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Relations Among Geology, Physiography, Land Use, and Stream Habitat Conditions in the
Buffalo and Current River Systems, Missouri and Arkansas

Abstract: This study investigated links between drainage-basin characteristics and stream habitat conditions in the
Buffalo National River, Arkansas and the Ozark National Scenic Riverways, Missouri. It was designed as an
associative study - the two parks were divided into their principle tributary drainage basins and then basin-scale
and stream-habitat data sets were gathered and compared between them. Analyses explored the relative influence
of different drainage-basin characteristics on stream habitat conditions. They also investigated whether a relation
between land use and stream characteristics could be detected after accounting for geologic and physiographic difl]
ferences among drainage basins.

Data were collected for three spatial scales: tributary drainage basins, tributary stream reaches, and main-stem
river segments of the Current and Buffalo Rivers. Tributary drainage-basin characteristics were inventoried using
a Geographic Information System (GIS) and included aspects of drainage-basin physiography, geology, and land
use. Reach-scale habitat surveys measured channel longitudinal and cross-sectional geometry, substrate particle
size and embeddedness, and indicators of channel stability. Segment-scale aerial-photo based inventories meas!|
ured gravel-bar area, an indicator of coarse sediment load, along main-stem rivers. Relations within and among
data sets from each spatial scale were investigated using correlation analysis and multiple linear regression.

Study basins encompassed physiographically distinct regions of the Ozarks. The Buffalo River system drains
parts of the sandstone-dominated Boston Mountains and of the carbonate-dominated Springfield and Salem
Plateaus. The Current River system is within the Salem Plateau. Analyses of drainage-basin variables highlighted
the importance of these physiographic differences and demonstrated links among geology, physiography, and land-
use patterns. Buffalo River tributaries have greater relief, steeper slopes, and more streamside bluffs than the
Current River tributaries. Land use patterns in both river systems correlate with physiography - cleared land area
is negatively associated with drainage-basin average slope. Both river systems are dominantly forested (0-35 per-
cent cleared land), however, the potential for landscape disturbance may be greater in the Buffalo River system
where a larger proportion of cleared land occurs on steep slopes (>15 degrees).

When all drainage basins are grouped together, reach-scale channel characteristics show the strongest relations
with drainage-basin physiography. Bankfull channel geometry and residual pool dimensions are positively correl
lated with drainage area and topographic relief variables. After accounting for differences in drainage area, chan!|
nel dimensions in Buffalo River tributaries tend to be larger than in Current River tributaries. This trend is consis[]
tent with the flashy runoff and large storm flows that can be generated in rugged, sandstone-dominate terrain.
Substrate particle size is also most strongly associated with physiography; particle size is positively correlated with
topographic relief variables.

When tributaries are subset by river system, relations with geology and land use variables become apparent.
Buffalo River tributaries with larger proportions of carbonate bedrock and cleared land area have shallower chanl]
nels, better-sorted, gravel-rich substrate, and more eroding banks than those with little cleared land and abundant
sandstone bedrock. Gravel-bar area on the Buffalo River main stem was also larger within 1-km of carbonate-rich
tributary junctions. Because geology and cleared land are themselves correlated, relations with anthropogenic and
natural factors could often not be separated.

Channel characteristics in the Current River system show stronger associations with physiography than with
land use. Channels are shallower and have finer substrates in the less rugged, karst-rich, western basins than in the
steep, middle and eastern basins. Gravel-bar distributions are more consistent with hypothesized lagged, historical
effects than with recent impacts from land use. Temporal comparisons of 1992 and 1996 gravel-bar distributions
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show downstream translation of gravel after a 50-year flood. Gravel-bar area is also more strongly related to tribul’
tary characteristics when measured at longer distances downstream of tributary junctions.

This analysis indicates that physiography and size are the primary controls on stream characteristics in the
Ozarks. For the rural landscape of the study basins, land use appears to exert a subtle influence notable only when
streams are subset into physiographic groups. Channel characteristics and gravel-bar area in the Buffalo River sys[]
tem are more consistent with a model of contemporary land-use effects than those in the Current River system.
However, relations among land-use patterns, geology, and physiography make it difficult to separate anthropogenic
from natural impacts on streams.

Keywords: land use change, aquatic habitat, geomorphology, hydrology, Ozarks, Missouri, Arkansas

Suggested Citation:
Panfil, M. S. and Jacobson, R. B., 2001, Relations Among Geology, Physiography, Land Use, and Stream Habitat
Conditions in the Buffalo and Current River Systems, Missouri and Arkansas, USGS/BRD/BSR-2001-0005, 111 p.
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GEOLOGY, PHYSIOGRAPHY, LAND USE, AND STREAM HABITAT 1

Introduction

The Buffalo National River and Ozark National
Scenic Riverways were created to preserve and interpret
the free flowing Buffalo, Jacks Fork, and Current
Rivers. Clear waters and diverse ecosystems are the
primary resources of these national parks — they provide
canoeing and fishing opportunities that attract millions
of visitors annually and are an important preserve for
biodiversity in the mid-Continent (fig. 1). Ozark
streams host approximately 175 native and introduced
fish species of which at least 19 are endemic (Petersen,
1998).

Preservation of water quality and aquatic ecosystems
are among the highest priorities and greatest challenges
for the parks. Designed as river corridors, much of the
drainage basins that determine water quality and aquatic
habitat characteristics are outside of park boundaries
and unprotected from land-use changes that may affect
the rivers. In the Buffalo River drainage basin, for
example, only 11 percent of the drainage area is within
the park, while 23 percent is held by other state and fed!
eral agencies, and the remaining 66 percent is privately
owned. Areas outside the park boundaries have under-
gone significant land-use changes in recent decades and
this has raised concern that erosion and non-point
source pollution threaten the park's resources. In the
Buffalo, about 11 percent of the drainage basin (375
square kilometers/92,780 acres) was converted from
forest to pasture between 1965 and 1992 and there has
been a trend toward the clearing of steeper, more erodil
ble lands (Scott and Hofer, 1995). Resource managers
at both national parks are in the process of developing
Water Resources Management Plans to guide river-con[|
servation strategies. One of the goals of the plans is to
help the parks facilitate basin-wide discussions with
their drainage-basin communities. To do this, plans
need to present and evaluate resource-management conl |
cerns such as the impact of land-use changes on river
conditions and habitat quality. This study was initiated
in 1999 through the USGS Natural Resources
Preservation Program to address some of the science
information needs of these management concerns.

Purpose and General Scope
The main objectives of the study were to inventory
drainage basin and stream-habitat conditions in the two
parks and evaluate links between land use and stream-
habitat quality in the context of the many complex

natural factors that influence streams. It was designed
as a comparison study — the two rivers were divided
into their principle tributary drainage basins and then
basin-scale and stream-habitat data sets were gathered
and compared between them (fig. 2). Specific objec!]
tives of this study included:

¢ Compilation of a geospatial database
and inventory of basin-scale charac(]
teristics likely to influence stream
conditions. A geographic information
system (GIS) was used to summarize
and compare aspects of geology, phys![]
iography, and land use for 43 major
tributary drainage basins of the parks.

¢ Development of a reach-scale!, field
inventory of physical habitat condil
tions in 36 of the parks' major tribul]
taries. The inventory included meas(|
ures of channel geometry, substrate,
and channel stability.

¢ Development of a segment-scale?, aer[]
ial photo based inventory of gravel-
bar area along the park's main-stem
rivers. Gravel-bar area is an indirect
measure of coarse sediment load in
the river systems.

This report presents data collected for each of these
project components and analyzes relations between
them. Basin-scale analyses include a description of the
geology and physiography of the two river systems and
an analysis of how these factors influence land-use pat-
terns in the park drainage basins. Stream analyses
include descriptions of reach and segment-scale stream
characteristics and analyses of relations between stream
conditions and drainage-basin geology, physiography,
and land use.

Stream Geomorphology and Aquatic Habitats
Aquatic communities are affected by the chemical,
physical, and biological conditions of their habitat. This
project focuses on physical habitat — the combination of

depth, velocity, substrate, and cover — because it is
thought to be a major determinant of stream community
potential (Schlosser, 1987; Plafkin and others, 1989).
While other factors such as water chemistry and
interspecies competition can also influence stream biota,

I Reaches are defined as contiguous lengths of river with one or more repeating sequences of similar channel
units or macrohabitats (Frissel and others, 1986). In this project, reaches included a minimum of three riffle-pool
sequences or a distance of at least 20 bankfull channel widths.

2 Segments are defined as lengths of river characterized by limited variation in hydrologic and physiographic
characteristics, for example lengths of stream between tributary junctions (Frissel and others, 1986). In this proj[]
ect, segments included 0.2-4.8 km lengths of main-stem rivers downstream of each tributary junction.
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community-level structural patterns often correlate
strongly with physical habitat variables (for example,
Schlosser, 1982; Statzner and Higler, 1986). Generally,
an increase in species diversity is associated with an
increase in physical habitat diversity (Gorman and Karr,
1978; Schlosser, 1987; Jeffries and Mills, 1990).

Whereas the structure and distribution of stream habil[
tats shape the community, geomorphic theory suggests
that the habitat conditions themselves are controlled by
drainage-basin characteristics (for example, Leopold
and others, 1964). Streams act as conveyor belts mov!(|
ing sediment and water through the landscape. Channel
morphology, substrate, and discharge, and therefore
habitat conditions, reflect the balance of sediment sup-
ply and streamflow contributed by the drainage basin.
Many natural landscape characteristics affect this ball
ance. Aspects of geology and physiography influence
how rainfall is routed to streams and determine the
types and quantities of sediment introduced into the sys![
tem (table 1). Humans may modify the
sediment/hydrology balance by changing vegetation
types, ground permeability, or altering the drainage net-
work (table 1). In a rippling effect, landscape changes
can then translate from uplands to streams and their
biota.

It can be a challenge to document links between many
anthropogenic disturbances and stream processes (for
example, Jacobson and others, 2001). Monitoring of
hydrologic changes require stream gages, preferably
with extensive records pre-dating and post-dating the
landscape disturbance. Bedload sediment studies introl]
duce the logistical challenges of measuring tons of grav(]
el or sand in flux over the streambed. It is also difficult
in drainage-basin studies to obtain replicates or control
for differences in geologic or physiographic characteris(]
tics. Moreover, landscapes are subject to disturbance
from natural, stochastic meteorological events that can
cause highly variable stream conditions that need to be
separated from human-induced effects (for example,
Fitzpatrick and Knox, 2000).

In the absence of instrumental records or controlled
experiments, many studies have undertaken an associal
tive approach (for example, Allan and others, 1997,
Fitzpatrick and others, 1996; Lammert and Allan, 1999;
Roth and others, 1996; Richards and others, 1993;
Richards and Host, 1994; Richards and others, 1996).
At the drainage-basin scale, these studies identified
potential controls on sediment yield and hydrology and
then compared these factors with reach-scale inventories
of stream habitat and/or biological communities. They
used statistical techniques to identify relations between
the two scales. Many of these studies focused on biol
logical communities and evaluated physical habitat conl]
ditions qualitatively. This project follows these studies'

associative approach but differs in three main ways: it
emphasizes quantitative measures of physical habitat
conditions, focuses on the link between drainage-basin
characteristics and physical habitat conditions rather
than on the sequential link to biota, and investigates dis[
turbance in a landscape characterized by relatively sub(]
tle variation in land use.

The physical habitat measures in this study relate to
three categories of channel change that anthropogenic
disturbances are thought to trigger. These include:
changes in channel geometry, changes in substrate char(|
acteristics, and a loss of channel stability (table 2; for
example, Schumm, 1977; Lisle, 1982). Multiple, some-
times contradictory outcomes are possible depending on
whether landscape disturbance increases streamflow and
transport capacity relative to sediment supply or
whether the balance is tipped in the opposite direction
(table 1).

Regional Setting and Climate

The Ozark Highlands Physiographic Province is a
rugged, montane region largely made up of Paleozoic
sedimentary rocks. The climate is continental and is pre-
dominantly affected by east moving storm systems that
often include thunderstorms with short bursts of intense
rainfall. Mean annual precipitation is 1000-1200 mil[]
limeters for Rolla, Missouri (80 years of record) with
mean annual temperatures between 15-18 degrees
Celsius (Jacobson and Pugh, 1992). The Ozarks are
commonly divided into four physiographic regions: the
Boston Mountains — an area with high relief and butte-
like sandstone uplands, the St. Francois Mountains — a
bulls eye shaped region of Proterozoic igneous rocks,
and the Springfield and Salem Plateaus — region's domi(
nated by expansive rolling uplands and carbonate rocks
(fig. 1). Elevations in the Ozarks range between 150
meters above sea level in the north along the
Mississippi River to about 720 meters above sea level in
the Boston Mountains.

A karst drainage system underlies most of the Ozarks
and combines with the rugged topography to create a
wide range of aquatic environments. In many ways, the
Buffalo National River (BNR) and the Ozark National
Scenic Riverways (ONSR) represent extremes in this
spectrum. The ONSR includes the Current River and its
primary tributary the Jacks Fork (fig. 1). Flow from
springs makes up a substantial portion of the baseflow
in these rivers. In fact, springs maintain low enough
temperatures in the upper Current to support a trout
population. In contrast, much less of the baseflow in
the Buffalo River comes from springs and water tem![]
peratures are warmer. The Buffalo is noted for its
spectacular bluffs and its "flashy" floods generated by
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Figure 1. Location map for the Ozark National Scenic Riverways and the Buffalo National River. The two parks
are within different physiographic regions of the Ozark Highlands.
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runoff from the basin’s steep topography.

Despite their differences, both drainage basins have
experienced similar land-use histories. Prior to
European settlement around 1800, humans lived as
hunters and gatherers in caves and in small villages on
river terraces. European settlers cleared valley bottoms
for pasture and row crops and began to cut timber from
valley slopes. Construction of railroads in the 1870's led
to increased logging and clearing and a surge in populal’
tion between 1880 and 1920. Commercial timber com!
panies harvested shortleaf pine for sawlogs and oak for
railroad ties. In the post-timber boom period (1920-
1960), Ozarks residents returned to agriculture, institut(]
ing annual burning of uplands and increasing grazing on
open ranges. Although the open range has been closed
and cultivated fields have decreased since 1960, cattle
populations and timber operations have increased (Scott
and Hofer, 1995; Jacobson and Primm, 1997). In the
last half of the 20th Century, tourism also became an
important economic activity. During 1998 over 2 mil-
lion people visit ONSR and BNR to canoe, fish, camp
on gravel bars, and enjoy the beauty of the steep-sided
hollows, bluffs, and clear-water streams.

Methods

This study collected drainage-basin data, reach-scale
stream-habitat data, and segment-scale data for main-
stem rivers (fig. 2). Basin-scale and reach-scale data
sets focused on tributaries as a way to subset the river
systems into independent drainage basins and their assol
ciated stream reaches. Study drainage basins included
the major tributaries of the Jacks Fork, Current, and
Buffalo Rivers and were chosen to maximize drainage
area, match locations of on-going water-quality moni[]
toring sites (for example, Mott, 1997), and facilitate site
access. Basin-scale analyses were carried out for 19
tributary drainage basins in the Buffalo River System
and 24 tributary drainage basins in the Current (figs. 3
and 4). A reach-scale, field habitat inventory was car[|
ried out near the mouth of 19 tributaries of the Buffalo
River system and 17 tributaries of the Current River
system. Seven tributaries in the Current River system
were dropped from the reach-scale project component
because of difficulties with site access or intermittent
stream flow (table 3, figs. 3 and 4).

Tributary Drainage-basin Scale
Geology
Physiography
Land Use

Tributary Reach Scale
Channel Geometry
Substrate
Channel Stability

Mainstem Segment Scale
Gravel-bar Area

Mainstem stream

Tributary stream g

0 5 10 MILES

0 5 10 KILOMETERS

Figure 2. Map illustrating the three spatial scales of data collection. Basin-scale data was collected for major tributaries. Reach-scale data
was collected on these tributaries near their junctions with main-stem rivers. Segment-scale data was collected along the main-stem rivers

themselves.
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Potential Implications for Stream
Biota
May increase the disturbance frequency of

benthic habitats.
Fine sediment may create more embedded

habitats (see above).
May create shallower, warmer habitats and

Coarse sediment may trigger changes in
lower habitat diversity.

habitat geometry (see above).

Potential Impacts on Stream
Geomorphology

stream banks. Stream banks may become
a source of both fine and coarse sediment

as flood plain deposits erode.
widening, reduction in channel sinuosity

May create peak discharges that are more
and loss of canopy cover.

May increase the frequency of bed-
erosive and more likely to destabilize
Stream bank erosion may lead to stream

Table 2. Potential effects of human induced geomorphic change on Ozarks streams and their physical habitat--Continued
mobilization.

Disturbance
Increased storm

flows.

