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Fascinating Diversity of Regimes in Fusion Plasmas.
What Triggers Change? What Regulates Confinement?

TFTR

» Two regimes with very different confinement
for similar initial conditions and neutral beam heating

» Access depends on plasma heating and reducing
current density on axis

« Can we attribute a difference in turbulence to these
two different confinement regimes?
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A Grand Challenge for Fusion Science is to
Understand, Predict and Control Turbulent Transport

Understand:
- structure and dynamics of turbulence and induced transport

Predict: l

- scaling of different confinement regimes

Control: l

- plasma equilibrium and confinement, local turbulence control

Continued improvement in measurement capability
IS essential to advance predictive understanding
and develop methods for turbulence control




A Major Challenge in Fusion Science is to Measure Turbulent
Fluctuations with Good Spatial and Temporal Resolution

 Important turbulence parameters for measurement
- correlation length A
- correlation time 1,
- density, potential, temperature fluctuation levels
- velocity fluctuations (self regulation)

- Simple Random Walk Estimate: Diffusivity Do A’ /7,
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Outstanding questions in fusion science
* |s there a correlation between eddy size, fluctuation level and confinement?
* What controls the turbulent scale length in fusion plasmas?




Current Understanding: Sheared ExB Flow Regulates
Turbulent Eddy Size and Transport in Fusion Plasmas

Gyrokinetic Simulation: Z. Lin

 Sheared ExB flow reduces
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» Breakup of long finger structures
suppresses transport

Microwaves can penetrate the core
of the plasma and return information
on turbulent structures. How?




High Frequency Waves Probe Refractive Index Fluctuations
in a Weakly Absorbing Plasma: Two Different Approaches

OF 0
- Sensitivity to refractive index fluctuations: — o< kOL—‘u

L u
* Collective scattering:
- frequency usually well above plasma response frequency: w >> ®
- u=1, weak refraction
- weak response (good) and <« on
- poor spatial resolution for long A,

‘
* Reflectometry:

- as we lower the frequency, waves are cutoff : u =0
- group velocity slows down near cutoff Kp

- enhanced sensitivity to fluctuations
near u=0
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Two Principle Methods of Reflectometry: Steady State Phase
Detection vs Short Pulse Group Delay Measurements

» Steady state (pulse length >> system size)
- amplitude swells like waves on a beach
- used for profile and correlation studies
(UCLA, GA, PPPL, MIT...)
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* pulse length short to system size |
- Measure group delay (LLNL, UCSD, FOM) "o = T

Full Wave Simulation, no fluctuations: E. Valeo, PPPL
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lonosonde has a Long History in lonospheric Research:
Discovery and Range Finding Applications

« 1902: First transatlantic wireless communication (Marconi)
leads to conjecture (Heaviside) for existence of conducting layer

« 1924/25: Electron height distribution from radio wave reflection
- Pulsed (Breit, USA) radar 1-10 MHz identifies E & F layer —
- Frequency sweep method: (Appleton, UK)

* 1930s: Timely Technology Spin off: Aircraft radar in WWII

- based on pulsed method



Reflectometry (lonosonde) is a Principal Tool for Range
Finding of Density Layers in Space and Fusion Plasmas

Example of range finding using
pulse reflectometry in ionosphere

Example of sweep method in fusion:
Internal barrier formation in DIII-D
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Major issue in early research was to explain the origin of large
amplitude and phase fluctuations in reflections

AUCLA




Combination of Collective Scattering and Reflectometry
Used to Investigate lonospheric Disturbances:
Equatorial Spread-F due to Rising Plumes

Disturbed ionosphere Backscatter “tracer” image of rising plumes
and range spread Coherent back scattering
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» Collective scattering resolves large scale structures: Bubbles!
» Huge disturbances make interpretation of ionosonde difficult.
- used as an indicator and for basic height measurements




In Contrast, Collective Scattering Loses Spatial Resolution
For Large Scale Eddies in Fusion Plasmas

» Spatial resolution determined by plasma penetration frequency and
overlap of receiver and transmitter antenna pattern

T 4 e~ - Bragg scattering, with Ak<<k,

Poor resolution for k, p, < 0.5

ITG Theory predicts lower-k

» Microwave scattering indicates weak core fluctuations: on/n<1%
Low fluctuation levels are ideal for reflectometry



Fluctuations Ripple the Cutoff Layer, Leading to
Scintillations (Amplitude Fluctuations) on Scattered Waves

« Each eddy can be considered an irregular lens: A, < focal length

« Amplitude fluctuations occur due to focusing away from reflecting region

 Historical note: Intense investigation of scintillations from
iInterplanetary and ionospheric plasma lead to discovery
of pulsars c1967: (Hewish, Burnell)



Measurement of Turbulent Fluctuations in Fusion Plasmas:
The Method of Correlation Reflectometry

Plasma |
Cutoff Layers Hardware Elements Data Analysis
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» Tune relative frequency to produce correlation vs cutoff layer separation.

« Compare with simulation using 1-D and 2-D full wave analysis.
- density fluctuation level
- radial density correlation length



Reflectometry Used in a World Wide Effort to Understand the
Dynamics of Turbulence in Enhanced Confinement Regimes

 DIII-D: NCS, QDB regime

« JET: Optimized Shear plasmas
« C-MOD: EDA regime

« JT-60U: ITB plasmas

* TFTR: ERS, Supershot

« ASDEX, TEXTOR (imaging),...

» Basic plasma experiments in correlation reflectometry
and comparison to Langmuir probe measurements in LAPD/UCLA
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Enhanced Reverse Shear Regime of TFTR. What Happens at
the Time of the Transition to Enhanced Confinement?

