/09/00
000109-09	54208	Prf. Jiffy Mix / 8 Qt./ Wallmart	None Detected		Organics Acid Solubles Other Nonasbestos	51.40 27.54 21.06	DW DW	02/04/00 02/07/00	GG	02/08/00

Lab/Cor, Inc. A Professional Service Corporation in the Northwest

Report Number: 000109

Client Information						
Project Name:	Retail Home and Garden					
	Centers					
Project No.:	ESD-045 A					
P. O. No.:						

Tracking Information					
Login:	Feb 3, 2000	<i>By:</i> DJ			
Reviewed:	Feb 11, 2000	<i>By:</i> JH			
Final Review:	May 25, 2000	<i>By:</i> TMM			

Report Date: May 25, 2000

Analysis Information			
Sample Type: Analysis Type: Reference No.:	Bulk Semi-Quantitative EPA/600/R-93/116 68-02-3266		

FINAL TABLE Transmission Electron Microscopy – Semi-Quantitative – Bulk Sample Analysis

Lab/Cor Sample No.	Client Sample No.	Description	Regulated Asbestiform Mineral Type	Weight Percent	Other Components	Weight Percent	Prepped By	Prep Date(s)	Analyst	Analysis Date
000109-10	54209	Sams Choice Prf Potting Mix / 10 Lb./ Wallmart	None Detected		Organics Acid Solubles Other Nonasbestos	34.06 21.69 44.25	DW DW	02/04/00 02/07/00	GG	02/09/00
000109-11	54210	Coles light House Plant Mix / 8 Qt./ Eagle	None Detected		Organics Acid Solubles Other Nonasbestos	36.12 23.70 40.18	DW DW	02/04/00 02/07/00	GG	02/09/00
000109-12	54211	Schultz Seed Starter / 5 4 Lb./ Eagles	None Detected		Organics Acid Solubles Other Nonasbestos	43.30 43.02 13.68	DW DW	02/04/00 02/07/00	GG	02/09/00
000109-13	54212	Schultz Seed Starter / 5.4 Lb./ Eagles	None Detected		Organics Acid Solubles Other Nonasbestos	28.57 45.90 25.53	DW DW	02/04/00 02/07/00	GG	02/10/00
000109-14	54213	Coles African Violet Mix / 4 Qt./ Eagles	None Detected		Organics Acid Solubles Other Nonasbestos	44.59 13.51 41.90	DW DW	02/04/00 02/07/00	GG	02/10/00
000109-15	54214	Coles Cactus Mix / 4 Qt./ Eagles	Actinolite	0.45	Organics Acid Solubles Other Nonasbestos	17.42 37.64 44.49	DW DW	02/04/00 02/07/00	GG	02/07/00
000109-16	54215	Country Cottage Prf. Seed Starter / 8 Qt./ Oriental Garden Center	None Detected		Organics Acid Solubles Other Nonasbestos	44.94 23.42 31.64	DW DW	02/04/00 02/07/00	GG	02/07/00
000109-17	54216	Black Gold seedling Mix / 16 Qt./ Fred Meyers	None Detected		Organics Acid Solubles Other Nonasbestos	65.54 11.49 22.97	DW DW	02/04/00 02/07/00	GG	02/10/00
000109-18	54217	Scotts Pro Grow Professional Potting Mix / 25 Qt./ Home Depot	None Detected		Organics Acid Solubles Other Nonasbestos	49.12 38.35 12.53	DW DW	02/04/00 02/07/00	GG	02/07/00

Lab/Cor, Inc. A Professional Service Corporation in the Northwest

Report Number: 000109

Client Information				
Project Name:	Retail Home and Garden Centers			
Project No.: P. O. No.;	ESD-045 A			
P. O. No.:	0Y0107NASX			

Tracking Information					
Login:	Feb 3, 2000	By: DJ			
Reviewed:	Feb 11, 2000	By: JH			
Final Review:	May 25, 2000	By: TMM			

Report Date: May 25, 2000

Analysis Information				
Sample Type:	Bulk			
Analysis Type:	Semi-Quantitative			
Reference No.:	EPA/600/R-93/116			
	68-02-3266			

FINAL TABLE Transmission Electron Microscopy – Semi-Quantitative – Bulk Sample Analysis

Lab/Cor Sample No.	Client Sample No.	Description	Regulated Asbestiform Mineral Type	Weight Percent	Other Components	Weight Percent	Prepped By	Prep Date(s)	Analyst	Analysis Date
000109-19	00054205A	Zonolite Vermiculite / 19 Lb./ Burdie Feeds Inc. (QC Replicate)	None Detected		Organics Acid Solubles Other Nonasbestos	8.88 43.79 47.33	DW DW	02/04/00 02/09/00	GG	02/10/00
000109-20	00054211A	Schultz Seed Starter / 5.4 Lb./ Eagles (QC Replicate)	None Detected		Organics Acid Solubles Other Nonasbestos	53.77 17.92 28.31	DW DW	02/04/00 02/09/00	GG	02/10/00

1.1

Lab/Cor, Inc.

A Professional Service Corporation in the Northwest

Report Number: 000224

Client Information				
Project Name: Vermiculite -Commercial				
Product				
Project No.:	ESD-045A			
P. O. No.: 0001B10P40101C				

Tracking Information						
Login:	Mar 10, 2000	By: DJ				
Reviewed:	Mar 23, 2000	By: JH				
Final Review:	May 25, 2000	By: TMM				

Report Date: May 25, 2000

Analysis Information				
	Bulk			
	Semi-Quantitative			
Reference No.:	EPA/600/R-93/116			
	68-02-3266			

FINAL TABLE Transmission Electron Microscopy – Semi-Quantitative – Bulk Sample Analysis

Lab/Cor Sample No.	Client Sample No.	Description	Asbestiform Regulated Mineral Type	Weight Percent	Other Components	Weight Percent	Prepped By	Prep Date(s)	Analyst	Analysis Date
000224-01	54203	Whitney Farms Vermiculite - Fred Meyer	None Detected		Organics Acid Solubles Other Nonasbestos	3.24 61.36 35.40	DW	03/13/00	ЛН	03/22/00
000224-02	54205	Zonolite - Burdic Feed	Actinolite Tremolite Total	0.94 0.94 1.88	Organics Acid Solubles Other Nonasbestos	4.53 1.21 92.38	DW	03/13/00	JH	03/22/00
000224-03	54207	Thermo Rock - Carpihito Bros.	Actinolite	0.33	Organics Acid Solubles Other Nonasbestos	2.06 65.02 32.59	DW	03/13/00	JH	03/23/00
000224-04	104200	Zonolite Chubby & Tubby	None Detected		Organics Acid Solubles Other Nonasbestos	2.12 0.91 96.97	DW	03/13/00	JH	03/23/00

Lab/Cor, Inc. A Professional Service Corporation in the Northwest

Report Number: 000233

Project Name: Retail

Project No.:

P. O. No.:

Client Information

Not Available

Not Available

Home&Garden/MEL

Tracking Information					
Login:	Mar 13, 2000	By: MH			
Reviewed:	Mar 27, 2000	By: JH			
Final Review:	Jun 1, 2000	By: TMM			

Report Date: June 1, 2000

Analysis Information				
Sample Type:	Bulk			
Analysis Type:	Semi-Quantitative			
Reference No.:	EPA/600/R-93/116			
68-02-3266				

FINAL TABLE Transmission Electron Microscopy – Semi-Quantitative – Bulk Sample Analysis

Lab/Cor Sample No.	Client Sample No.	Description	Asbestiform Regulated Mineral Type	Weight Percent	Other Components	Weight Percent	Prepped By	Prep Date(s)	Analyst	Analysis Date
000233-01	54203	Whitney Farms Residue	None Detected		Organics Acid Solubles Other Nonasbestos	9.09 72.73 18.18	DW	03/14/00	ΗL	03/26/00
000233-02	54204	Scotts Residue	None Detected		Organics Acid Solubles Other Nonasbestos	2.50 87.50 10.00	DW	03/14/00	JH	03/26/00
000233-03	54205	Zonolite Residue	Tremolite	0.10	Organics Acid Solubles Other Nonasbestos	2.56 92.31 5.03	DW	03/14/00	JH	03/26/00
000233-04	54206	Zonolite Residu e	Tremolite	2.79	Organics Acid Solubles Other Nonasbestos	0.00 72.09 25.12	DW	03/14/00	JH	03/26/00
000233-05	54207	ThermoRock	Actinolite	0.30	Organics Acid Solubles Other Nonasbestos	2.17 67.39 30.14	DW	03/14/00	JH	03/26/00
000233-06	80772	#3 Residue	Tremolite	0.24	Organics Acid Solubles Other Nonasbestos	28.57 47.62 23.57	DW	03/14/00	Ы	03/26/00
000233-07	80773	#4 Residue	Tremolite	0.64	Organics Acid Solubles Other Nonasbestos	8.00 28.00 63.36	DW	03/14/00	НL	03/26/00

Attachment 3

P

Industrial Chemicab Group W.L. Groce & Ca. 62 Whitemore Avenue Cambridge, Max. 02140

16171 876-1400

April 1, 1980

Xr. Dale Ray Consumer Product Safety Commission Economic Program Analysis Division Room 656-B Washington, D.C. 20207

Dear Mr. Ray:

This will confirm our conference call of March 12, 1980 in which we reviewed with you the results of testing performed by the Construction Products Division of W. R. Grace & Co to determine the extent of asbestiform tremolite fiber release associated with use of Grace vermiculite in consumer products. During our conversation, you requested that we set out the details of Grace's fiber exposure test methodology and test results and indicate the nature of Grace's fiber reduction efforts.

As you know, tremolite is a tramp_mineral contaminant which is associated with vermiculite and which Grace has been attempting to reduce to the maximum extent feasible. Since 1970, Grace has invested over \$15 million to extract worthless materials and contaminants and to reduce airborne fiber exposure in its vermiculite mining, milling and expanding operations. A substantial part of this investment was associated with the construction by Grace of a new vermiculite mill at its Libby, Montana mine which uses wet screening and other wet ore beneficiation processes designed to reduce the asbestiform tremolite contaminant associated with vermiculite.

Following startup of the new mill, in early 1975, Grace took further steps to reduce tremolite contamination by removing and disposing of selected fines which have a higher level of contamination, thereby reducing the level of contamination in its finished ore concentrate. Since that time, changes have been made in the exfoliation process equipment used at Grace's vermiculite expanding plants which

Hr. Dale Ray

Sent by:

أي

process Grace vermiculite ore for use in both consumer and industrial products. These changes provided for further screening, separation, and removal of both fines and the heavier unexpanded residual high density material following exfoliation both of which may contain a higher level of asbestiform tremolite contamination than the finished product. By use of bag houses and other dust filtration equipment, including an air elutriation step, additional reduction of the tremolite fiber contamination of expended vermiculite end product is accomplished.

- 2 -

Grace has taken the further step of developing a binding agent for its Zonolite(R) Attic Insulation product and has recently started up equipment at all its expanding plants to apply this binder to Attic Insulation to further reduce dust and exposure to asbestiform fibers during the use of this product.

As a result of these reductions in asbestiform tremolite contamination, we believe that consumer products containing vermiculite and sold by Grace do not generate unreasonable risks for users. This has been verified by Grace's fiber exposure tests of consumer products containing expanded Grace vermiculite ore. All measurements were made by the NIOSH-approved technique as set forth in 40 CFR Section 1910.1001, paragraphs (e) and (f), utilizing the membrane filter method at 400-450 X (magnification) (4 millimeter objective) with phase contrast illumination. The results of these tests were as follows:

Product	Fibers Detected
Terra-Lite(R) Vermiculite Redi-Earth(R) Lightweight Fertilizer	None Detected None Detected None Detected
(Scott's Turf Builder) Zonolite Attic Insulation	Some fibers detected during installation

The actual test protocols and results of the tests are shown in Annex A to this letter. No tests were performed on Pool Cushion (R), a Grace product, which is used for protection of the base of vinyl-lined above-ground swimming pools since this use occurs out-of-doors and, typically, involves no more than 3 to 12 bags of vermiculite, depending on the size of the pool. Mr. Dale Ray

Sent by. .

- 3 -

April 1, 1980

The only Grace product whose use resulted in a detectable fiber exposure was Attic Insulation and, then, at low levels only during installation. Tests indicate no residual fiber release following installation. Since this product is unlikely to be used more than two or three times during an entire lifetime and, then, only for exposure times which would not be expected to exceed two hours in any one case, the lifetime dosage is several orders of magnitude lower than any promulgated government standard applicable to tremolice fiber exposure.

Grace is continuing to exert its best efforts to further reduce the asbestiform tremolite contamination associated with its vermiculite products to the maximum extent feasible. For example, beginning in Hay of this year, a new rock and tremolite removal circuit should be operational at the Libby mill. This circuit is expected to reduce the level of tremolite contamination in fine size vermiculite ore by 50%. Additional research is underway to develop a similar circuit for reduction of tremolite contamination in the coarser sizes of vermiculite ore used for Zonolite Artic Insulation. One promising separation technique is slot screening which, if successful, could reduce tremolite contamination in the coarse ore concentrate by over 50%.

We are rapidly approaching a point of diminishing return since the amount of asbestiform tremolite contaminant in the vermiculite ore presently shipped to the exfoliating plants averages only 0.5% on a dry weight basis. For expanded vermiculite products, the level of contaminant is on average at or below the lowest level of reliable detectability, 0.2% on a dry weight basis. Accordingly, the 50% reduction Grace expects to achieve in the fine ores by May and, ultimately, the coarse ore sizes is a reduction from an already very low contaminant level. With this background, it is clear to us that the task of further reducing the temaining residual contamination in unexpanded ore and expanded vermiculite products will show a rapidly escalating cost in relation to the benefits derived. Mr. Dale Ray

April 1, 1980

We trust that this information will be useful to you in connection with the CPSC's evaluation of the asbestos contamination issue.

- 4 -

Very truly yours,

E. S. Wood Executive Vice President

Attachment

lent cyc

Philing

USER EXPOSURE TO FIBROUS TREMOLITE IN VERMICULITE CONSUMER PRODUCTS

TEST DATA

I. TEST PROTOCOL

A. Horticultural Products

1. Consumer Use of Terra-Lite(R) Vermiculite(a)

(a) <u>Mix and fill pots</u> to simulate consumer preparation of a mix of 50% peat moss and 50% Terra-Lite vermiculite by scooping equal volumes of materials out of separate packages and depositing on work surface. Hand mix to reasonable uniformity and fill fifteen (15) 4" diameter flower pots in 15 minutes. Press down-to firm up the soil to hold the plant.

After 8 days the 15 pots were brought into the work area where three separate procedures were performed. Fiber counts were taken during each of these three procedures. Five pots were used for each of the three procedures.

(b) <u>Knock Out and Disposal</u> - To simulate the consumer who does not intend to reuse the soil. Invert the pot and rap on the working surface so that the soil drops out. Brush the mound of soil off the bench into a disposal container. Take a paper towel and wipe inside of pot so that is is clean for reuse and dispose of the paper towel. In this procedure, contents of five pots will be disposed of during the 15 minute test period.

(c) <u>Knock Out and Reuse</u> for Potting Other Plants -Simulate a consumer who will reuse the potting soil. Rap pot on workbench by hand and break up the lump of soil to Sent by:

)

make it similar to its original free-flowing condition. Repeat this five times. Combine all soil into one pile; then proceed to refill pots by scooping the material back in and tamping it down. In this 15 minute test procedure, five pots will be filled.

(d) <u>Knock Out and Blend</u> with New Potting Soil - Simulate a consumer who will blend old with new potting soil. Rap pot on workbench by band and break up the lump of soil to make it similar to its original free-flowing condition. Repeat procedure five times. Obtain additional potting soil to match the volume of the dried soil. Place new soil on top of the old soil and mix together by hand. Use this mix to fill pots. During this 15 minute test procedure, 10 pots are filled.

2. Consumer Use of Redi-Earth(R) Potting Soil^(b)

(a) Same procedure as 1 (a) exceptisubstitute premixed Redi-earth for Terra-Lite Vermiculite as the soil medium.

(b) Same procedure as 1 (b).

(c) Same procedure as 1 (c).

(d) Same procedure as 1 (d).

8. Consumer Use of Lightweight Fertilizer (c)

1. <u>Ceneral</u>

A five building apartment complex was selected as the test site. With over 100,000 sq. ft. of grass area, the site allowed air sampling while fertilizing over an extended period of time.

- 2 -

the spreader hopper and fertilizing, and the other maintaining log sheets, time and pump calibrations.

2. Application of Lightweight Lawn Fertilizet

Two sampling pumps with filter cassettes located in the left and right breathing zones were worn by the applicator during the sampling/fertilizing period. The applicator filled the spreader hopper to within 2" of the top and refilled when the hopper was approximately 3/4ths empty. Using a new Model 35 Scotts spreader with guide markers, the applicator spread thirteen (13) bags of lawn fertilizer at the normal coverage application rate (5000 ft²/bag). C. Consumer Installation of Vermiculite Attic Insulation^(d)

1. General

Vermiculite Attic Insulation is generally purchased in quantities of 10 - 100 bags per home to "retrofit" or "add to" existing insulation in an existing home. Seldom is vermiculite Attic Insulation installed in new construction. To determine consumer exposure to tremolite fibers, the following series of tests by home owners was intended to indicate actual exposures under a variety of conditions.

2. Area Engineering Samples

Engineering samples were taken as follows:

(a) Prior to installing vermiculite Attic Insulation, monitor attic space for 5 - 6 hours.

(b) Approximately two months after installing insulation, monitor attic space for 5 - 6 hours.

- 3 -

12/29/99 17:05; JetFax #709; Page 9/17

J. rouring/Leveling Vermiculite Attic Insulation in a Home

Each test home utilized 40 - 70 bags (3 cubic feet each) of vermiculite Attic Insulation. The installer was monitored during the placement of insulation.

Initially, place 15 - 20 bags in the attic. The installer poured all bags and leveled insulation with a wooden hand screed or one with a handle to push insulation back into roof eaves. Additional bags were brought to the attic in lots of 15 - 20 bags as required.

NOTES:

Sent by:

(a) Terra-Lite vermiculite is composed of expanded #3 vermiculite ore from either Libby, Montana or Enorce, South Carolina.

۰.

(b) Redi-Earth is a potting soil consisting of a mixture of 50% peat moss and 50% expanded #3 vermiculite ore from either Libby, Montana or Enoree, South Carolina with plant nutrients added.

(c) Lightweight fertilizer utilizes expanded #4 vermiculite ore from either Libby, Montana or Enoree, South Carolina.

(d) Attic Insulation is composed of expanded \$1 or \$2 vermiculite ore available only from Libby, Montana.

(e) Pool Cushion which was not tested utilizes expanded #3 vermiculite ore from either Libby, Montana or Enoree, South Carolina.

4 -

12:29/99 17:05; JetEx_#709;Page 9/17

. rouring/Leveling Vermiculite Attic Insulation in a Home

Each test home utilized 40 - 70 bags (3 cubic feet each) of vermiculite Attic Insulation. The installer was monitored during the placement of insulation.

Initially, place 15 - 20 bags in the attic. The installer poured all bags and leveled insulation with a wooden hand screed or one with a handle to push insulation back into roof eaves. Additional bags were brought to the attic in lots of 15 - 20 bags as required.

NOTES:

Sent by:

(a) Terra-Lite vermiculite is composed of expanded #3 vermiculite ore from either Libby, Montana or Enorce, South Carolina.

÷., '

(b) Redi-Earth is a potting soil consisting of a mixture of 50% peat moss and 50% expanded #3 vermiculite ore from either Libby, Montana or Enoree, South Carolina with plant nutrients added.

(c) Lightweight fertilizer utilizes expanded #4 vermiculite ore from either Libby, Montana or Enoree, South Carolina.

(d) Attic Insulation is composed of expanded \$1 or \$2 vermiculite ore available only from Libby, Montana.

(e) Pool Cushion which was not tested utilizes expanded
 #3 vermiculite ore from either Libby, Montana or Enorge,
 South Carolina.

- 4 -

11. <u>RESULTS</u> (See -note 1)

	PERSONNEL EXPOSURE South	AVE. (f/cc)	PERSONNE EXPOSURE South	L TWA (f/cc)
A. HORTICULTURAL PRODUCTS (see Note 2)	Carolina	Montana.	<u>Carolina</u>	Moncan
1. Consumer Use of Terra-Lite Vermiculite				
(a) Mix and Pill Pots	<0.29	<0.14	<0.073	<0.035
(b) Knock Out and Disposal	<0.14	0.14	<0.035	<0.035
(c) Knock Our and Reuse	<0.14	<0.14	<0.035	<0.035
(d) Knock Out and Blend	<0.14	<0.14	<0.035	<0.035
2 Consumer Use Redi-Earth				
(a) Mix and Fill Pots	<0.29	<0.14	<0.073	<0.035
(b) Knock Out and Disposal	<0.14	<0.14	<0.035	<0.035
(c) Knock Out and Reuse .	<0.14	<0.14	<0.035	<0.035
(d) Knock Out and Blend	<0.14	<0.14	<0.035	<0.035
B. LIGHTWEIGHT FER ILLIZER			-	
1. Application of Lightweight Fertilizer With Montana derived vermiculite		<0.03		. 008
C. Home Installation of Vermiculite Attic Inst	ulation			
1. Engineering/Area Samples		• •		
Type No. <u>Fiber Cor</u> <u>Hane</u> Bags <u>Before</u>	Attic	(f/cc) After (see	note 3)	

			DETOTE	Arter (see note 3
F.	Colonfal	55	0.03 (see note 4)	<0.01
к	Cape	30	NO TEST -	<0.01
S	Ranch	64	<0.01	<0.01
Ψ	Colonial	70	<0.01	<0.01

. - 5 -

Sent by:

.

Туре		Personnel Exposure (f/cc)				
Home	Hane	Ave	THA (see note 5)			
F.	Colonial	2.597	0.649			
Н	Cape	0.971	0.243			
S	Ranch	2.115	0.529			
W	Colonial	1.746	- 0.436			

NOTES:

1. The symbol < (less than) indicates no fibers were observed in the counted fields. As a measure of test precision, results are reported to be less than the value represented by one fiber if such had been detected in one of the observed fields.

۰.

According to NIOSH reports, the limit of reliable detectaility for this test procedure is 0.5 f/cc exposure and 0.1 f/cc TWA. Values below 0.5 f/cc exposure and 0.1 f/cc TWA are not judged as detectable.

2. Each test of horitcultural products was repeated using products made from both Libby, Montana ore and Enoree, South Carolina ore. The Grace vermiculite ore used in making Attic Insulation originates from the Libby, Montana mine as does the ore purchased by D. M. Scott & Sons for use in its lightweight lawn fertilizer.--

3. In addition to results tabulated, two additional tests indicate no fibers detected in attics insulated with vermiculite loose fill in one case six hours and in another case approximately nine years after installation.

4. In all home attics tested, vermiculite Attic Insulation was added as a retrofit insulation over existing glass, mineral wool or cellulose insulation. In home "F", a fiber was observed in the counted fields prior to pouring vermiculite Attic Insulation. Although length and aspect ratio fell within the fiber definition, it is believed to be airborne glass fiber from existing insulation. There was no vermiculite Attic Insulation in the attic when this prejob semple was taken.

.

- 6 ~

5. In calculating the time-weighted average (TWA) exposure for consumers using Attic Insulation, it is assumed that the user would work in the attic pouring Attic Insulation for two hours in one eight-hour work day. Results in C. 1., indicate no further exposures after installation. The lifetime exposure and risk associated with the use of Attic Insulation is infinitesimally small compared to industrial exposures since the opportunity for exposure is rate (perhaps twice in a lifetime) compared to a permitted industrial exposure up to 2 f/cc during each eight-hour work day throughout a working lifetime. Therefore, comparison of TWAs between a rate and nonroutine exposure in the case of Attic Insulation and the OSHA industrial standard of 2 f/cc vastly overstates the potential hazard involved in the use of Attic Insulation.

.

7

Attachment 4

A Professional Service Corporation in the Northwest

Report Number: 000146

Project No .:

Sample Type: Air

P. O. No.:

Project Name: EPA Region 10

Client Information

Not Available

0Y0107NASX

Vermiculite Project

Tracking Information						
Login:	Feb 17, 2000	<i>By:</i> GG				
Prep:	Feb 18, 2000	<i>By:</i> DW				
Verified:	Feb 18, 2000	<i>By:</i> DW				
Reviewed:	Feb 21, 2000	<i>By:</i> JH				
Final Review:	May 25, 2000	<i>By:</i> TMM				

Report Date: May 25, 2000

Analysis Information				
Analysis Type:	NIOSH			
Reference No.:	7402			
Min. Aspect Ratio:	3:1			
Min. Length:	5 µm			
Min. Width:	0.25 μm			

FINAL TABLE Transmission Electron Microscopy - NIOSH - Air Sample Analysis

Lab/Cor Sample No.		Description	Fiber Type	Concen- tration (struc/cc)	95% Confidence Interval (struc/cc)	Count		Analytical Sens. (struc/cc)	Volume (liters)	Number of Grid Openings	Filter Area (mm²)	Area Analyzed (mm²)	Analyst	Analysi Date
000146-01 Test	00074200	Pump #1 Flowrate 2.85 l/m 30 min #1	ASBESTOS NON-ASBESTOS	<0.022 <0.022	0 - 0.083 0 - 0.083	0	NA	0.022	85.5	20	385	0.2013	GG	2/18/00
			TOTAL	<0.022	0 - 0.083	0								
000146-02 Test	00074201	Pump #5 Flowrate 2.85 l/m 30 min #2	ASBESTOS NON-ASBESTOS	<0.022 <0.022	0 - 0.083 0 - 0.083	0	NA	0.022	85.5	20	385	0.2013	GG	2/18/00
			TOTAL	<0.022	0 - 0.083	0								
000146-03 Test	00074202	Pump #1 Flowrate 2.8 l/m 30 min #3	ASBESTOS NON-ASBESTOS	<0.023 <0.023	0 - 0.084 0 - 0.084	0	NA	0.023	84.0	20	385	0.2013	GG	2/18/00
			TOTAL	<0.023	0 - 0.084	0								
000146-04	00074203	Pump #5 Flowrate 2.8 l/m 30 min #4	ASBESTOS NON-ASBESTOS	<0.023 0.068	0 - 0.084 0.014 - 0.200	0	0	0.023	84.0	20	385	0.2013	GG	2/18/00
Test			TOTAL	0.068	0.014 - 0.200	3								r
000146-05 Test	00074204	Pump #1 Flowrate 2.8 l/m 30 min #5	ASBESTOS NON-ASBESTOS	<0.023 0.023	0 - 0.084 0.001 - 0.127	0	0	0.023	84.0	20	385	0.2013	GG	2/18/00
			TOTAL	0.023	0.001 - 0.127					·				
000146-06 Test	00074205	Pump #5 Flowrate 2.8 l/m 30 min #6	ASBESTOS NON-ASBESTOS	<0.023 0.046	0 - 0.084 0.006 - 0.164	0	0	0.023	84.0	20	385	0.2013	GG	2/18/00
1031			TOTAL	0.046	0.006 - 0.164	2								

% Optically Visible Asbestos Fibers = (#Asbestos / #Total Fibers). This number indicates the representative fraction of asbestos to total fibers as defined by NIOSH 7400 standards and can be used as a factor to determine asbestos concentrations from PCM counts in similar sampling areas.

NA – Not Applicable. For samples in which no fiber types are found, percentage values do not apply.

NOTE: These counting rules are intended to coincide with NIOSH 7400 counting rules and do not measure smaller asbestos fiber populations below 5.0 µm lengths as would other

A Professional Service Corporation in the Northwest

Report Number: 000146

Clie	ent Information]	Γ
Project Name:	EPA Region 10		L
Project No.:	Vermiculite Project		P_{I}
P. O. No.;	0Y0107NASX		V R
Sample Type:	Air	1	Fi

Tracking Information					
Login:	Feb 17, 2000	By: GG			
Prep:	Feb 18, 2000	By: DW			
Verified:	Feb 18, 2000	By: DW			
Reviewed:	Feb 21, 2000	By: JH			
Final Review:	May 25, 2000	By: TMM			

Report Date: May 25, 2000

Analysis Information					
Analysis Type:	NIOSH				
Reference No.:	7402				
Min. Aspect Ratio:	3:1				
Min. Length:	5 μm				
Min. Width:	0.25 μm				
	Analysis Type: Reference No.:				

FINAL TABLE Transmission Electron Microscopy - NIOSH - Air Sample Analysis

Lab/Cor Sample No.	Client Sample No.	Description	Fiber Type	Concen- tration (struc/cc)	95% Confidence Interval (struc/cc)		Opt. Vis. Asb. Fibs. (%)	Analytical Sens. (struc/cc)	Volume (liters)	Number of Grid Openings	Filter Area (mm²)	Area Analyzed (mm²)	Analyst	Analysi: Date
000146-07	00074206	Pump #1 Flowrate 2.8 l/m 30 min #7	ASBESTOS NON-ASBESTOS	<0.023 <0.023	0 - 0.084 0 - 0.084	0 0	NA	0.023	84.0	20	385	0.2013	GG	2/21 <i>/</i> 00
Test			TOTAL	<0.023	0 - 0.084	0								
000146-08	00074207	Pump #5 Flowrate 2.8 l/m 30 min #8	ASBESTOS NON-ASBESTOS	<0.023 0.023	0 - 0.084 0.001 - 0.127	0	0	0.023	84.0	20	385	0.2013	GG	2/21/00
Test			TOTAL	0.023	0.001 - 0.127	1								
000146-09	00074208	Blank 1	ASBESTOS NON-ASBESTOS	NA NA	NA - NA NA - NA	0	NA	NA		20	385	0.2013	GG	2/21/00
Test			TOTAL	NA	NA - NA	0								
000146-10	00074209	Blank 2	ASBESTOS NON-ASBESTOS	NA NA	NA - NA NA - NA	0	NA	NA		20	385	0.2013	GG	2/21/00
Test			TOTAL	NA	NA - NA									1
000146-11	00074210	QC 1	ASBESTOS NON-ASBESTOS	NA NA	NA - NA NA - NA NA - NA	0 0	NA	NA		20	385	0.2013	GG	2/21/00
Test			TOTAL	NA	NA - NA	0								
000146-12	00074211	QC 2	ASBESTOS NON-ASBESTOS	NA NA	NA - NA NA - NA	0	NA	NA		20	385	0.2013	GG	2/21/00
Test			TOTAL	NA	NA - NA	0								

% Optically Visible Asbestos Fibers = (#Asbestos / #Total Fibers). This number indicates the representative fraction of asbestos to total fibers as defined by NIOSH 7400 standards and can be used as a factor to determine asbestos concentrations from PCM counts in similar sampling areas.

NA - Not Applicable. For samples in which no fiber types are found, percentage values do not apply.

NOTE: These counting rules are intended to coincide with NIOSH 7400 counting rules and do not measure smaller asbestos fiber populations below 5.0 µm lengths as would other TEM airborne analysis methods (AHERA, EPA - Yamate).

Lab/Cor, Inc. A Professional Service Corporation in the Northwest

Report Number: 000147

Client Information				
Project Name:	EPA Region 10			
	Vermiculite Project			
Project No.:	Not Available			
P. O. No.:	0Y0107NASX			
Sample Type:	Air			

	Tra	icking Informa	tion
- 1	Login:	Feb 17, 2000	<i>By:</i> GG
	Prep:	Feb 18, 2000	<i>By:</i> DW
	Verified:	Feb 18, 2000	<i>By:</i> DW
	Reviewed:	Feb 21, 2000	<i>By:</i> JH
	Final Review:	Mar 22, 2000	<i>By:</i> JH

Report Date: March 22, 2000

ĺ	Analysis Information							
	Analysis Type:	Modified EPA-II						
	Reference No.:	68 - 02 - 3266						
	Min. Aspect Ratio:	5:1						
	Min. Length:	0.5 μm						
Į	Min. Width: NA	•						
	Lab Filter Area:	227 mm ²						

FINAL TABLE
Transmission Electron Microscopy – Modified EPA-II (Direct and Indirect) – Air Sample Analysis
(= feet and indirect) – An Sample Analysis

Lab/Cor Sample No.	Client Sample No.	Description	Fiber Type	Density (s/mm²)	Concen- tration (struc/cc)	95% Confidence Interval (struc/cc)	Struc. Count	Analytical Sens. (struc/cc)	Volume (liters)	Number of Grid Openings	Dilution Factor	Area Analyzed (mm²)	Analyst	Analysis Date
000147-01	00074212	Pump #3 Flowrate 11.1 l/m 100 mins #9	TOTAL ASBESTOS	0	<0.005	0 - 0.018	0	0.005	1110.0	5		0.0725	GG	2/24/22
Direct		1111/3 #3	ASBESTOS >= 5 µm NON-ASBESTOS	0 13.8	<0.005 0.005	0 - 0.018 0.000 - 0.027	0			Ū		0.0725	66	2/21/00
000 147-02	00074213	Pump #4 Flowrate 11.15 l/m 100 mins #10	TOTAL ASBESTOS	0	<0.005	0 - 0.018	0	0.005	1115.0	5		0.0725	GG	0/04/00
Direct	· · · · · · · · · · · · · · · · · · ·		ASBESTOS >= 5 µm NON-ASBESTOS	0 0	<0.005 <0.005	0 - 0.018 0 - 0.018	0			Ĩ		0.0725	GG	2/21/00
000147-03	00074214	Pump #3 Flowrate 11.0 l/m 100 mins #11	TOTAL ASBESTOS	0	<0.005	0 - 0.018	0	0.005	1100.0	5		0.0725		
Direct	····		ASBESTOS >= 5 µm NON-ASBESTOS	0 0	<0.005 <0.005	0 - 0.018 0 - 0.018	0			J		0.0725	GG	2/21/00
000147-04	00074215	Pump #4 Flowrate 11.0 l/m 100 mins #12	TOTAL ASBESTOS	0	<0.005	0 - 0.018	0	0.005	1100.0	5		0.0725	GG	2/24/02
Direct			ASBESTOS >= 5 µm NON-ASBESTOS	0 13.8	<0.005 0.005	0 - 0.018 0.000 - 0.027	0					0.0723	66	2/21/00
000147-05	00074216	Pump #4 Flowrate 11.1 I/m 100 mins #13	TOTAL ASBESTOS	4139.4	0.847	0.527 - 1.166	27	0.031	1110.0	10	22.2	0.1449	 JH	3/21/00
Indirect		mins #15	ASBESTOS >= 5 µm NON-ASBESTOS	1993.1 1533.1	0.408 0.314	0.217 - 0.697 0.150 - 0.577	13 10					0.1445	JH	3/21/00
000147-06	00074217	Pump #4 Flowrate 11.1 l/m 100	TOTAL ASBESTOS	2759.6	0.564	0.335 - 0.892	18	0.031	1110.0	10	22.2	0,1449	HL	3/21/00
Indirect		mins #14	ASBESTOS >= 5 µm NON-ASBESTOS	1226.5 766.6	0.251 0.157	0.108 - 0.494 0.051 - 0.366	8					0.146	Jn	3/21/00
000147-07	00074218	Blank #1	TOTAL ASBESTOS	I.				I	l		<u> </u>			
Blank			ASBESTOS >= 5 µm NON-ASBESTOS			ΝΟ	T.	ANA	λL`	ΥΖΕ	D			

A Professional Service Corporation in the Northwest

Report Number: 000147

Project No.:

Sample Type: Air

P. O. No.:

Client Information

Not Available

0Y0107NASX

Vermiculite Project

Project Name: EPA Region 10

Tracking Information							
Login:	Feb 17, 2000	By: GG					
Prep:	Feb 18, 2000	By: DW					
Verified:	Feb 18, 2000	By: DW					
Reviewed:	Feb 21, 2000	By: JH					
Final Review:	Mar 22, 2000	By: JH					

Report Date: March 22, 2000

Analysis	Analysis Information							
Analysis Type:	Modified EPA-II							
Reference No.:	68 - 02 - 3266							
Min. Aspect Ratio:	5:1							
Min. Length:	0.5 μm							
Min. Width: NA Lab Filter Area:								

FINAL TABLE Transmission Electron Microscopy – Modified EPA-II (Direct and Indirect) – Air Sample Analysis

Lab/Cor Sample No.	Client Sample No.	Description	Fiber Type	Density (s/mm²)	Concen- tration (struc/cc)	95% Confidence Interval (struc/cc)	Struc. Count		Volume (liters)	Number of Grid Openings	Dilution Factor	Area Analyzed (mm²)	Analyst	Analysis Date
000147-08	00074219	Blank #2	TOTAL ASBESTOS								1		L	<u> </u>
Blank	······································		ASBESTOS >= 5 µm NON-ASBESTOS			ΝΟ	Т	AN	AL	ΥΖΕ	Ð			
000147-09	74220	ac	TOTAL ASBESTOS											· · · · · · · · · · · · · · · · · · ·
QC			ASBESTOS >= 5 µm NON-ASBESTOS			ΝΟ	Т	AN	A L	ΥΖΕ	D			

Lab/Cor, Inc. A Professional Service Corporation in the Northwest

Report Number: 000225

Client Information						
Project No.:	0001B10P40101C					

Tracking Information							
Login:	Mar 10, 2000	By: DJ					
Prep:	Mar 14, 2000	By: DW					
Verified:	Mar 14, 2000	By: DW					
Reviewed:	Mar 26, 2000	By: JH					
Final Review:	Jun 3, 2000	By: TMM					

Report Date: June 3, 2000

Analysis Information							
Analysis Type:	EPA-II						
Reference No.:	68 - 02 - 3266						
Min. Aspect Ratio:	5:1						
Min. Length:	0.5 μm						
Min. Width:	NA						