Basin-Scale Data Collection

We used a geographic information system (GIS) to
characterize drainage-basin characteristics that may
influence physical habitat. Using Arc/Info 7.2 and
ArcView 3.23 software (Environmental Research
Systems Institute, 1998a, 1998b), we measured aspects
of drainage-basin physiography, land use, geology,
roads, stewardship, drainage networks, and soils (table
4). Data layers were collected from a variety of sources
including: the U.S. Geological Survey (USGS), the U.S.
Environmental Protection Agency (EPA), the U.S.
Census Bureau (USCB), the Missouri Resource
Assessment Partnership (MoRAP), the Center for
Advanced Spatial Technologies (CAST), and the
Natural Resources Conservation Service (NRCS) (table
4). We chose data layers to maximize resolution but
maintain consistency between the Buffalo and Current
River systems. In some cases this meant foregoing the
highest resolution data set for one river system if it was
not available for both. For example, a continuous
1:24,000-scale stream network is available for the
Current River drainage basin but it is not yet available
for Arkansas; therefore, we worked with the 1:100,000-
scale EPA river-reach files.

Initially, sixty-four basin-scale variables were consid[’
ered that had been incorporated into other drainage-
basin assessments (Warner and others, 1996; Fitzpatrick
and others, 1998). This large number of variables was
reduced by eliminating ones with similarities or whose
utility was limited by data resolution. For example, we
eliminated soils variables from our analysis because the
resolution of the GIS data set appeared too coarse to
identify differences between study drainage basins.

Soil characteristics were measured from 1:250,000-
scale STATSGO soils database (U.S. Department of
Agriculture, 1994a, 1994b) and included soil permeabil ]
ity and erodibility variables as suggested by Fitzpatrick
and others (1996). Calculation of these variables
involved multiple averaging, first to integrate maximum
and minimum measurements for each soil layer and
then to integrate measurements for each soil type within
a drainage basin. After this sequence of averaging there
was little difference in variables between study drainage
basins in this data set. Resolution also hindered
measurements of stream networks. There were inconl]
sistent differences in detail between areas of the
1:100,000-scale EPA river-reach files, therefore stream
network-based variables were not selected for analysis
(table 4). The following paragraphs provide more
details about the variables selected for comparison with
the reach-scale habitat inventory data.

3 Use of tradenames is for informational purposes only and does not constitute an endorsement by the U.S.

Geological Survey.
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Geology

Inventories of geology were based on digital version
of state geologic maps at a scale of 1:500,000 (Missouri
Department of Natural Resources, 1991; Hofer and oth[]
ers, 1995). GIS calculations involved summarizing data
first by chronostratigraphic unit — the age and lithology
based formations identified on the geologic maps — and
second by regrouping these units into ones with similar
lithologies. To compare effects of geology between
study drainage basins of different sizes, all geology
variables were calculated as proportions of drainage
areas (table 4). Chronostratigraphic units were also
grouped into six general lithologic categories based on
stratigraphic descriptions from state geologic maps
(Dean and others, 1979; Haley and others, 1993).
Lithologic categories included: sandstone, interbedded
sandstone and shale, shale, and carbonate in the Buffalo,
and sandy carbonate, carbonate, and igneous rocks in
the Current. The lithologic regrouping involved broad
generalization because many formations contain
interbedded lithologies or lateral facies changes. The
only lithologic category present in both river system
was carbonate, therefore it became the primary geologic
variable in many analyses.

Basin Physiography

Hydrologists have developed many variables to meas![’
ure geometric and physiographic parameters of drainage
basins. Typically these variables are used in regression
equations to estimate discharge for ungaged streams (for
example, Warner and others, 1996). For this study, five
representative variables were selected, two to measure
aspects of the planview geometry of the drainage basins
and three to measure aspects of ruggedness or relief
(table 4). Measurements were made from a 30-meter
digital elevation model (DEM) made from tiled
1:24,000 quadrangles (USGS, 2000a).

The two planview physiographic variables selected
were drainage area and drainage-basin shape. Drainage
area was calculated using an ArcView script that mod[
eled surface flow over the DEM and constructed
drainage basin boundaries along drainage divides.
Boundaries were compared and edited to match hypsog!(
raphy on 1:24,000-scale digital raster graphics (DRG)
(USGS, 2000b). Each study drainage basin included the
area upstream of the upper end of the study reach. In
most cases, this site was within 2 km of the tributaries'
confluence with the main-stem river. The second
planview variable, drainage-basin shape, measured the
narrowness of the drainage basins using the ratio of
drainage-basin length squared to drainage area (table 4).
This measure evaluates drainage-basin shape by com![]
paring the area of the drainage basin to that of a square
with sides equal to the drainage-basin length. Drainage-

13

basin length was calculated by digitizing a line through
the major stream valley, from the study reach to the
drainage divide. The drainage-basin length line bisected
the stream valley and therefore had a lower sinuosity
than the stream itself.

Three variables measured aspects of drainage-basin
relief including: elevation range, drainage-basin average
slope, and bluff area within stream buffers (table 4).
Elevation range was equal to the difference between the
highest and lowest elevations in the study drainage
basins. Drainage-basin average slope was calculated
using ArcView Spatial Analyst (ESRI, 1998c) and the
DEM. It calculated a slope for each grid cell by com![]
paring the elevation in that cell to the surrounding eight
cells. Drainage-basin average slope is the average of
the slope measurements for all of the cells within the
study drainage basin. A measure of streamside bluffs
was also included as a relief variable since previous
studies had suggested a relation between bluffs and
stream geomorphology in the Ozarks (for example,
Saucier, 1983; Jacobson, 1995; McKenney, 1997). We
estimated the abundance of bluffs by calculating the
area within stream buffers with slopes greater than 30
degrees (table 4). As with the calculations for drainage-
basin average slope, the slope of each cell was calculatl]
ed by comparing its elevation to the surrounding eight
cells. Stream buffers were created from the EPA river-
reach files (1:100,000-scale) and had graduated buffer
widths based on the Strahler stream order of each
stream segment. First order streams had a buffer width
of 25 m and width increased by an additional 25 m for
each sequential stream order. A maximum buffer width
of 300 m was used for streams of orders six and greater.

Land Use

Human use of the study drainage basins was evaluat[]
ed in terms of five main criteria — three measures of
anthropogenic land-cover types and two measures of
road network density (table 4). Land-cover
measurements were based on preliminary versions of
the National Land Cover Data (NLCD), a nationwide
data set developed by EROS Data Center (USGS,
2000b; Appendix 1). For this study we integrated many
of the NLCD land-cover classes into one category
called cleared land. This included NLCD categories for
shrubland, transitional, herbaceous upland, or herbal]
ceous cultivated. In general, areas of shrubland,
transitional, and herbaceous cultivated lands were
extremely sparse — they covered less than 1 percent of
either the Buffalo or the Current drainage basins.
Therefore, our cleared land category largely reflects
lands classified as hay or pasture in the NLCD data set.

As with the geology variables, the five land use
variables are all reported as proportions or as densities
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so that comparisons could be made between drainage
basins of different sizes (table 4). Cleared land area
was also measured for specific landscape positions in
order to investigate the effects of land clearing near
streams or in settings more likely to be sensitive to erol|
sion. These included steep, cleared land area (the pro-
portion of the drainage basin with cleared land on
slopes greater than 7 degrees) and cleared land area
within stream buffers. Road density was measured for
both the study drainage basins as a whole and within
stream buffers by dividing total road length by area.
The stream-buffer road density variable was introduced
to measure the greater disturbance potential of roads
near or within streambeds (table 1).

Reach-Scale Data Collection

Field inventories of habitat characteristics were carl]
ried out in 36 tributaries during the summer of 1999.
The inventory included: measurements of channel
geometry and habitat types, measurements of substrate
characteristics, and indicators of channel instability.
Reaches were chosen on the tributaries near their juncl’
tions with the main stem. To avoid backwater effects,
the elevation of a reach's downstream endpoint was
above the elevation of bankfull indicators on the main-
stem channel.

We stratified measurements in three locations
throughout the reach: along a thalweg longitudinal pro-
file, along cross sections in glide habitats, and on point
bars (fig. 5). Field protocols drew upon methods devell]
oped for other national and local monitoring programs
including the USGS National Water-Quality Assessment
Program (Fitzpatrick and others, 1998; Femmer, 1997)
and U.S. Environmental Protection Agency protocols
(MacDonald and others, 1991). The protocols devell]
oped for this study were also informed by previous
studies of Ozarks streams (Jacobson, 1995; Jacobson
and Pugh, 1999; Jacobson and Primm, 1997;
McKenney, 1997; McKenney and Jacobson, 1996;
Rabeni and Jacobson, 1993; Doisy and Rabeni, in press;
Peterson, 1996) and focused resources on stream char( ]
acteristics that were suspected to be sensitive to land [
scape disturbances in the Ozarks. Appendix 2 contains
detailed field instructions and an example field data
sheet.

The thalweg longitudinal profile was surveyed with a
laser theodolite through a minimum of three riffle-pool
sequences or a distance of at least 20 bankfull channel
widths (fig. 5; table 5). The profile was made up of a
series of points measured 3 to 10 meters apart. At each
point, we surveyed water-surface and bed elevations and
used a data logger to recorded information about thall
weg habitat type, dominant substrate particle size, sublJ

strate embeddedness, percent of banks covered by vege!
tation or bedrock, and bank erosion. Habitat types were
identified using a qualitative classification scheme that
took into account flow depth, flow velocity, channel
geometry, and substrate (fig. 6). A floating, foam-edged
Plexiglas square was used as a "window" to break the
water-surface and view substrate. Particle size and
embeddedness were reported for a one-meter diameter
circle around the base of the surveyor's stadia rod.

On return from the field, data collected along the lon[]
gitudinal profile was reduced into the geomorphic and
habitat parameters listed in table 5. Measurements of
habitat, substrate, and bank conditions were integrated
over the study reach using a distance-based averaging
method. The reach distance was divided into segments
based on survey point locations, and then observations
from each survey point were applied to that section.

For example, the proportion of cobble substrate along
the thalweg was equal to the sum of segments with cobl(
bles divided by the total reach length. The same proce!
dure was used to calculate other length-based propor!(]
tions, such as the proportion of eroding banks and the
proportion of each habitat type.

A similar procedure was used to calculate an index of
thalweg embeddedness and of bank vegetation cover
(table 5). In both cases, visual estimates at each survey
point were made as a proportion (for example, 10 per-
cent embedded or 50 percent of banks vegetated). The
total length of segments with each proportion was
summed and multiplied by the proportion of embedded!(
ness or cover. These numbers were then summed to
determine an embeddedness or bank vegetation index
for the reach. In the case of stream banks, estimates
were for right and left banks, therefore indexes were
summed and divided by two.

Measurements of residual pool geometry also were
calculated from the thalweg survey data (fig. 5).
Residual pools were constructed from survey data by
extending the elevation of each riffle crest upstream
until it intersected the channel bed. The length of this
line was the residual pool length (table 5). The propor(]
tion of residual pools within a reach was calculated by
summing the total length of residual pools and dividing
by the reach length. This variable contrasts with aver-
age residual pool length, which was the total length of
residual pools divided by the number of pools.

Average residual pool depth was calculated using a
method similar to that used to determine average cross-
sectional channel depth for stream discharge
measurements (Rantz, 1982). A depth was calculated
for each survey point along the longitudinal profile as
the difference between the stream bed elevation at that
point and the elevation of the downstream riffle crest.
This depth was then applied to the thalweg segment
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Measurement Technique
Calculated from visual estimates made at each survey
point along the longitudinal profile. Observations
made of vertical banks below bankfull elevation.

Channel Stability

Definition
Summation of vegetation class times the proportion of reach length

within each embeddedness class; average of left and right banks.
Total reach length classified as severely eroding divided by total

reach length; average of left and right banks.

Table 5. Reach-scale variables measured in field surveys--Continued

Reach Scale Variable
Bank vegetation index
Severely eroding banks, as a
proportion of reach length
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around this point. Long-section residual pool
area was calculated for each thalweg segment,
summed for the whole reach, and divided by

total residual pool length to determine a weighted
average of residual pool depth. One of the advan(]
tages of residual pool measurements is that they
are not influenced by discharge as many other
depth based habitat classes are.

Channel cross sections were surveyed with the
total station in three glide habitats (fig. 5). We
concentrated these measurements within a single
habitat type to reduce within-reach variability.
Cross-section measurements were used to deter-
mine bankfull channel geometries — bankfull is
thought to be indicative of the "channel forming
flow", a flood with a recurrence interval of about
1.5 to 2 years (Leopold and Maddock, 1953).
Indicators of bankfull elevation were identified
and surveyed along the longitudinal profile using
criteria outlined by Fitzpatrick and others (1998).
Generally, we found the most internally consis[]
tent indicators to be at the apex of point bars
where bare gravel substrate transitioned into
sandy substrate and perennial vegetation.
Frequently, this change in substrate and vegetall
tion occurred at a topographic break in slope.
The flat surface of the point bar transitioned into
a more steeply sloping terrace riser. At the site
of the stream gage on the Buffalo River at St. Joe
(fig. 3), the elevation of the point bar apex correl
sponded to a flow with a recurrence interval of
1.4 years (M. Maner, Arkansas Department of
Environmental Quality, written communication,
1999).

On return from the field, surveyed indicators
of bankfull elevation were plotted along the lon[]
gitudinal profile and used to interpolate a bank-
full water surface elevation. Elevations from this
line were used to calculate bankfull geometry in
glide cross sections. Bankfull width was equal to
the length of a horizontal line across the channel
at bankfull elevation. Average bankfull depth
was calculated using the same established proce!l
dures for calculating stream discharge (Rantz,
1982). Cross sections were broken into segments
on the basis of survey point locations, and then
channel cross sectional area was calculated for
each segment and summed. Average bankfull
depth was calculated as cross-sectional area
divided by bankfull channel width. Average
reach bankfull depth, width, and area were calcul]
lated from three to six cross sections in each
study reach.

Substrate characteristics and canopy cover

Calculated from planview of longitudinal profile
Methodology followed Fitzpatrick and others (1998).

survey.
readings near water’s edge on each cross section.

Calculated from concave spherical densiometer

Total reach length classified as moderately or severely eroding
divided by total reach length; average of left and right banks.
Average from densiometer readings at both ends of 3-6 cross

Total reach length divided by straight line distance between
sections.

endpoints.

banks, as a proportion of reach

Moderately and severely eroding
length

Reach sinuosity
Glide canopy cover
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were also measured at each cross section. Particle size
was estimated using Wolman pebble counts (Wolman,
1954), embeddedness was estimated visually, and
canopy cover was measured using a densiometer. The
procedure for pebble counts included making 100
"blind" touches to the stream-bed and picking up the
first particle touched. The particle was then measured
using calipers, or if too large, using an engineer's ruler.
Glide substrate measurements are reported in millime[
ters for 16th, 50th, and 84th percentile from the 100
particles measured in each glide (table 5). The numbers
reported are averages from the three pebble counts conl]
ducted in each reach. Embeddedness in glides was estil
mated using a 60x60 cm floating Plexiglas quadrant.

2} ArcView GIS 3.2
Eile Edt Yiew Theme Analsis Suface Graphics ‘window Help

B ¥ EE]

AR R R (]
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Within the square, we visually estimated the percent
sand and mud particles surrounding or covering coarser
substrate by making comparisons with illustrations of
known embeddedness fractions. We measured canopy
cover at each cross section using a concave sperical
densiometer and the method outlined in Fitzpatrick and
others (1998, table 5).

We measured substrate on point bars in an additional
way, by photosieving (Adams, 1979; Ibbeken and
Schleyer, 1986, fig. 7). Using a tripod and a 40x60 cm
quadrant, we photographed the bar surface material at
two locations on each of three point bars. To sample in
a hydraulically similar location, all photos were taken at
a standard position on the bar — at the upstream end,

Figure 7. lllustration of the photosieve method.
A. Photographs were taken on paint bars using a
tripod and quadrant. B. Once scanned, the photo-
graph was registered and rectified using the
quadrant and particle size was measured on
screen for randomly selected particles.

[T

D =R

+Measured grains 2|

I Random points
)

+IPhotoseive image

Scale 113
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equally spaced across the point bar along a line bisect!]
ing the adjacent riffle (fig. 5). On return from the field,
photographs were scanned, rectified in Arc/Info, and
loaded into ArcView. Using an ArcView script we gen!
erated a shapefile with randomly scattered points across
the photograph. We then used the online measuring
tools to measure the apparent median axis of rocks
identified by the random dots. A second script recorded
those measurements automatically into a data file.

We measured 31 rocks in each photograph, a number
determined by estimating the variance for the populall
tion. The number of random points (31) was deter-
mined using a standard sample size formula
(Thompson, 1992). This sample size allowed us to be
95 percent confident that we could estimate particle size
in phi4 to within 0.5 units of the true value. The sample
size formula depends on the population variance, which
was unknown. We therefore substituted the sample
variance from 150 clast measurements taken from 30
randomly selected photographs (5 random clasts per
photograph).