With transition: ~ Without transition: TFTR
ERS RS

NB power

Transition
time

Pressure (MPa)
©O - NN W H&
I

PUSEHE '-.1:%ﬁﬁﬁ . '
2I.O 3I_o 2.0 3.0 %Pppl

Major Radius (m) R



Transition to Enhanced Confinement Regime is Correlated
with Suppression of Core Fluctuations in TFTR

3 * Theory predicts fluctuation suppression
- Transition O, when rate of shearing (og,g)

\: exceeds rate of growth (y;)

 Qutstanding issue:

Is suppression accompanied by
radial decorrelation?
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 Similar suppression observed on JET (X-mode reflectometer)
and DIII-D (FIR Scattering)

Hahm, Burrell, Phys. Plas. 1995, E. Mazzucato et al., PRL 1996. %"“‘““““"‘“’“"
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PPPL/JAERI Reflectometer Collaboration for Continuous
Correlation Measurements in Transport Barriers on JT-60U

* Main element of a reflectometer system
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Mirror System: GA

- Range: 105-140 GHz measures up to magnetic axis:
 Frequency scanning channel allows a radial correlation scan every 60 ms



Dramatic Reduction of Radial Correlation Length in ITB of
JT-60U: Are We at The Limit of Our Spatial Resolution?

ITB Density Evolution:
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* Very long correlation lengths
before ITB formation: L /p>>1 |
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* Very short correlation lengths
inside ITB: close to resolution
limit?

» Weak change in fluctuation level
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To Make Progress in Quantitative Analysis, Need Advanced

Simulation and Visualization:

Further Integration of Theory and Experiment is Essential

Major advance in

quantitative analysis

Turbulence simulation in Full wave simulation of
realistic geometry: reflectometry in real
Gyrokinetic and Gyrofluid geometry
codes

Z.Lin, M. Beer E. Valeo, G.J. Kramer

New possibilities for
experimental design

 PPPL is part of a broad effort to simulate experiment:
- MIT (Issue of super resolution with curved wave fronts)

- LLNL (Interpretation of pulse reflectometry with fluctuations)




Full Wave Simulation of Reflectometry in JT-60U: Importance
of Angular Spread and the Need for Antenna Modeling
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JT-60U ITB
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Simulation Box
Electron Density 40 ¢m (H) x80 cm (W)

#/n=0.6%

Waves scatter out of
receiver aperture with
increasing K,

Scattered Waves
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Visualization of Wave Intensity Near the Cutoff Layer:
Plasma Curvature and Ripples Revealed in Reflection

Scattering medium Interference Pattern
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* Interference fringes due to superposition of forward
and backward going waves
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Bottom Line: 2-D Simulation of Correlation Reflectometry
inside ITB Reproduces Experimental Data
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» Gaussian spectrum of model fluctuations, ensemble of 30 runs per correlation
* Higher k. produce similar result SO
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Reflectometry Provides Strong Evidence for Role of Radial
Turbulence Decorrelation in Enhanced Confinement on DIII-D

In L-mode, correlation lengths Ar are + In QDB plasmas, central correlation
observed to scale approx. as p, ; (or 5-8p,). lengths Ar is reduced.
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Reflectometry Has Been Highly Successful in Measuring
Fluctuation Characteristics in Transport Barriers

New measurements and advanced simulation provide new

insights & challenges:
- detailed investigation of ExB shear and turbulent decorrelation

Outstanding issues:
- Role of zonal (turbulence induced) flow shear on correlation length
(can we measure it with reflectometry?)
- What is the trigger for transition to enhanced confinement?
(can we tell by looking at turbulence?)

Measurement issue:
- What are the potential benefits of multiple receivers?
- What more can be resolved?



Can we Perform Imaging with Reflectometry? New Insights
can be Gained from Detailed Understanding of Turbulent
Structures

David Hysell
I Equatorial Bubbles
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« Example of backscatter image of lonospheric instability F-Layer.
 Evidence for rising plumes (plasma bubbles) consistent with
simulations of Rayleigh Taylor instability.

Two point correlation analysis performed up till now
is only a first step towards detailed understanding




Is Imaging Possible in Fusion Plasmas? Need to Look for
Evidence of a Thin Scattering Region Near Cutoff Layer

* A narrow scattering region is equivalent to a thin phase changing screen
* Problem! How can we tell if the scattering comes from a thin layer?
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- }

Receiver l
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Imaging

» Key insight (first investigated in ionosphere, Mercier, Phil. Mag. 1959):
- Look for pattern of amplitude spread from a thin phase screen



Analysis of Reflectometer Data on TFTR Suggests Imaging
May Be Possible!

- Analysis: Project signal back Real TFTR data: Numerical Back Projection

into plasma and search for a
plane with reduced amplitude
fluctuation

* Numerical procedure
1) Assume ® o< K

2) Add phase dispersion
exp(iBw?) - (Lens)

3) Recompute amplitudes
and phases

4) Plot field distribution——




New System Now Under Development on TEXTOR to Explore
the Feasibility of Imaging

* Array of receivers
Cutoff Surface

Imaging Array

lllumination
Source
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Summary and Future Directions

* The recent progress in reflectometry exemplifies the excitement of science
when experiment and theory combine to push the limits of what is possible

* New observations of turbulent decorrelation in internal transport barriers
challenge theory and experiment

- need systematic analysis of ExB shear, decorrelation
- need to identify trigger for transition
- need comparison to simulations

» Key to future success is the integration of experiment and theory through
advanced scientific simulation and visualization

- drives quantitative interpretation of measurements
- drives innovation in diagnostic ideas (imaging,...)
- drives non-linear simulation of turbulence, new theory insight