FINAL TABLE Transmission Electron Microscopy – EPA-II – Air Sample Analysis

Lab/Cor Sample No.	Client Sample No.	Description	Fiber Type	Density (s/mm²)	Concen- tration (struc/cc)	95% Confidence Interval (struc/cc)	Struc. Count	Analytical Sens. (struc/cc)	Volume (liters)	Number of Grid Openings	Filter Area (mm²)	Area Analyzed (mm²)	Analyst	Analysis Date
000225-01	00104201	Pump #1	TOTAL ASBESTOS	73.6	0.202	0.087 - 0.399	8	0.025	82.5	10	385	0.1449	JH	3/25/00
Indirect			ASBESTOS >= 5 μm NON-ASBESTOS	64.4 27.6	0.177 0.076	0.071 - 0.365 0.016 - 0.222	7							
000225-02	00104202	Pump #5	TOTAL ASBESTOS	138.0	0.373	0.209 - 0.615	15	0.025	84.0	10	385	0.1449	JH	3/25/00
Indirect			ASBESTOS >= 5 µm NON-ASBESTOS	92.0 55.2	0.249 0.149	0.119 - 0.457 0.055 - 0.325	10 6							
000225-03	00104203	Field Blank	TOTAL ASBESTOS	0	<3.055	0 - 11.273	0	3.055	1.0	9	385	0.1260	JH	3/25/00
Direct			ASBESTOS >= 5 µm NON-ASBESTOS	0 0	<3.055 <3.055	0 - 11.273 0 - 11.273	0 0							
000225-04	00104204	QC Unopened	TOTAL ASBESTOS	0	<2.829	0 - 10.439	0	2.829	1.0	10	385	0.1361	JH	3/25/00
Direct			ASBESTOS >= 5 µm NON-ASBESTOS	0 0	<2.829 <2.829	0 - 10.439 0 - 10.439	0 0						1	
000225-05	00104205	Pump #1	TOTAL ASBESTOS	138.0	0.380	0.010 - 2.115	1	0.380	82.5	10	385	0.1449	JH	3/25/00
Indirect			ASBESTOS >= 5 µm NON-ASBESTOS	138.0 965.9	0.380 2.658	0.010 - 2.115 1.067 - 5.475	1 7							
000225-06	00104206	Pump #5	TOTAL ASBESTOS	27.6	0.080	0.017 - 0.235	3	0.027	78.0	10	385	0.1449	JH	3/25/00
Indirect			ASBESTOS >= 5 µm NON-ASBESTOS	27.6 64.4	0.080 0.187	0.017 - 0.235 0.075 - 0.386	, 3 7							
000225-07	00104207	Background Pump #1	TOTAL ASBESTOS	0	<0.031	0 - 0.116	0	0.031	87.0	10	385	0.1405	JH	3/25/00
Direct			ASBESTOS >= 5 µm NON-ASBESTOS	0 0	<0.031 <0.031	0 - 0.116 0 - 0.116	0							
000225-08	00104208	Background Pump #5	TOTAL ASBESTOS	0	<0.031	0 - 0.113	0	0.031	87.0	10	385	0.1449	JH	3/25/00
Direct			ASBESTOS >= 5 µm NON-ASBESTOS	0 13.8	<0.031 0.061	0 - 0.113 0.007 - 0.220	0 2							

Lab/Cor, Inc. A Professional Service Corporation in the Northwest

Report Number: 000225

Client Information						
Project No.:	0001B10P40101C					

Tracking Information								
Login:	Mar 10, 2000	By: DJ						
Prep:	Mar 14, 2000	By: DW						
Verified:	Mar 14, 2000	By: DW						
Reviewed:	Mar 26, 2000	By. JH						
Final Review:	Jun 3, 2000	By: TMM						

Report Date: June 3, 2000

Analysis Information						
Analysis Type:	EPA-II					
Reference No.:	68 - 02 - 3266					
Min. Aspect Ratio:	5:1					
Min. Length:	0.5 μm					
Min. Width:	NA					

FINAL TABLE Transmission Electron Microscopy - EPA-II - Air Sample Analysis

Lab/Cor Sample No.	Client Sample No.	Description	Fiber Type	Density (s/mm²)	Concen- tration (struc/cc)	95% Confidence Interval (struc/cc)	Struc. Count	Analytical Sens. (struc/cc)	Volume (liters)	Number of Grid Openings		Area Analyzed (mm²)	Analyst	Analysis Date
000225-09	00104209	Pump #1	TOTAL ASBESTOS	2621.6	6.960	4.191 - 10.869	19	0.366	85.5	10	385	0.1449	JH	3/25/00
Indirect			ASBESTOS >≃ 5 μm NON-ASBESTOS	1103.8 1103.8	2.931 2.931	1.264 - 5.773 1.264 - 5.773	8 8							
000225-10	00104210	Pump #5	TOTAL ASBESTOS	3131.3	8.170	4.756 - 11.584	22	0.371	87.0	10	385	0.1405	JH	3/26/00
Indirect			ASBESTOS >= 5 µm NON-ASBESTOS	854.0 1281.0	2.228 3.342	0.817 - 4.850 1.530 - 6.321	6 9							
000225-11	00104211	Field Blank	TOTAL ASBESTOS	0	<2.656	0 - 9.801	0	2.656	1.0	10	385	0.1449	JH	3/25/00
Direct			ASBESTOS >= 5 µm NON-ASBESTOS	0 0	<2.656 <2.656	0 - 9.801 0 - 9.801	0 0					- -		
000225-12	00104212	QC Blank Unopened	TOTAL ASBESTOS	0	<2.656	0 - 9.801	0	2.656	1.0	10	385	0.1449	JH	3/25/00
Direct			ASBESTOS >= 5 µm NON-ASBESTOS	0 · 0	<2.656 <2.656	0 - 9.801 0 - 9.801	0 C							

A Professional Service Corporation in the Northwest

Report Number: 000370

Client Information		
Project No.:	Vermiculite Project Not Available 0Y0107NASX	
P. O. No.: Sample Type:		

Tracking Information									
Login:	Apr 14, 2000	By: BAR							
Prep:	Apr 17, 2000	By: DW							
Verified:	Apr 17, 2000	By: DW							
Reviewed:	Apr 20, 2000	By: JH							
Final Review	: Jun 6, 2000	By: JH							

Report Date: June 6, 2000

Analysis	Information
Analysis Type:	NIOSH
Reference No.:	7402
Min. Aspect Ratio:	3:1
Min. Length:	5 µm
Min. Width:	0.25 μm
	•

FINAL TABLE Transmission Electron Microscopy – NIOSH – Air Sample Analysis

Lab/Cor Sample No.	Client Sample No.	Description	Fiber Type	Concen- tration (struc/cc)	95% Confidence Interval (struc/cc)	Struc. Count	Opt. Vis. Asb. Fibs. (%)	Analytical Sens. (struc/cc)	Volume (liters)	Number of Grid Openings	Filter Area (mm²)	Area Analyzed (mm²)	Analyst	Analysis Date
000370-01	00154012	Work Area Background	ASBESTOS NON-ASBESTOS	<0.029 0.088	0 - 0.109 0.018 - 0.258	0 3	0	0.029	32.5	40	385	0.4026	ЛН	4/19/00
Test			TOTAL	0.088	0.018 - 0.258	3								
000370-02	00154013	Work Area Background	ASBESTOS NON-ASBESTOS	<0.031 0.031	0 - 0.114 0.001 - 0.172	0	0	0.031	31.0	40	385	0.4026	ЪН	4/19/00
Test			TOTAL	0.031	0.001 - 0.172	1								
000370-03	00154014	QC Unopened	ASBESTOS NON-ASBESTOS	NA NA	NA - NA NA - NA	0 2	0	NA		40	385	0.4026	ЪН	4/19/00
Test			TOTAL	NA	NA - NA	2								
000370-04	00154015	Field Blank	ASBESTOS NON-ASBESTOS	NA NA	NA - NA NA - NA	0 0	NA	NA		40	385	0.4026	JH	4/19/00
Test			TOTAL	NA	NA - NA	0	ĺ							
000370-05	00154016	Field Blank	ASBESTOS NON-ASBESTOS	NA NA	NA - NA NA - NA	0	0	NA		40	385	0.3927	JH	4/19/00
Test			TOTAL	NA	NA - NA	1								
000370-06	00154019	Pump 1	ASBESTOS NON-ASBESTOS	<0.063 0.508	0 - 0.234 0.219 - 1.001	0 8	0	0.063	15.1	40	385	0.4026	ЪН	4/20/00
Test			TOTAL	0.508	0.219 - 1.001	8	.							

% Optically Visible Asbestos Fibers = (#Asbestos / #Total Fibers). This number indicates the representative fraction of asbestos to total fibers as defined by NIOSH 7400 standards and can be used as a factor to determine asbestos concentrations from PCM counts in similar sampling areas.

NA - Not Applicable. For samples in which no fiber types are found, percentage values do not apply.

NOTE: These counting rules are intended to coincide with NIOSH 7400 counting rules and do not measure smaller asbestos fiber populations below 5.0 µm lengths as would other TEM airborne analysis methods (AHERA, EPA - Yamate).

A Professional Service Corporation in the Northwest

Report Number: 000370

Project No.:

Sample Type: Air

P. O. No.:

Client Information

Not Available

0Y0107NASX

Project Name: Vermiculite Project

Tra	Tracking Information										
Login:	Apr 14, 2000	By: BAR									
Prep:	Apr 17, 2000	By: DW									
Verified:	Apr 17, 2000	By: DW									
Reviewed:	Apr 20, 2000	By: JH									
Final Review:	Jun 6, 2000	By: JH									

Report Date: June 6, 2000

Analysis Information						
Analysis Type:	NIOSH					
Reference No.:	7402					
Min. Aspect Ratio:	3:1					
Min. Length:	5 µm					
Min. Width:	0.25 μm					

FINAL TABLE Transmission Electron Microscopy – NIOSH – Air Sample Analysis

Lab/Cor Sample No.	Client Sample No.	Description	Fiber Type	Concen- tration (struc/cc)	95% Confidence Interval (struc/cc)	Count	Opt. Vis. Asb. Fibs. (%)	Sens.	Volume (liters)	Number of Grid Openings	Filter Area (mm²)	Area Analyzed (mm²)	Analyst	Analysis Date
000370-07	00154018	Pump 5	ASBESTOS NON-ASBESTOS	<0.060 0.480	0 - 0.221 0.207 - 0.946	0 8	0	0.060	15.9	40	385	0.4026	нL	4/20/00
Test			TOTAL	0.480	0.207 - 0.946	8	1							
000370-08	00154020	Pump 5	ASBESTOS NON-ASBESTOS	<0.060 0.482	0 - 0.222 0.208 - 0.949	0 8	0	0.060	15.9	40	385	0.4026	ЪН	4/20/00
Test			TOTAL	0.482	0.208 - 0.949	8								
000370-09	00154021	Pump 1	ASBESTOS NON-ASBESTOS	<0.064 0.701	0 - 0.235 0.350 - 1.253	0 11	0	0.064	15.0	40	385	0.4026	н	4/20/00
Test	· · · · · · · · · · · · · · · · · · ·		TOTAL	0.701	0.350 - 1.253	11								
000370-10	00154022	022 Pump 5	ASBESTOS NON-ASBESTOS	<0.060 0.780	0 - 0.221 0.415 - 1.334	0 13	0	0.060	15.9	40	385	0.4026	нı	4/20/00
Test			TOTAL	0.780	0.415 - 1.334	13								
000370-11	00154023	Pump 1	ASBESTOS NON-ASBESTOS	<0.064 0.702	0 - 0.235 0.350 - 1.256	0 11	0	0.064	15.0	40	385	0.4026	JH	4/20/00
Test			TOTAL	0.702	0.350 - 1.256	11							[
000370-12	00154000	Pump 5	ASBESTOS NON-ASBESTOS	0.344 1.569	0.158 - 0.651 1.089 - 2.049	9 41	18	0.038	40.0	25	385	0.2516	HL	4/20/00
Test			TOTAL	1.913	1.383 - 2.444	50								

% Optically Visible Asbestos Fibers = (#Asbestos / #Total Fibers). This number indicates the representative fraction of asbestos to total fibers as defined by NIOSH 7400 standards and can be used as a factor to determine asbestos concentrations from PCM counts in similar sampling areas.

NA - Not Applicable. For samples in which no fiber types are found, percentage values do not apply.

NOTE: These counting rules are intended to coincide with NIOSH 7400 counting rules and do not measure smaller asbestos fiber populations below 5.0 µm lengths as would other TEM airborne analysis methods (AHERA, EPA - Yamate).

A Professional Service Corporation in the Northwest

Report Number: 000370

Client Information						
Project Name: Ver Project No.: Not P. O. No.: 0Y0 Sample Type: Air	miculite Project Available 107NASX					

Tracking Information									
Login:	Apr 14, 2000	By: BAR							
Prep:	Apr 17, 2000	By: DW							
Verified:	Apr 17, 2000	By: DW							
Reviewed:	Apr 20, 2000	By: JH							
Final Review:		By: JH							

Report	Date:	June	6,	2000
--------	-------	------	----	------

Analysis Information							
Analysis Type:	NIOSH						
Reference No.:	7402						
Min. Aspect Ratio:	3:1						
Min. Length:	5 µm						
Min. Width:	0.25 μm						

FINAL TABLE Transmission Electron Microscopy – NIOSH – Air Sample Analysis

Lab/Cor Sample No.	Client Sample No.	Description	Fiber Type	Concen- tration (struc/cc)	95% Confidence Interval (struc/cc)	Struc. Count		Analytical Sens. (struc/cc)	Volume (liters)	Number of Grid Openings	Filter Area (mm²)	Area Analyzed (mm²)	Analyst	Analysis Date
000370-13	00154001	Pump 1	ASBESTOS NON-ASBESTOS	0.352 1.056	0.176 - 0.630 0.696 - 1.416	11 33	25	0.032	29.9	40	385	0.4026	JH	4/18/00
Test			TOTAL	1.408	0.992 - 1.824	44								
000370-14	00154002	Pump 1	ASBESTOS NON-ASBESTOS	0.342 1.710	0.148 - 0.674 1.180 - 2.240	8 40	17	0.043	22.4	40	385	0.4026	JH	4/21/00
Test			TOTAL	2.052	1.472 - 2.633	48								
000370-15	00154003	Pump 5	ASBESTOS NON-ASBESTOS	0.160 1.055	0.052 - 0.373 0.695 - 1.415	5 33	13	0.032	29.9	40	385	0.4026	JH	4/22/00
Test			TOTAL	1.215	0.829 - 1.601	38								
000370-16	00154006	Field Blank opened 2 sec.	ASBESTOS NON-ASBESTOS	NA NA	NA - NA NA - NA	0 2	0	NA		40	385	0.4026	JĤ	4/24/00
Test			TOTAL	NA	NA - NA	2			:					
000370-17	00154007	QC Unopened	ASBESTOS NON-ASBESTOS	NA NA	NA - NA NA - NA	0 2	0	NA		40	385	0.4026	JH	4/23/00
Test			TOTAL	NA	NA - NA	2								
000370-18	00154008	Pump 1	ASBESTOS NON-ASBESTOS	0.702 2.233	0.350 - 1.256 1.493 - 2.973	11 35	24	0.064	15.0	40	385	0.4026	н	4/23/00
Test			TOTAL	2.935	2.087 - 3.784	46	,							

% Optically Visible Asbestos Fibers = (#Asbestos / #Total Fibers). This number indicates the representative fraction of asbestos to total fibers as defined by NIOSH 7400 standards and can be used as a factor to determine asbestos concentrations from PCM counts in similar sampling areas.

- NA Not Applicable. For samples in which no fiber types are found, percentage values do not apply.
- NOTE: These counting rules are intended to coincide with NIOSH 7400 counting rules and do not measure smaller asbestos fiber populations below 5.0 µm lengths as would other TEM airborne analysis methods (AHERA, EPA Yamate).

A Professional Service Corporation in the Northwest

Report Number: 000370

Client Information								
Project No.:	0Y0107NASX							

Tracking Information										
Login:	Apr 14, 2000	By: BAR								
Prep:	Apr 17, 2000	By: DW								
Verified:	Apr 17, 2000	By: DW								
Reviewed:	Apr 20, 2000	By: JH								
Final Review:	Jun 6, 2000	By: JH								

Report Date: June 6, 2000

Analysis	Information
Analysis Type:	NIOSH
Reference No.:	7402
Min. Aspect Ratio:	3:1
Min. Length:	5 µm
Min. Width:	0.25 μm

FINAL TABLE Transmission Electron Microscopy – NIOSH – Air Sample Analysis

Lab/Cor Sample No.	 	Description	Fiber Type	Concen- tration (struc/cc)	Interval	Count	J.	Analytical Sens. (struc/cc)	11:4		Filter Area (mm²)	Area Analyzed (mm²)	Analyst	Analysis Date
000370-19	00154009	Pump 5	ASBESTOS NON-ASBESTOS	0.477 2.445	0.206 - 0.940 1.697 - 3.193	8 41	16	0.060	16.0	40	385	0.4026	JH	4/22/00
Test			TOTAL	2.922	2.104 - 3.740	49								i I
000370-20	00154010	Pump 1	ASBESTOS NON-ASBESTOS	0.249 2.056	0.068 - 0.638 1.355 - 2.758	4 33	11	0.062	15,3	40	385	0.4026	НL	4/24/00
Test			TOTAL	2.306	1.563 - 3.049	37								
000370-21	00154011	Pump 5	ASBESTOS NON-ASBESTOS	0.948 2.548	0.542 - 1.539 1.786 - 3.309	16 43	27	0.059	16.1	40	385	0.4026	JH	4/22/00
Test			TOTAL	3.495	2.604 - 4.387	59								1

% Optically Visible Asbestos Fibers = (#Asbestos / #Total Fibers). This number indicates the representative fraction of asbestos to total fibers as defined by NIOSH 7400 standards and can be used as a factor to determine asbestos concentrations from PCM counts in similar sampling areas.

NA - Not Applicable. For samples in which no fiber types are found, percentage values do not apply.

NOTE: These counting rules are intended to coincide with NIOSH 7400 counting rules and do not measure smaller asbestos fiber populations below 5.0 µm lengths as would other TEM airborne analysis methods (AHERA, EPA - Yamate).

SAMPLING AND ANALYSIS OF CONSUMER GARDEN PRODUCTS THAT CONTAIN VERMICULITE

Prepared for:

Fibers and Organics Branch National Program Chemicals Division Office of Pollution Prevention and Toxics U.S. Environmental Protection Agency 401 M Street, S.W. Washington, DC 20460

Prepared by:

Versar, Inc. 6850 Versar Center Springfield, Virginia 22151

August 22, 2000

TABLE OF CONTENTS

1.0	INTRO	DDUCTION	. 1
	1.1	Results of Previously Conducted EPA Regional Analyses of Consumer	
		Products for Asbestos Content	. 2
	1.2	Other EPA Asbestos Surveys	. 3
2.0	METH	IODS USED FOR THE EPA/OPPT/NPCD CONSUMER PRODUCT STUDY	. 3
	2.1	Consumer Product Collection	
	2.2	Bulk Product Sampling	
	2.3	Laboratory Analyses of Bulk Samples	
	2.4	Consumer Use Simulation	
	2.5	Region 10 Bulk Product Method Using Sieving	. 9
3.0	RESU	LTS	10
	3.1	Bulk PLM and TEM Analyses	10
	3.2	SOP 2000	
	3.3	Superfund Method	
	3.4	Consumer Use Simulation	12
	3.5	Region 10 Bulk Product Method Using Sieving	15
4.0	DISCU	JSSION	15
5.0	RISK	ANALYSIS	16
6.0	REFE	RENCES	18
APPE	NDIX A	A - Laboratory Reports	

LIST OF TABLES

Table 1.	Types and Contents of Asbestos Fibers in Vermiculite Produced in the United
	States
Table 2.	Analytical Results of EPA Region 10's Study of Asbestos in Consumer Products 20
Table 3.	Vermiculite or Vermiculite-Containing Products Purchased
Table 4.	Analytical Results
Table 5.	Results of Asbestos Analyses Using EPA Superfund Method
Table 6.	Fiber Levels in Air Inside the Containment
Table 7.	Fiber Levels in Outside Air
Table 8.	Estimated Cancer Risks from Asbestos Associated with Consumer Use of
	Vermiculite

LIST OF FIGURES

Figure 1.	Zonolite® Sample Purchased from Kent, Washington
Figure 2.	Preparation of TEM Grids
Figure 3.	Transmission Electron Microscpe
Figure 4.	Elutriator Used in the Superfund Method
Figure 5.	Diagram of 10' x 10' x 10' Containment Used in the Product Use Simulation 33
Figure 6.	Containment Used in Product Use Simulation
Figure 7.	Consumer Use Simulation Wearing Protective Clothing
Figure 8.	High-Volume Air Sampling Pump
Figure 9.	Outdoor Product Use Simulation
Figure 10.	Sieving the Vermiculite Product
Figure 11.	Asbestos Fiber Seen by TEM
Figure 12.	Actinolite Asbestos Fiber

1.0 INTRODUCTION

In 1985, EPA evaluated consumer exposures to asbestos in products (e.g., horticultural products) containing vermiculite (Versar, 1985). The exposure assessment used analytical data for exfoliated vermiculite from a 1982 report prepared by MRI (MRI, 1982). The analytical data from the MRI (1982) report were presented in terms of the percent asbestos in raw, beneficiated, or exfoliated vermiculite ore. No data were provided on the asbestos content of vermiculite-containing consumer products. A summary of the analytical results from the MRI (1982) study is provided in Table 1. Raw ore from the Libby, Montana, mine had estimated asbestos contents ranging from 21 to 26 percent, while ore from their Enoree, South Carolina, mine had <1 percent asbestos. Beneficiated Grade Vermiculite ranged from 0.3 to 7 percent at the Libby site and was <1 percent at the Enoree site. Exfoliated vermiculite was evaluated from the Enoree site, but not the Libby site. The asbestos content was <1 percent. The W.R. Grace Company also analyzed bulk samples of vermiculite from their mine in South Carolina (IOM, no date). Their procedure involved extracting vermiculite, chlorite, chrysotile, and other minerals, leaving only amphibole fibers and examining samples by scanning electron microscope (SEM) and x-ray diffraction. The results indicated that the bulk material contained actinolite at low levels (i.e., approximately 0.002%). Similar analyses were conducted using two expanded verniculite samples from South Carolina (IOM, 1993). Only trace amounts of asbestos fibers were observed in these samples. In 1990, the Libby mine was closed. Presumably, vermiculite in currently produced consumer product lines originates from the South Carolina or Virginia mines, or mines located outside the United States. Inhalation exposure to consumer products was assessed in the Versar (1985) report using data on the percent asbestos in exfoliated vermiculite, and assumptions regarding the amount of vermiculite in consumer products, the quantity of dust generated during consumer use, and the volume of air affected, as well as other assumed exposure factors.

As a result of reports on residual contamination and the potential for human exposures in Libby, Montana from the now-closed vermiculite mine, and questions posed to EPA about consumer products that contain vermiculite, there was renewed interest in evaluating the potential consumer exposures to asbestos from the use of vermiculite-containing consumer products. Consumer exposure to asbestos-contaminated vermiculite can occur during handling of consumer products containing vermiculite such as, lawn and garden care products, fertilizers, packaging materials, and loose-fill attic insulation. EPA Region 10 initiated a study of consumer products containing vermiculite. Subsequently, EPA, Office of Pollution Prevention and Toxics (OPPT), National Program Chemicals Division (NPCD), requested that Versar conduct sampling and analysis of vermiculite-containing consumer products as an expansion and followup to the Region 10 study. This report briefly describes the results of consumer product survey conducted by EPA Region 10 as well

as a related survey of commercially available building products that was conducted by Region 6 (EPA Region 6, 2000). It also summarizes the methods used and results of the asbestos analyses from the recently-conducted EPA/OPPT/NPCD-Versar study of consumer products.

1.1 <u>Results of Previously Conducted EPA Regional Analyses of Consumer Products for</u> <u>Asbestos Content</u>

EPA Region 10 analyzed consumer products containing vermiculite. These products were intended for horticultural use (e.g., potting soil, horticultural vermiculite) or laboratory packing (e.g., Zonolite[®] chemical packaging). Initially, 16 bulk products were analyzed by polarized light microscopy (PLM) (Method EPA/600/R-93/116) and transmission electron microscopy (TEM) (Method EPA/600/R-93/116). The PLM results were either non-detect or trace for all products. Two products were positive for asbestos, based on the TEM results. These products were: Zonolite® Vermiculite (0.56% actinolite and 0.47% actinolite) and Coles Cactus Mix (0.45% actinolite). Based on these results, Zonolite[®] was further analyzed by TEM after sieving the sample using No. 10 and No. 35 screens. The results of this sample indicated 1.88% actinolite/tremolite in the dust portion that passed through the sieves. Further analysis by TEM gave results of 0.1% and 2.79% in the fraction of material analyzed. This analysis procedure involved a rinsing residue particle separation technique to further improve the ability to isolate and identify asbestos in the vermiculite containing products. The residue materials were placed in a beaker and rinsed with deionized water which was intended to wash any loose fibers from the vermiculite matrix. After the vermiculite had floated to the surface, 7 ml of water was extracted from the bottom of the beaker using a syringe and was then injected into a crucible. The crucible was covered and placed in a drying oven a 68° centigrade for two or three days until all the water had evaporated. The remaining residue located in the bottom of the crucible was removed and placed onto a microscope slide following the EPA semi-quantitative method: EPA/600/R-93/116. A second Zonolite[®] product (Chubby and Tubby) was analyzed, but no asbestos was detected. These results are shown in Table 2.

Region 10 also conducted air monitoring during use of these products using a "glove-box" technique. Three separate scenarios were used during the glove box study. The first scenario involved the potting of plants which involved emptying a container of vermiculite containing soil into a plastic tub and then manipulating the soil to break up clumps. The second scenario involved preparing potting soil by mixing 50% vermiculite and 50% peat moss in a container, while the third scenario involved using pure vermiculite such as that used for laboratory packing purposes. Jars were placed into a pan and then covered with vermiculite. The three glove box sampling studies took place over a period of either 15, 20, or 30 minutes. However, one of the manipulation of soil studies was run for 100 minutes. For Coles Cactus Mix, no asbestos was detected at a flow rate of 2.8 L/minute

for 30 minutes (NIOSH 7402) or 11.1 L/minute for 100 minutes (Modified EPA-II). Using Zonolite[®] Chemical Packaging Material mixed 50/50 with Sun/Gro Peat Moss, the total amount of asbestos detected ranged from 0.08 to 0.38 structures/cm³ at an air flow rate of 2.8 L/m for 30 minutes and 0.56 to 0.85 structures/cm³ at an air flow rate of 11.1L/minute for 100 minutes, using the modified EPA (1984) (EPA-II Method). When Zonolite[®] Chemical Packaging Material was tested unmixed, the total asbestos detected was 6.96 to 8.17 structures/cm³ at an air flow rate of 2.9 L/minute for 30 minutes, using the NIOSH 7402 Method. TEM analysis was used to estimate fiber content in all samples (either NIOSH 7402 or Modified EPA-II Method). Use of two TEM methods was necessary because some samples could not be tested using the NIOSH 7402 Method due to the excessive amount of particulate accumulated on the filter. The filters required a redeposit process which is not covered in the NIOSH 7402 Method, but could be performed using the Modified EPA-II Method.

1.2 Other EPA Asbestos Surveys

In addition to the ongoing work in Libby, Montana, EPA's Superfund program is currently evaluating possible asbestos contamination at other current and former vermiculite mines and processing sites across the country. EPA's Boston office is developing an improved sample preparation technique for vermiculite products and exploring options for gathering information on vermiculite home insulation. Finally, EPA's Dallas office recently concluded the sampling of a limited number of building construction materials, not including vermiculite products, for asbestos content. The purpose of this survey was to determine whether these building materials contained more than one percent asbestos, the threshold for regulation under the Asbestos-in-Schools program. The results of the sampling indicated that none of the 50 products contained more than one percent asbestos.

2.0 METHODS USED FOR THE EPA/OPPT/NPCD CONSUMER PRODUCT STUDY

2.1 <u>Consumer Product Collection</u>

During the initial phase of the EPA/OPPT/NPCD-Versar study, a total of 33 vermiculite and vermiculite-based consumer products were purchased from retail stores (i.e., hardware and department stores) in 9 metropolitan locations throughout the United States by personnel in Versar's regional offices. In addition, vermiculite packaging material was purchased from a mail order company in Atlanta, Georgia . This material is typically used in packing laboratory materials. A bag of Zonolite[®] Chemical Packaging Vermiculite was also purchased by mail order (Figure 1). This material was purchased from Burdic Feed, located in Kent, Washington, where it was being sold for horticultural purposes. This is the same product that was found to be positive for asbestos content

by EPA Region 10 (2000). As a result of the initial collection efforts, 35 products were collected. Following the initial sampling and analysis, additional samples were received and added to the study. One additional product was purchased from a retail store in the Springfield, Virginia, area (i.e., metropolitan Washington, D.C., area). An additional sample of vermiculite packaging material was also collected by EPA/OPPT/NPCD personnel during an unrelated sampling event, and provided to Versar for analysis. This material came from a laboratory packaging company in Batavia, Illinois (VWR). It should be noted that VWR is a user, and not a distributor of laboratory packaging material. The original source of the material is not known. In addition, Region 10 supplied a small sample of material from a bag of Zonolite[®] Chemical Packaging Vermiculite that they had purchased from Burdic Feed in Kent, Washington. This material had been found to be positive for asbestos by EPA Region 10. A total of 38 materials were collected overall.

An attempt was made to ensure that the products purchased in the various locations would represent a broad range of product types and brands, with emphasis on locally packaged products to ensure that a wide variety of materials would be sampled. It should be noted, however, that a statistically-based sampling approach was not used. Thus, the products purchased may not be a nationally representative sample. A list of the products purchased in each of the various locations is provided in Table 3.

As indicated in Table 3, the products were composed of either vermiculite only, or a mixture of vermiculite, and organic, inorganic and other materials (i.e., soil-based vermiculite products such as potting soil and horticultural mixes). Other types of vermiculite-containing products, such as loose-fill attic insulation, were desired for this study, but are apparently not readily available to consumers and could not be located. Also, as shown in Table 3, some of the same products were purchased in more than one location. This was done to evaluate similarities or differences in the asbestos content of these products, based on the region where they were purchased. The products in Table 3 were mailed to Versar Headquarters in Springfield, Virginia, by the regional offices.

2.2 Bulk Product Sampling

Samples of the various products collected were taken in Springfield, Virginia, and sent to the EMSL Analytical Laboratories in Westmont, New Jersey. Although only a small sample (i.e., approximately 8 ounces) of the materials was required by the laboratory, most of these products were purchased in bags containing greater than 4 quarts. A sample of each product was collected using a clean stainless steel scoop. To ensure that samples were representative of the entire bag of material, composite samples of each product were collected by mixing equal portions of product from the top, middle, and bottom of the bag, for a total sample of approximately 8 ounces. Two sampling methods

were used for the Zonolite[®] purchased by mail order from a feed store in Kent, Washington. This material is the same as the bulk material that was found to be positive for asbestos by researchers in EPA Region 10 (2000). First, a composite sample was collected, as described above. A second sample was collected from the bottom of the bag to determine whether the asbestos content would be higher in the bottom of the bag as a result of gravitational settling. This procedure was also used to sample the bottom of the bag of Hoffman's vermiculite from Minnesota during the second sampling round. Clean, stainless steel scoops were used to place the samples into sterile jars which were sealed, labeled, and sent to the EMSL Analytical Laboratories for asbestos analysis. As a result of the initial collection effort, a total of 36 samples were prepared for laboratory analysis.

In a subsequent round of sampling, an additional 14 samples were collected to increase the number of samples analyzed by PLM and TEM to 50. Additional samples were comprised of repeat composite sampling of the 5 samples with quantifiable asbestos; repeat random composite sampling of 5 more of the original samples (i.e., some non-detect and some with detections below the limits of quantification); 1 Zonolite[®] sample collected by EPA Region 10 and sent to Versar (this sample came from the bottom 1/3 of a bag of Zonolite[®], also purchased from Burdic Feed in Kent, Washington); 1 sample of the vermiculite packaging material from VWR, a laboratory supply company in Batavia, Illinois, that was collected by EPA Headquarters personnel during an unrelated sampling event; a sample from the gardening consumer product (Pursell's Stay-Green Vermiculite) that was purchased after the initial product collection round; and a sample from the bottom of the bag of the product (Hoffman's vermiculite from MN) found in the initial analysis to have the highest asbestos content.

2.3 Laboratory Analyses of Bulk Samples

The initial laboratory analysis of the bulk products for asbestos was conducted using 2 techniques: PLM (EPA 600/R-93-116) and TEM (EPA 600/R-93/116) (Figures 2 and 3). According to EMSL (Frasca, 2000), the following procedure was followed by EMSL for these analyses:

For PLM analysis, samples were first ground to a level where the vermiculite plates were barely visible. Point count PLM analysis was performed on eight (8) slides running 50 points on each slide. For TEM analysis, the sample was ground further until the vermiculite plates were no longer visible by the eye. The potting soil samples were ashed (due to their high organic content) prior to grinding, recording their weight before ashing. Subsequently, 0.01 grams of powder was added to 100 mL of water, sonicated, and an aliquot of 5 mL was filtered onto a 47 mm filter which was then prepared for TEM analysis. For each sample, three areas were sampled and analyzed from the filter (i.e., the center, the edge, and in between). This was done to counter any variation in radial distribution of particulates. The TEM analysis was

performed by observing 10 grid openings for each of the three TEM grids at 2,000X magnification as well as 3 grid openings for each of the three TEM grids at 20,000X magnification. Cut offs of fibers sizes were observed to avoid counting twice. The mass of the observed fibers was then calculated, and following its extrapolation to the whole filter and to the whole mass of 0.01 grams, the asbestos percent count was determined.

The quantitation limits were 0.25 percent for PLM and 0.1 percent for TEM. PLM and TEM analyses were also conducted for the three new products collected during the second sampling round and for the repeat samples (i.e., 5 products with quantifiable asbestos, 5 other randomly selected products from the initial sampling round, and an additional sample from the bottom of the bag of the product with the highest asbestos content, based on the initial analysis).

Based on the results of the initial bulk analyses, several (i.e., five) samples that were positive for asbestos content using the initial TEM approach, were further analyzed using two additional techniques: the SOP 2000 (EMSL, 1999) and the Superfund Method (EPA, 1997a). The SOP 2000 method was expected to provide a more refined estimate of the asbestos content of these materials. This method involved sample preparation (i.e., grinding and sieving the sample to obtain a distribution of particle sizes); screening with a scanning electron microscope (SEM) to ensure that asbestos fibers had been removed from the vermiculite plates; and analysis by both PLM at 100x magnification (recording fibers with a 3:1 aspect ratio and determining if they are asbestiform using the criteria given in Appendix A of EPA 600/R-93/116) and TEM at 10,000x magnification. The asbestos percent obtained by PLM and TEM were added to obtain total asbestos content.

The Superfund method (EPA, 1997a) was designed to determine the amount of releasable asbestos in soils and bulk materials. It uses a horizontal tumbler to generate dust and a vertical elutriator (Figure 4) to separate the respirable fraction of the dust. The respirable fraction of dust is collected on filters. The filters are weighed and the mass of dust collected is plotted against time to determine the rate of dust release (EPA, 1997a). The asbestos content of the dust on the filters is quantified by TEM. The advantage of this method is that it provides results that are suitable for supporting risk assessments.

2.4 <u>Consumer Use Simulation</u>

Because the results of bulk product analyses are difficult to use in assessing inhalation risks to individuals who use these products, air sampling techniques were needed to evaluate potential releases of asbestos from these products to air. Risk is typically estimated as the concentration of fibers per cubic centimeter of air (f/cc), weighted according to the frequency and duration of exposure, times the unit risk factor (cc/f) for asbestos. According to EPA's Integrated Risk Information System (IRIS) (EPA, 2000), "the unit risk factor [of 0.23] cc/f is based on fiber counts made by phase contrast microscopy (PCM) and should not be applied directly to measurements made by other techniques." However, PCM cannot distinguish between asbestos and non-asbestos fibers; it also cannot detect smaller or thinner fibers at all. According to EPA (2000), **?**PCM detects only fibers longer than 5 μ m and >0.4 μ m in diameter." TEM can identify asbestos fibers of all sizes and exclude non-asbestos fibers. Thus, for the purposes of estimating risk for this study, air samples were analyzed by both PCM and TEM. TEM results were reported for all fiber sizes and for fibers > 5 μ m only.

To simulate indoor product use and measure indoor air asbestos concentrations, a 10'x10'x10' containment was constructed within Versar's research and storage space (Figures 5 and 6). This facility is located less than a mile from Versar's headquarters building. The dimensions of the containment were selected to provide enough space for an individual to work inside the structure and simulate mixing soils, potting plants, or cleaning out containers of soil. The dimensions were also assumed to represent a homeowner's garage or small greenhouse. This containment unit was specially-designed to more closely resemble consumer exposure conditions than the glove box used in the Region 10 study. The containment was constructed from 6-mil polyethylene plastic with the frame work constructed from wood to provide a rigid structure. Duct tape was used to seal seams and no artificial ventilation was provided. This was assumed to represent conditions in a closed garage or greenhouse with no windows and a closed door. The unit was constructed on a flat concrete surface. The floor was covered with plastic as it is part of the containment.