In total, photoseive measurements were completed on
144 photographs from 25 stream reaches. Sites were
excluded from photosieving when particle size was too
large to obtain a representative sample within the meas(]

23

uring quadrant. Because only two dimensions of partil]
cles are visible in photographs, photosieve
measurements are not directly comparable to particle
sizes measured in other manners such as pebble counts
or sieving. Instead, they should be viewed as a relative
measure of differences in particle size between the trib[J
utaries.

Segment-Scale Data Collection

To develop a synoptic overview of gravel in transport
in the Current and Buffalo River basins, a longitudinal
inventory of gravel-bar area was developed for 180 km
of the Current River main stem and 247 km of the
Buffalo River by mapping from low-altitude aerial phol!
tographs (fig. 8). The photographs were scanned and
georeferenced according to photo-identifiable points
with known positions, and gravel deposits were mapped
in Arc/Info using automated image-processing classifil]
cation and visual identification based on ranges of color
intensity. Because of the great contrast between light-
colored gravel bars and adjacent vegetation and rock,
this method proved simple and accurate.

Dates and discharges during periods of aerial photog [
raphy are given in table 6. All photographs were taken

Figure 8. Aerial photograph showing a typical segment of the Current River and juxtaposed stable and distur-
bance reaches.

4Phi is a logarithmic transformation of particle size in which the negative logarithm to the base 2 of the partil]
cle diameter (in millimeters) is substituted for the diameter value (Krumbein, 1934).
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Table 6. Dates and discharges for aerial photography
[m®s, cubic meters per second; NA, not available]

BIOLOGICAL SCIENCE REPORT USGS/BRD/BSR-2001-0005

Ratio to Mean

Ratio to Mean Ratio to Mean

Discharge ; Discharge Annual Discharge Annual
Date 3 Annual Discharge 3 . 3 .
(m?/s) (m=/s) Discharge (m~/s) Discharge
(percent)
(percent) (percent)
Jacks Fork at Eminence Current River at Van Buren Current River at Doniphan
3/8/92 11.4 86.9 51.8 91.6 63.4 79.9
4/16/96 18.9 143.9 65.7 116.2 90.6 114.1
Buffalo River near Boxley Buffalo River near St. Joe
3/1/00 2.8 NA 27.5 91.4
3/27/00 4.2 NA 15.8 525

during leaves-off periods. Varying discharges between
dates of photography or varying flow exceedence along
the river can potentially confuse this analysis.
Hydrographs for relevant periods from four gages on
the Current River are shown in figure 9. Hydrographs
1992 — 1996 (figs. 9A, B) show the recent history of
flood events on the river that could affect the interpretal’
tion of the longitudinal distributions of gravel deter-
mined from aerial photography on specific dates. To
normalize for differences in discharge between the two
dates of photography on the Current River, gravel
inventories have been expressed as percentages of the
total bar area measured during each date. Detailed
hydrographs for Current River at Van Buren, Missouri
and Current River at Doniphan, Missouri just before
and after the photography dates suggest that only slight
flood waves may have been present on the river (fig.
9C, 9D). Stage-width relations derived from discharge
measurement data for these two gages indicate that
expected variation in wetted channel width over the
range of prevailing discharge would be relatively small,
perhaps on the order of 5 percent (fig. 10), indicating
that gravel bar inventories may have a maximum of this
amount of error due to the longitudinal variation in
flow.

Photography on the Buffalo River was acquired on
two separate dates during March 2000. The hydro-
graphs 1996 — 2000 (fig. 11A) show the hydrologic con-
text of the years preceding aerial photography acquisil]
tion and the extremely low base flow periods that char[]
acterize Buffalo River hydrology. Detailed hydrographs
for the Buffalo River at Boxley, Arkansas and St. Joe,
Arkansas, document relatively steady and equivalent
discharges during this time period (fig. 11B). Stage-
width relations from the gage near St. Joe indicate that
average wetted width varies little at the prevailing range
of discharges, although there is substantial variation
among discharge measurements (fig. 12).

The distribution of gravel along the river was invento!]
ried by defining address points at 200-m intervals along
a digital representation of the centerline of the main-
stem channel (fig. 13). Gravel areas were assigned to
each address point by intersecting circular areas of 125
m radius centered at each address point with the
mapped gravel bars. This method ensures that most
gravel along the channel is inventoried, but oversamples
slightly in reaches where gravel bars are close together.
The addressing system allows channel, valley, and basin
characteristics to be associated with each point on the
main stem, thereby allowing a nearly continuous evalul]
ation of factors that potentially affect channel dynamics.

The utility of gravel-bar area as a measure of gravel
in transport through the river system is based on two
assumptions: that bare gravel mapped in bars is in
active transport over relevant time frames and that grav(]
el-bar area is a useful index of gravel volume.
Monitoring of channel morphological change on the
Jacks Fork (Current River tributary) and Buffalo River
(McKenney and Jacobson, 1996) and regional analysis
of streambed elevation changes (Jacobson, 1995) con-
firm high rates of exchange of gravel between channel
and bars, and generally high bedload transport rates of
Ozarks streams. The volume of gravel in transport is
underestimated by a factor equal to the thickness of the
gravel bar. To the extent that gravel thickness is con[]
stant or proportional to bar area, the longitudinal trends
in bar area will underestimate volume but still show
valid longitudinal patterns. If gravel thickness decreas’]
es while area increases, then area inventories would not
be a valid measure of longitudinal variation in sediment
volume. Although quantitative data on gravel bar thick[
nesses are lacking, field observations along the Current
River have not indicated a decrease in bar thickness
with an increase in bar area, or the presence of
hydraulic or geologic controls that would produce
anomalously thin bars.



DISCHARGE, DISCHARGE, DISCHARGE,

DISCHARGE,

GEOLOGY, PHYSIOGRAPHY, LAND USE, AND STREAM HABITAT

DATE

1000 , ; . , — — —
o E ' L JACKS FORK AT ALLEY SPRING, MISSOURI Al
% E — JACKS FORK AT EMINENCE, MISSOURI ]
O i ]
®
o 100 .
@ 3
o
»
i
L
b 10
=
O
£ N N
O 1 | MARCH 8, ‘]992 | AIPRIL 16, 1996 |

T B S A e
= — CURRENTRIVER B
o AT VAN BUREN, MISSOURI 1
O _
5 1000 - g'IqB%E\l’;lPTH?QIxFI\'}ISSOURI 3
x F ]
L r ]
o ]
»
hd
E 100 L 1
L
=
0
g -
(@] “~MARCH 8, 1992 APRIL 16, 1996 —— [
10 1 L | L 1 L L 1 L L 1 L L L 1
1/1/92 1/1/93 1/1/94 1/1/95 1/1/96
[a) 1 50 T T T T T T T
% — CURRENTRIVER AT VAN BUREN, MISSOURI c
Q — CURRENT RIVER AT DONIPHAN, MISSOURI DATE OF PHOTOGRAPHY
® — JACKS FORK AT EMINENCE, MISSOURI 1992
o 100+ i
]
o
»
x
L
K50 _\j |
=
0
m
o)
O 0 1 1 1 1 1 1 1
2/28/92  3/1/92 3/3/92 3/5/92 3/7/92 3/9/92  3/11/92  3/13/92

150
% —__ CURRENTRIVER AT VAN BUREN, MISSOURI ' ' ' D
0O — CURRENTRIVER AT DONIPHAN, MISSOURI
o — JACKS FOR AT EMINENCE, MISSOURI DATE OF PHOTOGRAPHY
» JACKS FORK NEAR ALLEY SPRING, MISSOURI _— 1996
e 100 L
L \/\L
a
»
hhd
ul
o 50 L
=
0
m
o)
®] 0 1 1 1 1 1 1 1

4/7/96 4/9/96  4/11/96  4/13/96  4/15/96  4/17/96  4/19/96  4/21/96

Figure 9. A. Hydrographs, Jacks Fork near Alley Spring, Missouri and Jacks Fork near Eminence,
Missouri, and dates of aerial photography. B. Hydrographs, Current River at Van Buren, Missouri and
Current River at Doniphan, Missouri, and dates of aerial photography. C. Detailed hydrographs before,
during, and after aerial photography, 1992, for sites on the Current River and Jacks Fork. D. Detailed

hydrographs before, during, and after aerial photography, 1996,
Fork.

for sites on the Current River and Jacks
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Analysis of causal factors that might affect the longil
tudinal distribution of gravel in these rivers potentially
is confounded by systematic upstream-downstream
trends in gravel-bar areas. All other factors being equal,
we would expect gravel-bar area to increase naturally in
the downstream direction as a function of increasing
drainage area and increasing channel size. To normalize
for this trend, we assumed that in a non-disturbed sys(]
tem, gravel-bar area would be directly proportional to
channel size. Further, we used the conventional
assumption that channel width is adjusted systematically
to the bankfull discharge, usually a 1.5-2 year flood
(Leopold and Maddock, 1953) and regional flood-frel’]
quency relations for the 2-year flood (Alexander and
Wilson, 1995; Hodge and Tasker, 1995) to estimate how
bankfull channel width should vary with drainage area
along the river main stems. This required adoption of a
relation between bankfull discharge (determined from
drainage area above each main-stem address point) and
channel width based on conventional channel geometry
relations (Leopold and Maddock, 1953). In this relal]
tion, bankfull channel width is given as a power func(’

160 |

tion of discharge with constants for the power and linear
coefficients. We used a power coefficient of 0.5 as sug(!
gested by Leopold (1994) and a linear coefficient of 1.
The actual value of the linear coefficient is not impor(’
tant because the normalization is based on the shape of
longitudinal relation, not on an actual estimate of chan(]
nel width (fig. 14). The normalization value yields an
estimated channel width in meters.

Exploration of the links between tributary basin char(
acteristics and gravel-bar inventory require a summation
of gravel-bar area over some length downstream from
tributary junctions. The question is how far down-
stream would we expect gravel-bar area to be correlated
with geologic, physiographic, or land-use characteristics
of the tributary basins. Because we have little under-
standing of how far pulses of gravel delivered to the
mainstreams might translate or disperse downstream,
we calculated areas summed over arbitrary distances of
0.2,0.4,0.6, 1.0, 1.6, 2.0, 2.6, 3.0, 3.6, and 4.8 km
downstream from tributary junctions to serve as
response variables for exploratory purposes.

140 -
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Relation between width and discharge, Current River at Van Buren, and at Doniphan for discharges
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Figure 11. A. Hydrographs, Buffalo River near Boxley, Arkansas, and Buffalo River near St. Joe, Arkansas
1996 - 2000. B. Detailed hydrographs in March 2000 and two dates of aerial photography.

Statistical Analyses

Data analysis employed an exploratory approach and
three statistical techniques: correlation analysis, multi[J
ple regression, and principal components analysis. The
SAS statistical software package, version 8 (SAS
Institute, Inc., 1999) was used for all statistical analyses.

We used correlation analysis and scatter plots to
investigate bivariate relations between variables.
Scatter plots indicated non-linear relations between
some variables, therefore we used Spearman rank corre
lations (for example, SAS, 1999) to quantify the
strength of bivariate relations. Data tables in this report
highlight correlation coefficients that were significant at
p < 0.05. Correlation analyses helped identify related
variables within a scale and identify relations between
scales. For example, correlation analysis highlighted
relations between different measurements of channel
geometry and between channel geometry variables and
drainage-basin variables. Comparisons of correlation
coefficients for all study drainage basins grouped
together and separated into Buffalo and Current River
groups also helped identify differences between the two

river systems.

Based on correlation analysis, we selected specific
relations to investigate further with multiple regression.
This technique allowed us to assess whether these relal
tions persisted after adjusting for other explanatory
variables. The assumptions of multiple linear
regression were assessed using scatter and residual plots
(Ramsey and Schafer, 1996). Data were transformed
when necessary to meet these assumptions; transformal’
tions are noted in tables of regression models. All
explanatory variables in the models presented were sig[
nificant at p < 0.05. Multiple regression was an impor![
tant tool in this study because in many cases the relation
with one explanatory variable needed to be accounted
for before a relation with another explanatory variable
could be resolved. For example, channel dimensions
varied with drainage area — larger drainage basins had
larger channels. Multiple regression allowed assess!
ment of the relation between channel dimensions and
other drainage-basin variables, such as cleared land
area, after accounting for differences in drainage area.
This report uses partial residual plots to graphically



28

50 T T

BIOLOGICAL SCIENCE REPORT USGS/BRD/BSR-2001-0005

45
40 -
35
30 + L
25 +
20
15 +
10 +

CHANNEL WIDTH, METERS

BUFFALO RIVER NEAR BOXLEY, ARKANSAS 7

2.0 2.5 3.0

3.5 4.0 4.5 5.0

DISCHARGE, CUBIC METERS PER SECOND

120 T

100
80

60 @

°
40 ®
° e
20

CHANNEL WIDTH, METERS

< %o, 0 e »® % |

BUFFALO RIVER NEAR ST. JOE, ARKANSAS _|

15 20

25 30

DISCHARGE, CUBIC METERS PER SECOND

Relations between width and discharge Buffalo River near Boxley, Arkansas, and Buffalo River

present data from multiple regression. These plots help
show the relation between one explanatory variable and
the response variable after removing the influence of
another explanatory variable. Partial residual plots were
calculated using the method outlined by Ramsey and
Schafer (1996).

In using multiple regression, our goal was not to
develop predictive models but rather to explore the relal’
tive influence of different drainage-basin characteristics
on tributaries of the Buffalo and Current Rivers. Our
approach was to develop a series of multiple regression
models for a set of related response variables and look
for consistency within the set of models. For example,
we developed separate models for many measures of
channel geometry (e.g. bankfull width and depth,
residual pool length and depth). In interpretation, we
then placed the most emphasis on explanatory variables
that were consistently significant for many of the

response variables. For example, we might conclude
that drainage-basin area and drainage-basin average
slope are important explanatory variables for measures
of channel geometry if they consistently appeared in
multiple regression models for many different channel
geometry variables.

For the drainage-basin analyses, we also used princil
pal components analysis (PCA) to gain an understand[|
ing of the variability within the data sets and identify
differences between the two river systems, Buffalo and
Current. PCA is an exploratory multivariate technique
that determines the linear combination of variables that
best explains the variation within a data set (for
example, Ramsey and Schafer, 1996). When site scores
were plotted on axes representing the principal compol
nents, the data often clustered into groups that helped
identify sites with similar characteristics. For example,
we used PCA to help recognize similarities between
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land use patterns in the study drainage
basins.

Results: Tributary
Drainage-basin
Characteristics

This section presents findings from
the basin-scale GIS analyses. It
describes the characteristics of the
Buffalo and Current River systems,
makes comparisons between tributary

) ‘ i MAPPED

drainage basins, and discusses rela’’ FROM AERIAL

i . ) PHOTOS
tions between basin-scale variables.
In so doing it provides the landscape-

scale context that is fundamental for
understanding anthropogenic impacts

on streams in the Ozarks.
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Geology
Current River System
The Current drainage basin is
underlain primarily by carbonate with
interbedded chert and sandstone.
Most of the geologic sequence dates to between the
Cambrian and Ordovician (570-438 million years ago)

60

Figure 13. Map showing a typical portion of the Current River valley, address points,
gravel-bar area, and various measurements.

and includes the Potosi, Eminence, Gasconade, and

Roubidoux Formations (Figures 15-16; MDNR, 1991).

Scattered knobs of Proterozoic (~1500 million years
old) volcanic rock related to the
St. Francis Mountains underlie this
sequence (fig. 15). In places, the

CURRENT RIVER
50

40 L

30 |

sedimentary rocks drape over the
igneous knobs, and geologists

believe the knobs formed islands
in the ancient Ordovician seaway
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(Orndorff and others, 1999). Even
though the igneous rocks are not
extensive, they have an important
effect on topography and perhaps

0 . . .
0 40 80
60

120

160 also on hydrology in the Current

BUFFALO RIVER
50

40 |
30 -

20 |

ESTIMATED CHANNEL WIDTH FOR NORMALIZATION, METERS

River drainage basin. They are
resistant to erosion and create
many of the topographic highs in
the landscape today, including
Stegall, Coot, and Shut-in
Mountains (fig. 15). They are also
highly impermeable and many of
the creeks that drain these uplands

100 150

DISTANCE DOWNSTREAM, KILOMETERS

Figure 14. Relation between estimated channel width normalization factor and dis-

tance downstream, Current River and Buffalo River.

200 250 have sustained baseflows that are

remarkable in a region with many
underdrained streamss. Rocky,
Mill, and Rogers Creeks (fig. 15),

5 We use the word underdrained to describe streams that are affected by karst hydrology. They may be dry for
most or part of the year or contain sections of losing stream. We consider them to be a subset of ephemeral or
intermittent streams — the broader category that includes streams that flow for part of the year due to climatic or

geologic factors unrelated to karst hydrology.
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three tributaries which drain Coot Mountain, maintained
steady baseflows even during periods with extremely
low rainfall between July 1999-July 2000. In contrast
to the igneous rocks, the dolomites are much more easil|
ly eroded and dissolved. Their weathering is what pro[]
duces the region's karst hydrology with its famous
springs, extensive cave networks, and sinkhole-pocked
landscape.