Several products were used within the containment to simulate consumer product use. During the product simulation, an individual inside the containment opened a bag of vermiculite containing material, which was then placed on a rolling cart. On the cart the vermiculite was scooped from the bag and placed in a stainless steel bowl. The vermiculite was then manipulated by using a metal spoon to transfer the vermiculite to a second bowl. After this process, the material was discarded and new material was scooped from the bag. Initially, three products were tested. These were: Schultz Horticultural vermiculite, purchased in VA; Hoffman's vermiculite, purchased in MN; and Zonolite[®] Chemical Packaging Vermiculite, purchased by mail order from Burdic Feed in Kent, WA. The first two of these products were selected because quantifiable levels of asbestos were observed in them in previous tests. The Zonolite[®] was selected because another bag of the same material had been found to have quantifiable levels of asbestos by Region 10, based on bulk analyses of the whole product as well as the sieved product. Also, the physical characteristics of these products made them good candidates for this procedure because, based on qualitative observations, they represented a

wide range of "dustiness." The Schultz vermiculite had a moisture content that allowed clumping when hand pressure was applied. This texture was not representative of most of the products collected and it is not clear whether the moisture observed in this bag was typical of this product or whether the bag had absorbed moisture between the time it was packaged and the time it was sampled. The Hoffman's vermiculite was drier and dustier, but the Zonolite[®] had an even finer grain size with a much dustier appearance. The order at which the three products were tested in the containment was based on their observed "dustiness" with the least "dustiest" being tested first.

During a second set of simulations, four additional products were tested inside the containment; two had asbestos contents below the limit of quantification, and two were non-detect based on TEM bulk analyses. These products were: Jungle Growth Vermiculite, purchased in FL Country Cottage Horticultural Vermiculite, purchased in VA; Scott's Vermiculite, purchased in TX; and Kellogg's Vermiculite, purchased in CA. Three of the products were very "dusty," while the fourth (Kellogg's) was less "dusty." All seven of the products used in the simulation exercise were vermiculite and not vermiculite mixed with potting soil or some other ingredient. The containment was fully cleaned between each sampling event by wet wiping down all interior surfaces and allowing the air in the containment to be "changed out" through a Hepa Filtration device. The individual within the containment opened a bag of vermiculite and poured it into a second clean container. Simulated scooping, transferring, and mixing then took place similar to the first simulation event. An aliquot from the bag was previously collected; however, care was exercised to avoid unnecessary waste of the original material since future studies or sampling may be necessary or requested. All utensils, scoops, and containers were either cleaned prior to use or removed from their factory sealed packaging. Similar use of vermiculite that took place inside containment will take place in an open air environment much like that in the yard or on a deck.

The individual performing work inside the containment wore personal protective equipment (PPE), as necessary to protect from dusty environments (Figure 7). A Tyvek full body suit or equivalent was worn during all inside containment work. Respiratory protection consisted of a full face air purifying respirator (APR) equipped with HEPA/P-100 air filters. PVC gloves were also worn on the hands. During the work tasks the oxygen level inside the containment was monitored with the use of a four gas meter. A second person was situated outside the containment in case of emergency and to offer support during sampling activity. After the completion of sampling, the inside of the containment was wiped down with water, the containment was vacuumed to capture any residual fibers remaining in the air, and the individual inside followed a modified decontamination procedure similar to that followed on asbestos abatement projects.

Eight air samples were collected using both low volume and high volume pumps. Before and after each use, each of these pumps were calibrated using a Bios Dry-Cal unit. This device is highly accurate and served to document any pump fluctuation. Prior to sampling during vermiculite use, the study area was sampled to document fiber levels. This "pre-sampling" established what, if any, fibers were present within the ambient air, and if necessary may be used as a comparison measure of the inside containment sample results. Two of these samples were run using the high volume type air sample pump. Air flow was set at approximately 9-9.9 liters of air per minute. Two inside containment air sample pumps (Figure 8) were also hi-volume units which were run at 7-8 liters of air per minute, while a second set of hi-volume sample pumps was located outside the containment. While working inside the containment, the individual wore two low volume air sample pumps which were set at approximately 2.1 of air liters per minute and ran for 30 minutes. The cassettes were oriented to be located within the breathing zone. All high volume air samples ran for approximately 40 minutes.

Air samples were collected in an outside environment in much the same manner as that inside the containment (Figure 9). The products with the highest airborne levels from the containment study were used in the outdoor study. Three high volume pumps were placed downwind from the source of use. Additionally, two personal samples were collected on the individual performing the work.

All air samples were analyzed by both PCM and TEM. The NIOSH 7400 (NIOSH, 1994), and EPA Level II (EPA, 1984) methods were used. The NIOSH 7400 method is a direct preparation method in which fibers $>5 \ \mu$ m in length with an aspect ratio >3:1 are counted (counting rules A were used) by PCM. All TEM air samples were prepared using EPA Level II, a direct preparation method, with the exception of those samples that were overloaded with particulate matter (i.e., dust). For these, an indirect sample preparation method was used to obtain some form of data for these samples (otherwise, the results would simply have been reported as overloaded), with the understanding that the samples may not fit the model (e.g., detection limits are higher). The appropriate number of blanks were also submitted, as outlined in the guidance documents for each of these methods.

2.5 Region 10 Bulk Product Method Using Sieving

An additional set of analyses was conducted to examine the asbestos content in the dust fraction of selected products and to evaluate potential relationships between the fiber content of air during use of consumer products containing vermiculite and the asbestos fiber content of the fine particles in these vermiculite products. This analysis was also an attempt to verify the results of EPA Region 10's results for Zonolite[®] that was purchased in Kent, Washington. Region 10 found that the asbestos content of Zonolite[®] dust that was generated by sieving the original product through

standard sieve sizes No. 10 and No. 35 had higher asbestos content (i.e., 1.88%) than the bulk product (i.e., approximately 0.5%).

The three initial products used in the indoor containment exercise, including the Zonolite[®] purchased by Versar from Burdic Feed in Kent, Washington, Schultz Vermiculite from Virginia, and Hoffman's Vermiculite from Minnesota, were sieved using the same method as Region 10 (Figure 10). These three samples were composite samples (i.e., based on a mix of samples taken from the top, middle, and bottom of the bag). An additional sample from the bottom of the Zonolite[®] bag was also analyzed to be consistent with the Region 10 analysis. This sample came from the bottom of the bag after the bag was moderately shaken 20 to 30 times. According to EMSL (2000), the following procedure was used:

"Sieve vermiculite sample through No. 10 (2 mm) and No. 35 (500 μ m) sieves. The coarse, medium, and fine portions were analyzed by Polarized Light Microscopy (PLM). The fine portion was still too coarse for Transmission Electron Microscopy (TEM) analysis and had to be broken down further with mortar and pestle. Of this fine powder, 0.01 grams was suspended in 100 mL of particle free, distilled neutral (pH 7) water, sonicated and 5 mL was filtered through a 47 mm diameter, mixed cellulose ester (MCE) filter with a 0.45 μ m pore size. A small portion of the filter was then collapsed with acetone, etched, and analyzed by TEM."

The rationale for conducting this analysis was that if asbestos fibers are more likely to be found in the fine dust of the vermiculite product, the asbestos fibers would be concentrated in the dust that passes through the sieves. Analyzing only the dust fraction would, in effect, increase the possibility of detecting asbestos by PLM and TEM. If the percent asbestos could be quantified in the fine fraction as well as in the medium and coarse fractions, a refined estimate of the asbestos content (i.e., greater sensitivity with lower detection limits) of the whole product could be made.

3.0 RESULTS

3.1 Bulk PLM and TEM Analyses

Table 4 provides the results of the analyses by sample number and location of purchase. Appendix A provides copies of the Laboratory Reports. The results of the laboratory analysis of the initial 36 samples indicated that TEM was more sensitive than PLM in detecting asbestos in the products tested. Based on PLM analyses, none of the products tested had detectable levels of asbestos. Using TEM, however, 17 of the 36 samples had detectable asbestos. Of these 17 samples with detectable asbestos, only 5 had quantifiable levels (i.e., greater than 0.1 percent by weight) of

asbestos. The percent of asbestos by weight ranged from 0.13 percent to 0.70 percent for these 5 samples. All of these 5 materials were pure vermiculite products, and not soil-based vermiculite products. Also, the fiber type observed in these 5 samples was actinolite. The fiber types observed in all of the other positive samples were actinolite and chrysotile. It is interesting to note that two of the samples with quantifiable levels of asbestos are from the same product type (i.e., Ace Horticultural Grade Vermiculite), purchased in different locations (i.e., Miami, FL, and Minneapolis, MN). These samples had levels of 0.35 percent (FL), and 0.24 percent (MN). Also, three of the samples with quantifiable levels of asbestos (i.e., Hoffman's Vermiculite, Ace Horticultural Grade Vermiculite, and Earthgro's Best Vermiculite) are from products purchased in Minneapolis, MN. The other two products purchased in the Minneapolis area had non-detectable levels of asbestos. Another interesting observation is that asbestos fibers were observed (but not quantifiable) in the sample of Zonolite[®] Chemical Packaging Vermiculite that was collected from the bottom of the bag, but not in the composite sample. This may indicate that asbestos fibers may settle to the bottom of containers in which they are stored. To further investigate this phenomena, a sample was collected from the bottom of the bag of the product with the highest observed asbestos content (i.e., Hoffman's vermiculite from MN) and analyzed for asbestos. However, asbestos was not observed above the quantitation limit in this sample, using both PLM and TEM techniques. Tremolite was observed using PLM and actinolite was observed using TEM. Figure 11 shows an asbestos fiber as seen by TEM. Figure 12 shows a close-up view of an actinolite asbestos fiber provided by EMSL.

Resampling of the five positive samples was conducted. Laboratory PLM analyses of these samples indicated that non-quantifiable tremolite was observed in the two samples that had the highest asbestos (actinolite) in the original TEM analysis (non-detected in original PLM analysis). The other three samples were negative for asbestos in the repeat PLM analysis, just as they were in the initial PLM analyses. Analyses of the other five repeat samples indicated four non-detects and one detect (<1% chrystotile and <1% tremolite) by PLM. These samples were all non-detect in the initial PLM analysis, but four out of five were positive (below the limit of quantitation) by TEM. The results of the TEM analyses for the resampling of the five positive samples was as follows: one sample (Earthgro's Best Vermiculite from MN) had quantifiable asbestos at 0.17%. The TEM result for this product was 0.41% in the initial analysis. Three of the five products with quantifiable asbestos in the initial analysis were positive in the repeat sampling, but had concentrations below the quantification limit. One of the initially positive products was negative when resampled. Some of this variability in results may be the result of the non-uniformity within vermiculite products.

The results of the other three products (VWR laboratory packaging material, Zonolite[®] from Region 10, and Pursell's Sta-Green, purchased in VA) collected during the second sampling phase showed detectable levels of tremolite in all products using PLM. Quantifiable asbestos levels were

observed in two of these: VWR laboratory packaging material (0.6%) and Zonolite[®] Chemical Packaging Vermiculite from Region 10 (0.3%). Using TEM, actinolite (and not tremolite) was observed in the VWR laboratory packaging material (0.14%) and Zonolite[®] from Region 10 (below the quantitation limit).

3.2 <u>SOP 2000</u>

The five positive samples from the initial bulk sample TEM analyses were analyzed by the SOP 2000 method. No detectable asbestos fibers were observed by PLM for any of the samples, and only one sample (Ace Horticultural Grade Vermiculite from MN; 0.24% actinolite by the initial TEM bulk analysis) had detectable actinolite/tremolite below the quantitation limit, based on TEM analyses.

3.3 <u>Superfund Method</u>

The five positive samples from the initial bulk sample TEM analyses were also analyzed by the Superfund Method (EPA, 1997a). The results of these analyses are presented in Table 5. The table presents the quantity (g) of respirable dust generated per gram of bulk sample, as well as the total number of asbestos structures observed per gram of respirable dust. The number of asbestos structures per gram of sample (s/g sample) was calculated by multiplying the respirable dust concentration (g dust/g sample) by the number of asbestos structures per gram of dust (s/g dust). These values are also reported in Table 5. It should be noted that mean concentrations and 95 percent upper confidence limits (UCL) of the mean concentrations were provided by the laboratory. The 95 percent UCL values represent a conservative estimate of the asbestos content of the samples.

The results in Table 5 indicate that, of the five samples that had a quantifiable asbestos content in the initial bulk analyses, only one sample (Schultz Horticultural Vermiculite from Springfield, VA) had quantifiable asbestos structures using the Superfund Method. This sample had 0.13% actinolite, based on the initial bulk TEM analysis, but was non-detect by TEM on resampling. This variability in results could be due to variability in the sample, as well as the analytical technique.

3.4 Consumer Use Simulation

The results of the air sampling inside the containment are presented in Table 6. Outdoor results are presented in Table 7. As shown in Table 6, asbestos fibers were not detected in indoor air (i.e., both area monitors and personal monitors) or outside the containment for 5 of the 7 products, using TEM techniques. These include: Schultz Horticultural Vermiculite purchased in Virginia, Jungle Growth Vermiculite from Florida; Country Cottage Vermiculite from Virginia;

Scott's Vermiculite from Texas; and Kellogg's Vermiculite from California. The Schultz sample was the least "dusty" of the products that were tested inside the containment. No asbestos was observed in indoor air during the simulation using this product although the results of the bulk product analyses for this material using TEM were 0.13% asbestos on initial testing and non-detect on repeat analyses. The Jungle Growth and Kellogg's were both non-detect by both PLM and TEM in the initial bulk analyses. The Country Cottage and Scott's products had non-quantifiable asbestos in the initial bulk TEM analyses. The 2 products with quantifiable asbestos in indoor air were Hoffman's Vermiculite from Minnesota and Zonolite[®] from Washington. The Hoffman's vermiculite was "dustier" than the Schultz vermiculite, but less dusty than the Zonolite[®], Jungle Growth, Country Cottage, and Scott's Vermiculite. The inside air area monitor results for the Hoffman's vermiculite were non-detect using TEM, and ranged from 0.027 to 0.047 f/cc using PCM. PCM and TEM did not detect any fibers in outside monitors. Personal samples during indoor use of Hoffman's vermiculite contained 0.122 to 0.371 f/cc based on PCM, and were non-detect to 0.0935 s/cc (tremolite fibers >5 μ m in length) based on TEM. This product had results of 0.7% and BQL asbestos in the bulk TEM analyses. Use of the "dustier" Zonolite[®] product, resulted in detectable fiber levels in air both outside (0.011 - 0.012 f/cc) and inside (non-detect to 0.108 f/cc) the containment, and in personal monitors (0.344 - 0.482 f/cc) using PCM. Using TEM, the results were non-detect for outside area monitors, non-detect to 0.0769 s/cc actinolite >5 μ m in length in indoor area monitors, and 0.4171 to 0.6594 s/cc actinolite $>5 \ \mu m$ in length in the personal samples. It should be noted that the Jungle Growth, Country Cottage, and Scott's Products were so "dusty" that the filters in the personal air monitors became overloaded during the 30-minute simulation, and could not be read by PCM. However, for TEM analyses, and indirect preparation method was used in which the filters were ashed and resuspended in water. A fraction of the resuspended sample was then filtered and read by TEM. Asbestos structures were not detected in these samples. However, the detection limits for these samples were high as a result of the required dilution.

Because use of Zonolite[®] resulted in the highest indoor air fiber concentrations of the three products evaluated, it was used to evaluate fiber concentrations to which consumers could be exposed during outdoor use. The results of this simulation are shown in Table 7. Structures were not detected by TEM, but fibers were observed in both perimeter (0.011 to 0.013 f/cc) and personal (0.134 f/cc) monitors using PCM.

The variability in the PCM and TEM air samples may be due to several factors. PCM counts all visible fibers as asbestos, while TEM distinguishes between asbestos and non-asbestos. TEM is more sensitive than PCM since TEM uses higher magnifications. Some of the TEM samples used an indirect preparation method which can lead to higher numbers of fibers counted due to separation of individual fibers from more complex structures.

All QA/QC samples collected inside and outside prior to product use, as well as field blanks, were negative for asbestos content.

It should be noted that the air concentrations (i.e., 0.094 to 0.66 f/cc) observed in the product use simulation (for those products with detectable levels of asbestos in air) are similar to those estimated in the 1985 Exposure Assessment for Vermiculite (Versar, 1985) (i.e., 0.038 to 0.93 f/cc), which used bulk sample results and simple assumptions to estimate the asbestos concentration in air. For example, the assumptions for use of lawn fertilizers containing vermiculite in the Versar (1985) report were as follows:

- 0.0643 percent of garden fertilizer dispersed into the air during application;
- 15 percent of garden fertilizers was exfoliated vermiculite;
- Exfoliated vermiculite contained 1 percent of asbestos fibers;
- Label application rate was 7,600 g per 465 m²;
- The average lawn size of 1,010 m² was assumed;
- The mid-point of product use would occur at 2 hours for a 4-hour application; and
- Fibers released would remain airborne during application and be evenly distributed in an air volume of 1,010 m² x 1.8 m or 1,818 m³.

The exposure concentration at the mid-point of application was estimated as follows:

TWA Exposure Concentration =
$$\frac{\frac{7,600 \text{ g}}{465 \text{ m}^2} * 1,010 \text{ m}^2 * 0.15 * 0.01 * 0.000643 * 10^6 \text{ mg} / \text{g} * 2 \text{ hours}}{1.818 \text{m}^3 * 4 \text{ hours}} = 4.4 \text{ mg} / \text{m}^3$$

The correlation between PCM fiber counts and TEM mass measurements is very poor. Six data sets, which include both PCM and TEM measurements reported in EPA (2000), show a conversion factor between TEM mass and PCM fibers count that ranges from 5 to 150 (μ g/m³)/(f/cc). The geometric mean of these results is 30 (μ g/m³)/(f/cc). Using this conversion factor of 30 (μ g/m³)/(f/cc), as specified in EPA (2000), this value is equivalent to 0.15 f/cc, and is within the range observed in this study.

3.5 Region 10 Bulk Product Method Using Sieving

The three products that were used in the initial indoor air consumer use simulation (i.e., Hoffman's, Schultz's, and Zonolite[®]) were also evaluated using the Region 10 bulk product method in which samples were sieved before conducting PLM and TEM. Asbestos was not detected in the fine fraction using both PLM and TEM analyses on whole samples of these products. The sample from the bottom of the bag of Zonolite[®] indicated only trace asbestos content of the product. Using PLM, tremolite was observed in the fine fraction that passed through the sieves below the quantification limit of 1%. The asbestos content of the original sample, collected from the bottom of the bag, would be <0.19% tremolite, based on this result combined with PLM results for the medium and coarse fractions that showed non-detectable asbestos. Based on TEM, of the fine fraction that passed through the sieves, the asbestos (actinolite/tremolite) content was below the quantification limit of 0.1%. Using the PLM non-detect results for the medium and coarse fractions, the asbestos content of the bag would equate to <0.02% tremolite/actinolite.

4.0 DISCUSSION

The results of these analyses indicate that some of the consumer products tested contain small amounts of asbestos. As a result, there may be the potential for exposure during consumer product use. Of particular concern is the variability in the bulk sample results. As noted in Table 4, the sample results varied between analytical methods and repeat samples. It is not surprising that samples found to contain asbestos using TEM were non-detect based on PLM because PLM is known to be less sensitive for this type of study. Inconsistencies between the original TEM analysis and repeat TEM analysis are likely as a result of several factors. First, the asbestos content of the products appears to be very close to the detection limit for TEM; thus, even the slightest variability results in some analyses being reported as non-detect or below the quantification limit, while others are slightly above the quantification limit. Also, because only a very small portion of each sample is viewed under the microscope (i.e., 0.01 g), it may be possible to miss asbestos fibers in a product with very low (i.e., <1%) asbestos content. Further variability may occur as a result of the non-homogeneous nature of the product within the bag, bag to bag variability, and differences between the various exfoliating plants and mines that produce vermiculite. In addition, it has been suggested that significant variability in asbestos content can also occur within the same vermiculite mine. Finally, based on the results of the consumer simulation, it appears that the relationship between bulk sample results (i.e., percent asbestos) and indoor air concentrations during use, is not easily quantifiable. This variability may be based on the product characteristics (i.e., moisture content, particle size, or

other factors) or use conditions. Section 5.0 discusses potential risks from exposure to consumer products containing vermiculite based on the results of this study.

5.0 RISK ANALYSIS

The cancer risks from asbestos exposure that are associated with use of vermiculite may be estimated using the personal monitoring results from the product use simulation, either inside the containment or outside, as follows:

$$Risk = \frac{EC \times ET / 24 hrs / day \times EF \times ED}{LT \times 365 days / yr} \times URF$$

where:

EC exposure concentration (f/cc); = ET = exposure time (hrs/day); EF exposure frequency (days/yr); = ED exposure duration (years); = LT = lifetime (years); and URF unit risk factor (0.23 cc/f). =

For the purposes of assessing risks to consumers, a range of exposure conditions were assumed. First, the same exposure assumptions as those used in the 1985 Exposure Assessment for Vermiculite (Versar, 1985) were used here (i.e., ET = 4 hours/day; EF = 1 day/year). ED was assumed to be 30 years and LT was assumed to be 75 years (EPA, 1997b). Consumer risks were also calculated using a lower exposure time (i.e., one-half hour per day) and exposure duration (i.e., 10 years) to represent a less conservative scenario, and at a higher exposure frequency (i.e., 6 times per year) to represent more conservative scenarios. The estimated consumer risks based on the fiber concentrations in personal monitors are presented in Table 8 for all products used in the simulations (products with non-detectable asbestos, were assessed at the detection level). The unit risk factor used in the calculations is from EPA's IRIS (EPA, 2000). It should be noted, however, that according to IRIS, this "unit risk factor should not be used if the air concentration exceeds 4E-2 fibers/mL [0.04 f/cc] since above this concentration the slope factor may differ from that stated." However, because this is the only unit risk factor currently available, it was used in this assessment.

For consumers engaging in gardening activities with vermiculite products 4 hours per day, once a year for 30 years with vermiculite products, the risks range from 3.1E-6 to 2.8E-5 (Table 8). The risks are 6 times higher for those engaging in these activities 6 times per year. For consumers

who garden with vermiculite for one-half hour per year for 10 years, the risks ranged from 1.3E-7 to 1.2E-6. The risks are 6 times higher for those engaging in these activities 6 times per year. These risks are based on the air concentrations derived from the indoor and outdoor product use simulations. There are several uncertainties associated with these estimates that should be noted. For example, data on the actual amount of time that the average consumer is likely to handle vermiculite containing asbestos are not available. Therefore, the exposure factors used in this assessment are based on assumptions about the activities of consumers that may or may not accurately reflect actual use patterns. However, the assumptions used are believed to provide a range of risks that would bracket risks among consumers. If consumer exposures/frequencies/durations are 10 to 100 times higher than those assumed here, the corresponding risks to consumers would also be 10 to 100 times higher. It is also possible, that not all of the vermiculite used contains asbestos in the ranges observed in this study. In addition, as mentioned previously, there is some uncertainty associated with the use of the URF for fiber concentrations above 0.04 f/cc. However, given the limited data set, and lack of exposure factors for activities specific to vermiculite use, these risk calculations are believed to represent a reasonable range of estimates for the consumer populations. Occupational exposures were not evaluated as part of this study.

6.0 **REFERENCES**

EMSL (1999) Asbestos analysis of vermiculite and vermiculite containing products: EMSL analytical SOP Method 2000 (proprietary method).

EMSL (2000) Overview of EMSL vermiculite sieving method.

EPA (1984) Methodology for the measurement of airborne asbestos by electron microscopy. Report prepared for the U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory by IIT Research Institute under Contract No. 68-D2-3266.

EPA (1997a) Superfund method for the determination of releasable asbestos in soils and bulk materials. Office of Solid Waste and Emergency Response. EPA 540-R-97-028.

EPA (1997b) Exposure Factors Handbook. Washington, DC: Office of Research and Development. EPA/600/P-95/002F.

EPA (2000) Integrated Risk Information System. U.S. Environmental Protection Agency, Washington, D.C. Accessed May 2000.

EPA Region 6 (2000) EPA "Asbestos in schools product survey and other related studies" conducted by EPA Region 6.

EPA Region 10 (2000) Preliminary laboratory results of TEM analyses on vermiculite samples from *Retail Home and Garden Centers Project* conducted by Lab/Cor Inc. for EPA Region 10.

Frasca, P. (2000) Letter to Versar Inc. dated April 20, 2000 regarding the analytical techniques used to estimate the asbestos content of vermiculite-containing consumer products.

IOM (Institute of Occupational Medicine) (No Date) Two bulk samples of South carolina vermiculite labeled AC10 and AC12: Assessment of tremolite and other mineral content. Memo report prepared by IOM, Edinburgh, Scotland, for Julie C. Yong, WR Grace & Co. Report No. 86/669 under Contract No. 7563.

IOM (Institute of Occupational Medicine) (1993) Determination of asbestos content of two expanded South Carolina vermiculite samples. Report prepared by IOM, Edinburgh, Scotland, for Julie C. Yon, WR Grace & Co. Report No. A2679/A2773 under Contract No. 1592/1659.

MRI (1982) Collection, analysis and characterization of vermiculite samples for fiber content and asbestos contamination. Prepared for U.S. EPA by MRI under Contract No. 68-01-5915.

NIOSH (1994) Method 7400, Issue 2: Asbestos and other fibers by PCM. National Institute of Occupational Safety and Health Manual of Analytical Methods (NMAM), 4th edition.

Versar (1985) Exposure assessment for asbestos - contaminated vermiculite. Prepared for U.S. EPA under Contract Nos. 68-01-6271 and 68-02-3968.

			Total As	bestiform Fibers	Respirable Asbestos Fibers								
	Vermiculite Samples	Sample				IIT	RI Lab**	ORF Lab***					
Mines		No.	Estimated Contents (%)	Mineral Types	Lab- Exfoliated	x 10 ⁶ Fibers/g	Mass Contents (ppm)	x 10 ⁶ Fibers/g	Mass Contents (ppm)				
	Head feed (Raw ore)	291-I	21-26	Tremolite-Actinolite	no	62.5	670	131.2	690				
	Beneficiated Grade 1	270-I	4-6	Tremolite-Actinolite	no	32.5	78						
W.R. Grace	Beneficiated Grade 2 276-I		4-7	Tremolite-Actinolite	yes	23.4	48.5						
Libby, Montana	Beneficiated Grade 3	259-I	2-4	Tremolite-Actinolite	yes	42.4	250	59	240				
	Beneficiated Grade 4	282-I	0.3-1	Tremolite-Actinolite	yes	65	460	1.8	17				
	Beneficiated Grade 5	264-I	2-4	Tremolite-Actinolite	yes	142	2600	160	1800				
	Mill feed (raw)	436-I	<1	Mixed, Tremo-Actin	no	0.3	0.49	12.3	22				
W.R.	Beneficiated Grade 3	430-I	<1	Mixed, Tremo-Actin	yes	3.1	3.7	2.4	1.0				
Grace	Beneficiated Grade 4	433-I	<1	Mixed, Tremo-Actin	yes	3.1	1.4	2.7	2.0				
Enoree, South	Beneficiated Grade 5	427-I	<1	Mixed, Tremo-Actin	yes	3.5	4.1	2.9	120				
Carolina	Exfoliated Grade 3	439-I	<1	Mixed, Tremo-Actin		11.7							
	Exfoliated Grade 4	442-I	<1	Mixed, Tremo-Actin									
Patterson, Enoree, South Carolina	Beneficiated Ungraded	573-I	<1	Mixed, Tremo-Actin	yes	0.7	3	1.1	4.0				

Table 1. Types and Contents of Asbestos Fibers in Vermiculite Produced in the United States*

Based on Tables 1 and 2 of the MRI report Analyzed by Ontario Research Foundation Analyzes by IIT Research Institute *

**

Sample ID	Product	TEM (%)	PLM (%)	Sample Preparation Method
54200	Black Gold Vermiculite	ND	ND	А
54201	Coles Vermiculite	ND	ND	А
54202	Schultz Vermiculite	ND	ND	А
54203	Whitney Farms Vermiculite	ND ND ND	Trace – –	A B C
54204	Scott's Vermiculite	ND ND	Trace Trace	A C
54205	Zonolite [®] Vermiculite	0.56 (Actinolite) 1.88 (Actinolite/Tremolite) 0.10 (Tremolite)		A B C
54206	Zonolite [®] Vermiculite	0.47 (Actinolite) 2.79 (Tremolite)	Trace	A C
104200	Zonolite [®] Chubby & Tubby	ND	-	В
54207	Termo-O-Rock	Rock ND 0.33 (Actinolite) 0.30 (Tremolite)		A B C
54208	Professional Jiffy Mix Potting Soil	ND	ND	А
54209	Sam's Choice Professional Potting Soil	ND	ND	А
54210	Coles Lighthouse Plant Mix	ND	ND	А
54211	Schultz Seed Starter	ND	ND	А
54212	Schultz Seed Starter	ND	ND	А
54213	Coles African Violet Mix	ND	ND	А
54214	Coles Cactus Mix	0.45 (Actinolite)	ND	А
54215	Country Cottage Professional Seed Starter	ND	ND	А
54216	Black Gold Seedling Mix	ND	ND	А
54217	Scotts Progro Professional Potting Mix	ND	ND	А

 Table 2. Analytical Results of EPA Region 10's Study of Asbestos in Consumer Products

Notes:

ND = Non-detect.

- A = Representative sample from cross section of bag. Analyses done by semi-quantitative PLM and TEM method: EPA/600/R-93/116.
- B = Sample sifted with USA Standard Testing Seives (size No. 10 and No. 35). Analyses done using semiquantitative method: EPA/600/R-93/116. Results represent asbestos content of only the fine portion (i.e., theportion that passed through the sieves) of vermiculite product; does not represent percent asbestos in wholeproduct.
- C = Residue after particle separation from Manchester Environmental Laboratory (MEL). Analysis done using semi-quantitative method: EPA/600/R-93/116. Results represent asbestos content of only the fine portion (i.e., the portion that passed through the sieves) of vermiculite product; does not represent percent asbestos in whole product (see Section 1.1 for details on this procedure).

Location of Purchase	Product Name
Tempe, Arizona	Black Gold Vermiculite Whitney Farms Vermiculite Whitney Farms African Violet Mix
Sacramento, California	Black Gold Vermiculite Green-all Vermiculite Unigro Premium Organic Vermiculite Kellogg's Vermiculite
Denver (Northglen), Colorado	Schultz Professional Potting Soil Schultz Horticultural Vermiculite Cole's Houseplant mix Cole's Premium Vermiculite Cole's Premium African Violet Mix
Miami, Florida	Jungle Growth Vermiculite Ace Horticultural Grade Vermiculite OFE International Inc. Bromeliad Mix Ferti-lome Vermiculite Schultz Horticultural Vermiculite Jungle Growth African Violet Mix
Atlanta, Georgia (mail order)	Ben Meadows Palmetto Lab Pack
Chicago (Lombard), Illinois	Mica Grown Vemiculite
Minneapolis (Hopkins), Minnesota	Miracle Gro Vermiculite Hoffman's Vermiculite Ace Horticultutal Grade Vermiculite Earthgro's Best Vermiculite Country Cottage Vermiculite
Philadelphia (Bristol), Pennsylvania	Hoffman's African Violet mix Butterfield Farms Potting Soil Premier Pro-mix
San Antonio, Texas	Scott's Vermiculite Professional Jiffy Mix
Springfield, Virginia (Washington, DC area)	Schundler Horticultual Vermiculite Care Free Jiffy Mix Schultz Horticultural Vermiculite Country Cottage Horticultural Vermiculite Pursell's Stay-Green Vermiculite
Kent, Washington	Zonolite [®] Chemical Packaging Vermiculite (purchased by Versar) Zonolite [®] Chemical Packaging Vermiculite (purchased by Region 10)
Batavia, Illinois	VWR Lab Packaging Material ^a

Table 3. Vermiculite or Vermiculite-Containing Products Purchased

a VWR is a user of this lab packaging material and is not the distributor of this material. The original source of this packaging material is unknown.

Table 4. A	nalytical	Results
------------	-----------	---------

					Bulk	Analyses			SOP 2000		Superfun	d Method		
					PLM					TEM	Releasat (>5 µm) Structures/	Asbestos	0	0 Sieving thod
Sample Purchase ID Location		Brand	Product	PLM Results (weight %)	Fiber Type Observed	TEM Results (weight %)	TEM Fiber Type Observed	PLM Results (weight %)	TEM Results (weight %)	Fiber Type Observed	Mean	95% UCL	PLM (weight %)	TEM (weight %)
90812	Miami, FL	Jungle Growth	Vermiculite	ND (2)		ND		NA	NA		NA (4)	NA		
90813	Miami, FL	Ace	Horticultural	ND		0.35	Actinolite	ND	ND		<369	<724		
68184	(resample)		Grade Vermiculite	ND		BQL (3)	Actinolite							
90814	Miami, FL	OFE International Inc.	Bromeliad Mix (1)	ND		ND		NA	NA		NA	NA		
90815	Miami, FL	Ferti-lome	Vermiculite	ND		ND		NA	NA		NA	NA		
90816	Miami, FL	Schultz	Horticultural	ND		BQL	Actinolite	NA	NA		NA	NA		
68189	(resample)		Vermiculite	ND		ND								
90817	Miami, FL	Jungle Growth	African Violet Mix (1)	ND		ND		NA	NA		NA	NA	-	
90818	Temp, AZ	Black Gold	Vermiculite	ND		ND		NA	NA		NA	NA		
90819	Temp, AZ	Whitney Farms	Vermiculite	ND		BQL	Actinolite	NA	NA		NA	NA		
90820	Temp, AZ	Whitney Farms	African Violet Mix (1)	ND		BQL	Actinolite/ Chrysotile	NA	NA		NA	NA		
68191	(resample	1		ND		ND								
90821	Sacramento, CA	Black Gold	Vermiculite	ND		BQL	Chrysotile	NA	NA		NA	NA		
68190	(resample)			BQL	Chrysotile/ Tremolite	ND								
90822	Sacramento, CA	Green-All	Vermiculite	ND		BQL	Actinolite	NA	NA		NA	NA		
90823	Sacramento, CA	Unigro	Premium Organic Vermiculite	ND		ND		NA	NA		NA	NA		
90824	Sacramento, CA	Kellogg's	Vermiculite	ND		ND		NA	NA		NA	NA		
90825	Northglen, CO	Schultz	Professional Potting Soil (1)	ND		ND		NA	NA		NA	NA		
90826	Northglen, CO	Schultz	Horticultural Vermiculite	ND		ND		NA	NA		NA	NA		
90827	Northglen, CO	Cole's	Houseplant Mix (1)	ND		ND		NA	NA		NA	NA		

Table 4.	Analytical	Results ((continued)
	1 HILLY CICCUL	TTO MED (commaca)

					Bulk	Analyses			SOP 2000		Superfund	d Method		
					PLM					TEM	Releasab (>5 µm) Structures/	Asbestos	Region 1 Met	
Sample Purchase ID Location	Brand	Product	PLM Results (weight %)	Fiber Type Observed	TEM Results (weight %)	TEM Fiber Type Observed	PLM Results (weight %)	TEM Results (weight %)	Fiber Type Observed	Mean	95% UCL	PLM (weight %)	TEM (weight %)	
90828	Northglen, CO	Cole's	Premium Vermiculite	ND		BQL	Chrysotile	NA	NA		NA	NA		
90829	Northglen, CO	Cole's	Premium African Violet Mix (1)	ND		ND		NA	NA		NA	NA		
90830	Hopkins, MN	Miracle Gro	Vermiculite	ND		ND		NA	NA		NA	NA		
90831	Hopkins, MN	Hoffman's	Vermiculite	ND		0.70	Actinolite	ND	ND		<241	<472	ND	ND
68185	(resample)			BQL	Tremolite	BQL	Anthophyllite							
68183	Hopkins, MN	Hoffman's (bottom of bag)	Vermiculite	BQL	Tremolite	BQL	Actinolite	NA	NA		NA	NA		
90832	Hopkins, MN	Ace	Horticultural	ND		0.24	Actinolite	ND	BQL	Actinolite/	<380	<745		
68186	(resample)		Grade Vermiculite	ND		BQL	Actinolite			Tremolite				
90833	Hopkins, MN	Earthgro's	Best	ND		0.41	Actinolite	ND	ND		<414	<811		
68187	(resample)		Vermiculite	BQL	Tremolite	0.17	Actinolite							
90834	Hopkins, MN	Country Cottage	Vermiculite	ND		ND		ND	ND					
90835	Lombard, IL	Mica Grown	Vermiculite	ND		ND		NA	NA		NA	NA		
90836	Bristol, PA	Hoffman's	African Violet Soil Mix (1)	ND		BQL	Actinolite/ Chrysotile	NA	NA		NA	NA		
68193	(resample)			ND		BQL	Actinolite							
90837	Bristol, PA	Butterfield Farms	Potting Soil (1)	ND		ND		NA	NA		NA	NA		
90838	Bristol, PA	Premier	Pro-mix (1)	ND		ND		NA	NA		NA	NA		
90839	San Antonio, TX	Scott's	Vermiculite	ND		ND		NA	NA		NA	NA		
68192	(resample)			ND		BQL	Actinolite							
90840	San Antonio, TX	Professional	Jiffy Mix (1)	ND		ND		NA	NA		NA	NA		
90841	Atlanta, GA	Ben Meadows Palmetto	Lab Pack	ND		BQL	Chrysotile	NA	NA		NA	NA		
90842	Springfield, VA	Schundler	Horticultural Vermiculite	ND		BQL	Chrysotile	NA	NA		NA	NA		

Table 4. Analytical Results (continued
--

					Bulk	Analyses			SOP 2000		Superfund	l Method		
					PLM					TEM	Releasab (>5 µm) A Structures/	Asbestos	Region 1 Met	0
Sample ID	Purchase Location	Brand	Product	PLM Results (weight %)	Fiber Type Observed	TEM Results (weight %)	TEM Fiber Type Observed	PLM Results (weight %)	TEM Results (weight %)	Fiber Type Observed	Mean	95% UCL	PLM (weight %)	TEM (weight %)
90843	Springfield, VA	Care Free	Jiffy Mix (1)	ND		BQL	Actinolite/ Chrysotile	NA	NA		NA	NA		
90844	Springfield, VA	Schultz	Horticultural	ND		0.13	Actinolite	NA	NA		424	832	ND	ND
68188	(resample)		Vermiculite	ND		ND								
90845	Springfield, VA	Country Cottage	Horticultural Vermiculite	ND		BQL	Chrysotile	NA	NA		NA	NA		
90846	Kent, WA	Zonolite [®] (bottom of bag)	Chemical Packaging	ND		BQL	Actinolite	NA	NA		NA	NA	BQL <1%	BQL <0.1%
90847	Kent, WA	Zonolite [®] (composite sample)	Chemical Packaging	ND		ND		NA	NA		NA	NA	ND	ND
68180	Batavia, IL (provided by EPA)	VWR (5)	Lab Packaging	0.6	Tremolite	0.14	Actinolite	NA	NA		NA	NA		
68181	Kent, WA (provided by Region 10)	Zonolite [®] (sample from bottom 1/3 of bag)	Chemical Packaging	0.3	Tremolite	BQL	Actinolite	NA	NA		NA	NA	-	
68182	Springfield, VA	Pursell's	Sta-Green	BQL	Tremolite	ND		NA	NA		NA	NA		

(1) Ashed due to organic content.

(2) ND = Not detected.

(2) ND = Not detected.
(3) BQL = Below Quantitation limit (0.25% for PLM and 0.1% for TEM).
(4) NA = Not analyzed.
(5) VWR is a user of this lab packaging material and is not the distributor of this material. The original source of this packaging material is unknown.

Sample ID	Purchase Location		and Product	Respirable Dust Conc. (g dust/g sample)		Total Asbestos Concentration (s/g dust) ^a		Long Asbestos Concentration (s/g dust) ^a		Total Asbestos Concentration (s/g sample) ^b		Long (>5 µg) Asbestos Concentration (s/g sample) ^b	
					Mean	95% UCL	Mean	95% UCL	Mean	95% UCL	Mean	95% UCL	
90813	Miami, FL	Ace	Horticultural Grade Vermiculite	2.52E-6	<1.47E+8	<2.88E+8	<1.47E+8	<2.88E+8	<369	<724	<369	<724	
90831	Hopkins, MN	Hoffman's	Vermiculite	9.54E-7	<2.52E+8	<4.95E+8	<2.52E+8	<4.95E+8	<241	<472	<241	>472	
90832	Hopkins, MN	Ace	Horticultural Grade Vermiculite	6.63E-7	<5.74E+8	<1.12E+9	<5.74E+8	<1.12E+9	<380	<745	<380	<745	
90833	Hopkins, MN	Earthgro's	Best Vermiculite	1.31E-7	<3.16E+9	<6.19E+9	<3.16E+9	<6.19E+9	<414	<811	<414	<811	
90844	Springfield, VA	Schultz	Horticultural Vermiculite	2.93E-6	2.18E+8	4.27E+8	1.45E+8	2.84E+8	637	1,249	424	832	

Table 5. Results of Asbestos Analyses Using EPA Superfund Method

a Structures per gram of dust.b Structures per gram of sample.

Product/Purchase Location	Monitor Location	PCM Concentration ^a (f/cc) NIOSH 7400 Method	TEM Concentration ^b (s/cc) EPA Level II Method	TEM Fiber Type
Schultz Horticultural Vermiculite	Outside area monitor	<0.008	ND (<0.0176)	-
Springfield, VA (ND - 0.13% asbestos, based on TEM on	Inside area monitor	<0.008 - 0.015	ND (<0.0176)	-
bulk samples)	Personal monitor	<0.043	ND (<0.1002)	-
Hoffman's Vermiculite	Outside area monitor	<0.008	ND (<0.0176)	-
Hopkins, MN (BQL - 0.70% asbestos, based on TEM	Inside area monitor	0.027 - 0.047	ND (<0.0178)	-
on bulk samples)	Personal monitor	0.122 - 0.371	ND (<0.1047) - 0.0935	Tremolite >5 μ m in length
Zonolite [®] Chemical Packaging	Outside area monitor	0.011 - 0.012	ND (<0.0167)	-
Vermiculite Kent, WA (ND - BQL asbestos, based on TEM on bulk samples)	Inside area monitor	<0.010 - 0.108	ND (<0.0229) - 0.0961 ND (<0.0229) - 0.0769	Actinolite all fiber lengths Actinolite >5 μ m in length
	Personal monitor	0.344 - 0.482	0.6255 - 0.7536 0.4170 - 0.6594	Actinolite all fiber lengths Actinolite >5 μ m in length
Country Cottage	Outside area monitor	0.008 - 0.012	ND (<0.0151)	-
Horticultural Vermiculite Springfield, VA	Inside area monitor	overloaded	ND (<0.5012) ^c	-
(BQL Asbestos, based on TEM on bulk sample)	Personal monitor	overloaded	ND (<3.4302) ^c	-
Scott's Vermiculite	Outside area monitor	<0.006	ND (<0.0141)	-
San Antonio, TX (ND-BQL asbestos, based on TEM on	Inside area monitor	overloaded	ND (<2.5044) ^c	-
bulk samples)	Personal monitor	overloaded	ND (<16.0428) ^c	-
Jungle Growth Vermiculite	Outside area monitor	0.014 - 0.015	ND (<0.0151)	-
Miami, FL (ND asbestos, based on TEM on bulk	Inside area monitor	overloaded	ND (<1.0028) ^c	-
sample)	Personal monitor	overloaded	ND (<3.2868) ^c	-
Kellogg's Vermiculite	Outside area monitor	<0.006	ND (<0.0151)	-
Sacramento, CA (ND asbestos, based on TEM on bulk	Inside area monitor	0.017 - 0.020	ND (<0.0149)	-
sample)	Personal monitor	< 0.047 - 0.074	ND (<0.1052)	-

Table 6. Fiber Levels in Air Inside the Containment

Note:

 $f/cc = fibers \ per \ cubic \ centimeter$ s/cc = structures per cubic centimeter

ND = non-detect (detection limit)

 a $\,$ All fibers meeting the counting rules; 3:1 ratio; >5 μm in length. Asbestos structures.

Sample was analyzed by indirect prep., ash and resuspended, 2 to 10% of sample filtered for analyses. с

Table 7. Fiber Levels in Outside Air

Product/Purchase Location	Monitor Location	PCM Concentration ^a (f/cc) NIOSH 7400 Method	TEM Concentration ^b (s/cc) EPA Level II Method	TEM Fiber Type
Zonolite [®] for Horticultural Use Kent, WA	Perimeter	0.011 - 0.013°	ND (<0.0155)	-
(ND - BQL asbestos, based on TEM on bulk samples)	Personal	0.134°	ND (<0.0718)	

Note:

f/cc = fibers per cubic centimeter

s/cc = structures per cubic centimeter

^a All fibers meeting the counting rules; 3:1 ratio; >5 μm in length.
 ^b Asbestos structures.
 ^c One sample was overloaded with dust and could not be read.

Table 8. J	Estimated Ca	ncer Risks from	Asbestos Associate	ed with Consumer	Use of Vermiculite
------------	--------------	-----------------	--------------------	------------------	--------------------

	EC (f/cc)	Risk at ET = 4 EF = 1 EF = 30 LT = 75 URF = 0.23	Risk at ET = 0.5 EF = 1 EF = 10 LT = 75 URF = 0.23	Risk at ET = 4 EF = 6 EF = 30 LT = 75 URF = 0.23	Risk at ET = 0.5 EF = 6 EF = 10 LT = 75 URF = 0.23
		Indoor Use			
Schultz's Vermiculite PCM TEM ^a	<0.04 <0.10	<1.7E-6 <4.2E-6	<7.0E-8 <1.8E-7	<1.0E-5 <2.5E-5	<4.2E-7 <1.1E-6
Hoffman's Vermiculite PCM TEM ^a	0.37 0.094	1.6E-5 3.9E-6	6.5E-7 1.6E-7	9.3E-5 2.4E-5	3.9E-6 9.9E-7
Zonolite® PCM TEM ^a	0.48 0.66	2.0E-5 2.8E-5	8.4E-7 1.2E-6	1.2E-4 1.7E-4	5.0E-6 6.9E-6
Country CottageVermiculite PCM TEM ^a	<3.4	- b	- b	- b	- b
Scott's PCM TEM ^a	<16.0	- b	- b	- b	- b
Jungle Growth PCM TEMª	<3.3	- b	- b	- b	- b
Kellogg's PCM TEM ^a	0.074 <0.11	3.1E-6 <4.6E-6	1.3E-7 <1.9E-7	1.9E-5 <2.8E-5	7.8E-7 <1.2E-6
		Outdoor Use	2		
Zonolite® PCM TEMª	0.13 <0.072	5.5E-6 <3.0E-6	2.3E-7 <1.3E-7	3.3E-5 <1.8E-5	1.4E-6 <7.6E-7

a Fibers >5 μ m in length.

b Risk not calculated because concentration term was non-detect with a high detection limit resulting from dilution of the sample.

Note: Risk = $[(EC \times (ET/24 hr/day) \times EF \times ED) / (LT \times 365 d/yr)] \times URF$

- EC = exposure concentration (f/cc)
- ET
- exposure concentration (hec)
 exposure time (hr/day)
 exposure frequency (days/yr) EF
- = exposure duration (years) ED
- = lifetime (years) LT

URF= unit risk factor (cc/c)

Figure 1. Zonolite[®] Sample Purchased from Kent, Washington

Figure 2. Preparation of TEM Grids

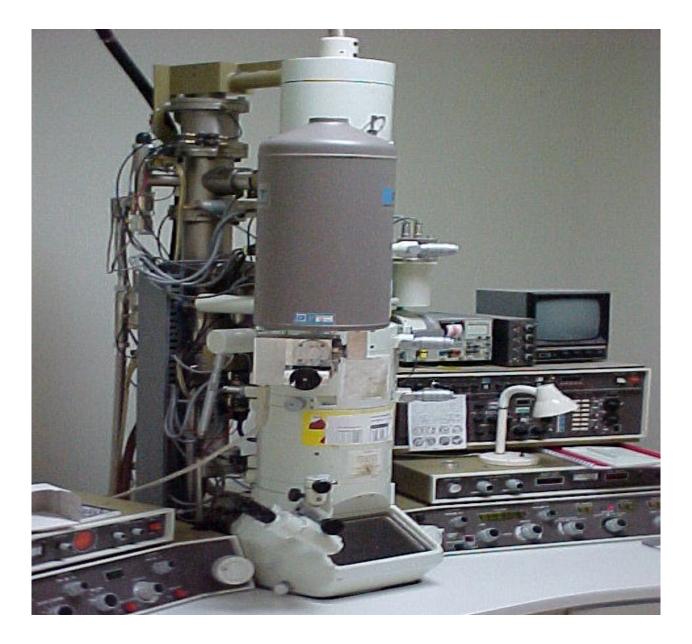
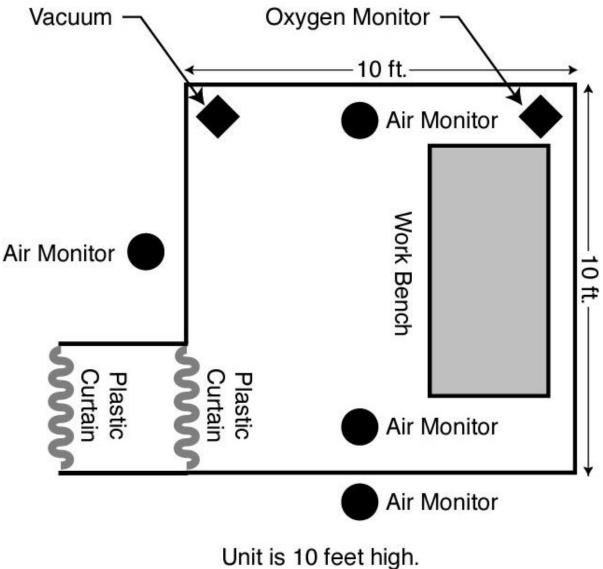



Figure 3. Transmission Electron Microscpe

Figure 4. Elutriator Used in the Superfund Method

Plastic sheeting is used for walls, ceiling and floor.

Figure 5. Diagram of 10' x 10' x 10' Containment Used in the Product Use Simulation

Figure 6. Containment Used in Product Use Simulation

Figure 7. Consumer Use Simulation Wearing Protective Clothing

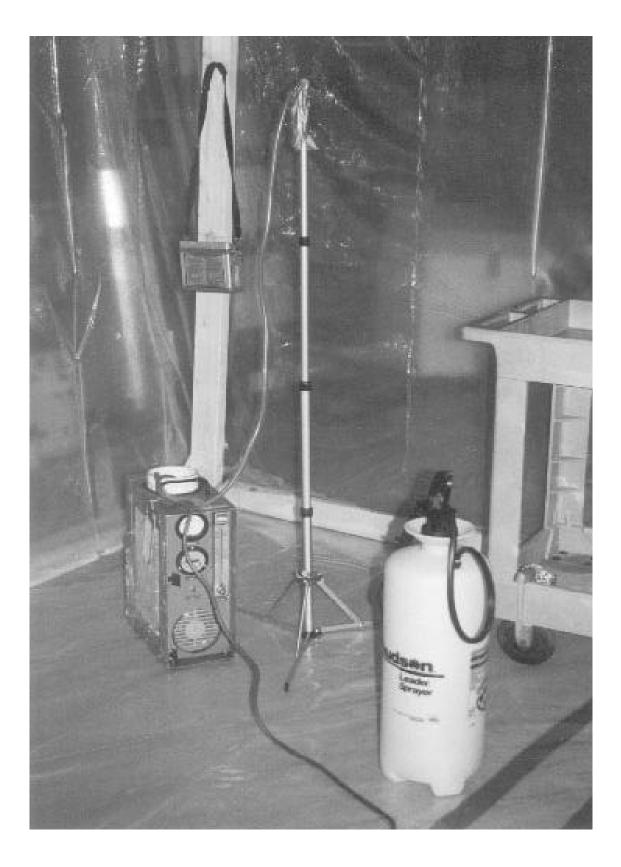


Figure 8. High-Volume Air Sampling Pump

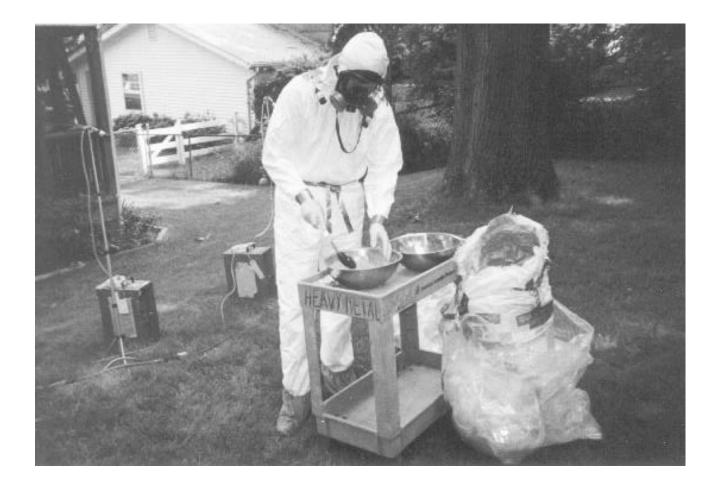


Figure 9. Outdoor Product Use Simulation

Figure 10. Sieving the Vermiculite Product

Figure 11. Asbestos Fiber Seen by TEM

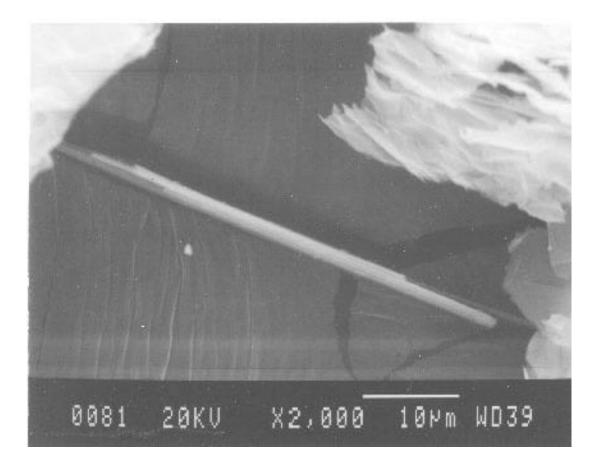


Figure 12. Actinolite Asbestos Fiber

APPENDIX A

Laboratory Reports

EMSL Analytical, Inc

107 Haddon Avenue, Westmont, NJ 08108

Attn: David Nelson Versar Inc. P.O. Box 1549 6850 Versar Center Springfield, VA 22151 Fax: 703-642-6942 Phone: 703-750-3000 ext. 6946

Project: EPA Vermiculite/4600.008

TEL: 856-858-4800

Customer ID: VERS96 Customer PO: Received: 4/17/00

EMSL Order: 040005712

Analysis of Vermiculite Asbestos by Transmission Electron Microscopy

Sample ID	Asbestos Weight%	Asbestos Type(s)	Ashed / Not Ashed		
90812	BQL	ND	·····		
90813	0.35 Weight %	Actinolite			
90814	BQL	ND	Ashed		
90815	BQL	ND			
90816	BQL	Actinolite			
90817	BQL	ND	Ashed		
90818	BQL	ND			
90819	BQL	Actinolite			
90820	BQL	Actinolite/ Chrysotile	Ashed		
90821	BQL	Chrysotile			
90822	BQL	Actinolite			
90823	BQL	ND			
90824	BQL	ND			
90825	BQL	• ND	Ashed		
90826	BQL	ND			
90827	BQL	ND	Ashed		
90828	BQL	Chrysotile			
90829	BQL	ND	Ashed		
90830	BQL	ND			
90831	0.7 Weight %	Actinolite			
90832	0.24 Weight %	Actinolite			
90833	0.41 Weight %	Actinolite			
90834	BQL	ND			
90835	BQL	ND			
90836	BQL	Actinolite/Chrysotile	Ashed		
90837	BQL	ND	Ashed		
90838	BQL	ND	Ashed		
90839	BQL	ND			
90840	BQL	ND	Ashed		
90841	BQL	Chrysotile			
90842	BQL	Chrysotile			
90843	BQL	Actinolite/Chrysotile	Ashed		

BQL = Below Quantitation Limit (about 0.1 weight%) ND = None Detected

21 Jamindon A.V. Samudra, Ph.D.

EMSL

107 Hado	. Analytical, Inc. Ion Ave., Westmont, NJ 08108		a an	Sayaa waxaa ahaa ahaa ahaa ahaa ahaa ahaa a	n and a start as 10 meril and a start as a st
Attn:	Bradley Norton Versar Inc. 6850 Versar Center PO Box 1549			Customer ID Customer PO: Received:	VERS96 04/14/00 1:16 PM
Fax: Project:	Springfield, VA 22151 703-642-6809 4600.008/EPA Vermiculite	Phone:	703-642-6889	EMSL Order: EMSL Project ID:	040005712

Polarized Light Microscopy (PLM) - Point Count Performed by EPA 600/M4-82-020/ELAP 5.2.1-6.0 Methods*

				Asbestos		Non-Asb	vestos			
Sample	Location	Appearance	Treatment	% Туре	%	Fibrous	% Non-Fibrous			
90812		Tan	Teased	None Detected	<1%	Cellulose	100.0% Non-fibrous (other)			
040005712-0001		Non-Fibrous								
		Heterogeneous								
90813		Grayish/Tan	Teased	None Detected	<1%	Cellulose	100.0% Non-fibrous (other)			
040005712-0002		Non-Fibrous Heterogeneous								
90814		Brown/Tan	Teased	None Detected	30.0%	Cellulose	69.0% Non-fibrous (other)			
040005712-0003		Fibrous Heterogeneous			1.0%	Synthetic				
90815		Tan	Teased	None Detected	<1%	Celluiose	100.0% Non-fibrous (other)			
040005712-0004		Non-Fibrous Heterogeneous								
90816		Tan	Teased	None Detected	<1%	Cellulose	100.0% Non-fibrous (other)			
040005712-0005		Non-Fibrous Heterogeneous								
90817		Brown/Tan/Gray	Teased	None Detected	30.0%	Cellulose	69.0% Non-fibrous (other)			
040005712-0006		Fibrous			<1%	Glass				
1		Heterogeneous			1.0%	Synthetic				
90818		Tan	Teased	None Detected	<1%	Cellulose	100.0% Non-fibrous (other)			
040005712-0007		Non-Fibrous Heterogeneous								
90819		Tan	Teased	None Detected	<1%	Cellulose	100.0% Non-fibrous (other)			
040005712-0008		Non-Fibrous Heterogeneous								
90820	,	Brown/Gray	Teased	None Detected	55.0%	Cellulose	42.0% Non-fibrous (other)			
040005712-0009		Fibrous Heterogeneous	Dissolved		3.0%	Wollastonite				
90821		Tan	Teased	None Detected	<1%	Cellulose	100.0% Non-fibrous (other)			
040005712-0010		Non-Fibrous Heterogeneous	R							
90822		Tan	Teased	None Detected	<1%	Cellulose	100.0% Non-fibrous (other)			
040005712-0011		Non-Fibrous Heterogeneous								
Scott Combs				, ··	Â.	th	K			
					6		·····			
Analyst						phen Siegel, Cl r approved sign				

LM has been known to miss asbestos in a small percentage of samples which contain asbestos. Thus negative PLM results cannot be guaranteed. Samples reported as letected should be tested with either SEM or TEM. The above test report relates only to the items tested. This report may only be reproduced in part with written approval above test must not be used by the client to claim product endorsement by NVLAP nor any agency of the United States Government. All "NVLAP" reports with NVLAP logo t least one signature to be valid. Laboratory is not responsible for the accuracy of results when requested to physically separate and analyze layered samples.

EMS

EMSL Analytical, Inc.

107 Haddon Ave., Westmont, NJ 08108

Attn: **Bradley Norton** Versar Inc. 6850 Versar Center PO Box 1549 Springfield, VA 22151 703-642-6809 Fax: Phone: 703-642-6889 4600.008/EPA Vermiculite Project;

Customer ID VERS96 Customer PO: Received:

04/14/00 1:16 PM

EMSL Order: 040005712 EMSL Project ID:

Polarized Light Microscopy (PLM) - Point Count Performed by EPA 600/M4-82-020/ELAP 5.2.1-6.0 Methods*

-				Asbestos		Non-Asb	vestos
Sample	Location	Appearance	Treatment	% Туре	%	Fibrous	% Non-Fibrous
90823		Tan	Teased	None Detected	<1%	Cellulose	100.0% Non-fibrous (other)
040005712-0012	<u>,</u>	Non-Fibrous Heterogeneous					
90824		Tan	Teased	None Detected	<1%	Cellulose	100.0% Non-fibrous (other)
040005712-0013		Non-Fibrous Heterogeneous					
90825		Brown/Tan	Teased	None Detected	70.0%	Cellulose	30.0% Non-fibrous (other)
040005712-0014		Fibrous Heterogeneous	· · · · · · · · · · · · · · · · · · ·		<1%	Synthetic	
90826		Tan	Teased	None Detected	<1%	Cellulose	100.0% Non-fibrous (other)
040005712-0015		Non-Fibrous Heterogeneous					
90827		Brown/Gray/Tan	Teased	None Detected	50.0%	Cellulose	47.0% Non-fibrous (other)
040005712-0016		Fibrous			<1%	Synthetic	
		Heterogeneous			3.0%	Wollastonite	
90828		Tan	Teased	None Detected	<1%	Cellulose	100.0% Non-fibrous (other)
040005712-0017		Non-Fibrous Heterogeneous					
90829		Brown/Gray/Tan	Teased	None Detected	50.0%	Cellulose	47.0% Non-fibrous (other)
040005712-0018		Fibrous	Dissolved		<1%	Synthetic	
		Heterogeneous			3.0%	Wollastonite	
90830		Gold/Tan	Teased	None Detected	<1%	Cellulose	100.0% Non-fibrous (other)
040005712-0019		Non-Fibrous					
	···	Heterogeneous					
90831		Brown/Gold	Teased	None Detected	<1%	Cellulose	100.0% Non-fibrous (other)
040005712-0020		Non-Fibrous Heterogeneous					
90833		Tan	Teased	None Detected	<1%	Cellulose	100.0% Non-fibrous (other)
040005712-0021		Non-Fibrous Heterogeneous					
90834		Tan	Teased	None Detected	<1%	Cellulose	100.0% Non-fibrous (other)
040005712-0022		Non-Fibrous Heterogeneous					
!					ىر	A	hl
Scott Combs						Kotti	~~~
Analyst				<u></u>		phen Siegel, Cl	

or other approved signatory

PLM has been known to miss asbestos in a small percentage of samples which contain asbestos. Thus negative PLM results cannot be guaranteed. Samples reported as detected should be tested with either SEM or TEM. The above test report relates only to the items tested. This report may only be reproduced in part with written approval e above test must not be used by the client to claim product endorsement by NVLAP nor any agency of the United States Government. All "NVLAP" reports with NVLAP logo at least one signature to be valid. Laboratory is not responsible for the accuracy of results when requested to physically separate and analyze layered samples.

EMSL Analytical, Inc.

107 Haddon Ave., Westmont, NJ 08108

CARLENSE STOL		in an	an a	and a second	TRATING OF FUNCTION AND THE REPORT OF A DAY OF A DAY AND A DAY
Attn:	Bradley Norton			Customer ID	VERS96
	Versar Inc.			Customer PO:	
	6850 Versar Center PO Box 1549			Received:	04/14/00 1:16 PM
	Springfield, VA 22151				
Fax:	703-642-6809	Phone:	703-642-6889	EMSL Order:	040005712
Project:	4600.008/EPA Vermiculite			EMSL Project ID:	0-000712

Polarized Light Microscopy (PLM) - Point Count Performed by EPA 600/M4-82-020/ELAP 5.2.1-6.0 Methods*

				Asbestos		Non-As	bestos
Sample	Location	Appearance	Treatment	% Type	%	Fibrous	% Non-Fibrous
90832		Gold/Tan	Teased	None Detected	<1%	Cellulose	100.0% Non-fibrous (other)
040005712-0023		Non-Fibrous Heterogeneous					·
90835		Tan/Gold	Teased	None Detected	<1%	Cellulose	100.0% Non-fibrous (other)
040005712-0024		Non-Fibrous Heterogeneous					
90836		Brown/Gold	Teased	None Detected	<1%	Cellulose	100.0% Non-fibrous (other)
040005712-0025		Non-Fibrous Heterogeneous					
90837		Brown/Black/Gray	Teased	None Detected	10.0%	Cellulose	89.0% Non-fibrous (other)
040005712-0026		Fibrous			1.0%	Hair	
		Heterogeneous			<1%	Synthetic	
90838		Brown	Teased	None Detected	40.0%	Cellulose	60.0% Non-fibrous (other)
040005712-0027		Fibrous Heterogeneous			<1%	Synthetic	
90839		Gold/Tan	Teased	None Detected	<1%	Cellulose	100.0% Non-fibrous (other)
040005712-0028	<u> </u>	Non-Fibrous Heterogeneous					
90840		Brown/Tan	Teased	None Detected	60.0%	Cellulose	40.0% Non-fibrous (other)
040005712-0029		Fibrous Heterogeneous			<1%	Synthetic	
90841		Grayish/Tan	Teased	None Detected	<1%	Cellulose	100.0% Non-fibrous (other)
040005712-0030	······································	Non-Fibrous Heterogeneous					
90842		Gold/Tan	Teased	None Detected	<1%	Cellulose	100.0% Non-fibrous (other)
040005712-0031		Non-Fibrous Heterogeneous					
90843	—	Brown/Tan/Gold	Teased	None Detected	70.0%	Cellulose	30.0% Non-fibrous (other)
040005712-0032		Fibrous Heterogeneous			<1%	Synthetic	

Scott Combs

Analyst

Stephen Siegel, CIH or other approved signatory

imers: PLM has been known to miss asbestos in a small percentage of samples which contain asbestos. Thus negative PLM results cannot be guaranteed. Samples reported as r none detected should be tested with either SEM or TEM. The above test report relates only to the items tested. This report may only be reproduced in part with written approval SL. The above test must not be used by the client to claim product endorsement by NVLAP nor any agency of the United States Government. All "NVLAP" reports with NVLAP logo of main at least one signature to be valid. Laboratory is not responsible for the accuracy of results when requested to physically separate and analyze layered samples.

TEM BULK AND PLA POINT COUNT !

LOTO 10 Day

4600

Versar

CHAIN OF CUSTODY RECORD

400.008			L	_/ /1 6	VERMICULITE			6	L	·····	P	ARAMET	ERS		INDUSTRIAL HYGIENE SAMPLE	V N
SAMPLERS: Isignatu	rel Zn			(F	Printed) PANEO A. NELSON BRADLEY J. NORTON		8	A LE LE	N.						REMARKS	
FIELD SAMPLE NUMBER	DATE	TIME	COMP.	GRAB	STATION LOCATION	/	7 8 2 / (}**/ }							
90812	1/12/00				SUNGLE GRIWTH VERMECULITE	1	T	1	[f			1	MIA	MI, FIA	1 1 1
90813					ERVICULTURAL CRADE EXVICENTE -ACE BRAND			1					1		- 90	
90814				13 1	RUNAELTAN MIX-EFE RTERNATTONAL TRC.		1			1			1	<u> </u>		<u>.</u>
90815					GRTI-LUME NERMERULITE	F	1	1					+	 	6	-
90816				ν	CHULTZ HORTKULTURAL GRATCULITE											
90817				1	UNCIF GROWTH-AFRICAN								1			$\overline{\mathbf{J}}$
90818					TOLET MIX IACK GOUD VERMITCHITE								1	TEMPE	, ANIZONA	<u> </u>
90819				<i>µ</i>	HHWEY FRENIS DECIMIENT.	10	-				- 1		<u>}</u>			
90820				U U	HALLEY FARM'S AFRICAN TELET MIX		1			<u>} </u>			+			
90821				B	TCLET MIX WHEN GOLD-VERNISCULITE		1						1	SACRATU	NEWTO, CA	<u> </u>
90822				G.h	VETR' ALL-UNGRINICULITE		1		<u> </u>	 			<u>†</u>			
90823	-V				EANTWIN CREAME ENSCLUTE - UNIGRO		/			<u> </u>						
Retinquished by: (\$)or below the	arufos Jan	/		/ Time 1100	Received by: (Signature)	Re	linqui	ihed by	(: (Sig	nature;	L	Da	te / Ti	ime Recei	ived by: (Signature)	<u>y</u>
(Printed) DAVED A.L	ecsoul	, Ľ,	1	1700	(Printed)	(Pi	inted)							(Print)	ed)	
Relinquished by: (Sign	nature)			/ Time	Received for Laboratory by: (Signature)		Date	/ Tim 	e	Remarl	ks <	RE:45	Ē	SEE	DR. FRASCA UALYSTS	
(Printed)				1	(Printed)			<u> </u>				Covee	al U I	THG M	UALYSTS	

Distribution: Original Plus One Accompanies Shipment (white and vellow): Copy to Coordinator Field Files (pink)

PROJECT NO. 4010.008	PR	OJE	CT NAM	ie Ci	PA C	VERMICULITE	N <u>ata</u>	/	7	/		PARA	METE	RS		INDUSTRIAL HYGIENE SAMF		Y N
SAMPLERS: Isignatu	rej				()	Printed) TAVED A. NELSCA BRAPLEY J. HORTHY		Or CONTAINS						/	r /			
FIELD SAMPLE NUMBER	DA	TE	TIME	COMP.	GRAB	STATION LOCATION	1	8 / W			/ /				_	REMARKS		
90824	4]]1	i fer				Elloge's VERILIEULITE	1				\uparrow	Í	ſ		GA	ACRAMENTO, CA	~	
90825	<u> </u>	Ĺ			5	PEHLUTZ PROFESSIONAL POTTENG GOTL					-				<u> </u>	NTHQUELLOCO	ir i	
90826						CHULT 2' HUNTSCULTUNAL ECHISQUETE ELE'S LITE HOUSE NIAUT					-	1		-			<u>inc</u>	-
90.827					1 1	4/3 🗸 🔰									 			
90828					Ê	ULE'S PREMITUM EPMICULITE CLE'S PREMITUM KICHU VILLET MIX MIRACUE GRU VERMIENNTE											Fit 72-1)
96.92.9					L	KICHA VILLET MIX									$\left \right\rangle$	o r i		
96830											1				Her	ALERS, MN	<u>~</u>	-1
90.831					i i	OFFMAN DERMIEUU TE						1						-
10833						ANTHGRUS BEST BRINFWLITE					1	1				····		-
90834					l Co	OUNTRY COTTACE					-							-
90835					A	CE AOFTCULITE CE AOFTCULTULAL LHOE VERMICULITE					1	1 1			\Box	7		
90835					7	RHOE DERMICULITE MICAGROUCH VERHIEMUTE	Л				1				202	ILBARD, IL	<u> </u>	-1
Religquished by: Isign	ionuro XA	J			/ Time <i>1100</i>		Relin	nquishe	d by:	(Signatur	re)		Date	1 / Tir 	me	Received by: (Signature)	<u></u>	-1
(Printed) Dravien A. De	æs.	a	4/1	ie/ai	0 [700	(Printed) ()	(Print	ted)	··	·	-					(Printed)		
Relinquished by: (Sign	nature	<i>.</i> ,		Date	/ Time	Received for Laboratory by: (Signature)	1	Date /	Time	Rema		EHS.	E	SEL		DL. FRASCIA		
(Printed)					•	(Printed)					Ċ	OKC	EUL	^V IA	VÇ	DR. FRASCIA AUHLYSTS		

Dietribution: Orininal Plue One Accompaniae Chinment Justite and vallously Ones to Constitute or Libration of the

ñ

Versar

 \mathbf{S}_{i}

CHAIN OF CUSTODY RECORD

PROJECT NO. HULD, COS	PROJE	CT NAM	AE C	DA.	VERMICULITE			/	Z		PA	ARAME	TERS			INDUSTRIAL HYGIENE SAMPLE	Y
SAMPLERS: ISigna Legen (199	sture) Gui			IP. 1 B	RAPLES & LEESCA			Solution of the second							/		
FIELD SAMPLE NUMBER	DATE	TIME	COMP.	GRAB	STATION LOCATION			S' N						/ /	/	REMARKS	e angel gerek
90836	4/11/00				FFMITH AFRICHA FOLET SOIL MIX	11	ſ	ſ		Í			- <u>(</u> -	Bi	EIS	DO A DA A	1 1 1
90.837				B	TENFER FARMS TTALE SUIL DENTER PRO-MIX								_			E St	2 (2 :::::::::::::::::::::::::::::::::::
90838									······				-		/		m
90839	_				COTTS VERMISCULITE									57	te k	WTWEG, FX	70 -
90840					WIESSENAL SIFFY										/		,
90841				14	AB PACIL BEN NEADOLU'S PALMETTO BEAU								-	SP.	lsh	FEED, VA	2
90842				10	HUNCLED HONTSCHLTUANE												1
90843	V				THE FREE STATY	\downarrow	 								/		
							-										
	-						-	$ \rightarrow $			+			+			
Refinquished by 1/S Laun Lallet (Printed) DAITH A.N	ignature)	41	()	/ Time //////	Received by: <i>(Signature)</i>	Rel	inqui s	hed by	r: (Sig	inature)		C	Date / 1	Time	Receiv	ed by: <i>(Signature)</i>	
(Printed) DAJSA A.N	Verson	4	11	1700	(Printed)	(Pri	nted)				·				(Printed	1)	
Relinquished by: (S	lignature)		Date	/ Time	Received for Laboratory by: (Signature)		Date	/ Tim	e f	Remari	" R	EAS	E :	SEC	- Di	E. FRASCA ALARLY SI	
(Printed)			• • • • • • • • • • • • • • • • • • • •	1	(Printed)							COP	CET	ロヤエ	19	JSCHELY SI.	ı د

Distribution: Original Plus One Accompanies Shipment (white and vellow)- Conv to Coordinator Eigld Ether (-int)

107 Ha	Analytical, Inc addon Avenue, Westmont, NJ 08108	TEL: 856-858-4800					
Attn:	David Nelson	Customer ID:	VERS96				
	Versar Inc.	Customer PO:					
	6850 Versar Center						
	P.O. Box 1549	Received:	4/14/00				
	Springfield, VA 22151						
Fax:	703-642-6942 Phone: 703-750-3000 ext. 6946	EMSL Order:	040005817				
Project	t: EPA Vermiculite/4600.008						

Analysis of Vermiculite Asbestos by Transmission Electron Microscopy

Sample ID	Asbestos Weight%	Asbestos Type(s)	Ashed / Not Ashed			
90844	0.13 Weight%	Actinolite	Not Ashed			
90845	BQL	Chrysotile	Not Ashed			
90846	BQL	Actinolite	Not Ashed			
90847	BQL	ND	Not Ashed			

 $\frac{Key}{BQL = Below Quantitation Limit (about 0.1 wt%)}$ ND = None Detected

л.

A.V. Samudra, Ph.D.

EMSL Analytical, Inc.

107 Haddon Ave., Westmont, NJ 08108

Attn:	David Nelson			
	Versar Inc.			
	6850 Versar Center			
	PO Box 1549			
	Springfield, VA 22151			
Fax:	703-642-6809	Phone:	703-642-6889	
Project:	EPA Vermiculite/4600.008			

Customer ID VERS96 Customer PO: Received: 04/17/00 9:51 AM

EMSL Order: 040005817 EMSL Project ID:

Polarized Light Microscopy (PLM) Performed by EPA 600/R-93/116 Method

				Asbestos		N	Ion-Asbestos
Sample	Location	Appearance	Treatment	% Туре	%	Fibrous	% Non-Fibrous
90844 040005817-0005	Shultz Horticultural Vermiculite	Brown/Tan Non-Fibrous Heterogeneous	Teased	None Detected	<1%	Cellulose	190% Non-fibrous (other)
90845 040005817-0006	Country Cottage Horticultural Vermiculite	Brown/Tan Non-Fibrous Heterogeneous	Teased	None Detected	<1%	Cellulose	100% Non-fibrous (other)
90846 040005817-0007	ZonoLite- Fines	Tan/Gold Non-Fibrous Heterogeneous	Teased	None Detected	<1%	Celluiose	100% Non-fibrous (other)
90847 040005817-0008	ZonoLite - Composite	Gray/Gold Non-Fibrous Heterogeneous	Teased	None Detected	<1%	Cellulose	100% Non-fibrous (other)

Scott Combs

Analyst

Stephen Siegel, CIH or other approved signatory

Disclaimers: PLM has been known to miss asbestos in a small percentage of samples which contain asbestos. Thus negative PLM results cannot be guaranteed. Samples reported as <1% or none detected should be tested with either SEM or TEM. The above test report relates only to the items tested. This report may only be reproduced in part with written approval by BMSL. The above test must not be used by the client to claim product endorsement by NVLAP nor any agency of the United States Government. All "NVLAP" reports with NVLAP logginust contain at least one signature to be valid. Laboratory is not responsible for the accuracy of results when requested to physically separate and analyze layered samples.