Generally, there is a down-section shift moving from
west to east in the Current River system, following the
drainage basin's topography (fig. 15). Western and
northern tributary drainage basins have the highest elel!
vations and drain the flat lying uplands of the Salem
Plateau. The Jefferson City Dolomite underlies their
upper regions; this is the cherty carbonate that caps the
regional geologic sequence (fig. 16). Beneath the
Jefferson City Dolomite, lies the Roubidoux Formation,
a unit with many sandstone beds. This formation under-
lies the middle portion of many western tributary
drainage basins and forms ridges throughout the
drainage basin; its sandy, well-cemented texture makes
it the most resistant sedimentary rock type in the area.
Beneath the Roubidoux Formation is the Gasconade
Dolomite, another carbonate unit that is susceptible also
to dissolution. It forms the valley bottoms in the west-
ern tributaries — valleys that in many cases hold under-
drained streams, a characteristic that may relate to the
cave horizon found in the upper part of the formation
(R. Harrison, research geologist, U.S. Geological
Survey, Reston, VA, oral communication, July 2000).
Examples of west Current underdrained streams include
some of the largest tributary drainage basins in the river
system — Big Creek (west), Spring Valley Creek, and
Pike Creek.

Elevations are generally lower in the eastern and mid[]
dle Current and the tributary drainage basins are domil
nated by older geologic formations. The Roubidoux
Formation is found generally in small amounts capping
ridges, while the Gasconade Dolomite is more extensive
and underlies heavily dissected uplands and steep hill-
slopes. Valley bottoms are made dominantly of the
Eminence and Potosi Formations. In many of the mid [
dle Current drainage basins, the Proterozoic igneous
rocks also crop out. Although they make up less than 1
percent of the entire Current River system, they make
up 25 percent of Rocky Creek's drainage basin and less[
er amounts of Rogers, Mill, Blair, and Shawnee
drainage basins (fig. 15).

BIOLOGICAL SCIENCE REPORT USGS/BRD/BSR-2001-0005

Buffalo River System

In the Buffalo drainage basin, the stratigraphic
sequence is younger (Ordovician to Pennsylvanian) and
includes more sandstone and shale and less carbonate.
However, similar to the Current, rock formations
become older moving toward the east (fig. 17). The
upper drainage basin contains the youngest rocks, sand-
stones and shales of the Atokas , Bloyd and Hale
Formations. These rock units make up the Boston
Mountains and create the rugged relief characteristic of
the upper drainage basin. The Boone Formation, the
most extensive formation in the drainage basin, predom!(]
inantly underlies the middle drainage basin. The Boone
Formation is largely made up of chert bearing lime-
stone. Similar to the carbonate formations of the
Current River system, it is more easily eroded and sus!(
ceptible to dissolution — it contains caves and springs
and there is less topographic relief in the middle portion
of the Buffalo river system. The oldest rocks in the
drainage basin are the carbonates and sandstones of the
Everton Formation, St. Peter Sandstone, and Powell
Formation. These most extensively underlie the lower
drainage basin but also occur in the valley bottoms of
the upper drainage basin.

Principal components analysis (PCA) was used to
identify geologically similar drainage basins in the
Buffalo River system (fig. 18). Three main groups are
apparent. The first principal component separates two
of these groups and corresponds to a shift from sand-
stone to interbedded sandstone and shale. Richland and
Beech cluster together at one end of this axis; the sand-
stones and shales of the Atoka, Bloyd, and Hale
Formations predominate in these drainage basins.
Middle, Leatherwood, and Clabber cluster at the other
end of this axis, they are all in the lower drainage basin
and contain large percentages of the St. Peter sandstone.
The second principal component largely coincides with
the amount of carbonate (mostly the Boone Formation)
in the drainage basins. Most of the middle drainage
basins cluster at the upper end of this axis.

Physiography

Mean drainage area for the study drainage basins was
148 square kilometers (km2) (27,680 acres) with
Middle Creek the smallest at 29 km2 (7,057 acres) and
the Jacks Fork River the largest at 406 km2 (100,300
acres) (table 7). The mean drainage-basin shape factor
was 5.6 and there was no notable difference between the
Buffalo and Current River systems. Drainage basins

6 In order to maintain consistency with our source maps (Hofer and others, 1995; Haley and others, 1993) we
refer to the upper-most Pennsylvanian strata in the Buffalo River region as the Atoka Formation. Subsequent geol
logic mapping suggests that some areas mapped as Atoka Formation may actually be part of the upper Bloyd

Formation (for example, Hudson, 1998).
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Figure 15. Chronostratigraphic and lithologic maps of the Current River drainage basin.
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with unusual shapes include the long and narrow
drainage basins of Little Barren, Big (east), and Spring
Valley Creeks in the Current and the short and wide
drainage basin of Mill Creek (upper) in the Buffalo.
Drainage-basin average slopes ranged between 4.9
degrees (Pigeon Creek) and 16.7 degrees (Leatherwood
Creek). Pigeon Creek also had the drainage basin with
the lowest elevation range, 154 meters, while the Little
Buffalo River had the greatest elevation range at 521
meters (table 7; fig. 19A). Five drainage basins in the
Current and two in the Buffalo had almost no stream-
side bluffs while the Little Buffalo River had the maxi-
mum with 3.8 percent of its stream buffer classified as
bluffs (table 7; fig.19B-C).

Physiographic Groups

Among our study drainage basins, the three topo!(
graphic variables are interrelated — drainage basins with
high elevation ranges also tend to have steep drainage-
basin average slopes (fig. 19A) and many bluffs within
the stream buffer (fig. 19B). These differences high-
light the distinct physiographic differences between the
two river systems. The Buffalo is more rugged than the
Current and has drainage basins with steeper slopes,
higher elevation ranges and more streamside bluffs (fig.
19A-D).

Topographic characteristics also suggest ways to
group drainage basins within the two main river sys[|
tems. In a scatter plot of elevation range and drainage-
basin average slope (fig. 19A), drainage basins cluster
according to physiographic and geologic differences. At
one extreme are the Buffalo's western and southern
drainage basins. Their headwaters are in the Boston
Mountains and they have high elevation ranges and
physiographic relief. In contrast, the Buffalo's middle
and eastern drainage basins have lower elevation ranges
and cluster with the study drainage basins of the
Current. The middle and eastern drainage basins all fall
within the Salem and Springfield Plateaus and their
lower elevation ranges reflect the more subtle topogral
phy of these regions. Average slopes in the Buffalo
tend to be more consistent throughout the drainage
basin with the exception of Middle and Leatherwood
Creeks, which plot as outliers (fig. 19A). These two
drainage basins lack any flat lying uplands and contain
extensive bluffs — characteristics that produce an
extremely high drainage-basin average slope.

Drainage basins of the Current have fairly consistent
elevation ranges but break into two groups according to
average slope (fig. 19A). Western drainage basins conl]
tain large areas of gently sloping uplands underlain by

the Jefferson City Dolomite and the Roubidoux
Formation. These low-gradient uplands lower the over-
all drainage-basin average slope for these tributaries. In
contrast, average slopes tend to be higher in the middle
and eastern tributaries where the Roubidoux Formation
holds up narrow ridges.

Land Use

While agricultural uses within the parks' drainage
basins appear to be increasing (Scott and Hofer, 1995),
the overall proportion of cleared land in the early 1990's
was less than the proportion of forested land. The max[]
imum proportion of cleared land area in any study
drainage basin was 35 percent’ (table 3) and the mean
was 15 percent (table 7). This means that the compar(]
isons within this study are among drainage basins with
relatively subtle differences in land use. The study does
not provide the perspective of comparisons with inten(]
sively agricultural drainage basins.

Within the Buffalo and Current river systems, cleared
land tends to be concentrated on flat uplands and in
stream valleys (figs. 20-21). The mean proportion of
steep, cleared land area was 4 percent with most basins
in the Current River system having less than 2 percent
steep, cleared land area (table 7). When measured as a
proportion of stream buffer area, there was a slightly
higher mean proportion of cleared land area, 19 percent.
Road densities were slightly higher on average when
measured as a proportion of stream buffer area than
when measured as a proportion of drainage area. Mean
road density in stream buffers was 0.00108 m/m?2 and
0.00097 m/m? in whole drainage basins.

We used principal components analysis to summal]
rize the intensity of human use as measured by the five
land-use variables and make comparisons between trib[]
utary drainage basins (fig. 22A, B). The first three prin[’]
cipal components explain 89 percent of the variation
among drainage basins and help identify relations
among them. Principal Component 1
(PC 1) appears to be a measure of overall land use
intensity with most variables loading equally on this
axis. Brush Creek has the most intensive land use (fig.
23A, B) and plots with the highest site score on PC 1.
Other drainage basins with relatively high land use
intensity include: Big (lower), Calf, Bear, and
Tomahawk Creeks in the Buffalo, and Gladden, and
Shawnee Creeks in the Current. The drainage basins
with the least intensive use are the three smallest
drainage basins in the Buffalo River system: Beech,
Leatherwood, and Middle Creeks. Leatherwood and
Middle Creek drainage basins are insulated from many

7 Note that these percentages are based in the National Land Cover Data (USGS, 2000) and in some cases difl]
fer from other satellite-derived land cover estimates. Refer to Appendix 1 for details.
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anthropogenic impacts because they are part of the
Lower Buffalo Wilderness Area.

Principal Component 2 (PC 2) separates the drainage
basins according to the type of land use within them
(fig. 22A). It separates drainage basins with a high pro-
portion of cleared land and a low road density (negative
values) from those with a low proportion of cleared land
and a high road density (positive values). In general,
drainage basins in the Current tend to plot near the mid[]
dle or on the positive end of this axis and have high
road densities but a low proportion of cleared land area.
Drainage basins with the highest values for PC 2
include Carr, Shawnee, Blair, Mill, Mahans and Pike
Creeks. Plots of road density against buffer road densil
ty, show that these drainage basins have some of the
highest road densities in the study (fig. 23C). In the
Buffalo, most drainage basins plot with negative values
on PC 2 indicating a relatively high proportion of
cleared land but lower road densities. This is in part
due to the higher percentage of cleared land mapped on
steep slopes in the Buffalo (fig. 23A). Exceptions
include Mill (upper), Rush, and Brush Creeks, which
also have high road densities.

Principal Component 3 (PC3) further separates the
drainage basins according to whether they have a high
relative proportion of steep, cleared land area (positive
values) or cleared land within stream buffers (negative
values) (fig. 22B). In general, there tends to be more
cleared land in stream buffers in the Current and more
steep, cleared land in the Buffalo. This observation is
confirmed in a bivariate scatter plot of cleared land area
in buffers vs. steep, cleared land area (fig. 23D). Very
few drainage basins in the Current have agriculture on
steep slopes, whereas, it is fairly common in the
Buffalo, particularly among drainage basins in the
Springfield and Salem Plateaus (fig. 23A).

Relations among Drainage-basin
Characteristics
This section describes results from a sequence of corl]
relation and multiple regression analyses we carried out
to understand the relations among drainage-basin
variables. This analysis is important because sediment
and water yield integrate the influence of geologic,
physiographic, and land-use factors.

Correlation Analysis

Table 8 shows correlation matrices for study drainage
basins grouped together and separated according to
major river system. The analysis for the combined set
of drainage basins suggests the following tendencies:

35

® Variables within a category tend to be
related; for example, drainage basins
with high average slopes also have
high elevation ranges and high pro-
portions of streamside bluffs. Land-
use variables also tend to be related;
drainage basins with more agriculture
overall tend to have high road densi(]
ties and a greater proportion of
cleared land in buffers and on steep
slopes.

® Geology to Land Use: There is little
relation between geology and land-use
variables except for measurements of
road density.

* Physiography to Land Use: There is
some relation between relief and land-
use variables. Drainage basins with
lower slopes tend to have a greater
proportion of cleared land.

One of the surprises of this correlation matrix is that
there is so little relation between geology (as measured
as carbonate bedrock area) and physiography. As
described previously, scatter plots of relief variables
show that drainage basins cluster into physiographical [
ly-based groups which appear related to geology (fig.
19A). The correlation analyses for the separate river
systems help resolve this disparity — relations between
carbonate and relief variables follow opposite trends in
the two river systems. In the Buffalo, drainage basins
with little carbonate tend to have steeper slopes and
greater relief while in the Current, drainage basins with
predominately carbonate bedrock have steep slopes.
These opposite trends are masked when the two data
sets are combined. Another factor may be that because
of differences in lithologic descriptions for units in
Missouri and Arkansas, geologic characterization was
limited to the common lithologic category carbonate.

The separate river-system correlation analyses also
suggest some other important relations (table 8). In the
Buffalo, there is a positive relation between carbonate
and many of the land-use variables. Drainage basins
with more carbonate bedrock, the drainage basins in the
Salem and Springfield Plateaus, tend to have more
intensive land use. Relations between geology and land
use are not as strong in the Current, although there is
some suggestion of an opposite trend with land-use
intensity decreasing as carbonate increases.

Multiple Regression
The second step in our drainage-basin analyses was to
use multiple regression to further test the relations
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Figure 18. Principal components ordination diagram for bedrock lithology in the Buffalo River

tributary drainage basins.

identified with Spearman's correlations. The advantage
of multiple regression was that it allowed the influence
of one variable to be measured after accounting for the
impact of another.

Geologic Influences on Physiography

Multiple regression confirmed the opposite trends
between carbonate and relief variables in the two river
systems (table 8;fig. 24A, B) and suggested that strati-
graphic sequence and regional geologic history may
explain the difference. The proportion of carbonate
bedrock explained 64 percent of the variation in the
drainage-basin average slopes in a regression model
with an indicator variable to specify Buffalo or Current
and an interaction term to account for the opposite
trends in the two river systems (table 9). Measurements
of the average slope within each geologic formation
help explain this difference (fig. 16). Formations with
similar lithologies do not always underly topography
with similar gradients. For example, the average slope
for terrain underlain by the Gasconade Dolomite is
much higher than that underlain by the Jefferson City
Dolomite (fig. 16). In the Current, the Gasconade
Dolomite is largely exposed in the downcut hillsides of

logic formations.
Stratigraphic sequence and
geologic history help deter-
mine the topographic
expression of a particular
rock type.

For other physiographic
characteristics, stratigraphic
differences are also important. For example, one would
expect a relation between drainage area and elevation
range; larger drainage basins should have a greater ele(
vation drop from the drainage divide to the drainage
basin mouth. But a scatter plot of area against elevation
range (fig. 19D) show that this is only true for the
Current's western drainage basins, for all others, geolog!]
ic differences have an overriding impact on elevation
range (fig. 24B). Drainage basins with Boston
Mountain's formations (Atoka, Bloyd, and Hale
Formations) have elevation ranges that are almost twice
that found in most other study drainage basins (fig.
19D). In the Current, drainage basins with igneous
rocks (Rocky, Rogers, Mill Creeks) have some of the
greatest elevation ranges in the river system despite
their small drainage areas (fig. 19D).

Geologic and Physiographic Influences on Land-Use

Patterns ) ) ) )
We also used multiple regression to investigate relal|

tions between drainage-basin physiography, geology,
and land-use variables. The strongest association is
between cleared land area and drainage-basin average
slope (fig. 24C, table 9). A regression model with an
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24
10 (Big Barren)

40 (Bay)
3.0 (Buffalo)

154 (Pigeon)

Current River System, n

27

94 (Rogers)

57

140
5.7
194
7.4
0.2

59
164

Carbonate bedrock area (percent)

406 (Jacks Fork)

117
2.4
32

Drainage area (kmz)

11.4 (Little Barren)

257 (Rogers)

6.2
201
7.7

0.3

Drainage basin shape factor

Elevation range (m)

11.5 (Big East)
1.2 (Big East)
35 (Gladden)

4.9 (Pigeon)
0.0 (many)

1.9
0.4

11

Drainage basin average slope (degrees)

Bluff area in stream buffer (percent)

1 (Blair, Rogers)
0 (Blair, Rogers)
1 (Blair, Rogers)

14

Cleared land area (percent)

7 (South Prong)
43 (Shawnee)
0.00122 (Ashley)
0.00248 (Carr)

Steep, cleared land area (percent)

24
0.00103  0.00079 (Buffalo)

0.00099  0.00038 (Bay)

12
0.00013

22
0.00100

Cleared land area in stream buffer (percent)

Road density (m/mz)

0.00055

0.00117

Road density in stream buffer (m/m2)

indicator variable to specify Buffalo or Current, and
drainage-basin average slope explained 60 percent of
the variation in cleared land area. After introducing
another explanatory term, private land area within a
drainage basin, the regression model explains 81 per-
cent of the variation (table 9). This supports observal]
tions that when land is held privately, slope is often the
main determinate in whether it will be cleared and conl]
verted to pasture. In the Buffalo River system, land
with a slope less than 15 degrees is more likely to be
cleared (D. Mott, Hydrologist, Buffalo National River,
oral communication, 2000). It is also interesting that
the relation between slope and cleared land area is
weakest in basins with the lowest average slopes (fig.
24D). This supports the hypothesis that in basins with
gentler topography, slope no longer exerts a strong
influence on land-use patterns.