Page 1

													460	Ś į	
Versar					CHAIN OF CUS	TOD	Y RE	CORD			4	018	10 DA,	\checkmark	
project no. 4600.008	1		EE	PA .	VERNICULITE	*****		Γ.Δ	7	PARA	METERS		INDUSTRI HVGIENE SA		YN
SAMPLERS: ISINAN	ibe	zı		(P)	MATO D. LETS	W	Course			J.S.	*//		/		
FIELD SAMPLE NUMBER	DATE	TIME	COMP.	GR A B	STATION LOCATION	100				hu /			REMARK	5	
90844	4/1/00				MUTZ HORTICULTURAL	$\left[\right]$	$\left[\right]$		*		f f	SPET	REED	NA	
90845	ľ-[UNITE - FILES										
70846 90810	+-+-			1 1	OLONITE - COMPANTE	╋╌┥─									
10047	¥_										$\left \right $			V	
						┠╌╌┥			╶╋╼╌┾				00		
													UO APR		
	+			┟╌┼╌		 			┥				17 AM		
	+								╉╾┼		┼──┼─		÷		
		1				 			╉╾╋		┼╌┼╴		ហ		20
A														-3	the
Felinguidher by) (s	enefurte) AA4	41	Date	/ Time	Received by: (Signature)	Reli	nquisl	ned by: /	Signature)		Date / 4/17		eived by: (Signatur	//	
Printed)	Nas	EDA LA	buln	(I) MI	(Printed)	(Prin	ited)				<u> </u>		harm (
Relinguished by: (S				/ Time	Received for Laboratory by: (Signature)		Date	/ Time	Remark	" PU	ASE	SEE]	Haron Ca PE FRHS AUMIVSI	ic A	<u></u>
(Printed)				_ L	(Printed)	┼──		L		Ca	ucer,	UTAG .	AUH 1/5	5	
	·											·			

\$

Distribution: Original Plus One Accompanies Shipment (white and yellow); Copy to Coordinator Field Files (pink).

EMSL Analytical, In 1. 107 Haddon Ave., Westmont, NJ 08108

Order ID: 040006957

Attn: David Nelson Versar Inc. 6850 Versar Center PO Box 1549 Springfield, VA 22151 Fax: 703-642-6809 Project: 4600.008/EPA Vermiculite Customer ID: Customer PO: Received: VERS96 5/5/00 11:05 AM

EMSL Order: 040006957 EMSL Project ID:

Asbestos Analysis of Vermiculite by Transmission Electron Microscopy (TEM)

Client Sample ID	EMSL Sample ID	Asbestos Weight%	Asbestos Type(s)	Ashed / Not Ashed
68180	040006957-0001	0.14%	Actinolite*	Not Ashed
68181 68182 68183	040006957-0002 040006957-0003 040006957-0004	BQL** BQL BQL	Actinolite* ND*** Actinolite*	Not Ashed Not Ashed Not Ashed

Key

ĥ.

*Actinolilte/Richterite

**BQL = Below Quantitation Limit (0.1 weight%)

***ND = None Detected

<u>A.V. Samudra, Ph. D</u> TEM Analyst

Stephen Siegel. CIH- Lab Manager Or other approved signatory

EMSL Analytical, Inc.

107 Haddon Ave., Westmont, NJ 08108

Phone: (609) 858-4800 Fax: (609) 858-4960 Email: ssiegel@EMSL.com

Attn:	David Nelson Versar Inc. 6850 Versar Center PO Box 1549 Springfield, VA 22151			Customer ID: Customer PO: Received:	VERS96 07563 05/05/00 11:05 AM
Fax: Project:	703-642-6809 EPA Vermiculite	Phone:	703-642-6889	EMSL Order: EMSL Project ID: Analysis Date:	040006957 5/11/2000

Polarized Light Microscopy (PLM) - Point Count Performed by EPA 600/M4-82-020/ELAP 5

					Non-As	bestos	Asbestos
Sample	Location	Appearance	Treatment	%	Fibrous	% Non-Fibrous	% Type
68180 040006957-0005		Brown Fibrous Homogeneous	Teased	5.0%	Cellulose	94.5% Non-fibrous (other)	0.6% Tremolite
68181 040006957-0006		Brown Fibrous Homogeneous	Teased	8.0%	Cellulose	91.7% Non-fibrous (other)	0.3% Tremolite
68182 040006957-0007		Brown Fibrous Homogeneous	Teased	10.0%	Cellulose	90.0% Non-fibrous (other)	<1% Tremolite
68183 040006957-0008		Brown Fibrous Homogeneous	Teased	10.0%	Cellulose	90.0% Non-fibrous (other)	<1% Tremolite

Essie Spencer

1

Analyst

Stephen Siegel, CIH or other approved signatory

Disclaimers: PLM has been known to miss asbestos in a small percentage of samples which contain asbestos. Thus negative PLM results cannot be guaranteed. Samples reported as <1% or none detected should be tested with either SEM or TEM. The above test report relates only to the items tested. This report may only be reproduced in part with written approval by EMSL. The above test must not be used by the client to claim product endorsement by NVLAP nor any agency of the United States Government. All "NVLAP" reports with NVLAP logonaust contain at least one signature to be valid. Laboratory is not responsible for the accuracy of results when requested to physically separate and analyze layered samples.

Pl PointCount-1

Page 1

CONNENTIONAL / 600

Wersar

4594

\$

CHAIN OF CUSTODY RECORD

PROJECT NO.	PROJE	CT NAN	IE Z	AX	VERMICULTE			-7	7			A 13 A				T	IND	USTRIA	 \L	Y
4101.005]		ا مین	× 77	" When a charge			/ 2 /	-	,		/Ana	METE	-HS	,,			NE SAN		N
SAMPLERS (Signatu	uls	JU	······································		(Printed) TAUSO A. UELSO	J		I I I I I I I I I I I I I I I I I I I		3/5		S S		N N			RE	MARKS		
FIELD SAMPLE NUMBER	DATE	TIME	COMP.	GRAB	STATION LOCATION		8 0 0			₩ \$}	₹ Vu	NY X S				,			•	
68180	5/4/00				MR-MRI LAB ACK MATELAL	17	T		ann an	1			7		1 R	cont	EPA			
68181					ZUNDLITE-RECTON 10 PROVIDED								†		1		EPA		···-	
68182					PURGELL'S GTA-CREEN PLOFEFITOVAL VERMICULI HORMAD VERMICULITE	NE-									3PL	Enk	FIA Serl	0,0	1A	
68183					HONAN VERMEULTE										SPE	TAG.	Serl	MI	THE	TA
		ļ													[
															1		·····		<u></u>	
															1			ទ្រ		
					· · · · · · · · · · · · · · · · · · ·				ţ										· ·	2 2 2 3 1 1 1
											1	1	1					1 01		
																22-22-22-22-22-22-22-22-22-22-22-22-22-		<u></u> 		
A																·····		- 0		
Relinquimed by: Kig	ang ^a ure) DA	5	1.1	e / Tim 16 18		Reli	nquis	hed by	(: (Sig	inature)		Dat	e / Ti	me	Receiv	ed by: /S	ignature,)	
(Printed)	He Sow	15	14/0	18/ 01	(Printed)	(Prin	nted)	<u> </u>								(Printer	1)			
Relinquished by: (Sig			_	e / Tim		5/	Date	/ Tim	1	Remar	ks	ĤE,	ase	- 5	EE	DR-	FRA Y 4755	SCA		
(Printed)					(Printed)		/	. 4			C	œ	CR.	OT L	19 J	WA	Y4155	4 9E	CIFJ	ic s

Distribution : Original Blue One Ascompanies Chimant Judite and vallouil. Convite Coordinates Eigld Elies (sich)

EMSL Analytical, Inc. 107 Haddon Ave., Westmont, NJ 08108

Order ID: 040007035

Attn: David Nelson Versar Inc. 6850 Versar Center PO Box 1549 Springfield, VA 22151 Fax: 703-642-6809 Project: 4600.008/EPA Vermiculite

Customer ID: Customer PO: Received:

5/8/00 11:20 AM

VERS96

040007035

EMSL Order: EMSL Project ID:

Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Analytical Electron Microscopy

Client Sample ID	EMSL Sample ID	Asbestos Weight %	Asbestos Type(s)				
68184	040007035-1	BQL*	Actinolite				
68185	040007035-2	BQL	Anthopyllite				
68186	040007035-3	BQL	Actinolite				
68187	040007035-4	0.17	Actinolite				
68188	040007035-5	BQL	ND**				
68189	040007035-6	BQL	ND				
68190	040007035-7	BQL	ND				
68191	040007035-8	BQL	ND				
68192	040007035-9	BQL	Actinolite				
68193	040007035-10	BQL	Actinolite				

<u>Key</u> *BQL = Below Quantitation Limit (0.1 weight%) **ND = None Detected

Note: All samples were not ashed prior to analysis

Samudra, Ph.D.

Stephen Siegel, CIH- Lab Manager

ephen Siegel, CIH- Lab Manager Or other approved signatory

107 Haddon Ave., Westmont, NJ 08108

ntCount-

Phone: (609) 858-4800 Fax: (609) 858-4960 Email: sslegel@EMSL.com

Page 1

Attn:	David Nelson Versar Inc. 6850 Versar Center PO Box 1549 Springfield, VA 22151			Customer ID: Customer PO: Received:	VERS96 07563 05/08/00 11:20 AM
Fax: Project:	703-642-6809 4601.005/EPA Vermiculite	Phone:	703-642-6889	EMSL Order. EMSL Project ID: Analysis Date:	040007035 5/16/2000

Polarized Light Microscopy (PLM) - Point Count Performed by EPA 600/M4-82-020/ELAP 5

cation E RTICULTURA FFMAN RTICULTURA	Appearance Brown Fibrous Homogeneous Brown	Treatment Teased		Fibrous Min. Wool		Non-Fibrous	% Type
RTICULTURA	Fibrous Homogeneous	Teased		Min. Wool	04 0%		
	Broum			Wollastonite	34.076	Non-fibrous (other)	None Detected
	Fibrous Homogeneous	Teased		Cellulose Wollastonite	95.0%	Non-fibrous (other)	<1% Tremolite
E RTICULTURA	Brown Fibrous Homogeneous	Teased			95.0%	Non-fibrous (other)	None Detected
RTHGRO'S ST	Brown Fibrous Homogeneous	Teased			92.0%	Non-fibrous (other)	<1% Tremolite
HULTZ RTICULTURA	Brown Fibrous Homogeneous	Teased			93.0%	Non-fibrous (other)	None Detected
IULTZ RTICULTURA	Brown Fibrous Homogeneous	Teased			90.0%	Non-fibrous (other)	None Detected
CK GOLD RMICULITE	Brown Fibrous Homogeneous	Teased			95.0%	Non-fibrous (other)	<1% Chrysotile <1% Tremolite
ITNEY RMS	Beige Fibrous Homogeneous	Teased			95.0%	Non-fibrous (other)	None Detected
OTTS RMICULITE	Brown Fibrous Homogeneous	Teased			85.0%	Non-fibrous (other)	None Detected
FMAN LICAN	Brown Fibrous Homogeneous	Teased			80.0%	Non-fibrous (other)	None Detected
	RTICULTURA RTHGRO'S ST HULTZ RTICULTURA HULTZ RTICULTURA CK GOLD MICULITE TNEY MS DTTS MICULITE	E Brown RTICULTURA Fibrous Armogeneous Homogeneous RTHGRO'S Brown ST Fibrous Homogeneous Homogeneous HULTZ Brown RTICULTURA Fibrous HOTTOGENEOUS Hornogeneous HULTZ Brown RTICULTURA Fibrous Homogeneous Hornogeneous KULTZ Brown RTICULTURA Fibrous Homogeneous Homogeneous CK GOLD Brown MICULITE Fibrous Homogeneous Homogeneous TNEY Beige MS Fibrous Homogeneous Homogeneous TTS Brown MICULITE Fibrous Homogeneous Fibrous Homogeneous Fibrous FMAN Brown ICAN Fibrous	E Brown Teased RTICULTURA Fibrous Homogeneous RTHGRO'S Brown Teased ST Fibrous Homogeneous RTHGRO'S Brown Teased ST Fibrous Homogeneous HULTZ Brown Teased RTICULTURA Fibrous Hornogeneous HULTZ Brown Teased RTICULTURA Fibrous Homogeneous KTICULTURA Fibrous Homogeneous CK GOLD Brown Teased MICULITE Fibrous Homogeneous TNEY Beige Teased MS Fibrous Homogeneous TTS Brown Teased MICULITE Fibrous Homogeneous TTS Brown Teased FMAN Brown Teased FMAN Brown Teased Fibrous Homogeneous Fibrous	E Brown Teased 3.0% RTICULTURA Fibrous 2.0% Homogeneous Strown Teased 5.0% RTHGRO'S Brown Teased 5.0% ST Fibrous 3.0% HOMogeneous Homogeneous 3.0% HULTZ Brown Teased 4.0% RTICULTURA Fibrous 3.0% HULTZ Brown Teased 5.0% HULTZ Brown Teased 5.0% HULTZ Brown Teased 3.0% HULTZ Brown Teased 3.0% KTICULTURA Fibrous 2.0% Homogeneous X X X CK GOLD Brown Teased 3.0% MICULITE Fibrous 2.0% X Homogeneous X X X TNEY Beige Teased 3.0% MICULITE Fibrous 5.0% X MICULITE Fibrous 5.0% X Homogeneous X	E RTICULTURABrown Fibrous HomogeneousTeased3.0%Cellulose 2.0%RTHGRO'S STBrown Fibrous HomogeneousTeased5.0%Cellulose 3.0%RTHGRO'S STBrown Fibrous HomogeneousTeased5.0%Cellulose 3.0%HULTZ RTICULTURABrown Fibrous HomogeneousTeased4.0%Cellulose 3.0%HULTZ RTICULTURABrown Fibrous HomogeneousTeased5.0%Cellulose 3.0%HULTZ RTICULTURABrown Fibrous HomogeneousTeased5.0%Cellulose 3.0%CK GOLD MICULITEBrown Fibrous HomogeneousTeased3.0%Cellulose 3.0%TNEY MICULITEBeige Fibrous HomogeneousTeased3.0%Cellulose 3.0%TNEY MICULITEBrown Fibrous HomogeneousTeased10.0%Cellulose 3.0%TNEY MICULITEBrown Fibrous HomogeneousTeased10.0%Cellulose 3.0%TREY MICULITEBrown Fibrous HomogeneousTeased10.0%Cellulose 3.0%TREY MICULITEBrown Fibrous HomogeneousTeased10.0%Cellulose 3.0%	E RTICULTURABrown Fibrous HomogeneousTeased3.0% 2.0%Cellulose Vollastonite95.0% 95.0%RTHGRO'S 	E RTICULTURABrown Fibrous HomogeneousTeased3.0%Cellulose 2.0%95.0%Non-fibrous (other)RTHGRO'S STBrown Fibrous HomogeneousTeased5.0%Cellulose 3.0%92.0%Non-fibrous (other)RTHGRO'S STBrown Fibrous HomogeneousTeased5.0%Cellulose 3.0%93.0%Non-fibrous (other)RTICULTURA RTICULTURABrown Fibrous HomogeneousTeased4.0%Cellulose 3.0%93.0%Non-fibrous (other)RTICULTURA Fibrous HomogeneousTeased5.0%Cellulose 5.0%90.0%Non-fibrous (other)RTICULTURA Fibrous HomogeneousTeased5.0%Cellulose 5.0%90.0%Non-fibrous (other)RTICULTURA Fibrous HomogeneousTeased3.0%Cellulose 2.0%95.0%Non-fibrous (other)RTICULTURA Fibrous HomogeneousTeased3.0%Cellulose 2.0%95.0%Non-fibrous (other)RTICULTURA Fibrous HomogeneousTeased3.0%Cellulose 2.0%95.0%Non-fibrous (other)RTICULTURA Fibrous HomogeneousTeased10.0%Cellulose 2.0%95.0%Non-fibrous (other)RTICULTURA Fibrous HomogeneousTeased10.0%Cellulose 2.0%85.0%Non-fibrous (other)RTICULTURA Fibrous HomogeneousTeased10.0%Cellulose 2.0%80.0%Non-fibrous (other)RTICULTURA Fibrous HomogeneousTeased10.0%Cellulose 2.0%8

Wersar

ē.

CHAIN OF CUSTODY RECORD

PROJECT NO. 4601,005	PROJE	CT NAN	IE E	FPA l	ICONTCULITE		/.	Z		,	AMET	ERS		INDUSTRIAL Y HYGIENE SAMPLE N
SAMPLERS: (Statute) (Printed) MAN (MILLON DAVED D-NEESON)	Contraction		To to the top	Ten en e				REMARKS	
FIELD SAMPLE NUMBER	DATE	TIME	COMP.	GRAB	STATION LOCATION	4				A LEAN		/ /		
68/84	5/5/00	 		174	E HERICUINIAL GANDE	1	\square			V			MIAN	IC, FEA
68185					ANTEULATE				Y					FARTH, MN
68 186				Gi	E HOPTICULTURAL		_		*				MALE	APAIS, MN)
68187					ETIGEOS BEST				_					ED, MA
68 188					AUTZ HAFTELATURAL EXITCULITE								BURKE	ε, <i>ν</i> μ'
68189					HUTTE HORTCULTURAL								MIAN	NI, FLORION
68 190				7	ACK GOLD VERMICULITE									UGUNO, CA
68191				A	HITNET FARMS RICH VIOLET MIX								TEMPE	, 42 01
68192					COTTS UERMECHINE								5 th X	TOMES, TX
68193	¥			H1 1/2	OFFMILL AFRICIAN OLET MOLL MIX	V							BEISI	a, PA
					·									
Ara	<u></u>				·····									
Relinquimed by: Isin	hatyfre)	5/5		/ Time /530	Received by: (Signature)	Reli	inquished I	by: <i>(S</i>	ignature,	/	Dat	te / Tii	me Rece	ived by: (Signature) Per- j / 16 R
(Printed) VAUMA, NESON 5/5/10 1530 SUPPL. Sin			(Prir	nted)				·· ,		(Print	6			
Relinquished by: (Sig	nature)		Date	/ Time	Received for Laboratory by: (Signature)		Date / Ti	me	Remar	KS ALE	N/jE 12/20	40	ED	E. FRASCA YHIS
(Printed) (Printed)			(Printed)		<u>k</u>			Car.	hAC	To	y rand CCS	-4-2-1		

Distribution: Original Plus One Accompanies Shinment (white and vellow): Conv to Coordinator Eight Elles Initia

Order ID: 040006832

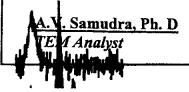
Attn:David NelsonVersar Inc.6850 Versar CenterPO Box 1549Springfield, VA 22151Fax:703-642-6809Project:4600.008/EPA Vermiculite

Customer ID: Customer PO: Received: VERS96 5/4/00 12:58 PM

10

EMSL

EMSL Order: 040006832 EMSL Project ID:


Asbestos Analysis of Bulk Materials via EMSL SOP 2000 Method using Polarized Light (PLM) and Transmission Electron Microscopy (TEM)

Client Sample ID	EMSL Sample ID	PLM Results EPA Point Count	TEM Results	Asbestos Type(s)
90813	040006832-0001	ND*	BDL**	ND
90831	040006832-0002	ND	BDL	ND
90832	040006832-0004	ND	BDL	Actinolite/Tremolite
90833	040006832-0003	ND	BDL	NC
90844	040006832-0005	ND	BDL	ND

Key *ND = None Detected **BDL = Below Detection Limit (0.1 weight%)

Essie Spencer PLM Analyst

÷,

N

Stephen Siegel. CIH- Lab Manager Or other approved signatory

Order ID: 040006832

.

Asbestos Analysis via EPA Superfund Method for the Determination of Releasable Asbestos Fibers in Soils and Bulk Materials-EPA540-R-97-028

Attn:	David Nelson	Customer ID:	VERS96
	Versar Inc.	Customer PO:	
	6850 Versar Center	Received:	5/4/00 12:58 PM
	PO Box 1549	Report Date:	5/17/00
	Springfield, VA 22151	1	
Fax:	703-642-6809	EMSL Order:	040006832
Project:	4600.008/EPA Vermiculite	EMSL Project ID:	0
		5	

Releasable Asbestos in Respirable Dust

Client/Lab Sample ID	Respirable Dust Conc (g/g smpl)	Total Asbestos Analytical Sensitivity (s/g dust)	Total Asbestos Concentration (s/g dust)	Total Asbestos 95% UCL (s/g dust)	Long Asbestos Analytical Sensitivity (s/g dust)	Long Asbestos Conc (s/g dust)	Long Asbestos 95% UCL (s/g dust)	Dust Generation Rate (at 60 rpm)
90813/	2.516E-06	1.47E+08	<1.47E+08	<2.88E+08	1.47E+08		<2.88E+08	(g/min) 8.60E-05
040006832-1								UNCOL US
90831/ 040006832-2	9.542E-07	2.52E+08	<2.52E+08	<4.95E+08	2.52E+08	<2.52E+08	<4.95E+08	5.00E-05
90832/ 040006832-3	6.629E-07	5.74E+08	<5.74E+08	<1.12E+09	5.74E+08	<5.74E+08	<1.12E+09	2.20E-05
90833/ 040006832-4	1.311E-07	3.16E+09	<3.16E+09	<6.19E+09	3.16E+09	<3.16E+09	<6.19E+09	4.00E-06
90844/ 040006832-5	2.926E-06	7.25E+07	2.18E+08	4.27E+08	7.25E+07	1.45E+08	2.84E+08	1.74E-04

<u>A.V. Samudra, Ph,D.</u> Analyst

In

<u>81</u>

Stephen Siegel, CIH- Lab Manager Or other approved signatory

Order ID: 040006832

Asbestos Analysis via EPA Superfund Method for the Determination of Releasable Asbestos Fibers in Soils and Bulk Materials-EPA540-R-97-028

Attn:	David Nelson	Customer ID:	VERS96
	Versar Inc.	Customer PO:	
	6850 Versar Center	Received:	5/4/00 12:58 PM
	PO Box 1549	Report Date:	5/17/00
	Springfield, VA 22151	1	
Fax:	703-642-6809	EMSL Order:	040006832
Project:	4600.008/EPA Vermiculite	EMSL Project ID:	

Releasable Asbestos in Laboratory Samples

Client/Lab Sample ID	Respirable Dust Conc (g/g smpl)	Total Asbestos Analytical Sensitivity (s/g smpl)	Total Asbestos Concentration (s/g smpl)	Total Asbestos 95% UCL (s/g smpl)	Long Asbestos Analytical Sensitivity (s/g smpl)	Long Asbestos Conc (s/g smpl)	Long Asbestos 95% UCL (s/g smpl)	Comments
90813/ 040006832-1	2.516E-06	369.36	<369.36	<723.95	369.36	<369.36	<723.95	
90831/ 040006832-2	9.542E-07	240.90	<240.90	<472.17	240.90	<240.90	<472.17	
90832/ 040006832-3	6.629E-07	380.35	<380.35	<745.49	380.35	<380.35	<745.49	
90833/ 040006832-4	1.311E-07	413.63	<413.63	<810.72	413.63	<413.63	<810.72	
90844/ 040006832-5	2.926E-06	212.25	636.76	416.02	212.25	212.25	416.02	

<u>A.V. Samudra, Ph.D.</u> Analyst

ŝ.

Stephen Siegel, CIH- Lab Manager Or other approved signatory

Order ID: 040006832

Asbestos Analysis via EPA Superfund Method for the Determination of Releasable Asbestos Fibers in Soils and Bulk Materials- EPA540-R-97-028

Attn:	David Nelson	Customer ID:	VERS96
	Versar Inc.	Customer PO:	
	6850 Versar Center	Received:	5/4/00 12:58 PM
	PO Box 1549	Report Date:	5/17/00
	Springfield, VA 22151		
Fax:	703-642-6809	EMSL Order:	040006832
Project:	4600.008/EPA Vermiculite	EMSL Project ID:	
	mple# 90813 ample# 40006832-001		
Chrysotile	e Asbestos Analysis Results	<u>Low</u> Magnification	<u>High</u> Magnification
No. of	Total Chrysotile Asbestos Structures	N/A	0

No. of Long (>5 µm) Chrysotile Asbestos Structures	N/A	0
No. of Total Chrysotile Asbestos Fibers/Bundles	N/A	0
No. of Long (>5 μ m) Chrysotile Asbestos Fibers/Bundles	N/A	0
Amphibole Asbestos Analysis Results		
No. of Total Amphibole Asbestos Structures	N/A	0
No. of Long (>5 µm) Amphibole Asbestos Structures	N/A	0
No. of Total Amphibole Asbestos Fibers/Bundles	N/A	0
No. of Long (>5 µm) Amphibole Asbestos Fibers/Bundles	N/A	0
Amphibole Mineral Type-	N/A	N/A
ESTIMATED CONCENTRATIONS OF RELEASABLE ASBEST	OS IN SAMPLE	
	Conc.	<u>95% UCL</u>
Total Chrysotile Structures per g Sample	<369.36	<723.95
Total Amphibole Structures per g Sample	<369.36	<723.95

x out i mpinoolo ou totalos por E outiple	~009.00	\$723.90
Total Asbestos Structures per g Sample	<369.36	<723.95
Long Chrysotile Structures per g Sample	<369.36	<723.95
Long Amphibole Structures per g Sample	<369.36	<723.95
Long Asbestos Structures per g Sample	<369.36	<723.95
Estimated Analytical Sensitivity: (structures/g)	<369.36	<723.95

ESTIMATED CONCENTRATIONS OF RELEASABLE ASBESTOS IN RESPIRABLE DUST OF SAMPLE

	Conc.	<u>95% UCL</u>
Total Chrysotile Structures per g Dust	<146,778,498	<287,685,856
Total Amphibole Structures per g Dust	<146,778,498	<287,685,856
Total Asbestos Structures per g Dust	<146,778,498	<287,685,856
Long Chrysotile Structures per g Dust	<146,778,498	<287,685,856
Long Amphibole Structures per g Dust	<146,778,498	<287,685,856
Long Asbestos Structures per g Dust	<146,778,498	<287,685,856
Estimated Analytical Sensitivity: (structures/g dust)	<146,778,498	<287,685,856
A.V. Samudra, Ph.D.	pr-	

A.V. Samudra, Ph. Analyst

.t

- 1

Order ID: 040006832

Asbestos Analysis via EPA Superfund Method for the Determination of Releasable Asbestos Fibers in Soils and Bulk Materials- EPA540-R-97-028

A 4 4		· · · · · · · · · · · · · · · · · · ·	
Attn:	David Nelson Versar Inc.	Customer ID:	VERS96
	6850 Versar Center	Customer PO: Received:	5/4/00 10-69 DNA
	PO Box 1549	Report Date:	5/4/00 12:58 PM 5/17/00
	Springfield, VA 22151	Report Date.	5/17/00
Fax:	703-642-6809	EMSL Order:	040006832
Project:	4600.008/EPA Vermiculite	EMSL Project ID:	
		-	
		Date Analysis Started	5/9/00
		Date Analysis Completed	5/10/00
		Lab Sample #	
		Field Sample ID Number	
		Field Prepartation Technique	N/A
		Additional Lab Preparation Procedures	
		Sample Drying	Yes
		Sample Splitting	N/A
		Other	
		TEM Analysis	
		Effective Area of Analytical Filter (sq mm)	385
		Magnification	19,000X
		Grid Opening Area (sq mm)	0.0061
		Number of G.O. Scanned	10
	Asbestos	Structure Size and Type Categories of Interest	>0.5µ Length
			<0.5µ Diameter
			>5:1 Aspect Ratio
			Amphiboles/Chrysotile
		Minimum Acceptable Structure ID Category	>0.5µ Length
			<0.5µ Diameter
			>5:1 Aspect Ratio
		Dust Generator	
		Mass of Sample Tumbled (g)	17.0874
		rough ME opening of Dust Generator (ml/min)	1500
	Air Flow Rate Th	rough IST opening of Dust Generator (ml/min)	1300
		Air Flow Rate Scrubber (ml/min)	N/A
	Estimated To	tal Air Flow Rate Through Elutriator (ml/min)	1300
	Ţ	otal Mass of Dust Collected on Dust Filters (g)	0.00042
		Time of Dust Collection (24 hr clock) at 60 rpm	0.00043
	1	Start/Stop	30 sec N/A
	Estimated first-order rate	constants for dust generation (min ⁻¹) at 60 rpm	2
Sa	amples from the Isokinetic Sam	pling Tube (IST) Opening of the Dust Generato	
	, Ioonmotio Dum	Time of Collection (24 hr clock)	30 sec
		Start/Stop	N/A
		Estimated Mass of Dust Collected on Filter (g)	0.00043
		Continued Mass of Pust Concelled on Filler (g)	U.UU43
.V. Samı	udra, Ph. D.		
nalvst	<u></u>	Stephen Siggel (TH- Lab Manager

Stephen Siegel, CIH- Lab Manager Or other approved signatory

Analyst

.

Order ID: 040006832

Asbestos Analysis via EPA Superfund Method for the Determination of Releasable Asbestos Fibers in Soils and Bulk Materials- EPA540-R-97-028

Attn:	David Nelson Versar Inc.	Customer ID: Customer PO:	VERS96
	6850 Versar Center	Received:	5/4/00 12:58 PM
	PO Box 1549	Report Date:	5/17/00
τ	Springfield, VA 22151		
Fax:	703-642-6809	EMSL Order:	040006832
Project:	4600.008/EPA Vermiculite	EMSL Project ID:	
		Date Analysis Started	5/9/00
		Date Analysis Completed	5/10/00
		Lab Sample #	040006832-0002
		Field Sample ID Number	90831
		Field Prepartation Technique	N/A
		Additional Lab Preparation Procedures	
		Sample Drying	Yes
		Sample Splitting	N/A
		Other	
		TEM Analysis	
		Effective Area of Analytical Filter (sq mm)	385
		Magnification	19,000X
		Grid Opening Area (sq mm)	0.0061
		Number of G.O. Scanned	10
	Asbestos	Structure Size and Type Categories of Interest	>0.5µ Length
			<0.5µ Diameter
			>5:1 Aspect Ratio
			Amphiboles/Chrysotile
		Minimum Acceptable Structure ID Category	>0.5µ Length
			<0.5µ Diameter
			>5:1 Aspect Ratio
		Dust Generator	-
		Mass of Sample Tumbled (g)	26.1993
		ough ME opening of Dust Generator (ml/min)	1500
	Air Flow Rate Thre	ough IST opening of Dust Generator (ml/min)	1300
		Air Flow Rate Scrubber (ml/min)	N/A
	Estimated Tot	al Air Flow Rate Through Elutriator (ml/min)	1300
	То	tal Mass of Dust Collected on Dust Filters (g)	0.00025
		me of Dust Collection (24 hr clock) at 60 rpm	30 sec
		Start/Stop	N/A
	Estimated first-order rate c	onstants for dust generation (min ⁻¹) at 60 rpm	2
1		ling Tube (IST) Opening of the Dust Generato	
	,	Time of Collection (24 hr clock)	30 sec
		Start/Stop	N/A
	ਸ	stimated Mass of Dust Collected on Filter (g)	0.00025
	-	(g)	0.00043
A.V. San	udra, Ph. D.		
······································			······································

Ste

A.V. Samudra, Ph. D. Analyst

4

Order ID: 040006832

Asbestos Analysis via EPA Superfund Method for the Determination of Releasable Asbestos Fibers in Soils and Bulk Materials- EPA540-R-97-028

Attn:	David Nelson	Customer ID:	VERS96
	Versar Inc.	Customer PO:	
	6850 Versar Center	Received:	5/4/00 12:58 PM
	PO Box 1549	Report Date:	5/17/00
_	Springfield, VA 22151		
Fax:	703-642-6809	EMSL Order:	040006832
Project:	4600.008/EPA Vermiculite	EMSL Project ID:	
	mple# 90831		
ENIOL 32	umple# 040006832-002		
Chrysotile	e Asbestos Analysis Results	Low	High
-	· ·	Magnification	Magnification
No. of	Total Chrysotile Asbestos Structures	N/A	0
	Long (>5 µm) Chrysotile Asbestos Structures	N/A	0
No. of	Total Chrysotile Asbestos Fibers/Bundles	N/A	0
	Long (>5 µm) Chrysotile Asbestos Fibers/Bundles	N/A	Ő
			•
	le Asbestos Analysis Results		
	Total Amphibole Asbestos Structures	N/A	0
	Long (>5 µm) Amphibole Asbestos Structures	N/A	0
	Total Amphibole Asbestos Fibers/Bundles	N/A	0
	Long (>5 µm) Amphibole Asbestos Fibers/Bundles	N/A	0
Amphit	oole Mineral Type-	N/A	N/A
ESTIMA	TED CONCENTRATIONS OF RELEASABLE ASB	ESTOS IN SAMPLE	
		Conc.	95% UCL
Total C	brysotile Structures per g Sample	<240.90	<472.17
	mphibole Structures per g Sample	<240.90	<472.17
	sbestos Structures per g Sample	<240.90	<472.17
	hrysotile Structures per g Sample	<240.90	<472.17
	mphibole Structures per g Sample	<240.90	<472.17
Long A	sbestos Structures per g Sample	<240.90	<472.17
Estimat	ed Analytical Sensitivity: (structures/g)	<240.90	<472.17
ESTIMATI	ED CONCENTRATIONS OF RELEASABLE ASBESTOS	IN RESPIRABLE	
DUST OF S	SAMPLE		
		Conc.	<u>95% UCL</u>
Total Cl	rysotile Structures per g Dust	<252,459,016	<494,819,672
	mphibole Structures per g Dust	<252,459,016	<494,819,672
	sbestos Structures per g Dust	<252,459,016	<494;819,672
Long Cł	rysotile Structures per g Dust	<252,459,016	<494,819,672
	nphibole Structures per g Dust	<252,459,016	<494,819,672
Long As	sbestos Structures per g Dust	<252,459,016	<494,819,672
Estimate	ed Analytical Sensitivity: (structures/g dust)	<252,459,016	<494,819,672
	,	-202,703,010	
A.V. Samu	idra, Ph,D.	n/	

<u>A.V. Samudra, Ph,D.</u> Analyst

 \mathcal{X}_{i}

Order ID: 040006832

Asbestos Analysis via EPA Superfund Method for the Determination of Releasable Asbestos Fibers in Soils and Bulk Materials- EPA540-R-97-028

Attn:	David Nelson Versar Inc.	Customer ID: Customer PO:	VERS96
	6850 Versar Center	Received:	5/4/00 12:58 PM
	PO Box 1549		5/17/00
	Springfield, VA 22151	report Dute.	5/1//00
Fax:	703-642-6809	EMSL Order:	040006832
Project:	4600.008/EPA Vermiculite	EMSL Project ID:	0.0000032
-			
		Date Analysis Started	5/9/00
		Date Analysis Completed	5/10/00
		Lab Sample #	040006832-0003
		Field Sample ID Number	90832
		Field Prepartation Technique	N/A
		Additional Lab Preparation Procedures	
		Sample Drying	Yes
		Sample Splitting	N/A
		Other	
		TEM Analysis	
		Effective Area of Analytical Filter (sq mm)	385
		Magnification	19,000X
		Grid Opening Area (sq mm)	0.0061
		Number of G.O. Scanned	10
	Asbestos	Structure Size and Type Categories of Interest	>0.5µ Length
			<0.5µ Diameter
			>5:1 Aspect Ratio
			Amphiboles/Chrysotile
		Minimum Acceptable Structure ID Category	>0.5µ Length
			<0.5µ Diameter
			>5:1 Aspect Ratio
		Dust Generator	· J.I Abpeet Ratio
		Mass of Sample Tumbled (g)	16.5938
	Air Flow Rate Thr	ough ME opening of Dust Generator (ml/min)	1500
		ough IST opening of Dust Generator (ml/min)	1300
		Air Flow Rate Scrubber (ml/min)	N/A
	Estimated To	tal Air Flow Rate Through Elutriator (ml/min)	1300
			1500
	Тс	otal Mass of Dust Collected on Dust Filters (g)	0.00011
		me of Dust Collection (24 hr clock) at 60 rpm	30 sec
		Start/Stop	N/A
	Estimated first-order rate of	constants for dust generation (min ⁻¹) at 60 rpm	2
S		oling Tube (IST) Opening of the Dust Generato	
		Time of Collection (24 hr clock)	30 sec
		Start/Stop	N/A
	न	Estimated Mass of Dust Collected on Filter (g)	0.00011
			0.00011
A.V. Sam	udra, Ph. D.		
A malaint			

<u>A.V. Samudra, Ph. D.</u> Analyst

1.C

Order ID: 040006832

Asbestos Analysis via EPA Superfund Method for the Determination of Releasable Asbestos Fibers in Soils and Bulk Materials- EPA540-R-97-028