The regression model also illustrates an important difl
ference between cleared land in the Buffalo and Current
river systems (table 9; fig. 24C). For a given average
slope, the regression model indicates that drainage
basins in the Buffalo have 1.3 times as much cleared
land as those in the Current. This may reflect differ
ences in the availability of low gradient land in the two
regions — in the more rugged Buffalo, farmers are more
likely to raise cattle on steeper slopes. Scatter plots of
cleared land and steep, cleared land show that drainage
basins in the Buffalo have more cleared land on steep
slopes (fig. 23A). This observation suggests that while
the proportion of agriculture affecting the two parks is
similar, agriculture is likely to have a greater impact in
the Buffalo River system. Agriculture and the potential
for accelerated erosion, is occurring in landscape posil]
tions where steep slopes increase the potential for high
transport capacity (table 1).

We also used multiple regression to investigate
whether there is a relation between geology and land
use patterns after accounting for differences in slope
and private land area. There is often a strong relation
between these two variables in regions dominated by
row crop agriculture — geology influences many soil
characteristics that determine agricultural potential. A
significant regression model for study drainage basins
in the Current indicates an increase in cleared land area
is associated with an increase in carbonate bedrock and
private land area and a decrease in basin average slope
(table 9).

This case is a good example of the different informal’
tion provided by correlation analysis and multiple
regression. In the Current, a bivariate relation between
carbonate bedrock and cleared land is not apparent (fig.
25A). But when multiple regression is used to adjust
for differences in basin average slope and private land
area, a relation between carbonate bedrock and cleared
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Figure 20. Map of land cover distributions within the Current River drainage basin.
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land area becomes significant (table 9). This relation
can be seen graphically by plotting the partial residual
from the regression model (fig. 25B). The partial
residual adjusts the response variable by accounting for
variation explained by other explanatory variables in the
model. This model shows that there is an association
between carbonate bedrock and cleared land in the
Current, but the association is masked by differences in
basin average slope and private land area. In the
Buffalo, the opposite case is true: a scatter plot (fig.
25C) and Spearman's correlations show a bivariate relal
tion between carbonate bedrock and cleared land, but a
regression model that also accounted for differences in
basin average slope and private land area was not sig[|
nificant.

We also assessed relations between physiography and
land use patterns by looking for differences between the
four physiographic groups of the parks. Scatter plots
highlight differences between drainage basins in the
middle and eastern Current and the western Current (fig.
23). Middle and east drainage basins tend to have low
overall percentages of cleared land area but the cleared
land that exists is concentrated in stream valleys (fig.
23B). Middle and east drainage basins have similar
road densities to the west drainage basins of the
Current, but again, more roads are concentrated in
stream valleys in the middle and east drainage basins
(fig. 23C). These trends likely result from the more
rugged topography of the eastern drainage basin.
Steeper slopes are less suitable for pasture or roads and
so they are concentrated in stream valleys. In contrast,
in the west drainage basins of the Current, roads and
cleared land are more evenly distributed between valley
bottoms and flat lying uplands (fig. 23B, 23C). As the
overall percentage of cleared land area in these drainage
basins increases, so does the proportion of cleared land
in stream buffers and the overall road density.

There are fewer differences in land use patterns
between the physiographic groups of the Buffalo River
system. A subtle distinction is that Boston Mountain's
drainage basins tend to have more agriculture in stream
buffers and less cleared land on steep slopes than the
Springfield/Salem Plateau drainage basins (fig. 23D).
This may in part relate to the distribution of the Boone
Formation, the most common rock type underlying agrill
cultural lands in the Buffalo. It commonly is found in
valley bottoms in the Boston Mountain's drainage
basins, and where it occurs, these valleys tend to be
wider and more suitable for agriculture than valleys
underlain by other rock types. An example of this
occurs along the Buffalo River main stem near its conl]
fluence with Richland Creek (fig. 17). Upstream of the
confluence, the Buffalo flows through the St. Peter
Sandstone and the valley is narrow. Downstream of the
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confluence, the river flows through the Boone
Formation and the valley suddenly becomes broader.
This phenomenon likely relates to the lower erosional
resistance of the Boone Formation.

In summary, within basin-scale analyses suggest a
relation between land-use patterns and physiography
and highlight the regional nature of relations between
geology and physiography. In both the Buffalo and the
Current, cleared land is more likely to occur on shallow!(]
er slopes and on carbonate bedrock. However, the two
drainage basins differ in their relations between slope
and geology. In the Buffalo, shallower slopes are more
likely to occur in drainage basins with more carbonate
bedrock, while in the Current, they are more likely to
occur in drainage basins with less carbonate bedrock.
These opposite trends relate to the different stratigraphic
position and weathering history of the carbonate rock
formations in each drainage basin. Physiography is
related to geology but in a way that reflects geologic
history and stratigraphic sequence. This is a reminder
that even within the Ozarks, associations between geol [
ogy and physiography are not always consistent
between regions.

Results: Tributary Reach
Characteristics

This section presents data from the reach-scale habitat
inventories. It includes summary data from
measurements of reach geometry, substrate, and reach
stability and discusses relations between reach scale and
basin-scale data sets. The between-scale comparisons
evaluate whether data from the Buffalo and Current
River tributaries support the many hypothesized links
between drainage-basin characteristics and streams conl]
ditions (table 1).

Channel Geometry

Gradients in the study tributary reaches range
between 0.0106 and 0.0009 (table 3; table 10). The
tributaries typically have meandering channels with
alternating gravel bars and a sequence of thalweg habil
tats progressing from a riffle (typically at a bar head), to
a race, to a pool, to a glide, and back again to a riffle.
This progression is apparent in an example longitudinal
profile from Sinking Creek where each survey point is
labeled with the habitat designation given during surl]
veying (fig. 26A). Riffles form the shallowest sections
of the longitudinal profile and tend to have steep, down-
ward-sloping bed topography and the highest water surl
face gradients (fig. 6). Races tend to occur at the base
of the riffles where flow deepens and converges but
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velocities remained high. Pools usually followed races
— the long profile for Sinking Creek shows the greater
depths and nearly flat water-surface gradient that was
typical of these habitats. Glide habitats are often found
at the ends of pools where the bed topography slopes
upward toward the riffle crest and creates shallower
depths (fig. 26A). For the 36 study reaches, glides and
pools were the most common habitat types with each
making up about one third of a study reach on average
(table 10).

Four of the smaller drainage basins have streams with
gradients over 0.0080 (table 3) and channel morpholo[]
gies that differed from the typical pool-riffle sequence.
In the Buffalo River system these were Middle (fig.
26B), Clabber, and Leatherwood Creeks, and in the
Current River system, Bay Creek. The three Buffalo
channels have a large proportion of bedrock, with
Clabber Creek including a small, bedrock waterfall and
Middle and Beech Creeks containing sections of
bedrock bottomed, step-pool channel morphology (fig.
10B). In the Current, Bay Creek has both a long, deep,
bluff pool and a steep step-pool section.

Channel geometry data show that streams with lower
gradients have larger bankfull channel dimension (table
11). Average glide bankfull channel widths and depths
ranged between 12.4-37.5 m and 0.47-1.5 m respectivel
ly (table 10). Streams with large cross-sectional chan[]
nel geometries also have long, deep residual pools (table
11). Average residual pool lengths and depths range
between 21.4-258.1 m and 0.15-0.95 m for the study
sites (table 10).

Relations between Channel Geometry and
Drainage-basin Characteristics

Correlation Analysis

Relations between channel geometry and drainage-
basin characteristics were explored with scatter plots
and Spearman's correlations (table 12; fig. 27). Table
12 shows correlation matrices for all study drainage
basins grouped together and separated by river system,
Buffalo or Current. In all matrices, the strongest correl]
lations are between drainage area and the channel
geometry measures — large drainage basins have chanl]
nels with large dimensions and shallow gradients (fig.
27A). Increases in both bankfull and residual pool
dimensions are associated with an increase in drainage
area (fig. 27B-E). These relations follow long noted
hydraulic relations between drainage area, discharge,
and channel dimensions (for example, Leopold and
Maddock, 1953).

Larger drainage basins also tend to have a greater
proportion of low gradient habitats than smaller

BIOLOGICAL SCIENCE REPORT USGS/BRD/BSR-2001-0005

drainage basins. This is apparent in both the qualitative
habitat classification data and in residual pool calculal]
tions. The proportion of reach length classified as pool
or glide habitats is positively correlated with drainage
area (fig. 27F-G), as is the proportion of reach length
within residual pools (fig. 27H). This relation illustrates
the loss of high-energy habitats in large streams — glide
and pool habitats predominate and there is a lower relal
tive abundance of riffles than in smaller streams.

The scatter plots also help illustrate differences
between the Buffalo and the Current river systems.
Measurements of bankfull geometry show that for
drainage basins of comparable size, the Current River
tributaries have smaller bankfull channel widths and
depths than tributaries of the Buffalo River (fig. 27B-
O).

Multiple Regression

We used multiple regression to investigate relations
between channel geometry variables and other basin-
scale variables after accounting for relations with
drainage area. Table 13 summarizes the series of signifl]
icant regression models for each channel geometry varil]
able and all study drainage basins. The table illustrates
one of the ambiguities of multiple regression — multiple
models can explain similar amounts of variation in the
data set. Without other lines of evidence or additional
studies, it is impossible to identify which model is bet[]
ter, only that there is an equally strong association with
two different sets of explanatory variables.
Nevertheless, multiple regression helped identify trends
by showing associations that are consistent for different
measures of channel geometry.

The most common regression model for all of the difl]
ferent channel geometry measures is one that includes
drainage area and a drainage-basin relief variable. After
accounting for differences in drainage area, drainage-
basin relief elements are positively related to bankfull
channel dimensions, residual pools, and the proportion
of glide habitats (table 13; fig. 28). These relations sup-
port the hypothesis that drainage-basin relief elements
increase storm flow. Larger channels would accommo!]
date the flashier run-off and greater storm flows gener!(
ated in steep terrain (table 1). For many of the channel
geometry variables, three competing models support
this hypothesis. After accounting for differences in
drainage area, an increase in channel dimensions is
associated with an increase in elevation range, an
increase in drainage-basin average slope, or an indicator
variable specifying river system, Buffalo or Current
(table 13).8 The three variables appear to act as proxy
variables for each other — when one is in the regression
model, the other two variables are not significant. The

8 Bankfull depth has a third competing model: relief measured as the percentage of streamside bluffs.
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Table 8. Spearman rank correlation coefficients for relations between drainage-basin variables--Continued
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Variable

=24

Current River System, n

1.00
-0.23
0.03
0.51
0.71
0.06
-0.37
-0.04
-0.14
0.16
0.38

Carbonate bedrock area

Drainage area

1.00
0.07
0.32
-0.42

1.00
0.38

0.00
0.22
-0.21
-0.41
-0.14
0.12
0.01

Drainage basin shape
Elevation range

1.00
0.39
0.37
-0.31
-0.25
-0.20

1.00
0.03
-0.74
-0.20
-0.27
-0.08
0.65

Drainage basin average slope
Bluff area in stream buffer

Cleared land area
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1.00
0.04
0.05
-0.30
-0.15
-0.15

0.30
0.43
0.35
0.29

0.11
-0.19

1.00
0.72
0.70
0.36
-0.48

1.00
0.68
0.46
-0.08

Steep, cleared land area

1.00
0.39
0.10

Cleared land area in stream buffer

Road density

1.00
0.13

0.04
0.19

1.00

Road density in stream buffer
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basin-scale analyses help explain these relations. They
showed that slope and elevation range are related to
each other and that drainage basins in the Buffalo river
system tend to have both greater elevation ranges and
steeper slopes than drainage basins in the Current river
system (fig. 19A). Channel dimensions are associated
with these three co-varying variables — slope steepness,
elevation range, and the distinction between the two
main river systems.

The competing models are a reminder that regression
demonstrates associations between variables but not
cause and effect. Drainage basins in the Buffalo may
have larger channel dimensions because steep slopes or
high elevation ranges, or because of some other parame!
ter that also differs between the two main river systems.
For example, we know that there is a difference in the
prevalence of karst hydrology in the two river systems.
The Current, with its more widespread carbonate
bedrock has an extensive karst hydrologic network with
many springs, caves, and underdrained streams. The
smaller channels in the Current may relate to this char(]
acteristic — small channels may form in drainage basins
where much of the flow is diverted to the underground
drainage system (fig. 29). Comparisons of channel
width and drainage area show that the five large
drainage basins with unusually narrow widths are
Spring Valley, Big (west), Gladden, Ashley, and Buffalo
Creeks, all west Current drainage basins with under-
drained streams (fig. 27B). The regression models help
identify related variables and suggest multiple working
hypotheses, but it may remain difficult to select one
model over another. In this example, the data support
two hypotheses — that greater relief creates greater
storm flows and larger channels or that channels are
smaller in drainage basins where karst networks and
subsurface flow reduce storm flows.

Current River system sites also show a weaker rela’’
tion between average residual pool depth and basin area
than those in the Buffalo River system. Large Current
tributary drainage basins do not necessarily have deep
residual pools. This again may relate to the prevalence
of karst — with part of their run-off diverted to sub-sur(]
face channels and fractures, storm flows from the karst
basins may be less able to scour deep pools.

Several of the channel-geometry variables also show
an association with land-use or geology variables. For
example, an increase in the proportion of pool habitats
within a reach is associated with a decrease in cleared
land area within a drainage basin (table 13). This relal]
tion supports the hypothesis that anthropogenic-related
erosion may generate a higher sediment supply and
smoother channels with fewer pools (table 2).

However, the relation between slope and cleared land
area confounds the strength of this association. We
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know from the basin-scale analyses that cleared land
area was negatively associated with drainage-basin
average slope. Without drainage-basin average slope in
the regression model, it is possible that the proportion
of pools is related to drainage-basin average slope and
not to cleared land area.

This example is also an illustration of the challenges
imposed by related explanatory variables — relations
with response variables are most convincing when the
model accounts for anticipated relations with other
explanatory variables. In this example, associations
with land use or geology variables are most convincing
when regression models also account for differences in
drainage area and relief elements. An example where
such a model exists is with bankfull depth. After
accounting for differences in drainage area and main
river system, bankfull depth is negatively associated
with cleared land area (fig. 30). This model supports
the hypothesis that by increasing bed load sediment sup-
ply, land clearing leads to shallower stream channels.
However, two caveats moderate the strength of this con[
clusion. First, the model does not account for geologic
differences between the study drainage basins. Basin-
scale analyses showed a correlation between carbonate
bedrock and cleared land area among the Buffalo tribul
tary drainage basins (table 8; fig. 25B). It is possible
that cleared land area is acting as a proxy variable for
geologic differences. Second, inspection of the partial
residual plot shows an opposite trend among middle and
east Current drainage basins than among the overall
data. While the overall trend of the data shows a negal|
tive association between cleared land area and bankfull
depth, there is a positive association for the middle and
east Current group.

The consistent association between relief elements
and channel geometry highlight the difference in chan[]
nel geometry between the two river systems, Buffalo
and Current. To investigate river-system specific relal
tions, data were also analyzed in Buffalo and Current
River groups. Subsets of the data helped identify more
subtle relations by eliminating variation related to relief
or river system. It is important to note however, that as
drainage basins were subset, sample size decreased and
the ability to statistically detect relations diminished.

Buffalo River System

In the Buffalo, the drainage-basin variables most
strongly correlated with channel geometry measures are
carbonate bedrock area and the three measures of
cleared land area. After accounting for differences in
drainage area, average bankfull depth, average residual
pool depth, the proportion of residual pools, and the
proportion of pool habitats, are all negatively associated
with carbonate bedrock or with the three variables

BIOLOGICAL SCIENCE REPORT USGS/BRD/BSR-2001-0005

measuring cleared land area (table 14). As with the
relief variables in the combined drainage basin models,
the four variables act as proxy variables for each other,
when one is in the model the others are not significant.
The variables appear to act as proxies because of their
correlations with each other — drainage basins with
more carbonate bedrock also have more cleared land
(table 8). This is apparent visually in geology and land
cover maps (figs. 16 and 21). The carbonate Boone
Formation underlies the middle and lower drainage
basins of the Buffalo river system where pasture and
cleared land are concentrated. The regression models
suggest that the tributaries in this part of the river sys[!
tem have shallower pools and bankfull depths and a
lower abundance of pool habitats. Because of the relal]
tion between explanatory variables, we cannot deter-
mine whether these characteristics are related to natural
or anthropogenic factors. The data support multiple
hypotheses: that carbonate bedrock increases infiltral|
tion, subsurface flow, or sediment supply, and therefore
creates shallower channels or that cleared land increases
erosion and sediment supply, which fills in channels
(table 1).