Attn: Fax: Project:	David Nelson Versar Inc. 6850 Versar Center PO Box 1549 Springfield, VA 22151 703-642-6809 4600.008/EPA Vermiculite	Customer ID: Customer PO: Received: Report Date: EMSL Order: EMSL Project ID:	VERS96 5/4/00 12:58 PM 5/17/00 040006832
	mple# 90832 ample# 040006832-003		
Chrysotile	e Asbestos Analysis Results	<u>Low</u> Magnification	<u>High</u> Magnification
No. of	Total Chrysotile Asbestos Structures	N/A	0
	Long (>5 µm) Chrysotile Asbestos Structures	N/A	Õ
	Total Chrysotile Asbestos Fibers/Bundles	N/A	0
	Long (>5 µm) Chrysotile Asbestos Fibers/Bundles	N/A	ŏ
110.01	Long (* 5 mil) on ysothe Asbestos Fibers Danates		v
Amnhiho	le Asbestos Analysis Results		
	Total Amphibole Asbestos Structures	N/A	0
	Long (>5 µm) Amphibole Asbestos Structures	N/A N/A	0
	Total Amphibole Asbestos Fibers/Bundles	N/A	
	•		0
	Long (>5 µm) Amphibole Asbestos Fibers/Bundles	N/A	0
Amphi	pole Mineral Type-	N/A	N/A
ESTIMA'	TED CONCENTRATIONS OF RELEASABLE ASBI	ESTOS IN SAMPLE	
		Conc.	<u>95% UCL</u>
Total C	hrysotile Structures per g Sample	<380.35	<745,49
	mphibole Structures per g Sample	<380.35	<745.49
	sbestos Structures per g Sample	<380.35	<745.49
	hrysotile Structures per g Sample	<380.35	<745.49
	mphibole Structures per g Sample	<380.35	<745.49
	sbestos Structures per g Sample	<380.35	<745,49
. 3	F = 0 =	000.00	110.10
Estimat	ed Analytical Sensitivity: (structures/g)	<380.35	<745.49
ESTIMAT DUST OF	ED CONCENTRATIONS OF RELEASABLE ASBESTOS SAMPLE	IN RESPIRABLE	
		Conc.	95% UCL
Total C	hrysotile Structures per g Dust	<252,459,016	<494,819,672
	mphibole Structures per g Dust	<252,459,016	<494,819,672
	sbestos Structures per g Dust	<252,459,016	<494,819,672
	hrysotile Structures per g Dust	<252,459,016	<494,819,672
	mphibole Structures per g Dust	<252,459,016	<494,819,672
	sbestos Structures per g Dust	<252,459,016	<494,819,672
		~202,403,010	
Estimat	ed Analytical Sensitivity: (structures/g dust)	<252,459,016	_ <494,819,672

A.V. Samudra, Ph.D. Analyst

 $\frac{1}{2}$

Stephen Siegel, CIH- Lab Manager Or other approved signatory

b

Order ID: 040006832

Asbestos Analysis via EPA Superfund Method for the Determination of Releasable Asbestos Fibers in Soils and Bulk Materials- EPA540-R-97-028

Attn:	David Nelson Versar Inc.	Customer ID: Customer PO:	VERS96
	6850 Versar Center PO Box 1549		5/4/00 12:58 PM 5/17/00
	Springfield, VA 22151		5, 2, 7, 0, 0
Fax: Project	703-642-6809	EMSL Order: EMSL Project ID:	040006832
		Date Analysis Started	5/9/00
		Date Analysis Completed	5/10/00
		Lab Sample #	040006832-0004
		Field Sample ID Number	90833
		Field Prepartation Technique	N/A
		Additional Lab Preparation Procedures	
		Sample Drying	Yes
		Sample Splitting	N/A
		Other	
		TEM Analysis	
		Effective Area of Analytical Filter (sq mm)	385
		Magnification	19,000X
		Grid Opening Area (sq mm)	0.0061
		Number of G.O. Scanned	10
	Asbestos S	tructure Size and Type Categories of Interest	>0.5µ Length
			<0.5µ Diameter
			>5:1 Aspect Ratio
		Minimum Accortable Starten ID Cate	Amphiboles/Chrysotile
		Minimum Acceptable Structure ID Category	>0.5µ Length
			<0.5µ Diameter
			>5:1 Aspect Ratio
		Dust Generator	160605
	Air Flow Rate Thro	Mass of Sample Tumbled (g)	15.2587
	Air Flow Rate Thro	ugh ME opening of Dust Generator (ml/min) ugh IST opening of Dust Generator (ml/min)	1500
	All Now Rate Thio		1300
	Estimated Tota	Air Flow Rate Scrubber (ml/min)	N/A
	Estimated 102	I Air Flow Rate Through Elutriator (ml/min)	1300
	Tot	al Mass of Dust Collected on Dust Filters (g)	0.00002
	Tin	ne of Dust Collection (24 hr clock) at 60 rpm	30 sec
		Start/Stop	N/A
	Estimated first-order rate co	onstants for dust generation (min ⁻¹) at 60 rpm	2
	Samples from the Isokinetic Sampl	ing Tube (IST) Opening of the Dust Generato	r 60 rpm run
		Time of Collection (24 hr clock)	30 sec
		Start/Stop	N/A
	Es	timated Mass of Dust Collected on Filter (g)	0.00002
A 37 C	main the D	per la companya de la	
	<u>nudra, Ph. D.</u>	L	
Analyst		Stephen Siegel, C	CIH- Lab Manager

107 Haddon Ave., Westmont, NJ 08108

Order ID: 040006832

Asbestos Analysis via EPA Superfund Method for the Determination of Releasable Asbestos Fibers in Soils and Bulk Materials- EPA540-R-97-028

Attn:	David Nelson	Customer ID:	VERS96
	Versar Inc.	Customer PO:	
	6850 Versar Center	Received:	5/4/00 12:58 PM
	PO Box 1549	Report Date:	5/17/00
	Springfield, VA 22151		0/1//00
Fax:	703-642-6809	EMSL Order:	040006832
Project:	4600.008/EPA Vermiculite	EMSL Project ID:	
110,000		ENGLINGUL ID.	
Client Sa	mple# 90833		
	ample# 040006832-004		
Chrysotile	e Asbestos Analysis Results	Low	High
		Magnification	
No of	Total Chrysotile Asbestos Structures	N/A	<u>Magnification</u>
			0
	Long (>5 µm) Chrysotile Asbestos Structures	N/A	0
	Total Chrysotile Asbestos Fibers/Bundles	N/A	0
No. of	Long (>5 µm) Chrysotile Asbestos Fibers/Bundles	N/A	0
A 1. 11	La Alba Ara Alba Como La		
	le Asbestos Analysis Results		
	Total Amphibole Asbestos Structures	N/A	0
	Long (>5 µm) Amphibole Asbestos Structures	N/A	0
	Total Amphibole Asbestos Fibers/Bundles	N/A	0
No. of	Long (>5 µm) Amphibole Asbestos Fibers/Bundles	N/A	0
Amphit	pole Mineral Type-	N/A	N/A
ESTIMA	TED CONCENTRATIONS OF RELEASABLE ASB	ESTOS IN SAMPLE	
		Conc.	<u>95% UCL</u>
Total C	hrysotile Structures per g Sample	<413.63	<810.72
Total A	mphibole Structures per g Sample	<413.63	<810.72
	sbestos Structures per g Sample	<413.63	<810.72
	hrysotile Structures per g Sample	<413.63	<810.72
	mphibole Structures per g Sample	<413.63	<810.72
	sbestos Structures per g Sample	<413.63	<810.72
8		-10.00	5010,72
Estimat	ed Analytical Sensitivity: (structures/g)	<413.63	<810.72
	ED CONCENTRATIONS OF RELEASABLE ASBESTOS	IN RESPIRABLE	
DUST OF	SAMPLE		
		Conc.	<u>95% UCL</u>
Total Cl	hrysotile Structures per g Dust	<3,155,737,705	<6,185,245,902
	mphibole Structures per g Dust	<3,155,737,705	<6,185,245,902
	sbestos Structures per g Dust	<3,155,737,705	<6,185,245,902
	hrysotile Structures per g Dust	<3,155,737,705	<6,185,245,902
Long A	mphibole Structures per g Dust	<3,155,737,705	<6,185,245,902
	sbestos Structures per g Dust	<3,155,737,705	<6,185,245,902
÷		0,.00,.01,.00	0,100,270,002
Estimate	ed Analytical Sensitivity: (structures/g dust)	<3,155.737.705	<6,185,245,902
		h	
			-

<u>A.V. Samudra, Ph.D.</u> Analyst

÷.

Order ID: 040006832

Asbestos Analysis via EPA Superfund Method for the Determination of Releasable Asbestos Fibers in Soils and Bulk Materials- EPA540-R-97-028

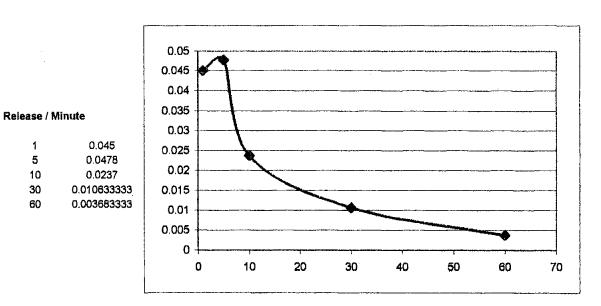
Attn:	David Nelson Versar Inc.	Customer ID: Customer PO:	VERS96
	6850 Versar Center PO Box 1549	Received: Report Date:	5/4/00 12:58 PM 5/17/00
Fax: Project:	Springfield, VA 22151 703-642-6809 4600.008/EPA Vermiculite	EMSL Order: EMSL Project ID:	040006832
		Data Analysia Startad	<i>5 1</i> 0 10 0
		Date Analysis Started	5/9/00 5/10/00
		Date Analysis Completed Lab Sample #	040006832-0005
		Field Sample ID Number	90844
		Field Prepartation Technique	N/A
		Additional Lab Preparation Procedures	
		Sample Drying	Yes
		Sample Splitting	N/A
		Other	1012
		TEM Analysis	
		Effective Area of Analytical Filter (sq mm)	385
		Magnification	19,000X
		Grid Opening Area (sq mm)	0.0061
		Number of G.O. Scanned	10
	Asbestos	Structure Size and Type Categories of Interest	>0.5µ Length
	·	Minimum Acceptable Structure ID Category	<0.5µ Diameter >5:1 Aspect Ratio Amphiboles/Chrysotile >0.5µ Length <0.5µ Diameter
		Durt Commenter	>5:1 Aspect Ratio
		Dust Generator Mass of Semple Tumble (c)	20 7251
	Air Flow Rate Th	Mass of Sample Tumble (g) ough ME opening of Dust Generator (ml/min)	29.7354 1500
		rough IST opening of Dust Generator (ml/min)	1300
		Air Flow Rate Scrubber (ml/min)	N/A
	Estimated To	tal Air Flow Rate Through Elutriator (ml/min)	1300
	т	otal Mass of Dust Collected on Dust Filters (g)	0.00087
		ime of Dust Collection (24 hr clock) at 60 rpm	30 sec
	-	Start/Stop	N/A
	Estimated first-order rate	constants for dust generation (min ⁻¹) at 60 rpm	2
S		pling Tube (IST) Opening of the Dust Generate	
	• • • • • • • • • • • • • • • • • • • •	Time of Collection (24 hr clock)	30 sec
		Start/Stop	N/A
		Estimated Mass of Dust Collected on Filter (g)	0.00087
		11-	
<u>A.V. Sami</u>	<u>udra, Ph. D.</u>		
A 121VET		Stombon Viogol /	

<u>A.V. Samudra, Ph. D</u> Analyst

 $\mathcal{A}_{\mathcal{A}}$

Order ID: 040006832

Asbestos Analysis via EPA Superfund Method for the Determination of Releasable Asbestos Fibers in Soils and Bulk Materials- EPA540-R-97-028


A 44	Devid Malace	G () m	
Attn:	David Nelson Versar Inc.	Customer ID:	VERS96
	6850 Versar Center	Customer PO: Received:	5/4/00 10.50 DX 6
	PO Box 1549		5/4/00 12:58 PM 5/17/00
	Springfield, VA 22151	Report Date:	5/1//00
Fax:	703-642-6809	EMSL Order:	040006832
Project:	4600.008/EPA Vermiculite	EMSL Project ID:	040000852
110,000.		EMOL FIOJECT ID.	
Client Sa	mple# 90844		
EMSL Sa	ample# 040006832-005		
Chanadil	A-bastan Amelia Develo		
Chrysonia	e Asbestos Analysis Results	Low	High
No. of	Total Characterile Asherta Co	<u>Magnification</u>	<u>Magnification</u>
	Total Chrysotile Asbestos Structures	N/A	0
	Long (>5 µm) Chrysotile Asbestos Structures	N/A	0
	Total Chrysotile Asbestos Fibers/Bundles	N/A	0
No. of	Long (>5 µm) Chrysotile Asbestos Fibers/Bundles	N/A	0
Amphibo	le Asbestos Analysis Results		
	Total Amphibole Asbestos Structures	N/A	3
	Long (>5 µm) Amphibole Asbestos Structures	N/A	2
	Total Amphibole Asbestos Fibers/Bundles	N/A	2
	Long (>5 µm) Amphibole Asbestos Fibers/Bundles	N/A N/A	0
	bole Mineral Type-		•
лирии	Joie Minerar Type-	N/A	Actinolite/Richterite
ESTIMA ⁻	TED CONCENTRATIONS OF RELEASABLE ASB	ESTOS IN SAMPLE	
·		Conc.	<u>95% UCL</u>
Total C	hrysotile Structures per g Sample	<212.25	<416.02
	mphibole Structures per g Sample	636.76	1248.06
	sbestos Structures per g Sample	636.76	1248.06
	hrysotile Structures per g Sample	<212.25	<416.02
	mphibole Structures per g Sample	212.25	416.02
	sbestos Structures per g Sample	212.25	416.02
	~ ~ •		
Estimat	ed Analytical Sensitivity: (structures/g)	<212.25	<416.02
FSTIMAT	ED CONCENTRATIONS OF RELEASABLE ASBESTOS		
DUST OF		IN RESPIRABLE	
		Conc.	95% UCL
	hrysotile Structures per g Dust	<72,545,694	<142,189,561
	mphibole Structures per g Dust	217,637,083	426,568,683
Total A	sbestos Structures per g Dust	217,637,083	426,568,683
Long Cl	hrysotile Structures per g Dust	<72,545,694	<142,189,561
Long A	mphibole Structures per g Dust	145,091,389	284,379,122
	sbestos Structures per g Dust	145,091,389	284,379,122
-			
Estimate	ed Analytical Sensitivity: (structures/g dust)	<72,545,694	<142,189,561
		Acar	_

A.V. Samudra, Ph,D. Analyst

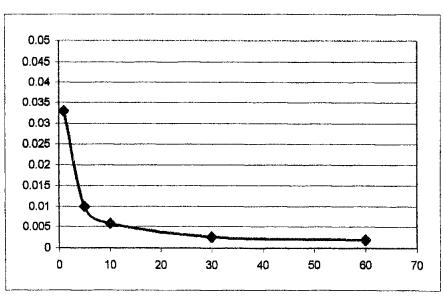
4

Stephen Siegel, CIH- Lab Manager Or other approved signatory

b

Sample ME Port Sample wt Final Tare 0.045 19.581 19.626 1 5 0.239 19.178 19.417 10 0.237 18.449 18.686 30 0.319 18.379 18.698

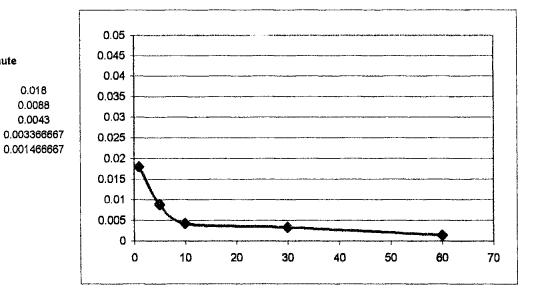
90813


0.221

60

IST Port	0.043	18.598	18.641

18.379


18.6

Sample	90831				
				Release / Mil	nute
ME Port	Sample wt	Tare	Final		
1	0.033	19.029	19.062	1	0.033
5	0.05	20.514	20.564	5	0.01
10	0.058	17.84	17.898	10	0.0058
30	0.075	18.782	18.857	30	0.0025
60	0.111	18.749	18.86	60	0.00185
IST Port	0.025	18.785	18.81		

ŝ

췹

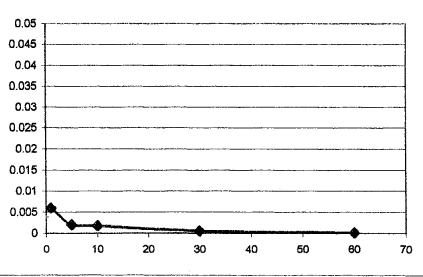
% 5:

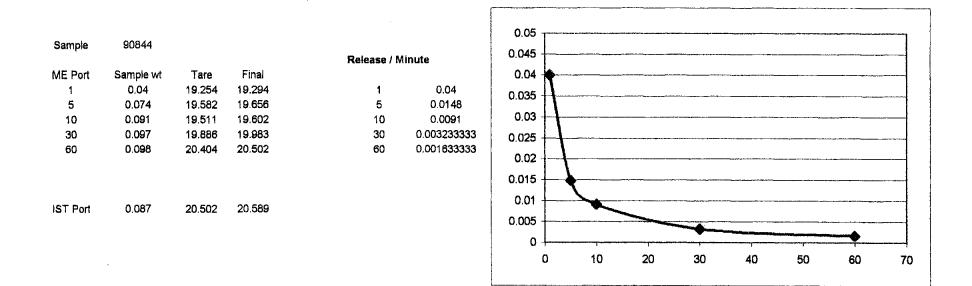
90832 Sample Sample wt Final ME Port Tare 0.018 19.683 19.701 1 19.448 19.492 0.044 5 0.043 19.432 19.475 10 30 0.101 19.901 20.002 60 0.088 20.375 20.463 19,163 IST Port 0.011 19,152

						1	
Sample	90833					0.05 -	1
•				Release / M	linute	0.045	ļ
ME Port	Sample wt	Tare	Final			0.04	
1	0.006	18.305	18.311	1	0.006		
5	0.01	19.439	19.449	5	0.002	0.035	
10	0.018	19.444	19.462	10	0.0018	0.03	ļ
30	0.016	20.982	20.998	30	0.000533333		
60	0.01	19.583	19.593	60	0.000166667	0.025	1
						0.02	┼─
						0.015	
IST Port	0.002	18.989	18.991			0.01	

.

Release / Minute


1


5

10

30

60

ς,

107 Haddon Ave., Westmont, NJ 08108

EMS Order ID: 040008582 Attu: Linda Phillips/David Nelson Customer ID: VERS96 Versar Inc. Customer PO: 6850 Versar Center Received: 06/01/00 3:00 PM PO Box 1549 Springfield, VA 22151 Fax: 703-642-6809 EMSL Order: 040008582 Project: 4600.008/EPA Vermiculite EMSL Project ID:

Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Analytical Electron Microscopy

Client Sample ID	EMSL Sample ID	Asbestos Weight%	Asbestos Type(s)	Ashed / Not Ashed
90831	040008582-1	BQL*	ND**	Not Ashed
90844 90847	040008582-2 040008582-3	BQL BQL	ND ND	Not Ashed Not Ashed

This analysis is on fine portion of sample after sieving with #10 and #35 sieves.

Key

*BQL = Below Quantitation Limit (0.1 weight%) **ND = None Detected

A.V. Samudra, Ph. D TEM Analyst

Stephen Siegel, CIH- Lab Manager Or other approved signatory

.

	Order ID:	040008582	EMS
Attn:	Linda Phillips/David Nelson Versar Inc.	Customer ID: Customer PO:	VERS96
	6850 Versar Center PO Box 1549 Springfield, VA 22151	Received:	06/01/00 3:00 PM
Fax:	703-642-6809	EMSL Order:	

EPA Protocol for Screening Soil and Sediment Samples For Asbestos Content Used by USEPA, Region 1 Laboratory (Rev May 24, 1994) Modified by EMSL (Sept 1999)

Client Sample ID	EMSL Sample ID	Location	<u>%</u> Asbestos
90831	040008582-1		None Detected
90844	040008582-2		None Detected
90847	040008582-3		None Detected

Samples were sieved to coarse, medium, and fine portions using #10 and #35 sieves.

David Poitras Analyst

4605

ž

icran a second		~			CHAIN OF CU	STODY	REC	:ORI	D						
ROJECT NO. 4001,005	PROJEC	T NAM	E ET	PA	VERMITCULITE			 #}	<u> </u>		PARA	METE	ERS	,	INDUGTRIAL" HYGIENE SAMPLE
AND VE AS //Sight	tube	m	 TT		MAD & NELSO	2									REMARKS
FIELD SAMPLE NUMBER	DATE	TIME	COM	GRAB	STATION LOCATION	4	/ 04	¥ {+	[]	[]	4	\square	/	\square	
8831					SEE REMARXS	1	4					<u> </u>	 		
70844					SECTION	1/1				_		 	_	 	
70847						12	¥								<u></u>
	+														
	1					_						+	_	 	
					·				$\left \right $				+	+	
		ļ					 				_+_				
				+									+	+	
				+			1					-			
			-+												
The Induished by	Ale Co	2	D=	na/Ti		R•	itrycpa is	hed I	by: (Sig	natura)		D	ete / *	Time	Received by: (Signeture)
Alinguished by Univer (Pringed) (Pringed) (Pringed) (Pringed) (Pringed) (Pringed) (Pringed) (Pringel)	werg	n	61		(Printed)	(Pi	inted)								(Printed)
Relinquished by:	: (Signature	100	00	00 (ate / T			Dat	11	emi	Remark BY	PIEN	zov	THU EP	E A A Q	WANTITATIVE
(Primed)					(Primed)			_1		<i>୍ବର</i> ୍ବତା	D JVE	ME	みん	DD JAL	ON FILE

ų 3

PALE

...

Order ID: 040009370

Attn:Linda Phillips/David Nelson
Versar Inc.
6850 Versar Center
PO Box 1549
Springfield, VA 22151Fax:703-642-6809
Project:4600.005/EPA Vermiculite

Customer ID: Customer PO: Received: VERS96

06/14/00 9:54 AM

EMSL Order: 040009370 EMSL Project ID:

Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Analytical Electron Microscopy

Client Sample ID	EMSL Sample ID	Asbestos Weight%	Asbestos Type(s)	Ashed / Not Ashed
68194	040009370-1	BQL*	Tremolite/Actinolite	Not Ashed

• This result is for TEM of fine portion of sample.

Asbestos amount in original sample based on this value, and ND in coarse and medium portions (by PLM) is <0.02% Tremolite/Actinolite.

• The samples was sieved to coarse, medium, and fine portions using #10 and #35 sieves.

Key *BQL = Below Quantitation Limit (0.1 weight%)

<u>A.V. Samudra, Ph. D</u> TEM Analyst

IMS

107 Haddon Ave., Westmont, NJ 08108

Order ID: 040009370

Attn:Linda Phillips/David Nelson
Versar Inc.
6850 Versar Center
PO Box 1549
Springfield, VA 22151Fax:703-642-6809
Project:4600.005/EPA Vermiculite

Customer ID: Customer PO: Received: VERS96

06/14/00 9:54 AM

MS

EMSL Order: EMSL Project ID: 040009370

EPA Protocol for Screening Soil and Sediment Samples For Asbestos Content Used by USEPA, Region 1 Laboratory (Rev May 24, 1994) Modified by EMSL (Sept 1999)

<u>Client Sample ID</u>	EMSL Sample ID	Location	<u>%</u> <u>Asbestos</u>
68194	040009370-1		< 0.19% Tremolite

- Samples were sieved to coarse, medium, and fine portions using #10 and #35 sieves.
- Final Asbestos result reported is based on ND in coarse and medium portions, <1% Tremolite in fine portion by PLM.

Scott Combs Analyst

Stephen Siegel, CIH- Lab Manager Or other approved signatory

4596

 \tilde{n}

Wersar

CHAIN OF CUSTODY RECORD

PROJECT NO. 460/.005	PROJE	CT NAN	^{ne} E	PA	VERN	UIC	ULITE			/. k	/		P/		AETEI	RS		INDUSTRIAL HYGIENE SAMPLE	Y N
SAMPLERS: ISignat	urey A	m			(Printed)	O Þ	Verse	N	OF CONT	, Me								PEMARKS	
FIELD SAMPLE NUMBER	DATE	TIME	COMP.	GRAB	STA	TION L	OCATION			Na /								REMARKS	
68194	G 13 2	2			ZONOLI	TE C FAG	MATCRIA	21	ν								FAC BOTH	S FROM OM OF BAG	
						·····												· · · · · · · · · · · · · · · · · · ·	
······					·····														2 40
	.																	म रु:	1 1 1 1 1 1 1 1
																		A.	9 1a
Ann	P A.																		
elinquished by: (si	mathfe)	6	Date 13/00	/ Time 157	Receive	d by: /s	ignature)	Reli	nquist	ed by:	(Signi	ature)			Date	/ Tim	ne Rec	eived by: (Signature)	
AVGA A.	Vas	x G	13/00	15	(Printed))		(Prin	ted)		· , ,					.	(Prin	nted)	
lelinquished by: <i>(Sig</i>	nature)		Date	/ Time	(Signatur	d for La e) ÅLl#1	boratory by:		Date	/ Time	Re	emark	" P2	EA	SE	51	Æ	STEVE	
Printed)					(Printed) 5 M		Carson						J. AL	AL	MAL VSI FD	- h S TH	PRET	SPECIFIC D-TO BE HDE35 50	255

Distribution : Orininal Plus One Accompanies Shinmant Judite and vellows: Conv to Coordinator Eigld Siles Ininks

107 Haddon Ave., Westmont, NJ 08108

Phone: (609) 858-4800 Fax: (609) 858-4960 Email: ssiegel@EMSL.com

VERS96	

Attn:	Linda Phillips/Dave Nelson Versar Inc. 6850 Versar Center			Customer ID: Customer PO:	VERS96
	PO Box 1549 Springfield, VA 22151			Received:	05/26/00 12:17 PM
Fax: Project:	703-642-6809 4601.005/EPA WIMSATT	Phone:	703-642-6889	EMSL Order: EMSL Project ID:	040008279
				Analysis Date:	5/30/2000

Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM), Selected Area Elec Diffraction (SAED), and Energy Dispersive X-Ray Microanalysis (EDX) - Performed by EPA Level II Method.

	Volume	Asbestos	# Str	uctures	Analytical Sensitivity	Concern	Concentration	
Sample	(liters)	Type(s)	Asbestos	Non-Asb.	(S/cc)	(S/mm²)	S/cc	Notes
AMS-001-A 040008279-0001	1264	Amosite	1	4	0.0050	16.39	0.0050	Fiber is greater than 5 microns in length
AMS-002-A 040008279-0002	1330	None Detected		0	0.0047	<16.39	<0.0047	
AMS-003-A 040008279-0003	337	None Detected		0	0.0187	<16.39	<0.0187	
AMS-004-A 040008279-0004	355	None Detected		0	0.0178	<16.39	<0.0178	
AMS-005-A 040008279-0005	359	None Detected		0	0.0176	<16.39	<0.0176	
AMS-006-A 040008279-0006	355	None Detected		0	0.0178	<16.39	<0.0178	
AMS-007-A 040008279-0007	63	None Detected		0	0.1002	<16.39	<0.1002	
AMS-008-A 040008279-0008	63	None Detected		0	0.0998	<16.39	<0.0998	

Anant Samudra

Analyst

Stephen Siegel, CIH or other approved signatory

Disclaimers: The laboratory is not responsible for data reported in structures/cc, which is dependent on volume collected by non-laboratory personnel. This report may not be duplicate, except in full, without written permission by EMSL Analytical, Inc. This report must not be used to claim product endorsement by NVLAP or any agency of the U.S. Givernm nt. This report relates only to the samples reported above. Quality control data (including 95% confidence limits and laboratory and analysts' accuracy and precision) is an labele pon request.


diter for NVLAP PLM/TEM #101048-0, NY ELAP #10872

Page 1

107 Haddon Ave., Westmont, NJ 08108

Phone: (609) 858-4800 Fax: (609) 858-4960 Email: sslegel@EMSL.com

Fiber Analysis of Air Samples via NIOSH 7400, Revision 3, Issue 2, 8/15/94

EMS

Sample	Location	Sample Date	Volume	Fibers	Fields	LOD (fib/cc)	Fibers/ mm ²	Fibers/ cc Notes	
AMS-001-A		5/25/2000	1264.40	16.0	100	0.002	20.38	0.006	
040008279-0001									
AMS-002-A	····	5/25/2000	1329.75	6.5	100	0.002	8.28	0.002	
040008279-0002									
AMS-003-A	······	5/25/2000	337.18	10.0	100	0.008	12.74	0.015	
040008279-0003									
AMS-004-A		5/25/2000	354.60	<5.5	100	0.008	<7.0	<0.008	
040008279-0004									
AMS-005-A		5/25/2000	358.52	<5.5	100	0.008	<7.0	<0.008	·
040008279-0005									
AMS-006-A	·····	5/25/2000	355.46	<5.5	100	0.008	<7.0	<0.008	
040008279-0006									
AMS-007-A		5/25/2000	63.00	<5.5	100	0.043	<7.0	<0.043	
40008279-0007									
AMS-008-A	,,, _,	5/25/2000	63.21	<5.5	100	0.043	<7.0	<0.043	
40008279-0008									
AMS-009-A		5/25/2000	0.00	<5.5	100		<7.0	Field Blank	
40008279-0009									
MS-010-A		5/25/2000	0.00	<5.5	100		<7.0	Field Blank	
40008279-0010									
MS-011-A	·····	5/25/2000	0.00	<5.5	100 ·		<7.0	Field Blank	
40008279-0011							·····		
							6-		
Tom Beer									

107 Haddon Ave., Westmont, NJ 08108

Phone: (609) 858-4800 Fax: (609) 858-4960 Email: ssiegel@EMSL.com

Attn:	Linda Phillips/Dave Nelson Versar Inc. 6850 Versar Center			Customer ID: Customer PO:	VERS96
	PO Box 1549 Springfield, VA 22151			Received:	05/26/00 12:17 PM
Fax: Project:	703-642-6809 4601.005/EPA WIMSATT	Phone:	703-642-6889	EMSL Order: EMSL Project ID:	040008279
				Analysis Date:	5/29/2000

Fiber Analysis of Air Samples via NIOSH 7400, Revision 3, Issue 2, 8/15/94

Sample	Location	Sample Date	Volume 1	Fibers	Fields	LOD (fib/cc)	Fibers/ mm²	Fib ers / cc	Notes	
AMS-012-A		5/25/2000	0.00	<5.5	100		<7.0		Field Blank	
040008279-0012										

Tom Beer

æ

Analyst

Stephen Siegel, CIH or other approved signatory

Limit of detection is 7 fibers/mm². The laboratory is not responsible for data reported in fibers/cc, which is dependent on volume collected by non-laboratory personnel. This report relates only to the samples reported above. This report may not be reproduced, except in full, without written approval by EMSL. Analysis performed by EMSL Westmont (NY State ELAP #10872)

v

Versar

PROJECT NO. 4661. OCS	PR	OJE	CT NAN	AE ,	ET	ÐĄ	-1/0	EXHICUL	ITE				7	Z	Z	۹ (ر	ARA	METI	ERS			INDUSTR HYGIENE SA		Y
SAMPLERS: Isington	le	ŀ	n Sen				(Prin	med) Dentes &	· . De	E.Son	<u> </u>	/8	Circuments	J.		/		/	/			REMAR		
FIELD SAMPLE NUMBER	DA	TE	TIME			GRAB		STATION L	DCATION	4		e'/(Le la	Ŷ	'		'			//		NEWARI	V9	
AMBOOI-A	sp	5k					hê	E AIR SAN	uPUE	PATA	1	V	1	Í	Í				<u> </u>	ſ				
AWKINZ-B		Ĺ					5	HEET												1				
AMG003-A																								
AMS CO4-A																			 	ŧ			<u></u>	
ANG-005-19													1						 			ទ		
BU15 006 73				Γ	Τ								1		†				<u> </u>			FAY	<u>E</u> (?)	- 2015.
BM16-007-B				Ι								╏		1					<u>†</u>	<u> </u>			5	1
AUG-008-78													1	1					-	<u> </u>				
BMG-009-18													-	1						<u> </u>	•••••• <u>•••</u> ••	N N N N N N N N N N N N N N N N N N N		1
AM4-010-B													1	†						 				
AU45011-10										/			-	1						<u> </u>				
BU14-012-D		/					١	J		$-\sqrt{-}$		忕	\uparrow	1	<u>}</u>					<u> </u>				
Flejinguishet by sign	e une		1 5/2	1	1 1	/ Tim	1	Received by: (S	gnature)		Rel	inqui	shed b	l Iy: (Sig	nature,	,		Dat	ie / Ti	ime	Receive	d by: <i>(Signatu</i>	re)	
AVID A-N	EL.	Er	5	25	100	1 13		(Printed)			(Prii	nted)							i		(Printed)			
Relinquished by: (Sign	nature	e)		Da	ite /	/ Tim	ne	Received for La (Signature) SMUM	boratory	by:		Dat	• / Tir	ne 1	Remar	ks	PCI	M	Ç	TE	in	EPA UGUEL STZE S	π	
(Printed)								(Printed)							¥	RE	Por	2T	- F	TBE	FR	SIZE	5*	

Distribution: Original Plus One Accompanies Shipment (white and vellow): Conv to Coordinator Field Filer (pipe)

3

Wersar.

ASBESTOS AIR SAMPLE DATA

Versar Job No
Project Manager. LIUMA PHEULTAS
Date: 5 / 25 / 00 Shift:
Collection Method: NITH THOO / EAN LEVEL I
Sample Media: . 45/.8 WLE 25 mm

Client:	EPA	
Sample	Location: 2	THI SATT
Samples	s Collected by	Y: D. NELSON
Analyze	for: Fabers	ABESTOS
Temp:	750	/Rel. Humid://a

SAMPLE DATA

Sample No.	ANAG-ODI-A	AM11-002-A"	AH44-203-A	AUN-204-A	ANA DOS 18	ANIS-006 B
Pump No.	1.669	1679	1669	1679	1666	1663
Time On	0955	0955	1432	1432	1432	1432
Time Off	1210	1210	1508	1508	1508	1508
Total Time (min.)	135	135	36	36	36	36
Flow Rate (LPM)	9.36b	9.850	9.366	9.850	9.959	9.874
Volume (liters)	1264.41	1329.75	337.06	354.60	358.52	355.46
Fibers/Fields]				05
Detection Limit						MA (7)
Results f/cc						N JT
				**************************************	**************************************	
Analyst		ſ				
QC Recounts (f/cc)		· ·				
		÷			the second se	

SAMPLE LOCATION

	нт	LOC	TYP	PH	ABT	SAM
IN THE CONTRIAMENT	58	I	A	5		NA
INTE CONTRACT	50	I	A	5	_	NA
INSIDE CALTIFUMENT	50	T	Δ	RI	-	24
THEOR CONTRANGET	50	I	A	M	-	UN
ONTSTOL CONTRACT	50	0	A	ш		UN
DUTSEDE CUTRENELY	50	0	A	M	-	in
	IN SIDE CONTRIANSET IN SIDE CONTRIANSET IN SIDE CONTREAT IN SIDE CONTRANSAT DUTSIDE CONTRIANENT DUTSIDE CONTRIANENT	IN THE CANTAINENT 50 IN THE CANTAINENT 50 IN THE CANTAINENT 50 IN THE CANTAINMENT 50 IN THE CANTAINMENT 50 OUT 1330E CANTAINENT 50	IN THE CANTERINGT 50 I IN THE CANTERNEET 50 I IN THE CANTERNEET 50 I IN THE CANTERNEET 50 I IN THE CANTERNEET 50 I OUT 13306 CANTERNEET 50 I	INTINE CONTRIBUNCT 50 I A INTINE CONTRIBUNCT 50 I A INTINE CONTRIBUMENT 50 I A INTROF CONTRIBUMENT 50 I A INTROF CONTRIBUTION 50 I A	INTERCONTRIBUTIONS 50 I A 5 INTERCONTRIBUTED 50 I A 5 INTERCONTRIBUT 50 I A R INTERCONTRIBUT 50 I A R OUTSIDE CONTRIBUT 50 I A M	IN THE CANTAGANET 50 I A 5 - IN THE CANTAGANEAT 50 I A 5 - IN THE CANTAGANEAT 50 I A R1 - IN THE CANTAGANEAT 50 I A R1 - CANTAGOE CONTAGNAMENT 50 I A M -

Height (HT)

QC Analyst

noight (ini)	
Location (LOC):	I = Inside Work area 0 = Outside work area
Type (TYP):	G = General Area P = Personal A = Ambient B = Field Blank
Phase (PH):	S = Pre-Start R = Removal E = Establish Containment C = Cleanup F = Final air
Abatement (ABT):	FP = Fireproofing CT = Ceiling Tiles FT = Floor Tiles Bi = Boiler
	TP = Transite Panel AC = Acoustical Ceiling Texture M = Adhesive Mastics
	R = Roofing Materials PI = Pipe Lagging MI-MIXIALS VERMEENLITE
Sampling (SAM):	AG = Aggressive NA = Non-Aggressive

Note: All Personal Samples Must Have Worker Name and Social Security Number.

ADD SAMPLE COLLECTED DUATAGE MIXENG OF HONTICULTURAL VERMELITE Comments:_ ACHULTZ .

L:\TEMPLATE\ASBESTOS\AASD.TMP

Wersar...