Current River System

Relations between drainage-basin scale and reach-
geometry variables are less consistent in the Current
River system. Perhaps because of localized geologic
differences, there are more outlier drainage basins, and
in some cases there are different trends for the two
physiographic groups. For example, the Jacks Fork
River has unusually large channel dimensions and very
few glide habitats, characteristics that may relate to the
canyon-like morphology of this section of the river
(McKenney, 1997; Panfil and Jacobson, 1999). Igneous
rocks also have a localized affect that is difficult to
quantify — several of the Middle Current drainage basins
(Shawnee, Mill, and Rocky Creeks) have unusual eleval]
tion ranges, substrate, and hydrology because of igneous
rocks at or near the landscape's surface (fig. 15).

There are also clear differences between the two
Current River groups. For example, after accounting
for differences in drainage area, multiple-regression
models show that reach gradient is positively associated
with elevation range and negatively associated with
drainage-basin average slope (table 15). This relation is
unexpected because the two relief variables are correlatl]
ed; basins with steep slopes also have high elevation
ranges (table 8). It is also unexpected because the
model suggests that basins with steeper slopes have
lower gradient streams than basins with shallower
slopes — one would expect higher gradient streams in
more rugged terrain. However, the regression model is
also significant when an indicator variable specifying
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Figure 26. Example longitudinal profiles. A. Sinking Creek, a Current River tributary, that is representative of many of the streams in the
study. It has a pool-riffle morphology and gravel and cobble dominated substrate. B. Middle Creek, a Buffalo River tributary that is an
example of one of the smallest streams in the study. It has a step-pool morphology with a bedrock dominated channel.
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drainage-basin group is substituted for drainage-basin
average slope (table 15). Slope is the main physiol]
graphic characteristic that divides the groups; steep hill-
slopes are concentrated in the middle and east Current
drainage basins (fig. 19A). Differences in karst hydrol[
ogy between the two physiographic groups may explain
the unusual inverse relation between drainage-basin
average slope and reach gradient. The west Current
drainage basins have more underdrained streams and
more extensive karst networks than the middle and east
group — it is possible that reduced transport capacity in
karst streams results in aggradation and steeper reach
gradients compared to non-karst streams.

Regression models for bankfull channel widths also
suggest a relation between karst hydrology and channel
geometry in the Current River system (table 15).
Bankfull width is positively associated with drainage-
basin average slope and negatively associated with
drainage-basin shape when the model accounts for difl]
ferences in drainage area. On inspection of scatter and
partial residual plots, it appears that this model may also
be related to the distribution of karst networks in the
drainage basin. Tributaries with narrow channel widths
for their drainage area are in the west Current and tend
to have extensive karst systems and underdrained
streams (for example, Spring Valley, Big (west),
Gladden Creek; fig. 27B). Perhaps by coincidence,
these basins also tend to be longer and narrower and
therefore have higher values for drainage-basin shape.

We also found several significant models relating
basin-scale variables to the proportion of residual pools
within the study reaches. The proportion of residual
pools measures the proportional distance between rifl |
fles, streams with many or long riffles will have a low
proportion of residual pools (fig. 5). Studies of the relal’
tion between channel form and sediment supply suggest
that the proportion of residual pools may relate to this
balance (Montgomery and Buffington, 1996;
Montgomery and others, 1999). As sediment supply
increases, channels tend to have smoother channel mor[]
phologies with less residual pool; they shift from pool-
riffle channels to plane bed channels to braided systems.
This change in morphology creates a positive feedback
mechanism between sediment supply and transport
capacity. In smoother channels, less energy is dissipat!(’
ed to longitudinal roughness elements and therefore
transport capacity is increased.

This model of the relation between longitudinal chanl]
nel geometry and sediment supply may help explain difl]
ferences in the proportion of residual pools in the
Current's two physiographic groups. Scatter plots and
multiple regression show that the proportion of residual
pools increases as drainage-basin average slope decreas!|
es in the west Current drainage basins while the oppol’]

BIOLOGICAL SCIENCE REPORT USGS/BRD/BSR-2001-0005

site trend is true in the middle and east Current (fig.
31A, table 15). Steeper slopes appear to have different
effects in the two physiographic groups — in the East
Current, they appear to create more scour and a greater
proportion of residual pools while in the west Current
they appear to increase sediment supply and the propor(]
tion of riffles. These relations may relate to the dual
effect of steep slopes. They have the potential to
increase both sediment supply and transport capacity —
steep slopes may increase runoff and storm discharges
and steep slopes may facilitate sediment entrainment
and transport (table 1). In the west Current, where the
high proportion of karst hydrology diverts run-off to the
subsurface, an increase in drainage-basin average slope
may increase sediment supply faster than it increases
transport capacity. In streams, this would create
smoother longitudinal channel morphologies with long
riffles and a low proportion of residual pools. In the
steep, drainage basins of the east Current, an increase in
drainage-basin average slope may increase transport
capacity faster than it increases sediment supply. This
would create streams capable of scouring and developl]
ing a large proportion of residual pools.

This hypothesis is also consistent with the Buffalo
River system's negative relation between the proportion
of residual pools, carbonate bedrock area, and cleared
land area (table 14). Carbonate bedrock has the potenl]
tial to increase sediment supply relative to transport
capacity by improving infiltration, reducing storm flow,
and increasing the supply of chert gravel to streams
(table 1). At the same time, greater areas of pasture and
cleared land have the potential to increase erosion and
sediment supply (table 1). In accordance with our
residual-pool conceptual model, a higher sediment sup-
ply would translate into a smooth bed with a low pro-
portion of residual pools relative to riffles. We found a
similar relation with cleared land area for drainage
basins in the west Current. After accounting for differ[]
ences in drainage area and slope, the proportion of
residual pools is negatively associated with cleared land
area (fig. 31B, C).

Drainage basins in the Current also show a relation
between the proportion of cleared land and the propor(’
tion of glide habitats. After accounting for differences
in drainage area, the proportion of glides is positively
associated with cleared land area, steep, cleared land
area, or cleared land area in stream buffers. As in other
regression models, the three correlated land cover
variables act as proxies for each other, when one is in
the model the other variables are not significant. These
models do not, however, account for differences in
drainage-basin average slope or differences between the
middle and east and west Current drainage-basin
groups. Without this difference accounted for it remains
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Figure 29. Photograph of Spring Valley Creek, one of the west Current tributaries
affected by karst hydrology. It has one of the larger drainage areas among the Current
River tributaries (369 km2), yet its channel morphology is that of a smaller stream. The
channel in this picture (May 1999) is completely dry much of the year.

difficult to differentiate between anthropogenic and

natural factors.

Substrate

In general, gravel and cobble/boulder substrates are
the most abundant in the study reaches. Along the thall)

weg surveys, the average proportions of gravel and cob!

ble/boulders were 59 and 28 percent respectively (table
16). In glides, where pebble count data were collected,
the mean particle size (D50) was 32 mm, coarse gravel

0.4

02} .

02

041

PARTIAL RESIDUAL OF AVERAGE
BANKFULL DEPTH ADJUSTED FOR
DRAINAGE AREA AND RIVER SYSTEM

0.6 :
0 10

20

30

CLEARED LAND AREA, PERCENT

40

in the modified Wentworth scale
(Fitzpatrick and others, 1998). Two
streams in the Buffalo River system,
Cecil and Richland Creeks, have unusul]
ally coarse substrate and little gravel
throughout the reach (fig. 32; fig. 33).
Sand and mud were the least common
substrates and embeddedness both in
glides and along thalwegs was generally
low. The exception was Gladden Creek
(fig. 32B), where sand covered most of
the channel bed and caused the creek to
plot as an outlier for many substrate
measurements.

In general, drainage basins in the
Current tend to have finer substrates and
less bedrock than those in the Buffalo
River system (table 16); they tended to
have a greater proportions of gravel
recorded along the thalweg, more
embeddedness, and smaller grain sizes
recorded in glides and on point bars.
Nearly all Buffalo reach surveys record!|

ed some bedrock along the thalweg with the highest
proportion recorded at 49 percent in Middle Creek (fig.
26B). The exception to the scarcity of bedrock in the
Current was Rocky Creek, where 19 percent of the sur(]
veyed thalweg had a bedrock substrate. This character(]
istic likely relates to the high proportion of igneous
bedrock in the Rocky Creek drainage basin and through
the study reach.

Correlation analysis showed consistency among the

Equation for partial residual:
Yor = IN(y) - (-4.363) - (0.2364 * In(x,)) - (-0.2955 * x,)

where:

Yor = partial residual of average bankfull depth
y = average bankfull depth, in meters

X, = drainage area, in square meters
X, = indicator variable for river system, Buffalo = 0, Current = 1

q<4080

BUFFALO, BOSTON MOUNTAINS

BUFFALO, SPRINGFIELD AND SALEM PLATEAUS
CURRENT, WEST

CURRENT, MIDDLE AND EAST

Figure 30. Partial residual plot showing the relation between average bankfull depth and cleared land area after accounting for differences
in drainage area and river system. The partial residuals were derived from the regression models shown in Table 13 using the method out-

lined in Ramsey and Schafer (1996).
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GEOLOGY, PHYSIOGRAPHY, LAND USE, AND STREAM HABITAT

three ways that we measured substrate in each reach:
along the thalweg, in glide habitats, and on point bars
(table 17). Generally, streams with a large proportion of
cobbles and boulders along the thalweg also had larger
particle sizes in glides and on point bars. Correlations
were weakest between point bar photoseive
measurements and other substrate measures, particularly
in the Buffalo (table 17). This observation likely relates
to the sampling bias of the photoseive method, it was
not applied to streams with extremely coarse point bar
substrates (cobbles and boulder) because too few partil]
cles fit within the 60 cm photo quadrant (fig. 7).
Alternately, it may indicate that point-bar particle size is
adjusted to different hydrologic events than glide and
thalweg particle sizes.

Relations between Substrate and Drainage-
basin Characteristics

Correlation Analysis

As with the channel geometry measures, correlations
are strongest for the combined set of all study drainage
basins and for the Buffalo River system (table 18). One
striking observation for both of these groups is the lack
of relations between substrate measurements and
drainage area (fig. 33). In many stream systems, there
is a downstream fining trend in which substrate
becomes finer as drainage area increases and sediment
sources become more distal (table 1). A number of
hypotheses may explain the lack of downstream fining
including: the many local inputs of sediment from
streamside bluffs and small tributaries, the high propor(]
tion of chert gravel which tends to be resistant to abral
sion and enter streams within a narrow range of sizes,
the relatively small size range of the drainage basins
(<410 km?), and the geologic and relief differences that
may have overwhelmed a downstream fining trend.

Measures of fine substrate also showed few correlal’l
tions for the combined set of study tributaries.
Measures of embeddedness, the percent mud and sand
along the thalweg, and the 16th percentile
measurements from glides and point bars all showed lit[
tle relation to most basin-scale variables. This is consis[]
tent with the general lack of fine sediment in most study
reaches. Sand and embeddedness seemed to be an
infrequent, localized phenomenon, that was most com!(
mon in west Current drainage basins. Of all the study
drainage basins, only Gladden Creek showed a high
proportion of sand and embeddedness (table 16). It
should be noted that within the Current River system,
Gladden Creek had one of the highest proportions of
cleared land area (tables 3, 7), cleared land area within
stream buffers, and one of the lowest drainage-basin
average slopes.

65

Stronger correlations with basin-scale variables were
apparent for bedrock and measures of coarse particle
sizes than for measures of fine sediment (table 18). In
general, drainage basins with high elevation ranges,
steep slopes, and a high proportion of streamside bluffs
had a high proportion of bedrock, cobbles and boulders
along the thalweg, and coarse particle sizes in glides
and on point bars (fig. 33; table 18). Correlations with
carbonate bedrock area were also apparent; a high pro-
portion of carbonate bedrock was correlated with a high
proportion of gravel along the thalweg and small partil]
cle sizes in glides.

Correlation analyses also suggested relations between
substrate measurements and many land-use variables for
the combined set of study drainage basins and for the
Buffalo. We used multiple regression to test whether
these relations remained significant after accounting for
differences in relief and geology.

Multiple Regression

For the combined set of study drainage basins, we
found significant multiple regression models for meas(]
ures of thalweg and glide substrate (table 19). After
accounting for relations with relief variables, the pro-
portion of gravel along the thalweg is positively associl
ated with carbonate bedrock area. Drainage basins with
more carbonate bedrock also tend to have less
cobble/boulder substrate, even after accounting for difl]
ferences in relief. This supports the hypothesis that the
abundance of chert in Ozarks' carbonates increases the
gravel sediment supply to streams (table 1).

After accounting for differences in both relief
variables and carbonate bedrock, substrate thalweg
measures also show significant relations with some of
the land-use variables (table 19). The proportion of
gravel is positively associated with cleared land area in
stream buffers. Also, the proportion of cobbles and
boulders is negatively associated with cleared land area
both in buffers and overall. These models support the
hypothesis that cleared land and pasture in the Ozarks
increase the supply of gravel to streams. Two models
also suggest a relation between road density and particle
size. However, these models do not include geology as
an explanatory variable. The basin-scale analyses show
a correlation between carbonate bedrock and road densil’
ty (table 8) — it is possible that road density is acting as
proxy variable for carbonate in these models.

Relations among glide particle size, relief, and
land-use variables were consistent with the thalweg sub[
strate trends. An increase in the 84th percentile of glide
particle size is associated with an increase in relief ele]
ments and a decrease in carbonate bedrock area (table
19). However, models with both carbonate bedrock
area and land-use variables are not significant. Instead,
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Table 16. Summary statistics for reach substrate variables--Continued

Maximum

Minimum

Median

deviation

Standard
Current River System, n

Mean

Variable

=15

17 except point bars where n

19 (Rocky)

0 (many)
0 (many)
33 (Jacks Fork)

Bedrock in thalweg (percent)

46 (Gladden)
94 (Carter)

12

20

20
0.123

Mud and sand in thalweg (percent)

Gravel in thalweg (percent)

67

67

66 (Jacks Fork)
0.502 (Gladden)

2 (Gladden)

0.013 (Carr)

14
0.163

22
0.177

Cobbles and boulders in thalweg (percent)

Thalweg embeddedness index
Glide embeddedness (percent)

Glide D16 (mm)
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82 (Gladden)

1 (Jacks Fork, Sinking)

4 (Gladden)

7 (Gladden)
25 (Gladden)
0.89 (Gladden)

19 15

20

18 (Jacks Fork)
32 (Jacks Fork)

120 (Rocky)
2.18 (Rocky)

19
44

20
48

Glide D50 (mm)
Glide D84 (mm)

23

1.26 0.29 1.15
10

24
49

Glide sorting (Phi)

19 (Spring Valley)
49 (Jacks Fork)
99 (Jacks Fork)

1.37 (Carter)

5 (Carter, Gladden, Mill)

10 (Mill)
15 (Mill)

0.76 (Mill)

Point bar D16 (mm)
Point bar D50 (mm)
Point bar D84 (mm)

21

11
20
0.16

45

1.11

1.11

Point bar sorting (Phi)

glide particle-size models also included two dif!]
ferent variables: an indicator variable to specify
river system (Buffalo or Current) and drainage-
basin shape. These variables suggest that glides in
the Buffalo have coarser substrates and that
longer, narrower drainage basins have smaller par[]
ticle sizes. The signficance of the river-system
indicator variable supports the association

between particle size and relief elements — particle
sizes are larger in the more rugged Buffalo River
system. The relation with basin shape is more
puzzling. It may be indicative of downstream fin[]
ing in longer stream networks or it may be influ(]
enced by the high proportion of karst in the long,
narrow drainage basins of the west Current. It
also may be a spurious correlation.

Buffalo River System

The substrate multiple regression models are
generally stronger and more consistent for the
Buffalo River subset than for the combined set of
drainage basins. Models again show a relation
between thalweg and glide particle size and relief
elements, geology, and cleared land area (table
20). One of the strongest relations (R2 = 0.85) is
for the proportion of gravel along the thalweg (fig.
34). An increase in gravel is associated with a
decrease in the proportion of streamside bluffs, an
increase in carbonate bedrock area (fig. 34A), and
an increase in the proportion of cleared land in the
drainage basin or in the stream buffer (fig. 34B).
This is one of the most convincing models to
show a relation between land use and stream con[
ditions. After accounting for known physiographl(
ic and geologic differences, a relation with land
use persists. The proportion of gravel in the
streams appears to increase with the proportion of
cleared land. Visual observations also supported
this hypothesis — in some Buffalo streams, cobbles
appeared to be embedded in a matrix of chert
gravel (fig. 32D), as though a recent influx of
gravel had inundated the stream.

Many of the other substrate measures show
relations with relief elements, land use, or geology
but models are not significant when all three varil]
able categories are represented (table 20). For
example, after accounting for differences in the
proportion of stream-side bluffs, an increase in the
84th percentile of glide particle size was negativel
ly associated with carbonate bedrock area or with
one of four land-use variables. However, the
model is not significant when all three variables
are in the model. As in many of the Buffalo chan(]
nel-geometry regression models, the land use and
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Table 17. Spearman rank correlation coefficients for relations between reach-substrate variables--Continued
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Variable

=15

17, except point bars where n

Current River System, n

1.00
-0.24
-0.60
0.43
-0.10
-0.28
0.19
0.53
0.69
0.46
0.28
0.21
0.08
0.02

Bedrock in thalweg

1.00
0.04
-0.53

0.

Mud and sand in thalweg

Gravel in thalweg

GEOLOGY, PHYSIOGRAPHY, LAND USE, AND STREAM HABITAT

00

1.

-0.69 1.00

0.09
0.14

0.

Cobbles and boulders in thalweg
Thalweg embeddedness
Glide embeddedness

Glide D16

1.00
0.77
-0.69
-0.52
-0.56
0.05
-0.52
-0.47
-0.58
0.14

-0.55
-0.56
0.36

0.

64

1.00
-0.69
-0.82
-0.74
0.11
-0.64
-0.54
-0.57
0.22

0.69
-0.34
-0.38
-0.44
-0.05
-0.30
-0.27
-0.53
-0.24

00

1.

02

1.00
0.87
0.04
0.69
0.59
0.45
-0.17

0.73

55
65

-0.28
-0.43
-0.37
-0.12
0.00
-0.08
0.26

Glide D50

1.00
0.42
0.75
0.61
0.43
-0.31

0.54
-0.38
0.61
0.50
0.

0.

Glide D84

1.00
0.11
0.08
-0.14
-0.09

0.34
0.52
0.35

0.

Glide sorting

1.00
0.94
0.75
-0.24

Point bar D16

1.00
0.81
-0.05

Point bar D50

1.00
0.27

48

49

Point bar D84

1.00

-0.10

-0.12

Point bar sorting

71

carbonate variables appear to act as proxy
variables for each other. When one is in
the model, the others are not significant.

A similar series of models also are sig[|
nificant for the proportion of cobbles and
boulders along the thalweg and for the
degree of sorting in glides (table 20).
Cobbles and boulders are more abundant
along the thalweg and glide substrates are
poorly sorted in drainage basins with
rugged relief and low proportions of car(]
bonate and cleared land. Again, these
models are not significant when all three
categories of explanatory variables are
represented. However, the relation with
glide sorting may be another indication of
the role of carbonate in sediment supply
to streams. The primary byproducts of
carbonate weathering are clay and gravel [
ly chert residuum — particle sizes within a
narrower range than those produced by
sandstone weathering. The positive
association between carbonate bedrock
and better-sorted bed-load sediments sug!|
gest another way that bedrock may influ(’
ence habitat characteristics.

One relation with fine substrate is also
significant for the Buffalo subset (table
20). Thalweg embeddedness is negatively
associated with carbonate bedrock area
and positively associated with steep
cleared land area. The relation with geol[
ogy suggests that drainage basins with
less carbonate have more embeddedness —
this hypothesis is consistent with the pres(]
ence of more sandstone in these drainage
basins. Weathering sandstone provides an
abundant source of sand-sized sediment
that is lacking in the carbonate dominated
drainage basins. The relation with steep,
cleared land area is also consistent with a
second hypothesis; that cleared land
increases sediment supply and embedded(
ness (table 1). The weakness of this
model is that it does not include a relief
variable. The basin-scale analyses
showed that steep, cleared land is strongly
negatively correlated with drainage-basin
average slope (table 8). It is possible that
embeddedness is related to physiographic
differences and not to land use patterns.

The many regression models and proxy
variables are indicative of the numerous
correlations among basin-scale variables
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Table 18. Spearman rank correlation coefficients for relations between reach-substrate variables and drainage-basin variables--Continued
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Variable

15
0.36
0.29
-0.11
-0.32
0.39
0.22
0.03
0.04
0.02
-0.06
-0.18
-0.23
-0.46
-0.10

= 17 except point bars where n =

Current River System, n

-0.29
-0.31
0.30
-0.02
0.00
0.26
-0.34
-0.44
-0.33
0.09
-0.12
0.02
0.26
0.47

-0.29

0.13
0.01
0.22
-0.48
0.37
0.29
-0.07
-0.19
-0.21
-0.19
-0.25
-0.25
-0.31
0.21

0.21

-0.04
0.00
-0.14
0.25

0.11

0.17

0.10
-0.08
-0.24
-0.18
-0.19
-0.24
0.22

0.28
0.07
-0.55
0.42
0.02
-0.05
0.00
0.22
0.12
0.02
0.12
0.21
0.31
0.28

-0.35
-0.36

0.16
-0.01
-0.30
0.29
-0.05
-0.16
-0.12
0.15
0.26
0.15
0.42
0.35
0.37
-0.27

-0.16
0.62
-0.19
-0.12
0.33
0.61
-0.46
-0.44
-0.32
0.21

-0.25
-0.24
-0.26
-0.05

0.21

0.39
-0.20
-0.10
0.24
0.05

0.26
0.22
0.10
-0.34
0.21

0.14
0.09
-0.20

-0.37
-0.25

Bedrock in thalweg

0.30
0.18
-0.32

Mud and sand in thalweg

Gravel in thalweg
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0.10
0.26
-0.30
-0.13
-0.05
-0.10
-0.16
-0.08

0.12
0.19
-0.07
-0.06
-0.19
-0.15
-0.12

Cobbles and boulders in thalweg
Thalweg embeddedness
Glide embeddedness

Glide D16

0.21

0.39
-0.27
-0.36
-0.32

Glide D50

Glide D84

0.10
-0.30
-0.28
-0.58
-0.30

0.01
0.33
0.31
0.44
0.02

Glide sorting

0.11
0.21
0.52
0.38

Point bar D16

Point bar D50
Point bar D84

Point bar sorting
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in the Buffalo. Drainage basins with
more carbonate also tend to have less
relief and more cleared land. Since these
variables are correlated, it is difficult to
separate out relations with one variable
from the others. Instead, what is most
clear is that the drainage basins with
these three characteristics together tend
to have streams with the following subl]
strate characteristics: a greater proportion
of gravel than cobbles and boulders along
the thalweg, finer substrates in glides and
on point bars, well sorted glide sub[
strates, and little embeddedness.

It is also interesting that we found a
strong association between the 84th per!(]
centile from point bar particle size
measurements and drainage area. This
sample included only the drainage basins
with more than 30 percent carbonate
bedrock area (n = 9) since substrate in
other drainage basins was too large to be
appropriate for the photosieve technique.
While for all other substrate measures,
there was no apparent relation with
drainage area, the relation was strong for
the point bar subset. This suggests that
relations with drainage area often are
masked by the major differences in phys(]
iography in the Buffalo River system.
When drainage basins are subset, the
relation with drainage area became
apparent. This is another example of
how more subtle impacts may be
identified when streams are subset into
physiographically similar groups.

Current River System

We did not find any significant multil’|
ple regression models for reach substrate
in the Current River tributaries. As sugl]
gested earlier, many hypotheses may
explain the lack of relations including:
differences between the Current groups,
local geologic differences such as the
presence of igneous rocks in the middle
Current basins, and the prevalence of
karst drainage networks.

To investigate differences in substrate
between the Current groups, we calculat(]
ed correlation coefficients separately for
each group (table 21). In these correlal]
tions, we introduced a new explanatory
variable, the proportion of Gasconade
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Dolomite within each drainage basin. This variable
helped differentiate between the types of carbonate
bedrock in the Current River drainage basin.

In the middle and east Current, there are strong corre! |
lations are between measurements of coarse substrate
and the drainage-basin variables. Both thalweg and
glide particle size measurements are correlated with ele(
vation range. Thalweg measurements also are correlat(]
ed with streamside bluffs and with many of the land-use
variables. Particle size is positively associated with ele[’|
vation range and the prevalence of streamside bluffs. A
change from cobble/boulder to gravel substrate also is
correlated with an increase in cleared land area both in
the drainage basin and the stream buffers and with an
increase in road density. This appears to be another
case where correlations exist with natural and anthro(
pogenic factors that are correlated themselves. In the
middle and east Current, elevation range and bluff area
are correlated with many of the land use variables (table
21). Multiple regression models that included both
types of explanatory variables were not significant.

In the west Current group, many substrate variables
show correlations with the area of Gasconade Dolomite
within the drainage basins and with drainage-basin
shape. These two variables are correlated and may be
indicators of the role of karst hydrology in the stream
systems. The Gasconade Dolomite underlies valley bot[|
toms in the west Current (fig. 15). This portion of the
formation often contains karst dissolution features. As
with other karst horizons in the region, dissolution
appears to be concentrated in this zone because it under-
lies a sandy unit, the Roubidoux Formation (R.
Harrison, research geologist, U.S. Geological Survey,
Reston, VA, oral communication, July 2000). The cor[]
relations with substrate variables suggest another way
karst networks may impact streams. Gasconade
Dolomite bedrock is positively correlated with
mud/sand and embeddedness along the thalweg and in
glides, less cobbles/boulders along the thalweg and
smaller particle sizes in glides and on point bars. With
well developed karst systems, these streams may lack
sufficient transport capacity to transport coarse substrate
and to maintain sufficient baseflows to keep fine
sediment entrained.

It is also interesting that many of the fine substrate
variables are also correlated with variables measuring
cleared land area among the west Current group. Glide
and thalweg embeddedness increased and point bar par(]
ticle size decreased as cleared land area increased.
These correlations suggest an anthropogenic mechanism
for fine sediment in the west Current basins. There is
however, some correlation between cleared land area
and Gasconade Dolomite bedrock area and multiple
regression models with both variables are not signifil]
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cant. Therefore, the increase in embeddedness and
decrease in particle size is consistent with either natural
or anthropogenic impacts on streams (table 1).

Channel Stability

Nearly all reaches had at least some proportion of
eroding banks (table 22) and measures of bank erosion
and bank vegetation were correlated (table 23). On
average, 43 percent of all banks were moderately or
severely eroding and 16 percent of banks were severely
eroding with steep cutbanks and protruding roots (fig.
35). Six out of seven of the study reaches with more
than 60 percent eroding banks are in the Buffalo
drainage basin. Streams with more eroding banks had
less bank vegetation as measured by our bank vegetal
tion index (table 23) — the variable we used to integrate
bank vegetation cover estimates made at each thalweg
survey point. Overall however, bank vegetation scores
also tended to be lower in the Current. This difference
may be a byproduct of our sampling protocols: we
grouped bedrock banks in the same category as banks
with 100 percent vegetation cover because both are
resistant to erosion. The Current River tributaries may
have scored lower in variables of bank vegetation
because they have a lower proportion of bluffs and
bedrock banks (table 7).

Measures of channel sinuosity and glide canopy cover
showed few trends perhaps because sampling scale
impacted both measurements. Thalweg sinuosity, for
example, was measured over the length of each study
reach. In many cases, however, we found that the reach
length was too short to capture overall sinuosity of the
channel. The thalweg profile may have covered a fairly
straight length of stream, when over a larger scale the
channel meandered more extensively. An ongoing proj![]
ect with the University of Missouri (M. Urban, Assistant
Professor of Geography, University of Missouri-
Columbia, oral communication, June 2000) will meas!(|
ure sinuosity for some study tributary sites from 1:9000-
scale aerial photography — a scale that is better suited
for evaluation of channel metrics such as sinuosity. Our
canopy cover estimates also appear to be biased by
scale. We measured cover at the water's edge of each
glide cross section with a densiometer (table 5). In
large channels however, we found that cross-sections
became too widely spaced to successfully evaluate
canopy cover for the reach. The ongoing University of
Missouri study will test the utility of measuring canopy
cover from aerial photography.
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Table 22. Summary statistics for reach-stability variables

[refer to Table 5 for variable definitions]
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Maximum

Minimum

Median

deviation
Both River Systems, n

Standard

Mean

Variable

=36

2.10 (Pigeon)

1.04 (Beech)
0.40 (Pigeon)

1.25
0.77

0.22
0.14

1.29
0.76
16
43

Reach sinuosity

0.98 (Middle)

Bank vegetation index

44 (Calf)

0 (Middle)
14 (Middle)

15
41

11

Severely eroding banks (percent)

86 (Calf)
92 (Brush)

18

22
Buffalo River System, n

Moderately and severely eroding banks (percent)

Glide canopy cover (percent)

7 (Little Buffalo)

56

56

=19

1.70 (Bear)
0.98 (Middle)

1.04 (Beech)
0.68 (Cecil)

1.20
0.86

0.20
0.09

1.28
0.85
16
46

Reach sinuosity

Bank vegetation index

69 (Calf)

0 (Middle)
14 (Middle)

15
39
60

12
21

Severely eroding banks (percent)

86 (Calf)
92 (Brush)

Moderately and severely eroding banks (percent)

Glide canopy cover (percent)

7 (Little Buffalo)

21
Current River System, n

59

=17

2.10 (Pigeon)
0.81 (Mill)

1.10 (Blair)
0.40 (Pigeon)

1.30
0.68

0.25

0.11

1.31
0.66
17
41

Reach sinuosity

Bank vegetation index

34 (Rogers)

2 (Blair)
18 (Buffalo)

19 (Gladden)

19
44
53

10
14
23

Severely eroding banks (percent)

68 (Spring Valley)

Moderately and severely eroding banks (percent)
90 (Carter)

Glide canopy cover (percent)

53

Relations between Channel
Stability and Drainage-basin

Characteristics

Correlation Analysis

Scatter plots and correlation analysis
illustrate relations between channel stal|
bility variables and basin-scale variables.
Table 24 shows correlation coefficients
for all study drainage basins grouped
together and separated into Buffalo and
Current groups. Perhaps because of the
scale issues described above, sinuosity
and canopy cover estimates show few
strong correlations. Bank erosion and
vegetation measures, however, show
correlations in a similar pattern to the
channel substrate measures.
Correlations are strongest for the
combined set of all study drainage
basins and for the Buffalo River system.

As with other reach variables, bank
vegetation and erosion measures show
correlations with relief and land-use
variables (fig. 36). Bank vegetation is
positively correlated with relief elements
and negatively correlated with cleared
land area (fig. 36A, B). The measures of
bank erosion show related trends.
Eroding banks are negatively correlated
with relief variables and positively corl
related with cleared land area (fig. 36C,
D). This suggests that in the Buffalo
River system, the lower-relief drainage
basins with more cleared land area also
have a greater proportion of eroding
banks. The correlations with relief and
land use are similar to many of those
found for the substrate variables and
present a similar challenge — relief elel]
ments and the proportion of cleared land
are correlated basin-scale variables and
it is difficult to isolate the influence of
one from another. Our description of
bedrock banks as "100 percent vegetat[
ed, no erosion" also creates the possibilil
ty that the trends relate to the greater
abundance of streamside bedrock in the
higher relief basins, rather than to bank
erosion rates.

Multiple Regression
The only significant multiple regres[’
sion models we found were for the
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Table 23. Spearman rank correlation coefficients for relations between reach-stability variables
[shaded values significant at p < 0.05; bold values > 0.5 or < -0.5; refer to Table 5 for variable definitions]

> g 2 e? >
2 3 T 8% °
, 2 Ty ©2 Ts52 &
Variable B oo >E5 ®>5 e
= > c Q o o 0o @®©
s =~ 5° 2§° %
o < o S o
o m 7)) ) 5
Both River Systems, n = 36
Reach sinuosity 1.00
Bank vegetation index 0.11 1.00
Severely eroding banks -0.06 -0.49 1.00
Moderately and severely eroding banks 0.00 -0.31 0.79 1.00
Glide canopy cover -0.17 0.16 0.11 0.20 1.00
Buffalo River System, n = 19
Reach sinuosity 1.00
Bank vegetation index 0.09 1.00
Severely eroding banks -0.35 -0.84 1.00
Moderately and severely eroding banks -0.17 -0.82 0.81 1.00
Glide canopy cover -0.25 0.08 0.04 0.11 1.00
Current River System, n = 17
Reach sinuosity 1.00
Bank vegetation index 0.36 1.00
Severely eroding banks 0.28 -0.37 1.00
Moderately and severely eroding banks 0.27 -0.25 0.80 1.00
Glide canopy cover -0.12 0.05 0.32 0.28 1.00

combined set of study drainage basins (table 25). The
models generally mimicked correlation analyses but
included an indicator variable demonstrating a differ-
ence between the Buffalo and Current river systems.
Current River tributaries tend to have both less bank
vegetation and fewer eroding banks. There were no sig-
nificant models with both drainage-basin relief and
land-use explanatory variables. As in many of the sub-
strate and channel geometry models, the basin-scale
variables appear to act as proxy variables for each other
and we were not able to isolate the influence of land use
from differences in drainage-basin relief elements.