ASBESTOS AIR SAMPLE DATA

Versar Job No. 4601. 005	
Project Manager, LEANDA MILLEAS	
Date: 5 1251 00 Shift:	
Collection Method: NIOGH 1400/EAN LEVEL I	
Sample Media: . 45 / B MEE 25 mm	-

Client_EM
Sample Location: WINSHTT
Samples Collected by: D. N. ELSON
Analyze for: Graces Aspessos
Temp: 75° /Rel. Humid: 81%

SAMPLE DATA

Sample No.	AN15-007-A	AMS-008	AN15-009	AMS-010-	Aus-oll T	AXIS-DZ
Pump No.	584372	584733			-	
Time On	1435	1475	PLANK !!!	BEAR (4)) BINNIA.8	Bererel. 8)
Time Off	1505	1505				
Total Time (min.)	30	30			¢	
Flow Rate (LPM)	2.100	2.107				
Volume (liters)	63	63.21				<u>, 250</u>
Fibers/Fields						Y Erry
Detection Limit						<u>?</u>
Results f/cc						

Analyst			
QC Recounts (f/cc)			
QC Analyst			

SAMPLE LOCATION

Sample No.		нт	LOC	TYP	PH	ABT	SAM
AMIS-007A	PERSONAL ON DAVIS NELLON	2016	H.	P	N		¥1
115-008-A	PERSONAL ON DAVIS NELSON PERSONAL ON DAVIS NELSON	HERIK PAE	T	p	м		NA

Type (TYP):	G = General Area P = Personal A = Ambient B = Field Blank
Phase (PH):	S = Pre-Start R = Removal E = Establish Containment C = Cleanup F = Final air
Abatement (ABT):	
×	TP = Transite Panel AC = Acoustical Ceiling Texture $M = Adhesive Mastics$ R = Roofing Materials PI = Pipe Lagging $M - MI \times IMG$
Sampling (SAM):	AG = Aggressive NA = Non-Aggressive

Note: All Personal Samples Must Have Worker Name and Social Security Number.

Comments:_____

107 Haddon Ave., Westmont, NJ 08108

Phone: (609) 858-4800 Fax: (609) 858-4960 Email: ssiegel@EMSL.com

Attn: David Nelson Customer ID: VERS96 Versar Inc. Customer PO: 6850 Versar Center Received: 05/27/00 9:41 AM PO Box 1549 Springfield, VA 22151 703-642-6809 Fax: Phone: 703-642-6889 EMSL Order: 040008375 Project: 4601.005 EMSL Project ID: Analysis Date: 5/30/2000

Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), and Energy Dispersive X-Ray Microanalysis (EDX) - Performed by EPA Level II Method.

	Volume	Asbestos	# Stri	ictures	Analytical Sensitivity	Concer	tration	
Sample	(liters)	Type(s)	Asbestos	Non-Asb.	(S/cc)	(S/mm²)	S/cc	Notes
AMS-013A 040008375-0017	359	None Detected		0	0.0176	<16.39	<0.0176	
AMS-014A 040008375-0018	365	None Detected		0	0.0173	<16.39	<0.0173	
AMS-015A 040008375-0019	355	None Detected		0	0.0178	<16.39	<0.0178	1 <u></u>
AMS-016A 040008375-0020	337	None Detected		0	0.0187	<16.39	<0.0187	
AMS-017A 040008375-0021	67	Tremolite	1	2	0.0935	16.39	0.0935	Fiber is greater than 5 microns ir length
AMS-018A 040008375-0022	60	None Detected		0	0.1047	<16.39	<0.1047	
AMS-019A	378	None Detected		0	0.0167	<16.39	<0.0167	· · · · ·
AMS-020A 040008375-0024	375	None Detected		0	0.0168	<16.39	<0.0168	
AMS-021A 040008375-0025	276	None Detected		0	0.0229	<16.39	<0.0229	· · · · · · · · · · · · · · · · · · ·
Anant Samudra Analyst							or other app	Siegel, CIH roved signatory
Disclaimers: The laboration duplicated, except in full, Government. This report available pon request. As redited for NVLAP PL.	without written relates only to t	permission by EMSL A	above. Quality o	This report must	not be used to claim r	product endorsemen	t by NVIAP or a	inv agency of the U.S.
al ha ha a ta	MLevel -1							Page

107 Haddon Ave., Westmont, NJ 08108

Phone: (609) 858-4800 Fax: (609) 858-4960 Email: ssiegel@EMSL.com

Attn:	David Nelson Versar Inc. 6850 Versar Center PO Box 1549 Springfield, VA 22151			Customer ID: Customer PO: Received:	VERS96 05/27/00 9:41 AM
Fax: Proiect:	703-642-6809 4601.005	Phone:	703-642-6889	EMSL Order:	040008375
,				EMSL Project ID: Analysis Date:	5/30/20 00

Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), and Energy Dispersive X-Ray Microanalysis (EDX) - Performed by EPA Level II Method.

	Volume	Asbestos	# Stn	uctures	Analytical Sensitivity	Concent	tration	
Sample	(liters)	Type(s)	Asbestos	Non-Asb.	(S/cc)	(S/mm²)	S/cc	Notes
AMS-022A 040008375-0026	328	Actinolite	5	٥	0.0192	81.97	0.0961	This result is for all length fibers.
AMS-022A 040008375-0033	328	Actinolite	4	0	0.0192	65.57	0.0769	This result is for fibers 5 microns a greater in length.
AMS-023A 040008375-0027	67	Actinolite	8	0	0.0942	131.15	0.7536	This result is for all fiber lengths.
AMS-023A 040008375-0034	67	Actinolite	7	0	0.0942	114.75	0.6594	This result is for fibers 5 microns a greater in length.
AMS-024A 040008375-0028	61	Actinolite	6	0	0.1043	98.36	0.6255	This result for all fiber lengths.
AMS-024A 040008375-0035	61	Actinolite	4	0	0.1043	65.57	0.4170	This result is for fibers 5 microns a greater in length.
5.1		·····						

Anant Samudra

Analyst

Stephen Siegel, CIH or other approved signatory

Disclairners: The laboratory is not responsible for data reported in structures/cc, which is dependent on volume collected by non-laboratory personnel. This report may not be duplicated, except in full, without written permission by EMSL Analytical, Inc. This report must not be used to claim product endorsement by NVLAP or any agency of the U.S. Government. This report relates only to the samples reported above. Quality control data (including 95% confidence limits and laboratory and analysts' accuracy and precision) is pon request. ilab

or NVLAP PLM/TEM #101048-0, NY ELAP #10872

VILevel II-1

107 Haddon Ave., Westmont, NJ 08108

Phone: (609) 858-4800 Fax: (609) 858-4960 Email: ssiegel@EMSL.com

Attn:	David Nelson Versar Inc. 6850 Versar Center PO Box 1549 Springfield, VA 22151			Customer ID: Customer PO: Received:	VERS96 05/27/00 9:41 AM
Fax: Project:	703-642-6809 4601.005	Phone:	703-642-6889	EMSL Order: EMSL Project ID: Analvsis Date:	040008375 5/30/2000

Fiber Analysis of Air Samples via NIOSH 7400, Revision 3, Issue 2, 8/15/94

		Volume I	Fibers	Fields	LOD (fib/cc)	Fibers/ mm²	Fibers/ cc	Notes
	5/25/2000	358.52	<5.5	100	0.008	<7.0	<0.008	
	5/25/2000	365.34	<5.5	100	0.007	<7.0	<0.007	, <u>, , , , , , , , , , , , , , , , , , </u>
								<i>,</i>
	5/25/2000	354.60	34.0	100	0.008	43.31	0.047	· · · · · · · · · · · · · · · · · · ·
	5/25/2000	337.18	18.5	100	0.008	23.57	0.027	
	5/25/2000	67.47	51.0	100	0.040	64.97	0.371	······································
······	5/25/2000	60.30	15.0	100	0.045	19.11	0.122	
	5/25/2000	378.40	9.5	100	0.007	12.1	0.012	
	5/25/2000	375.21	8.0	100	0.007	10.19	0.011	
	5/25/2000	276.09	<5.5	100	0.010	<7.0	<0.010	
	5/25/2000	328.49	72.0	100	0.008	91.72	0.108	<u> </u>
	5/25/2000	62.00	61.0	100	0.043	77.71	0.482	
						Π.		
					/			
					. 1	o		n Siegel, CIH proved signatory
		5/25/2000 5/25/2000 5/25/2000 5/25/2000 5/25/2000 5/25/2000 5/25/2000 5/25/2000	5/25/2000 354.60 5/25/2000 337.18 5/25/2000 67.47 5/25/2000 60.30 5/25/2000 378.40 5/25/2000 375.21 5/25/2000 276.09 5/25/2000 328.49	5/25/2000 354.60 34.0 5/25/2000 337.18 18.5 5/25/2000 67.47 51.0 5/25/2000 60.30 15.0 5/25/2000 378.40 9.5 5/25/2000 375.21 8.0 5/25/2000 276.09 <5.5	5/25/2000 354.60 34.0 100 5/25/2000 337.18 18.5 100 5/25/2000 67.47 51.0 100 5/25/2000 60.30 15.0 100 5/25/2000 60.30 15.0 100 5/25/2000 378.40 9.5 100 5/25/2000 375.21 8.0 100 5/25/2000 276.09 <5.5	5/25/2000 354.60 34.0 100 0.008 5/25/2000 337.18 18.5 100 0.008 5/25/2000 67.47 51.0 100 0.040 5/25/2000 60.30 15.0 100 0.045 5/25/2000 60.30 15.0 100 0.007 5/25/2000 378.40 9.5 100 0.007 5/25/2000 375.21 8.0 100 0.007 5/25/2000 276.09 <5.5	5/25/2000 354.60 34.0 100 0.008 43.31 5/25/2000 337.18 18.5 100 0.008 23.57 5/25/2000 67.47 51.0 100 0.040 64.97 5/25/2000 60.30 15.0 100 0.045 19.11 5/25/2000 378.40 9.5 100 0.007 12.1 5/25/2000 375.21 8.0 100 0.007 10.19 5/25/2000 276.09 <5.5	5/25/2000 354.60 34.0 100 0.008 43.31 0.047 5/25/2000 337.18 18.5 100 0.008 23.57 0.027 5/25/2000 67.47 51.0 100 0.040 64.97 0.371 5/25/2000 60.30 15.0 100 0.045 19.11 0.122 5/25/2000 378.40 9.5 100 0.007 12.1 0.012 5/25/2000 375.21 8.0 100 0.007 10.19 0.011 5/25/2000 276.09 <5.5

EMSL

......

EMSL

107 Haddon Ave., Westmont, NJ 08108

Phone: (609) 858-4800 Fax: (609) 858-4960 Email: ssiegel@EMSL.com

Attn:	David Nelson Versar Inc. 6850 Versar Center PO Box 1549 Springfield, VA 22151	·		Customer ID: Customer PO: Received:	VERS96 05/27/00 9:41 AM
Fax: Project:	703-642-6809 4601.005	Phone:	703-642-6889	EMSL Order: EMSL Project ID: Analysis Date:	040008375

Fiber Analysis of Air Samples via NIOSH 7400, Revision 3, Issue 2, 8/15/94

Sample	Location	Sample Date	Volume Fibers	Fields	LOD (fib/cc)	Fibers/ mm²	Fibers/ cc Notes	
AMS-024-A		5/25/2000	60.54 42.5	100	0.044	54.14	0.344	
040008375-0012	2							
AMS-025-A		5/25/2000	<5.5	100		<7.0	Field Blank	
040008375-0013	3							
AMS-026-A		5/25/2000	<5.5	100		<7.0	Field Blank	
040008375-0014	4							
AMS-027-A		5/25/2000	<5.5	100		<7.0	Field Blank	
040008375-0015	5							
AMS-028-A		5/25/2000	<5.5	100		<7.0	Field Blank	
040008375-0016	5							

Tom Beer

à,

Analyst

IN

Stephen Siegel, CIH or other approved signatory

Limit of detection is 7 fibers/mm². The laboratory is not responsible for data reported in fibers/cc, which is dependent on volume collected by non-laboratory personnel. This report relates only to the samples reported above. This report may not be reproduced, except in full, without written approval by EMSL. Analysis performed by EMSL Westmont (NY State ELAP #10872)

PCM-1

2 of 2

PROJECT NO.	PROJE	CT NAN	NE (ED X	-USPHISCHITE	7		P		METE	= D C		T	INDUSTRIAL	Y			
4601.005								/ 2/						-113 7	, ,		HYGIENE SAMPLE	N
SAMPLERS: (Signate)				(F	Printed)	1	17		S/ Z	Ŧ	/			· /	' /			
Mara Ma	lar	1			VAVED A. LEESC	K	/ है	·/w	(₁₂)/	· /	, ,	/	/	/		/	REMARKS	
FIELD SAMPLE NUMBER	DATE	TIME	COMP.	GRAB	STATION LOCATION	4	8 9 7	11 E T.	Y,			/	/	· /	/			
1415-013-18	5Kicht			ļ	HE ANR SAMPLE	\overline{l}	1.	FT	2 /		- {		/	$\left[\right]$	<u> </u>			
BAUS-014-12	· ·				DATA SHEET												<u> </u>	
BAUS 1015-A					-													
AUS-016-13		····•																
AUS-01778															1			
ANIS-018 P															†			
MUS-019-D		_													 			
AUS-DZO A															 			
AUS-021-8															<u> </u>			
BUS ON 18											-				1			
PAUS DL3A															 			
ALLO DULA						V	U				-				<u> </u>			
Flelinguished by: (sign	aryrd)	5/	Date	/ Time / //AC	Received by: (Signature)	Reli	inqui	hed by:	(Signa	ture)	k -		Dat	e / Ti	ime	Receiv	ed by: <i>(Signature)</i>	
(DAVED) HE.	Des	alte	ziolit	0 1730	(Printed)		nted)					†		k		(Printed	1)	
Relinquished by: (Sign				/ Time	Received for Lappratory by:	I.M.	Date	/ Time	Rei	marks		R.		5	2 1	เลาเ	1 1924	
(Printed)				1	(Signature) (Printed)			1	-	À	£C	PER		FT	Bor	512	I GAA LEVERIT ES	

Distribution - Original Plus One Accompanies Shinmant Justice and vellowit: Conv. to Coordinator Eigld Eller Initia

Ŷ,

PROJECT NO.		CT NAM	ME	Þ.	BEWTEINTE		PARAMETERS										INDUSTRIAL HYGIENE SAMPLE	Y N
SAMPLERS: (Signatu	lele	en			(Printed) DMIN & LEESON	J		Anne 20		ŢŢ,			/	/ /			REMARKS	
FIELD SAMPLE NUMBER	DATE	TIME	COMP.	GRAB	STATION LOCATION	4		Ŵ	$\langle \rangle$		/			/ /			nemanya	
ASUS-025-B	5 per la				HEC ATR SPARE	1	L											
Alls all -A			_	┟──┟	DATA SHEET													
DAUS DZ7B			ļ															
AMS-0100			_	 		V												
			ļ														· · · · · · · · · · · · · · · · · · ·	
			 															
			 				ļ											
·						 												
		·																
	9																	
Helinquished by fig	hatture) M	- 5/	1 1	/ Time /730		Reli	nquis	hed by	: (Sigi	nature)	1		Dat	e / Ti	me	Receiv	ed by: (Signature)	
(Printed)	ksa		1 1	17	(Printed)	(Prin	ited)							<u>_</u>		(Printed	1)	
Relinquished by: (Sign	nature)		Date	/ Time	Received for Laboratory by; (Signature)		Date	/ Time	e A	lemari	ks <	R	24	Ę	TB	FUN	IF STRES	
(Printed)				•	(Printed)			L	1			ć	ĘP,	A	LE	Ē	II-	
									I	7	×	PC	non	7 7	FF	FR	STRES	

Distribution: Orininal Plus One Accompanies Shinment (white and vellow): Conv to Coordinator Field Eiler (airth)

Wersar.

ąs.

ASBESTOS AIR SAMPLE DATA

Versar Job No. 4601.005
Project Manager: LINDA IMILLIAS Date: 05/26/00 Shift:
Collection Method: NICIH 7400 /EFA LEVELT
Sample Media: 45/. Buce 25mm
(

Client: CPA
Sample Location: USAIT
Samples Collected by: D. NELSCH Analyze for: TIBPS AS BESTDS
Analyze for: FIBERS/ AS BESTOS
Temp: <u>12</u> /Rel. Humid: <u>50</u> /p

SAMPLE DATA

Sample No.	PH19-013-A	AH14-014-1	ANIA CHIX	MUL-CHE-A	1044-017-10	A815019
Pump No.	1666	1663	11069	1679	5347372	534340
Time On	1117	1117	1120	11:20	11:20	1120
Time Off	1153	1194	1176	11:56	11:50	1150
Total Time (min.)	36	37	36	24	30	30
Flow Rate (LPM)	9.959	9.874	9.850	9.36C	2.249	2.010
Volume (liters)	358.52	365.373	354.60	327.176	67.47	60.3
Fibers/Fields						
Detection Limit	· .					
Results f/cc		· · · · · · · · · · · · · · · · · · ·				

Analyst			
QC Recounts (f/cc)			
QC Analyst			

SAMPLE LOCATION

Sample No.		нт	LOC	түр	PH	ABT	SAN
AUGOJA	OUTSIDE CONTAILING	50	0	Δ	M	-	NX
AMB CHI-A	OUTSSEE CONTACTAGE	50	0	A	24	-	NA
415-015-A	TUSINE CONTAGINET	50	T	A	24		NA
4115 U16-A	TUSTOE CONTATIONEUT	50	I	A	141	_	IX
115-017-6	PERSENTLON DAVID NELSON	BLEATH FILE	II4	P	m		NA
XIS US TA	PERSONAL ON DAVID DEESON	BREATH		P	m		is

Height (HT)

Location (LOC):	I = Inside Work area 0 = Outside work area
Type (TYP):	G = General Area P = Personal A = Ambient B = Field Blank
Phase (PH):	S = Pre-Start R = Removal E = Establish Containment C = Cleanup F = Final air
Abatement (ABT):	FP = Fireproofing CT = Ceiling Tiles FT = Floor Tiles Bi = Boiler
Å	TP = Transite Panel AC = Acoustical Ceiling Texture M = Adhesive Mastics R = Roofing Materials PI = Pipe Lagging $M - MI KTAG$
Sampling (SAM):	AG = Aggressive NA = Non-Aggressive

Note: All Personal Samples Must Have Worker Name and Social Security Number.

Comments:	SAMPLES	COLLECTED DURTAG	MIXIAG	OF	HOFF MAL'S HOFTHNER
VERMICIL	ITÉ				

L:\TEMPLATE\ASBESTOS\AASD.TMP

Wersar....

ASBESTOS AIR SAMPLE DATA

Versar Job No. 4601.005
Project Manager. HAUCA PHALLEPS
Date: 5 1261 00 Shift:
Collection Method: NEOSH 7400/EPA LEVEL I
Sample Media: . 45/. 9 MCE 25 mm

Client: EPA Sample Location: WIMSPTT Samples Collected by: D. NELSON Analyze for: ISTERS/MIDENTS Temp: 72° [Rel. Humid: 31%]

SAMPLE DATA

Sample No.	RIM-CR-A	AMISORA	AX15021-1A	AUS-OZA	4415-D23-A	AUS-OCH-
Pump No.	16de	1663	1669			53433Z
Time On	1510	1510	1514	1514	1515	1515
Time Off	1543	1548	1551	1551	1545	1545
Total Time (min.)	38	38	37	37	30	30
Flow Rate (LPM)	9.959	9.374	7.462	3.378	2.084	2.018
Volume (liters)	378,442	375.212	276.09	328,486	62	60.54
Fibers/Fields						
Detection Limit						
Results f/cc						

Analyst			
QC Recounts (f/cc)			
QC Analyst			

SAMPLE LOCATION

Sample No.		HT	LOC	ТҮР	PH	ABT	SAN
AUG-019-AC	ansine constructure	58	0	A	n		LA
W15-02014	WISDE CULTASKMENT	5'8	C	A	M	-	in
US-021-A	USDE CUITITUIEUT	50	I	A	ш	-	NO
115-02-01-	WSHE CONTRINENT	5'0	I	A	M	-	ix
415-023-10V	CREWAL	BAANAA ZUNE	T	R	M	-	1
W and	ERSOLAL	BREATHE		A	m		LA
					1		

neight (mr)	
Location (LOC):	l = inside Work area
Type (TYP):	G = General Area P = Personal A = Ambient B = Field Blank
Phase (PH):	S = Pre-Start R = Removal E = Establish Containment C = Cleanup F = Final air
Abatement (ABT):	FP = Fireproofing CT = Ceiling Tiles FT = Floor Tiles Bi = Boiler
	TP = Transite Panel AC = Acoustical Ceiling Texture M = Adhesive Mastics
*	R = Roofing Materials PI = Pipe Lagging
Sampling (SAM):	AG = Aggressive NA = Non-Aggressive

Note: All Personal Samples Must Have Worker Name and Social Security Number.

Comments: <u>HAMPLES COLLECTED</u> DURTALS MIXING OF ZOLOLITE

Wersar.

æ

ASBESTOS AIR SAMPLE DATA

Versar Job No. 4601. COS
Project Manager: LILING PHILLIPS
Date: 6 126100 Shift:
Collection Method: 1545H 7400/EAA LAEC IL
Sample Media: 45 /. THE 25 MM
/

Client: CAB
Sample Location: 205 XISATI
Samples Collected by: D. DECSCU Analyze for: FFARS ASBESTS
Analyze for: FFF292 ASBESTES
Temp: 720 /Rel. Humid: 50%

SAMPLE DATA

Sample No.	AUG-025	A MIS-OZET	ANISTRA	Ax15-0287	8	
Pump No.	TERMENIC.	BIRDYC	ANUS DEAL	BERNIC		
Time On	. ४	.४	-45	.45		
Time Off						
Total Time (min.)						
Flow Rate (LPM)						
Volume (liters)						
Fibers/Fields						
Detection Limit						
Results f/cc						

Analyst			
QC Recounts (f/cc)			
QC Analyst			

SAMPLE LOCATION

Sample No.		нт	LOC	ТҮР	PH	ABT	SAM
WIS-075-A	BIHEIK			B			
bus-ories	EL PUIL						
BUJ-02710	BERANIC						
AUS-025A	BLANK BLANK BLANK			\mathcal{V}			
					•		

Location (LOC):I = Inside Work areaO = Outside work areaType (TYP):G = General AreaP = PersonalA = AmbientB = Field BlankPhase (PH):S = Pre-StartR = RemovalE = Establish ContainmentC = CleanupF = Final airAbatement (ABT):FP = FireproofingCT = Ceiling TilesFT = Floor TilesBi = BoilerTP = Transite PanelAC = Acoustical Ceiling TextureM = Adhesive MasticsR = Roofing MaterialsPI = Pipe LaggingSampling (SAM):AG = AggressiveNA = Non-Aggressive

Note: All Personal Samples Must Have Worker Name and Social Security Number.

Comments:_____

L:\TEMPLATE\ASBESTOS\AASD.TMP

Page 1

EMSL Analytical, Inc.

VLAP PLM/TEM#101046-0, NY ELAP#10672

TEMLevel II-1

107 Haddon Ave., Westmont, NJ 08108 Phone: (696) 658-4600 Fax: (608) 555-4960 Email: ssiegel@EMSL.com

Attn:	Linds Phillips/Dave Nelson			Customer ID:	VERS96
	Versar Inc. 6850 Versar Center			Customar PO: Received:	07/12/00 10:17 AM
	PO Box 1549 Springfield, VA 22151			NBCLIVEN.	
Fax:	703-642-6809	Phone:	703-642-6889	EMSL Order:	040011455
Project	4601.005/EPA Vermiculite			EMSL Project iD:	
-				Analysis Date:	7/13/2000

Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), and Energy Dispersive X-Ray Microanalysis (EDX) - Performed by EPA Level II Method.

	Volume	Asbertos	# Stri	ictures	Analytical Sensitivity	Çonce	ntration				
Sample	(liters)	Type(s)	Asbestos	Non-Asb.	(S/cc)	(S/mm²)	S/cc	Notes			
AMS-040-A 040011465-0001	1124	None Datected		٥	0.0058	<16.39	<0.0056				
AMS-041-A 040011455-0002	1182	None Detected		0	0.0053	<16.39	<0.0053				
AMS-042•A 040011465-0003	403	None Detected		0	2.6341	<2755.20	<2.6341	Sample was analyzed by indiract prep. ash and resuspend. 2% of sample was filtered for analysis.			
AMS-043-A 040011465-0004	424	None Detected		0	2.5044	<2755.20	<2.5044	Sample was analyzed by indirect prep, ssh and resuspend. 2% of sample was filtered for analysis.			
AMS-044-A 040011455-0005	448	None Detected		1	0.0141	<16.39	<0.0141				
AMS-045-A 040011455-0008	444	None Detected	·····	1	0.0142	<16.39	<0.0142				
AMS-047-A 040011455:0007	56	None Detected		1	15.0428	<2755.20	<16.0428	Sample was analyzed by indirect prap, ash and reauspand. 2% of sample was fillered for analysis.			
Debbie Little		· · · · · · · · · · · · · · · · · · ·									
Analyst						<u> </u>		Slegel, CIH roved signatory			

М

07 Hadd	Analytical, Inc. on Ave., Westmont, NJ 08108 609) 868-4800 Fex: (609) 85	B-4960 1	Email: sslegel@EMSL.c	om		
Attn:	Linda Phillips/Dave Nelson			Customer ID:	VERS96	
	Versar Inc. 6850 Versar Center			Customer PO: Received:	07/12/00 10:17 AM	
	PO Box 1549 Springfield, VA 22151					
ax:	PO Box 1549 Springfield, VA 22151 703-642-6809	Phone:	703-642-6889	EMSL Order:	040011455	
ax: Project:	Springfield, VA 22151	Phone:	703 -642 -6889	EMSL Order: EMSL Project ID:	040011455	

Fiber Analysis of Air Samples via NIOSH 7400, Revision 3, Issue 2, 8/15/94

Sample	Location	Sample Date	Volume)	Fibers	Fleids	LOD (fib/cc)	Fibers/ mm²	Fibers/ cc	Notes
MS-040-A		7/11/2000	1124.00	<5.5	100	0.002	<7.0	<0.002	
40011455-0001									
MS-041-A		7/11/2000	182.00	<5.5	100	0.015	<7.0	<0.015	
40011455-0002									
MS-042-A		7/11/2000		,, <u>.</u>					Ovarloaded
40011455-0003	. •								•
MS-043-A		7/11/2000							Overloaded
140011455-0004									
MS-044-A	· · · · · · · · · · · · · · · · · · ·	7/11/2000	448.15	<5.5	100	0.008	<7.0	<0.006	<u> </u>
40011455-0005									
MS-045-A		7/11/2000	444.33	<5.5	100	0.006	<7.0	<0.006	
40011455-0008									
MS-047-A		7/11/2000						•	Overloaded
40011455-0007									
MS-048-A		7/11/2000	0.00	<5.5	100		<7.0		Field Blank
40011455-0008									
MS+049-A		7/11/2000	0.00	<5.5	100		<7.0		Field Blank
40011455-0009									
MS-050-A		7/11/2000	0.00	<5.5	100		<7.0		Field Blank
40011455-0010									
MS-051-A		7/11/2000	0.00	<5.5	100	••••••	<7.0		Finald Bilgeruk
40011455-0011	•								· ·
Dave Stanhop	0								
Analyst							or		n Siegel, CIH proved signatory

Wersar

CHAIN OF CUSTODY RECORD

- 4

ф 1

÷

PROJECT NO. HOLOGS	PRO	DJEC	TNAM	E E	PA	-K	eus	CHITE					/.	Z	,	P	ARAI	AETI	ERS				TRIAL SAMPLE	Y
SAMPLERS / thorn	an					(Print		1. Mas	n/			7		5/5				/	/			REMA	BKC	-
C FIELD Sample Number	DA 1	TE	TIME	COMP.	GRAB			ATION LOCAT	-		/\$	đ /		R)		/		/	/	/		13 6 417		
AMILADIDA	1/11	60				hÉ	E A	the spon	Ale		1	~	T							ſ				
BUGOHTA	11					7	ATA	SHEE	T			Π	1						†		<u></u>			
M14-042-18						/																		
1415-093-18													1	*						†		707	្រា	
BW15-044-B													1							 			C.5	\odot
841504578													1						 		·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
BAISOHOB																			 	1			· · · · · · · · · · · · · · · · · · ·	
BMS-0478													1						•			۵۰۰۰۰۰ جانبیه موجو		
BUS-048-8													1	†					 	1	:			
BMS-049-18																			• • • • •	1	·			
AMIS USD-PR														*						<u>†</u>			· · · · · · · · · · · · · · · · · · ·	
BASTSFR		Ζ							7	\langle		$\overline{1}$						•••••		1				
Felinguined by 154	forure.	}	7/	Date	/ Tin		Receiv	ed by: <i>(Signe</i> a	ure)		Rei	inqui	phed b	y: (sig	meture,	}		Dat	te / T	ime	Receive	ed by: <i>(Sig</i> r	Naturs)	
(Pringed)	He.	Sau	17		0	730	(Printer	1)			(Pri)	nted)		·			_				(Printed		<u> </u>	
Relinguished by: /Sig	natura			Data	/ Tir		Receivi (Signati	ad for Labora wej	tory by:			Date	Tin	19	Remar	ks <	RC1	Ч	E	TE	m	CPA	- II 18-110	
(Printed)		,			- -		Printeo	1}							,				*		ζ	EVEL		5
								e figer e		39073-0004					Ker	ER	GAT	- 1	Ħ	62	SEZ	ES .	48-110	NR

4598

PAGE

83

PAGE 04

ASBESTOS	AIR	SAMP	LE	DAT	٢A
----------	-----	------	----	-----	----

Versar Job No. 4601. 005	Client_EPA
Project Manager LIVOA PHILLIPS	Sample Location: WIMDATT
Date: 7 111 100 Shint: 19451	Samples Collected by: This out Soul
Collection Method: North Than CALLER	Analyze for TOBES ANBERTOS
Sample Media: 45 / Bunn Me Some CABETES	Temp: 850 /Rel. Humid: 58%

SAMPLE DATA

Sample No.	ANDOLDA	PALA -04/18	AMADRA	AM4-043-A	MADE	MAL OKA
Pump No.	1669	1679	Ildo 9	1679	1666	1663
Time On	· 1130	1130	1421	1421	1412	1412
Time Off	1330	1330	1504	1504	1457	1457
Total Time (min.)	120	120	. 43	43	45	45
Flow Rate (LPM)	9.366	9.850	9.366	9.850	9.159	9.874
Volume (liters)	1124	1192	402.1	423.55	448.155	
Fibers/Fields						-
Detection Limit						
Results f/cc						

Analyst				
QC Recounts (f/cc)		-	1. Z. P	
QC Analyst	•			

SAMPLE LOCATION

Sampin No.		нт	LOC	117	71	ART	SAN
AMUPOLOS	SUMSDE CONTROUMENT	55	I	A	5	-	LA
AUSAIA	TWEEDE CONTRACT	50	I	A	5	-	10
ANIA-AR-A	TUSTOE CONTRACT	5'0	I	A	M		RA
All Of S. B	INSTOR CONTAINANT	50	T	Å	M	-	AN
1915-144-A	antitle cantaguillert	50	0	A	M	-	art
Aubors A	ant stor containing	50	0	A	M	-	io

Location (LOC): Type (TYP): Phase (PH): Abatement (ABT): I = Inside Work area Q = Outside work areaG = General Area P = Personal A = Ambient B = Field Blank $S = Pre-Start R = Removal E = Establish Containment C = Cleamup F = Final air <math>M = M / 2C_{F}$ FP = Firsproofing CT = Celling Tales FT = Floor Tiles Bi = Boilter TP = Transite Panet AC = Acoustical Celling Texture M = Adhesive Mastics R = Roofing Materials PI = Pipe Lagging

Sampting (SAM): AG = Aggressive NA = Non-Aggressive

Note: All Personal Samples Must Have Worker Name and Social Security Number.

Comments: ALL SAMPLES COLLECTED TURING MIXING OF SCOTTS VERMENTE- MATERIAL WAS VERY DUST

LITEMPLATEASBESTOSVASO, TMP

F = Final ar

ASBESTOS	AIR	SAMPLE	DATA
----------	-----	--------	------

.

. . .

Versar Job No	Client CPA	
Project Manager KTUDA ANSULAS	Sample Location: USMSATT	
Bate: 7/11/00 Shift 19057	Samples Collected by DAVD	LESON
Collection Method: 1/1054 7400 / EPA LEVIC IL	Analyze for FRANS ASSETTOS	a see adays a maria
Sample Media: . 45 1. 7 mm MCE 25mm CHARTES	Temp: 810 /Rel. Humid;	

Sample No.	ANNY OUGA	ANK -0471	BM50480	BMS-049-8	1 105-0507	Arisost					
Pump No.	805	801	BLAUK	BLACK	BLAUK	BERNK					
Time On	1421	1421	14 5400	#TELINE	- Burn	- 8mm					
Time Off	1451	1451				· · ·					
Total Time (min.)	30	30				·					
Flow Rate (LPM)	2.078	2.204									
Volume (liters)	62.34	66.12									
Fibers/Fields	1										
Detection Limit	VOID					-					
Results f/cc		·····									

The second secon	 · · · ·	and the second s			
Analyst					
			· · · · ·		
QC Recounts (f/cc)					
			·····		
QC Analyst				•	·

SAMPLE LOCATION

Sample No.			нт	LOC	TYP	PH	ANT	TAM
AN15-04-1	RESOLAL ON DAVIO NELSON	VOLOT BE	詞に	YI	P	24		LA
AUS-047A	PERSONAL OU DAVID LESSU	1862	201	T	P	x		11
ANGORA	TERUK		-	Ð	B	M		M
MS-0-18-A	BLAUK		-	0	$\overline{\mathfrak{V}}$	24		LA
				Ð	B	M	-	14
KHIS-05HO	BLANK			0	B	m		1.44
	······································							

Height (HT) Location (LOC): a Inside Work area. 0.= Outside work area Type (TYP): G = General Area P = Personal A = Andrient B = Field Blank Phase (PH): S = Pre-Start R = Removal E = Establish Containment C = Cleanup Abatement (ABT): FP = Fireproofing CT = Ceiling Tiles FT = Floor Tiles Bi = Baller $\label{eq:transite Panel AC = Acoustical Celling Texture M = Adheave Mastics R = Rooting Materials Pi = Pipe Lagging$

Sampling (SAM):

э.

AG = Aggressive NA = Non-Aggressive

Note: All Personal Samples Must Have Worker Name and Social Security Number.

Comments: "TUBE BECAME DETACHED DURTHE SAMPLETAG PERIOD

LITEMPLATEASBESTOSIAASD.TMP

EMSL ANALYTICAL INC

7/13/2000

PAGE 01/04

EMS

EMSL Analytical, Inc.

107 Haddon Ave., Westmont, NJ 08106

Phone: (609) 868-4800 Fax: (609) 868-4960 Email: sslegel@EM8L.com

Attn:	David Nelson Vərsar Inc. 6850 Vərsar Cənter			Customer ID: Customer PO:	VERS98
Fax:	PO Box 1549 Springfield, VA 22151			Received:	07/13/00 4;36 PM
Project:	703-642-6809 EPA-VERMICULITE	Phone:	703-642-6889	EMSL Order: EMSL Project ID;	040011572

Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), and Energy Dispersive X-Ray Microanalysis (EDX) - Performed by EPA Level II Method.

Analysis Date:

. .	Volume		# Structures		Analytical Sensitivity	Concentration			
Sample	(liters)	Type(s)	Asbestor	Non-Asb.	(S/cc)	(S/mm ³)	S/cc	Notes	
AMS-052-A 040011572-0001	423	None Detected		0	1. 0047	<1103.19	<1.0047	Sample was enalyzed by indirect prep, ash and resuspend. 5% of sample was filtered for analysis.	
AMS-053-A 040011572-0002	424	None Detected		0	1.0028	<1103.19	<1.0028	Sample was analyzed by indirect prop. ash and resuspend. 5% of sample was filtered for analysis.	
AMS-054-A 040011572-0003	418	None Detected		C	0.0151	<16.39	<0.0151		
AMS-055-A 040011572-0004	415	None Detected		0	0.0152	<16.39	<0.0152		
AMS-056-A 040011572-0005	65	None Detected		0	3.2868	<551.41	<3.2868	Sampla was analyzad by indirect prap, ash and nacuspand. 10% of sample was filtered for analysis.	
AMS-057-A 040011572-0008	65	None Detected		0	6.5605	<1103.19	<6.5805	Sample was analyzed by indirect prep, ash and resuspend. SW of asmple was littered for analysis,	
AMS-058-A 040011572-0007	403	None Detected		0	0.5271	< 551 .41	<0.5271	Sample wés analyzed by indirect prép, ash and résuspend. 10% of semple was filtered for analysis.	
MS-059-A 040011572-0008	424	None Detected		0	0.5012	<551.41	<0.5012	Sample was analyzed by indirect prep, ash and resuspend. 10% of sample was filtered for analysis.	
MS-060-A 40011572-0009	418	None Detected		Ð	0.0151	<16,39	<0.0151		
Anant Samudra		· · · · · · · · · · · · · · · · · · ·				P	v		
Analyst						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Stephen : ir other appre	Siegel, CIH oved signatory	

dited or NVLAP PLM/TEM #101048-0, NY ELAP #10872

TEMLevel II-1

A Maintana

Page 1

EMSL Analytical, Inc. 107 Haddon Ave., Westmont, NJ 08108 .MS Phone: (609) 888-4800 Fax: (609) 858-4960 Email: salegel@EMSL.com Attn: David Neison Customer ID: VERS96 Versar Inc. Customer PQ: 6850 Versar Center PO Box 1549 Received: 07/13/00 4:36 PM Springfield, VA 22151 Fax: 703-642-6809 Phone: 703-642-6889 EMSL Order: 040011572 Project: EPA-VERMICULITE EMSL Project ID; Analysis Date: 7/13/2000 Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), and Energy Dispersive X-Ray Microanalysis (EDX) - Performed by EPA Level II Method. Analytical Volume Athestos # Structures Sensitivity **Concentration** (liters) Sample Type(s) Asbestos Non-Asb. (S/cc) (S/mm²) \$/cc Notes AMS-061-A 415 None Detected ٥ 0.0152 <16.39 <0.0152 040011572-0010 AMS-062-A 61 None Detected 0 3.4654 <551.41 <3.4654 Sample was analyzed by indiract prop, ash and resuspend 10% of sample was filtered for analysis. 040011572-0011 AMS-063-A 62 None Detected 0 3.4302 <551.41 <3.4302 Semple was enalyzed by indirect prep, ash and resuspend, 10% of sample was filtered for analysis. 040011572-0012 ч, Anant Samudra Analyst Stephen Siegel, CIH or other approved signatory Diactaimers: The taboratory is not reaponsible for data reported in structures/oc, which is dependent on volume collected by non-leboratory personnel. This report may not be duplicated, except in full, without written permission by EM8L Analytical, inc. This report must not be used to claim product endorsement by NVLAP or any agency of the U.S. Government. This report relates only to the semples reported above. Quality control data (including 95% confidence limits and laboratory and energists) accuracy and precision) is NVLAP PLM/TEM #101048-0, NY ELAP #10872 TEMLevel II-1 Paga 2

i d

EMSL ANALYTICAL INC

107 Hadi	L Analytical, Inc. don Ave., Westmont, NJ 0810 (809) 858-4800 Fax: (809)		Email: asiegei@EMSL.co	Ditz		EMSL
Attn:	David Nelson Versar Inc.			Customer (D: Customer PO:	VERS98	
	6850 Versar Center PO Box 1549 Springfield, VA 22151			Received:	07/13/00 4:36 PM	
Fax: Project:	703-642-6809 EPA-VERMICULITE	Phone:	703-642-6889	EMSL Order: EMSL Project ID:	040011572	
				Analysis Date;	7/13/2000	

Fiber Analysis of Air Samples via NIOSH 7400, Revision 3, Issue 2, 8/15/94

Sample	Location	Sample Date	Volume	Fibers	Fields	LOD (fib/cc)	Fibers/ mm²	Fibers/ cc	Notes
AMS-052-A	-	7/13/2000				·····			Overloaded
040011572-0001									
AMS-053-A		7/13/2000			· · ,	···			Dverloaded
40011572-0002									
MS-054-A		7/13/2000	418.28	13.0	100	0.006	16.56	0.015	7
40011572-0003								0.010	
AMS-055-A		7/13/2000	414.71	12.0	100	0.006	15.29	0.014	
40011572-0004							10.20	0.014	
MS-058-A		7/13/2000			····	·····			Overloaded
40011572-0005							•		
MS-057-A		7/13/2000							Overloaded
40011572-0008									
MS-058-A		7/13/2000	<u> </u>			•	·		Overloaded
40011 57 2-0007									
MS-059-A		7/13/2000							Overloaded
40011572-0008									
MS-080-A		7/13/2000	418.28	7.0	100	0.006	8.92	0.008	
10011572-0009									
MS-061-A		7/13/2000	414.71	10.5	100	0.006	13.38	0.012	
\$0011572-0010									
MS-082-A		7/13/2000							Overloaded
10011572-0011		····							
Tom Beer				-		l	1/2		
Analyst						<u> </u>		other appr	Siegel, CIH oved signatory
Limit of detection le relates only to the si Analysis performed (7 fibers/mm*. The lab amples reported above by EMSL Weetmont (N	oratory la not responsible for day I. This report may not be reprod IV State ELAP #10872)	te reported in luced, except	fibera/cc, v In full, with	which is depa sout written s	andent on volume pprovel by EMSL	collected by no	R-laboratory	personnel. This repart
	PCM-1				•••••••••••••••••••••••••••••••••••••••				1 of 2
I in Lalinia A	۹								_

107 Hadi	Analytical, Inc. don Ave., Westmont, NJ 0810 (009) 858-4800 Fax: (609		Email: selegel@EMSL.com			EMSL
Attn:	David Nelson Versar inc. 6850 Versar Center			Customer ID: Customer PO:	VERS96	
	PO Box 1549 Springfield, VA 22151			Received:	07/13/00 4:36 PM	
Fax:	703-642-6809	Phone:	703-642-6889	EMSL Order:	0.400.4	
^o roject:	EPA-VERMICULITE			EMSL Project ID:	040011572	1
				Analysis Date:	7/13/2000	

Sample	Location	Sample Date	Volume	Fibers	Fields	LOD (flb/cc)	Flbers/ mm²	Fibers/ cc	Notes		
AMS-063-A	· · · · ·	7/13/2000									
040011572-0012									Overloaded		
AMS-064-A		7/13/2000	0.00	<5.5	100	·····	<7.0		Fleid Biegk	· · · · · · · · · · · · · · · · · · ·	-
040011572-0013							S7.0		LIGIC BISUK		. A
AMS-065-A		7/13/2000	0.00	<5.5	100		<7.0		Field Blank		्रिहर
040011572-0014							-7.0				. "
AMS-066-A		7/13/2000	0.00	<5.5	100		<7.0		Field Blank		-
040011572-0015							-1,0				
AMS-067-A		7/13/2000	0.00	<5.5	100		<7.0	·	Field Blank		
040011572-0016							-7.0		012518		

Steve Slegel

 \mathcal{A}^{\prime}

Analyst

K

Stephen Slegel, CIH or other approved signatory

Limit of detection is 7 fibers/mm². The laboratory is not responsible for data reported in fibers/cc, which is dependent on volume collected by non-laboratory personnel. This report relates only to the samples reported above. This report may not be reproduced, except in full, without written approval by EM8L. Analysis performed by EM8L Westmont (NY State ELAP #10872)

PCM-1

2 of 2

ġ

4613

Versar

CHAIN OF CUSTODY RECORD

-

PROJECT NO. 401,005	PRO	SIEC	T NAM	E Å	Q - 1	len	GRANTEUL ITE				2	PARAMETERS							INDUSTRIAL Y HYGIENE SAMPLE N			Y N			
SAMPLERS Isfran	. /	n M	·			(Print)		ø.	Nas	zu)	_/	C. Conta	No. Contraction of the second									REMA	RKS		
FIELD SAMPLE NUMBER	DA	1	TIME	COMP,	GRAB	l	STA	TION	LOCATIO	N	ş		¥Ž.	Ŷ						\square					
AUL-062-18	7/12	100				49	e k	FR	- SAN	IRE	1	V													
AUG-053-A						Dx	TA	Sł	HEET	<u> </u>															
BUS-054-12									~											ļ			······		
AUS-055-12													 									07 JUL	- <u>7</u>		
BUS-056-12												\square							ļ	ļ				(). 100	
AUS-05778																		ļ						1 10 10 10 10 10 10 10 10 10 10 10 10 10	
BMS-058-18														 					ļ						
PMS-059-10								<u> </u>									_	 						، ۱۳۹۹ میں اندستا	
PAUS-060-18																ļ			ļ	<u> </u>					
pus-old-10														ļ		<u> </u>				<u> </u>	<u> </u>				
1945-060-12 19415-061-12 19415-062-12																									
DHUS-06310	1,	\mathbf{V}				\ \	<u>/</u>			V			′		1										
Ralinguished by: 15	gnate W		u 11	Date	17	- 1	Receiv	ed by:	: (Signature	, ,	fieli	inqui	shed b	n y: (Si	gnatur	e)		Da	1te / 1	lime	Receive	ed bry: (Sig	mature)		
(Brinted)				11		-	(Printed	.			(Prir	nted)									(Printed	1)			
6AMA	-	.So	N 7	12/00			Bassle	ad 6	Laborato	nu har	·	<u> </u>	e / Tir		<u> </u>			<u> </u>				<u></u> ,		<u> </u>	
Relinquished by: (S	ignatu	ne)		_ Dati) / Ti	e me	(Signati		rand a n	пу шу.		U a ti	• 7 10		KEUN	IIKI (R	CW	15	18	sm	- C	PA	ELE T	2
(Printed)					_		(Printe	d)			 		1										-		
	000000756					1			alaya ya Katala kata						×	K 5-1	OP	1 7	T	ПL.	214	<u>s</u> 2	-4-11	ULK TA	

ASBESTOS AIR SAMPLE DATA

Versar Job No. 4601.005
Project Manager: LINA MAULTS
The I II IN AN COMPANY
Collection Method: NTOSH 1400 / EPH LEVEL D
Sample Media: 45 1840 MCE 25 mon CHSUETTES

Client Eld	· · · · ·
Sample Location:	d'AUSHIT
Samples Collected	by PARTO A. MERSON
Analyze for Fast	s/ ASDESPOS
Temp: 85"	/Rel. Humid: 45%

SAMPLE DATA

Sample No.	MUS-058-A	MUSUAA	ANS OLD A	AUS-Cart A	AMS-002-A	AMS 04318
Pump No.	Ilde 9	1079	Idda	1663	803	802
Time On	1355	4355	135¥	1354	1756	1756
Time Off	1438	1438	1476	1436	1426 9	1426
Total Time (min.)	- 43	43	42	42	30 2	30
Flow Rate (LPM)	9.366	9.850	2.959	9.374	2.042	2.063
Volume (ilters)	402.738	423.55	419.278	414.708	61.26	61.07
Fibers/Fields					2	•
Detection Limit						
Results f/cc						<u> </u>

Analyst			 · · · · · · · · · · · · · · · · · · ·
QC Recounts (f/cc)			
QC Analyst			

SAMPLE LOCATION

Semple No.		нт	LOC	TYP	ЯH	ABT	SAM
AN15-058-1	SUBSDE CONTRACT	5'0	I	A	м		UX
AM5-059-A	THEFOG CONTATINUENT	58	I	A	М	-	10
EMIS-DID A	DUTSIDE CONTRIANENT	50	0	A	M	-	10
	PUMSFOR CONTOFICMENT	50	0	A	т		10
	REALENT ON DAVID NEED	BOHAR	I	P	M	-	NO
	PERSONAL ON DAVID NELSCO	Har Kart	II	P	m	-	10
Height (HT)			<u> </u>	<u> </u>	L	L	

J = Inside Work area 0 = Outside work area

G

Location (LOC): Type (TYP): Phase (PH): Abatement (ABT):

Sampling (SAM):

G = General Area P = Personal A = Ambient B = Field Blank	•
S = Pre-Start R = Removal E = Establish Containment C = Cleanup F = F	inal air.
FP = Fineproofing CT = Ceiling Tiles FT = Floor Tiles Bi = Boiler	\sim
TP = Transite Panel AC = Acoustical Ceiling Texture M = Adhesive Mastics	-
R = Roofing Materials PI = Pipe Lagging	
AG = Aggressive NA = Non-Aggressive	}

Note: All Personal Samples Must Have Worker Name and Social Security Number.

HAJER MIXTUR OF Comments: 1 BMALE allectral Took HONTSCHIMMAN VERNERVETE

ASBESTOS AIR SAMPLE DATA

Versar Job No. 4401.005
Project Manager. <u>AINON MILLIPS</u>
Date 7 1/1 109 Shift 12051
Collection Method: MOSH 1400 [EPA LEVEL II
Sample Media: 45/ Sum MEE ESum CASSETTES

Client: EPA Sample Location: ULIMSATT Samples Collected by: THVAN NELSON Analyze for. EDErs/ASDESTOS Temp:______850 /Rel. Humid: 95 K

F = Final air.

SAMPLE DATA

Sample No.	AH6-092-A	AMB-053-A	AMS OST B	AMBOSSA	AMIS-056-A	AUS-057-0
Pump No.	1669	1679	1666	1663	803	802
Time On	1034	4201	1033	1073	1037	1037
Time Off	1117	1117	1115	1115	1107	1107
Total Time (min.)	43	43	1/2	42	20	30
Flow Rate (LPM)	9.366	9.850	9.959	8.874	2.153	2.157
Volume (liters)	462.738	423.55	418.278	414.708	64.59	24.24
Fibers/Fields						
Detection Limit						
Results f/cc						
Analyst						S = 1
QC Recounts (1/cc)						ଦ୍ୟ 🐪
QC Analyst						

SAMPLE LOCATION

			нт	LOC	TYP	РН	ABT	SAM
Sample No.	INSIDE CONTAINMENT		50	I	Λ	14	~	NA
MIS-053-R	TUSTOC CONTRACT	- <u></u>	50	I	A	M	-	Ma
1115-054-A	artside CONTATUMENT		50	0	4	in	-	M
WIS-055-A	OUTSTOS COLTAGUADUT		50	0	4	M	-	14
MIS-036-A	AGESOLIAL ON DAVIO LECSOL	TAR		I	P	14	-	1A
4041S-057-18	PERSONAL ON ATTO NELSON	ÐH	cale	I	P	M	<u> </u>	M
Height (HT) Location (LOC); Fype (TYP):	l = Inside Work area O = Outside work area G = General Area P = Personal A = Ambler	nt 8 = Field	Biank	L	<u> </u>	1	[

Phase (PH): Abatement (ABT):

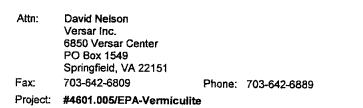
S = Pre-Start R = Removal E = Establish Containment C = Cleanup

FP = Fireproofing CT = Ceiling Tiles FT = Floor Tiles Bi = Bailer

TP = Transite Panel AC = Acoustical Ceiling Texture M = Adhesive Mastics R = Roofing Materials PI = Pipe Lagging

- Sampling (SAM): AG = Aggressive NA = Non-Aggressive

Note: All Personal Samples Must Have Worker Name and Social Security Number.


Comments: COULECT IN LI 1 P TAVE 7100 L VERMICHLIE MIXING JUNGLE GAOWTH ,

LITEMPLATEVASBESTOSVAASD. TMP

EMSL Analytical, Inc.

107 Haddon Ave., Westmont, NJ 08108

Phone: (609) 858-4800 Fax: (609) 858-4960 Email: ssiegel@EMSL.com

Customer ID: VERS96 Customer PO: Received: 07/14/00 10:30 AM

EMSL Order: 040011640 EMSL Project ID: Analysis Date: 7/15/00

Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), and Energy Dispersive X-Ray Microanalysis (EDX) - Performed by EPA Level II Method.

	Volume	Asbestos	# Structures		Analytical Sensitivity	Concer	tration		
Sample	(liters)	(liters)	Type(s)	Asbestos	Non-Asb.	(S/cc)	(S/mm²)	S/cc	Notes
AMS-068-A 040011640-0001	403	None Detected		0	0.0157	<16.39	<0.0157		
AMS-069-A 040011640-0002	424	None Detected		0	0.0149	<16.39	<0.0149	· · · · · · · · · · · · · · · · · · ·	
AMS-070-A 040011640-0003	418	None Detected		0	0.0151	<16.39	<0.0151		
AMS-071-A 040011640-0004	415	None Detected		0	0.0152	<16.39	<0.0152		
AMS-072-A 040011640-0005	58	None Detected		0	0.1096	<16.39	<0.1096		
AMS-073-A 040011640-0005	60	None Detected		0	0.1052	<16.39	<0.1052		

. .

Ron Mahoney

Analyst

Stephen Siegel

Stephen Siegel, CIH or other approved signatory

Disclaimers: The laboratory is not responsible for data reported in structures/cc, which is dependent on volume collected by non-laboratory personnel. This report may not be duplicated, except in full, without written permission by EMSL Analytical, Inc. This report must not be used to claim product endorsement by NVLAP or any agency of the U.S. Government. This report relates only to the samples reported above. Quality control data (including 95% confidence limits and laboratory and analysts' accuracy and precision) is available upon request. Acquidited or NVLAP PLM/TEM #101048-0, NY ELAP #10872

TEMLevel II-1

Page 1

EMSL Analytical, Inc.

107 Haddon Ave., Westmont, NJ 08108

Phone: (609) 858-4800 Fax: (609) 858-4960 Email: ssiegel@EMSL.com

Attn: David Nelson Versar Inc. 6850 Versar Center PO Box 1549 Springfield, VA 22151 Fax: 703-642-6809 Phone: 703-642-6889 Project: #4601.005/EPA-Vermiculite

Customer ID: VERS96 Customer PO: Received: 07/14/00 10:30 AM EMSL Order: 040011640 EMSL Project ID:

7/14/00

Analysis Date:

Fiber Analysis of Air Samples via NIOSH 7400, Revision 3, Issue 2, 8/15/94

Sample	Location	Sample Date	Volume	Fibers	Fields	LOD (fib/cc)	Fibers/ mm²	Fibers/ cc	Notes
AMS-068-A		7/13/00	402.70	14.0	100	0.007	17.83	0.017	
040011640-0001									
AMS-069-A		7/13/00	423.60	17.5	100	0.006	22.29	0.020	· · · · · · · · · · · · · · · · · · ·
040011640-0002									
AMS-070-A		7/13/00	418.30	<5.5	100	0.006	<7.0	<0.006	·····
040011640-0003									
AMS-071-A		7/13/00	414.70	<5.5	100	0.006	<7.0	<0.006	<u> </u>
040011640-0004									
AMS-072-A		7/13/00	57.60	5.5	100	0.047	7.01	<0.047	
0400116 <mark>40-00</mark> 05									
AMS-073-A		7/13/00	60.00	9.0	100	0.045	11.46	0.074	·
040011640-0006									
AMS-074-A		7/13/00	0.00	<5.5	100		<7.0		
040011640-0007									
AMS-075-A		7/13/00	0.00	<5.5	100		<7.0		
040011640-0008									
AMS-076-A	· · · · · · · · · · · · · · · · · · ·	7/13/00	0.00	<5.5	100	······	<7.0		······································
040011640-0009									
AMS-077-A		7/13/00	0.00	<5.5	100		<7.0		
040011640-0010									

Tom Beer

Analyst

Stephen Siegel, CIH

or other approved signatory

Limit of detection is 7 fibers/mm*. The laboratory is not responsible for data reported in fibers/cc, which is dependent on volume collected by non-laboratory personnel. This report relates only to the samples reported above. This report may not be reproduced, except in full, without written approval by EMSL. Analysis performed by EMSL Westmont (NY State ELAP #10872)

PCM-1

1 of 1

Versar

ä

CHAIN OF CUSTODY RECORD

project no. 46.01, 005	PRC	DJEC	CT NAM		FA	-Ve	ANDEULTE		PARAMETERS					INDUS HYGIENE		Y N				
SAMPLERS! Isigratu	A .		en	,		(Printe	di AVIM A. DEC	iscn)		O.O.COM	and the second	A A A A A A A A A A A A A A A A A A A		$\left[\right]$		$\left[\right]$				
FIELD SAMPLE NUMBER	DAT	E	TIME	COMP.	GRAB		STATION LOCATION		/*	8 2 2	A Carl	\$*/ 					/	REMARKS		
10116-068-10	1/13	In				ha	E BIR SAUPLE		l	ľ	PŤ	<u> </u>	\int				<u></u>		· · · · · · · · · · · · · · · · · · ·	
BMS-169-18						JAN 1	<u>DE SHEET</u>								†-			<u> </u>		
MIS OD-B																		5		
OMIS OTI-D																		JUL		
245-072-P																		¥	الا برج الجومين برج الجومين برج الجومين	
DM5-073-D																		1)# יקי		
mis 074-70																				1
15-08-10	`																	c	· · · · · ·	{
BUIS-076-12																				
BUS-079-12	Ń	/					V	\mathbf{V}	J	$\overline{\mathbf{V}}$								···• · ································		
																		•	······	
And	,,																			
Refinquisted by (sight			71	Date 13/10	/ Tin	•	leceived by: (Signature)		Reli	nquis	hed by:	(Signatur	e)		Date	/ Time	Recei	ved by: (Signa	ature)	
Printed)	/	1		; 3 / ao		(#	Printed)		(Prir	nted)		<u> </u>				k	(Printe	ed)	·····	
Relinquished by: (Sign				,	/ Tin	ne R	eceived for Laboratory b Signature)	γ: 		Date	/ Time	Rema	rks A	eN	Ę	Teu	1	EPA C	enter j	
(Printed)						F	Sharm Can	son				*	REPOP	rt .	FIB	ER G	NES	EPA C 24-14 TURUP	in Harris	

ASBESTOS AIR SAMPLE DATA

3400	1640
------	------

Versar Job No. 4601, 005
Project Manager: LINDA PHILUTAS
Date: 7113100 Shift: FRAST
Collection Method: NEOSH 140 / EFA LEVEL I
Sample Media: 45/ . Sum MCE 25mm COSSETTES

Client EPA	2011
Sample Location: WIMSAIT	
Samples Collected by: DAVIN	VESCO
Analyze for FIBERS/ASSES	5
Temp: 76° /Rel. Humid:	67%

SAMPLE DATA

Sample No.	AMIS all A	Anthall B	ANGOROA	An15-071-A	AUS-ON-A	AM15-073-10
Pump No.	1669	1679	1666	1663	803	802
Time On	1500	1500	1458	1458	1502	1502
Time Off	1543	1543	1540	1540	1532	1532
Total Time (min.)	.43	113	.42	42	70	30
Flow Rate (LPM)	9.366	9.850	9,959	9.874	1.921	2.00
Volume (liters)	402.738	423,55	418.278	414,708	57.63	60,0
Fibers/Fields		<u></u>	11010	11 11 100	57.05	00,0
Detection Limit			· ·			
Results f/cc						

Analyst				
QC Recounts (f/cc)	-	 	<u>a</u>	
QC Analyst				

SAMPLE LOCATION

Sample No.			нт	LOC	TYP	PH	ABT	SAM
WB-068-A	IN ASUE CONTRACT		5'3	I	A	M		NA
145-009-12	JUSIDE CONTRACT		55	I	A	M	_	NA
115-070-1	OUTSIDE CONTRACT		5'0	0	A	M	-	NA
15-571-72	OUTSFOR CONTAINENT		50	0	A	M	-	NA
MSOR-A	PERSONAL ON DAVIE NELSON	BR	あれれ	ING I	P	M		x1A
WS-073-K	PERSONAL ON DAVID NELSON	BREA	加盟	$\hat{Y}_{\mathcal{I}}$	P.	M	-	aB
sight (HT)								

 Location (LOC):
 I = Inside Work area
 0 = Outside work area

 Type (TYP):
 G = General Area
 P = Personal
 A = Ambient
 B = Field Blank

 Phase (PH):
 S = Pre-Start
 R = Removal
 E = Establish Containment
 C = Cleanup
 F = Final air
 M = MIATATA

 Abatement (ABT):
 FP = Fireproofing
 CT = Ceiling Tiles
 FT = Floor Tiles
 Bi = Boiler

 TP = Transite Panel
 AC = Acoustical Ceiling Texture
 M = Adhesive Mastics

 R = Roofing Materials
 PI = Pipe Lagging

 Sampling (SAM):
 AG = Aggressive
 NA = Non-Aggressive

Note: All Personal Samples Must Have Worker Name and Social Security Number.

Comments: <u>APMALE COLLECTEON TOOK</u>	LACE FURTAL MEGALE OF
Comments: <u>APMALE COLLECTEON TOOK RELLOG'S VERMICULITE- MATERIAL</u>	PRODUCED MODERNTE
	· · · · · · · · · · · · · · · · · · ·

L'ITEMPLATEVASBESTOSVAASD. TMP

Verzar

ASBESTOS AIR SAMPLE DATA

Versar Job No. 4601. 005
Project Manager. LILL AHTUTPS
Date: 7/13/00 Shift First
Collection Method: ATOSH 7400 CPB LEVEL I
Sample Media: 451. Sum UICE 25 Mum CASSETTES

Client ENA Sample Location: <u>UFWSDTT</u> Samples Collected by: <u>TAUSO DESOU</u> Analyze for: <u>FBGC ASBESTS</u> Temp: <u>76</u> [Rel. Humid: <u>67</u>%

SAMPLE DATA

Sample No.	150740	POUS OB-D	BAUS DOK-1	BAU OTTA		1
Pump No.	BLACK	Berek.	BLAUK	BLACK		+
Time On		. Isun	- Run	· Zum		
Time Off				0 4		+
Total Time (min.)		·		•		+
Flow Rate (LPM)						<u> </u>
Volume (liters)			· · ·			
Fibers/Fields						
Detection Limit						
Results f/cc	-1				******	<u> </u>

Analyst			
QC Recounts (f/cc)		 	
QC Analyst			

Semple No.		HT	LOC	TYP	PH	ABT	SAM
BUBOHB	B! AUK	-	0	B	M	<u>+ … · · · · · · · · · · · · · · · · · · </u>	14
BUSON-B.	BLAUK	-	0	B	M	-	14
BUS-06-12	BIANK	-	0	B	14	/	110
SHUS - 077-78	BIANK	-	0	\mathcal{B}	Mi	-	M
		·					
leight (HT) occation (LOC): ype (TYP): hase (PH): batement (ABT);	I = Inside Work area O = Outside wor G = General Area P = Personal A = S = Pre-Start R = Removal E = Est FP = Fireproofing CT = Ceiling Tiles TP = Transite Panel AC = Acoustical R = Roofing Materials PI = Pipe Laggi	Ambient B = Field Blank ablish Containment C = C FT = Floor Tiles Bi = Bo Ceiling Texture M = Adher	leanup iler		= Final	air),	1 = 361.

.

Sampling (SAM): AG = Aggressive NA = Non-Aggressive

Note: All Personal Samples Must Have Worker Name and Social Security Number.

Comments:

LITEMPLATEVASBESTOSVAASD. TMP

EMSL Analytical, Inc.

107 Haddon Ave., Westmont, NJ 08108

Phone: (609) 355-4800 Fax: (609) 858-4960 Email: ssiegel@EMSL.com

Attn:	David Nelson				
7 KG1.	Versar inc.			Customer ID:	VERSS
	6850 Versar Center			Customer PO;	V C (380
	PO Box 1549			Received	
	Springfield, VA 22151			THE ATTOR	06/02/00 10:54 AM
Fax:	703-642-6809	Phone:	703-642-6889		
Project:	EPA Vermiculite/4601.005		100 042-0005	EMSL Order:	040008597
				EMSL Project ID:	

Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), and Energy Dispersive X-Ray Microanalysis (EDX) - Performed by EPA Level II Method.

Analysis Date:

6/3/2000

Sample	Volume (liters)			Uctures	Anatynical Sensitivity	Солсе	ntration	
	(44673)	Type(s)	Asbertos	Non-Asb.	(S/cc)	(\$/mm²)	S/cc	Notes
)29A)40008597-0012	677	None Detected		0	0.0093	<18.39	<0.0093	
)30A 240008597-0013	676	None Detected	<u></u>	0	£800.0	<16.39	<0.0093	ellerre
131A 140008597-0014	408	None Datected	_	1	0.0155	<16.39	<0.0155	- preliment
32A 40008597-0015	407	None Detacted		2	0.0155	<16.39	<0.0155	<u>piromati</u>
33A 40008597-0016	406	Overloaded		,				perovited
34a 4u008597-0017	90	None Detected	····-	12	0.0702	<16.39	<0.0702	<u>pendeli</u>
35A 40008597-0018	88	Nona Detected		3	0.0718	<16.39	<0.0718	<u> </u>
			₩		.			<u>pertinuli</u>
Debble Little								
nalyst			-				Stephen Si r other approv	ed signatory
Disclaiments: The laborator luplicated, except in full, w Sovernment. This report re valleble upon request. screding for NVLAP PLM		lble for døtø reported in mission by EMSL Ana e8Mples reported abo), NY ELAP #10872	I structures/cc, lytical, Inc. Th Ine. Quality cor	which la depende is l'aport must no nooi dete (Includin	nt an volume collecte be used to aleim pro g 95% confidence llin	d by non-laboratory duct endoracment l nits and laboratory a	personnel. This i by NVLAP or any : nd analysts' accu	eport may not be agency of the U.S. racy and practation) is
1 1	ILevel IJ-1	•••••	·			·-····		
HARD CONTRACTOR OF A DESCRIPTION OF A DESCRIPANTE A DESCRIPANTE A DESCRIPANTE A DESCRIPTION OF A DESCRIPTION								Page 1

EMSL Analytical, Inc.

107 Haddon Ave., Westmont, NJ 08108

Phone: (609) 858-4800 Fax: (609) 858-4860 Email: sslegel@EMSL.com

Attn:	David Nelson Versar Inc. 6850 Versar Center			Customer ID: Customer PO;	VER596
	PO Box 1549 Springfleid, VA 22151			Received;	06/02/00 10:54 AM
Fax:	703-642-6809	Phone:	703-642-6889		
Project:	EPA Vermiculite/4601.005	i none.	100-042-0000	EMSL Order:	040008597
•				EMSL Project ID:	
				Analysis Date:	6/2/2000

Fiber Analysis of Air Samples via NIOSH 7400, Revision 3, Issue 2, 8/15/94

Sample	Location	Sample Date	Volume	Fibers	Fields	LOD (Jib/cc)	Fibers/ mm²	Fibers/ ^{CC} Notes	
029A		6/1/2000	676,92	<5.5	100	0.004	<7.0	<0.004	
040008597-0001								. ^	A reference and a large
03 0 A		6/1/2000	675,54	<5.5	100	0.004	<7.0	<0.004	un un
040008597-0002								2	
031A		6/1/2000	408.01	9.0	100	0.007	11.46	0.011	Tuli Min A.
040008597-0003									
032A		6/1/2000	407.18	11.0	100	0.007	14.01	0.013	<u>yeinratin</u>
040008597-0004							1.4.41	0.010	
)33A		6/1/2000	•						pir nett
140008597-0005								Overloaded	
34A		6/1/2000							RETENTIELE
40008597-0006		W (72000						Overloaded	
35A	·····		<u> </u>				<u></u>		ucenter
40008597-0007		6/1/2000	87.87	24.0	100	0.031	30,57	0.134	,
									no. Hars
36A		6/1/2000	0.00	<5.5	100		<7.0	Field Blank	
40008597-0008	· · · · · · · · · · · · · · · · · · ·								nelite
37A		6/1/2000	0.00	<5.5	100		<7.0	Fleid Blank	
40008597-0909									
38A		6/1/2000	0.00	<5.5	100		<7.0	Field Blank	beink
40008597-0010									
39A		6/1/2000	0.00	<5,5	100				<u> </u>
10008587-0011			0.00	-u,u	100		<7.0	Fleid Blank	
		· · · · · · · · · · · · · · · · · · ·					·····		beaut
Dave Stanhope									
Analyst							·····		
							OF I	Stephen Slegel, Cli other approved sign	ni . storv
Limit of detection Is	7 fibers/mm*. The labora	tory le not responsible for dat his report may not be reprodu	a monted in t	ibendre v	hich is down	rdont on web			
Analysis performed b	mples reported above. T by EMSL Weetmont (NY 5	his report may not be reprodu his report may not be reprodu	Ced, sweept i	n full, with	out written a	proval by EMSL.	COllected by no	an-laboratory personnel. T	'his report
<u> </u>			• · · · · · · · · · · · · · · · · · · ·			<u></u>			
	PCM-1								. 1 of :
. آگر میگا، از ک									

Werzar

PROJECT NO.

CHAIN OF CUSTODY RECORD

PROJECT NAME EDA VERMIEULITE . 005 PARAMETERS INDUSTRIAL Y Or CONTRACTOR HYGIENE SAMPLE Not the state SAMPLEAS / Sigheruge) Energy N lon ANTO A. HERSON FIELD REMARKS **GRAB** SAMPLE COMP DATE TIME STATION LOCATION **\$**. NUMBER ·029-B KIID HE PER SAMPLE 8415-030-12 DATA SHEET AUS-031-A œ۰ \mathbf{T} Ľ 100 BMS-033-A [^{**}] (f) === ______ AWS-034-A ġ AUS-03578 C ΰī 2 BAUS-036-72 AUS-037-18 6745-1798-19 BM5-039-A \checkmark ∛ Relinbuished by : /Sighature Date / Time Received by: (Signature) Relinquished by: (Signature) Date / Time Received by: (Signature) 19m (Printed) (Printed) Versa (Printed) 1900 Relinquished by: (Signature) Date / Time Received for Laborstory by: Date / Time Remarks. (Signatyre) PCMETEN EPA 48-HON LEVEN IT TURN * REGIONS EPER STORS * hum (Printed) (Printed) Sham Carson

Distribution: Original Plus One Accompanies Shipniom (white and yellow); Copy to Coordinator Field Film Inink1 - 2

4604

Verzar

Ĵъ.

ASBESTOS AIR SAMPLE DATA

Versar Job No. 4601-005
Project Manager ATALA PHTULIAS
Date: 6 1 / 100 Shift:
Collection Method: Affect date later in
Sample Media: Sum /. 45 mcb 25 mm CARES

Client CAA Sample Location: 6/02 Feauletick Burb Samples Collected by: 70000 1800/8000 100000 Analyze for: 60205/A5865705 Temp: #3 /Rel. Humid: 52%-WIND W C 8 MA

SAMPLE DATA

Sample No.	ANDORA	MADORA	ANIS-031-A	MIGORA	HUCORA	Area	
Pump No.	1666	1679	166	1679	WIDESTRY 110	[.	
Time On	1351	1352	1533		1669	80	
Time Off	1504	1505	1617	1534	1535	153	
Total Time (min.)	73	73	44	1618 44	1619	161	7
Flow Rate (LPM)	9.273		9.273		44 9.232	44	(xf
Volume (liters)	676.92	675.54	408.01	407.174	406.208	2.0	
Fibers/Fields			100-1	107.014	700.000		136
Detection Limit				·····			
Results f/cc	1					·	

Analyst	T	1	 ,
QC Recounts (f/cc)			+
QC Analyst		+	
		, (

·····	SAMPLE LOCATION						ŀ
Sample No.		нт	LOC	TYP	РН	ABT	SAM
11-029-1A	PRELIMINARY	5'0	10	A	5		WX
ANIS-030 A	PELTINGAPY	1				<u>+</u>	F
415-031-11	PERMETER - DAINER TROM VERNOCULITE	100	0	<u> </u>	5		1-34
MIS-OR A	CATINGEN - DOUGLESSIN FROM LEENGER ATE		0	A_	14	<u> </u>	est
MS-033-A	ENNETER-DOLLUTIN TROM VERMENNITE	50	0	A	14	<u> </u>	WH I
		50	0	A	M		IN
S 2000 18	CASOUAL COLLECTED AN O LESSON BUILTING	ZONE	T	P	M		in
leight (HT)							
ocation (LOC): ype (TYP): 'hase (PH); .batement (ABT):		C = C	leanup			air a	1=:
ampling (SAM):	TP = Transite Panel AC = Acoustical Ceiling Texture M R = Roofing Materials PI = Pipe Lagging AG = Aggressive NA = Non-Aggressive	= Adhea	sive M	astics			

Note: All Personal Semples Must Have Worker Name and Social Security Number.

GAMPLES COLLECTED DUPETAIC Comments:___ MATKIN ZOUD VERNACUL LITEMPLATEVASBESTOSVAASD.TMP e

Verzar...

le.

ASBESTOS AIR SAMPLE DATA

Versar Job No. 4/00/ 005
Project Manager ITAMA PHOLIPS
Date: 61/100 Shift:
Collection Method: Mark 140/6AA LEVEL I
Sample Media: - una/.45 mele ds.mm Children

Client CA Sample Location: 6/02 FEALVETCH BUND Samples Collected by: Taxy Jean Bund Analyze for FEAN 14 SECTOS Temp: 860 / Rei Humin: 5246

/Rei_ Humid; with we smph

SAMPLE DATA

MADEA	1545-06-A	AUS-027-A	Marca DA	Ans nR.A	
50Z	PANC.	BAYL.	Do se de	and off a	
		34			
	414	147.04	. 8 croce	- Yum	
44					
1.992					
47868		~~~~			· · · · · · · · · · · · · · · · · · ·
		·····			
					·
	80L 1533 1617 44	80L PARKE. 1533 .454m 1617 44 1.997	802 <u>Rept</u> <u>Rept</u> 1533 <u>45400</u> <u>1617</u> <u>1617</u> <u>144</u> <u>1,997</u>	80L <u>BANE</u> <u>BANE</u> <u>BANE</u> 1533 .454m .454m .844 1617 44 1.997	1533 .4542 .657 Server Redelle 1617 44 1.997

Analyst	
QC Recounts (f/cc)	-
QC Analyst	\square

SAMPLE LOCATION

Sample No.		T	·····	····			İ
But or A	ACASMAL COLLEGER AND DELCAN	, HT	LOC	TYP	рн	ABT	SAN
MUG-035-A	NERSWAL COLLEGED ON D. DELLEN DURTHIS VERYOMMANE MUTHY	Contraction of the	7	p	m	-	in
115-036-18	BIANC		0	P	M	<u> </u>	~
145-037-18	BUSIL	·	0	R			
115-038-18	BLANIC		0	<u></u>	14		
W-019-B	BLALIC			タ	14		
· · · · · · · · · · · · · · · · · · ·			0	צי	m		
	~						
sight (HT)							
cation (LOC):	I = Inside Work area 0 = Outside work area						

 Location (LOC):
 I = Inside Work area
 O = Outside work area

 Type (TYP):
 G = General Area
 P = Personal
 A = Ambient
 B = Field Blank

 Phase (PH):
 S = Pre-Start
 R = Removal
 E = Establish Containment
 C = Cleanup
 F = Final air.
 M = M N/L/G

 Abatement (ABT):
 FP = Fireproofing
 CT = Ceiling Tiles
 FT = Floor Tiles
 Bi = Boiler

 TP = Transite Panel
 AC = Acoustical Ceiling Texture
 M = Adhesive Mastics

 R = Roofing Materials
 PI = Pipe Lagging

Sampling (SAM): AG = Aggrassive NA = Non-Aggrassive

Note: All Personal Samples Must Have Worker Name and Social Security Number.

SAMPLES COLLECTED TUETAG MIXIAG OF ZMOLITE Comments: VERMOCHLITE

LITEMPLATEVASBESTOSVAASD, TMP