Summary of Tributary Reach Analyses

In summary, reach-scale investigations found that
habitat conditions vary in ways that are consistent with
the physiographic and geologic differences between the
Current and Buffalo river systems. Current River tribu-
taries tend to have smaller channel dimensions and finer
substrate, characteristics that are consistent with two
ways drainage basins characteristics may influence
stream channels (table 1). Data support both the

hypothesis that flashy storm flows in the more rugged
Buffalo River system create larger channels and that the
prevalence of karst in the Current drainage basins crel
ates smaller channels.

When study drainage basins were subset by river sys/]
tem, more subtle relations between reach-scale characl
teristics and drainage-basin variables became apparent.
In the Buffalo, tributaries with large proportions of carl]
bonate bedrock and cleared land in their drainage basins
have shallow channel dimensions with well-sorted,
gravel-rich substrates. These findings are consistent
with two additional hypotheses for drainage basin conl]
trols on stream channels, that carbonate bedrock reduces
storm flow and produces a greater supply of chert grav-
el to streams, and that cleared land and pasture increase
erosion and sediment supply (table 1). Relations for the
Current River subset support the hypothesis that karst
hydrology exerts a strong influence on Current River
tributaries by reducing transport capacity relative to
sediment supply. Karst-rich west Current tributaries
have smaller channel dimensions, steeper reach gradil]
ents, and finer and more embedded substrate than the
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middle and east Current tributaries.

Many correlations and multiple regression models
suggested a link between land use and stream character-
istics. For both the combined set of study basins and
for separate river system groups, bankfull and residual
pool depths are negatively associated with cleared land
area. Correlations and multiple regression models also
show significant relations between substrate and land-
use variables. For the combined set of study basins,
finer particle sizes and a higher proportion of gravel are
positively associated with cleared land area. When
basins were subset, these relations persist within the
Buffalo and west Current drainage-basin groups. Both
of these findings support the hypothesis that land clear-
ing in the Ozarks increases erosion and the supply of
chert gravel to streams (tables 1-2).

The limitation of these relations is that in many cases
land-use variables are correlated with other drainage-
basin characteristics that influence streams. In both the
Buffalo and the Current river systems, drainage basins
with steeper average slopes have little cleared land area.
Basins with abundant carbonate bedrock also tend to
have a high proportion of cleared land area. Only mul-
tiple regression models for gravel and cobble/boulder
substrate in the thalweg were significant when they
included all three types of explanatory variables: geolo-
gy, relief, and land use. A shift from cobble/boulder to
gravel substrate is associated with an increase in cleared

Figure 35. Many study reaches have sections of severely eroding banks with near vertical

faces and protruding roots.

land area after accounting for differences in carbonate
bedrock area and the proportion of streamside bluffs.
This relation was strongest for the Buffalo River sys[
tem.

Results: Main Stem Gravel-bar
Distributions

The objective of this section is to document the distril]
bution of gravel bars along the main stem Current and
Buffalo Rivers, and to explore physiographic and land-
use factors which may be responsible, in part, for their
distribution. In particular, we are interested in assessing
whether the segment-scale distribution of gravel bars in
these rivers is an indicator of landscape disturbance in
tributary drainage basins.

The distribution of gravel-bars along a river can be
affected by at least three sets of processes. At the scale
of riffle-pool sequences, gravel is expected to be distrib[]
uted in lateral or point bars, and would be expected to
vary longitudinally at scales of 10-14 channel widths.
This will be referred to as reach-scale variability.

Superimposed on the reach-scale variability in gravel
distribution would be concentrations of gravel that
result from hydraulic interactions at the valley scale.
Channel patterns of Ozarks streams (fig. 8) are charac(
terized by juxtaposed stable and disturbance reaches
(Jacobson, 1995). The disturbance
reaches originally were called sedil’
mentation zones by Saucier (1983),
and they are similar to sedimental’
tion reaches described by Church
(1983) in British Columbia. Because
these reaches are characterized by
erosion as well as sedimentation —
and to avoid the perception that they
are dominated by sedimentation
alone — we have elected to call them
disturbance reaches. Church (1983)
determined that the sedimentation
reaches in British Columbia were
caused mostly by external factors
such as increased sediment load at
tributary junctions. In the Ozarks,
however, disturbance reaches are
independent of tributary junctions,
inputs of sediment from hillslope
erosion, or structural and lithologic
bedrock controls. Stable reaches
tend to be long and straight, and the
channel usually is adjacent to the
valley wall on one side. The other
side of the channel, however, is
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Table 25. Selected multiple regression models for reach-stability variables and all study drainage
basins; explanatory variables signficant at p < 0.05; n = 36

[m, meters; m?, square meters]

Model coefficients for explanatory variables

Physiography | Land use
@ o o] c
- ey o = g o % 9
(5] 5 c = o e
(O ] — - —
= > O BS) « o 9
- — ®© > 52 o < Q. o
oy 5 =) o G 2 £2 o
iabl 8 £€§ g £35 T g3 &
Response variable § § z S c o ﬁ = g (_cu g =
IS g o ¢ 8& o5 ©v® g
S T o E o 25
- © o5 o 25
Ia) o (@) O o
Bank vegetation index 0.6501  -0.1352 0.0181 0.59
0.7860  -0.1600 0.7058 0.57
0.9253  -0.2044 -0.4268 0.63
09108  -0.1732 -0.3742  0.62
Moderately and severely eroding
banks, as a proportion 0.8856  -0.1716  -0.0385 0.25

! Indicator variable specifies river system, Buffalo = 0 or Current = 1.

% Variable was transformed, squareroot(x).

frequently adjacent to a broad, erodible, alluvial valley
bottom; hence, the straight reaches do not appear to be
constrained by bedrock control. Disturbance reaches
are characterized by high sinuosity, frequent channel
migration of as much as 250 m in 50 years (Jacobson
and Pugh, 1997), and extensive, unvegetated gravel
bars. Disturbance reaches apparently result from
hydraulic interactions between the channel and the vallJ
ley wall that cause localized constrictions, expansions,
and flow separations at discharges substantially greater
than bankfull. Analysis of the longitudinal distribution
of gravel-bar area in the Current River demonstrated
that disturbance reaches are spaced at distances along
the channel much greater than would be expected for
meanders or alternate bars at the reach scale (Jacobson
and Gran, 1997).

Finally, at the segment-scale, longitudinal distribution
of gravel may indicate effects of variable sediment
delivery from tributary drainage basins. The difficulty
is in factoring out valley-scale effects and resolving the
effects of transient gravel transport from synoptic
measurements. In the following sections we present
gravel-bar area distribution data from two dates on the
Current River (March 1992 and April 1996) and one
date on the Buffalo River (March 2000), and assess
relations between these data and possible valley-scale

controls. Next, we analyze possible linkages between
geologic, physiographic, and land-use characteristics of
tributary drainage basins, and gravel-bar area invento!]
ries. Finally, we compare these new results with previl
ous work that supported the idea that transient gravel
transport in Ozarks streams would obscure most links
between land use and gravel distributions:

"Tributary basin characteristics may well
have an effect on gravel distributions, but
within the range of variation that exists in
the Current River Basin, only weak tribulJ
tary effects are measurable. Present-day
land use seems to be much less important
than the propagating effects of historical
land use in determining the present-day
gravel distribution. Local hydraulic inter-
actions between the channel and the vall]
ley-although poorly understood-exert a
secondary effect, resulting in discrete
gravel accumulations at the scale of distur[]
bance reaches." (Jacobson and Gran,
1997).
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GRAVEL-BAR AREA DISTRIBUTION, CURRENT RIVER
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Figure 37. A. Plots of gravel-bar area along Current River, 1992 and 1996, as percent of total gravel-bar area in each year. B. Plots of
valley width and proximity of channel to valley wall along the Current River. C. Plots of sinuosity along Current River, using 1-km, 2-km,
and 3-km rulers. D. Plots of incremental channel network length (a surrogate for incremental drainage area) and estimated channel
width along the Current River.
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GRAVEL-BAR AREA DISTRIBUTION, BUFFALO RIVER
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Figure 38. A. Plots of gravel-bar area along Buffalo River, 2000, as percent of total gravel-bar area. B. Plots of valley width and
proximity of channel to valley wall along the Buffalo River. C. Plots of sinuosity along Buffalo River, using 1-km, 2-km, and 3-km
rulers. D. Plots of incremental channel network length (a surrogate for incremental drainage area) and estimated channel width along
the Buffalo River. Headwaters reference point is upstream end of main-stem channel.
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Figure 39. Plot of results of spectral analysis of Current River gravel, 1992, showing variance, as sum of squares
by period - each period is equal to 200 meters along the river channel.

Valley-scale Controls on Longitudinal Gravel-

bar Distributions
Longitudinal inventories of gravel-bar area in the
Current and Buffalo Rivers were compiled and plotted
to compare with potential valley-scale and tributary
influences. Plotting by 200-m longitudinal addressing
system provides a nearly continuous set of classification
variables over hundreds of kilometers (figs. 37-38).

Current River

The longitudinal distribution of gravel on the Current
River main stem in 1992 showed high-frequency varial
tion and a broad wave-like form centered just down-
stream of the confluence of the Jacks Fork River (fig.
37). Jacobson and Gran (1997) analyzed the spectral
characteristics of this distribution and determined three
significant quasi-periodic signals (99 percent confidence
limit) at 1,860, 2,155, and 4,015 m (fig. 39). If these
prominent spectral peaks were related to channel mean!(]
ders, they would be expected to have a spacing of about
11 to 16 times the channel width, according to conven[]
tional channel-geometry models (Leopold and others,
1964). For the typical range of bankfull widths on this
segment of the Current River, this spacing would range
from 70 to 450 m. Because the prominent spacings at

1,860-4,015 m (and greater) are at a substantially
greater spacing than would be expected from channel
meandering, Jacobson and Gran (1997) concluded that
they are associated with a different process, probably
controlled in part by valley-scale hydraulic constraints.
Valley-scale characteristics that might cause accumul]
lations in disturbance reaches were evaluated by
analyzing statistical relations between gravel-bar area
and valley-scale variables (figs. 37, 40A-F). Relations
between gravel-bar area at addresses and two measures
of channel confinement (valley width and distance from
channel to valley wall) indicate envelope, bounding
relations in which maximum values of gravel-bar area
are associated with narrow to moderate values of chan(]
nel confinement (figs. 40A, B). Inverse relations of
gravel-bar area with channel sinuosity measured at three
scales (1-, 2-, and 3-kilometer) indicate an envelope
relation in which some — but not all — of the highest
gravel concentrations are associated with low channel
sinuosity. The longitudinal distribution of channel-con[]
finement variables and sinuosity variables shows that
they vary in opposite directions along the river (fig. 37).
The longitudinal distribution of gravel along the
Current River (fig. 37A) does not increase monotonicall
ly downstream as a function of increasing drainage area
as would be expected if gravel-bar area related directly
to channel width (fig. 37D). Although the distribution
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Figure 40. Scatter plots of gravel-bar area and valley-scale variables, 1992 gravel-bar inventory, Current River. A. Percent gravel-bar area
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increases generally around and downstream of the Jacks
Fork confluence, (fig. 37A), gravel-bar area at
individual address points show weak associations with a
measure of incremental drainage area (measured as
incremental channel network length at each address
point, fig. 40F). This last relation is not unexpected for
individual address points: gravel contributed by tribul]
tary drainage basins would be expected to disperse and
translate for some distance downstream from points
where it is delivered to the channel.

Current River Temporal Comparison

Aerial photographs from 1992 and 1996 provide a
unique opportunity to compare longitudinal gravel dis[]
tribution changes over time, and to evaluate a conceptul
al model of gravel routing presented by Jacobson and
Gran (1997). As discussed in the methods section, dis(]
charge during March 8, 1992 was somewhat less than
that of April 16, 1996 (figs. 9A-D; table 6). However,
channel width is fairly insensitive to discharge over this
range of discharges (fig. 10), and normalization of the
data by dividing by the total gravel-bar area mapped on
each date serves to minimize bias from variable dis[]
charge.

The change in gravel distribution between the two
dates of photography is of interest in view of Jacobson
and Gran's (1997) simple model that produced a longil |
tudinal distribution of gravel by simply routing gravel
"packets" through the channel network uniformly
through time (fig. 41). Although the time frame was
uncalibrated, the heuristic model produced longitudinal
distributions remarkably similar to mapped distributions
(especially around timesteps 13-15), and predicted con(]
tinued downstream translation and growth of wavelike
gravel accumulations. The change in gravel distribul
tions in this time period is also of great interest because
of a flood of estimated 50-year recurrence interval that
occurred in November, 1993 (fig. 9A, B).

Comparison of 25-point moving averages of gravel
distributions in 1996 and 1992 indicates substantial
downstream translation of gravel, especially losses of
gravel at km 90-110 and gains at km 125-150 (fig. 42A,
B). These data suggest a downstream translation of as
much as 50 km. Differences (1992 minus 1996) of the
non-averaged data show sharp peaks of loss and gain,
suggestive of exchange of gravel between disturbance
reaches. Dominant losses occur in peaks at km 90-110
and gains km 125-150. Jacobson and Gran (1997)
remarked that the 1992 distribution resembled the mod![
eled distribution at timesteps 7-9. After the estimated
50-year flood of the intervening years, the 1996 distril]
bution resembles the modeled distribution at timesteps
13-15 (fig. 41).
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Buffalo River

The distribution of gravel along the Buffalo River
main stem also is highly variable at a range of scales
(fig. 38); the broader-scale distribution is apparent in the
25-point moving average (fig. 43). Upstream of km 30
the river is in a narrow valley within the Boston
Mountains and there is little gravel-bar accumulation.
Downstream of km 30 in the Boxley Valley, where the
valley is underlain by the Ordovician St. Peter
Sandstone and Everton Formation, the valley widens
out and gravel bars become apparent. Gravel-bar area
increases slightly in the downstream direction until
approximately km 89. At that point, the Little Buffalo
River enters the main stem and gravel-bar area increases
substantially. There is another increase in gravel-bar
area at the confluence with Big Creek (upper) at km
102. Around km 123 the river crosses from Ordovician
rocks to the Mississippian Boone Formation. At this
point, the valley widens from an average of about 200
m to as much as 800 m and gravel-bar area increases
markedly; this increase also is associated with the
entrance of Richland Creek at about km 127. The
largest spike in the non-averaged longitudinal distribul]
tion is at km 134, just downstream from Richland
Creek.

From km 140 to the mouth the distribution is charac(]
terized by high-frequency variation similar to that on
the Current River, and presumably related to valley-
scale hydraulic interactions. The second largest spike in
the non-averaged gravel-bar area distribution is at km
234, about 8 km downstream of the confluence of Big
Creek (lower).

Valley-scale characteristics that might influence the
longitudinal distribution were evaluated by analyzing
statistical relations between gravel-bar area and valley-
scale variables (figs. 38, 44A-F). Relations between
gravel-bar area at addresses and two measures of chan!(]
nel confinement (valley width and distance from chan(]
nel to valley wall) indicate envelope relations similar to
the Current River in which some — but not all — of the
highest longitudinal concentrations of gravel are associl
ated with narrow-moderate confinement (figs. 44A, B).
In contrast to the Current River, however, the largest
gravel-bar areas are associated with valley widths of
400-600 m, indicating that wider valleys provide more
potential for gravel accumulation. Inverse relations of
gravel-bar area with channel sinuosity measured at three
scales (1-, 2-, and 3-kilometer) indicate an envelope ten[|
dency in which some — but not all — high gravel concenl]
trations are associated with low channel sinuosity (figs.
44D, E, F). The inverse relations are not as pronounced
as those on the Current River, however, as greater relal
tive gravel area is associated with greater sinuosity vall
ues, especially at the 3-kilometer scale.
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Figure 42. 25-point moving average of gravel-bar normalized areas plotted against distance downstream for 1992 and 1996,
Current River. B. Differences in gravel-bar area inventory 1992 minus 1996 plotted against distance downstream, showing
net prominent gravel accumulation downstream of kilometer 120.

The longitudinal distribution of gravel along the
Buffalo River does not increase monotonically down-
stream as a function of increasing drainage area, but
does show more correspondence to increasing drainage
area than the Current River. Steplike increases in grav![]
el-bar area at major tributary junctions indicate measur(]
able direct effects of the tributary drainage basins (fig.
38). Particularly notable are substantial increases at the
junctions of Little Buffalo River, Big Creek (lower), and
Richland Creek. Individual address points, however,
show weak associations with a measure of incremental
drainage area (measured as incremental channel net-
work length at each address point, fig. 44F).

Relations between Drainage-basin

Characteristics and Gravel-bar Distributions

The general hypothesis that main-stem gravel-bar dis[]
tributions are affected by tributary drainage-basin char[]
acteristics is addressed through exploratory statistical
analyses of gravel-bar inventories compared to tributary
drainage-basin variables. Because gravel delivered
from tributaries to the main stem is transported down-
stream, measures of gravel-bar area must include grav(]
el-bar area summed for some distance downstream. The
distance to sum gravel-bar area is not known, and can
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be considered an additional response variable.
Conceptually, the optimal downstream distance for
summing would be a function of the time since an
episodic introduction of gravel, the quantity of sediment
delivered from the tributary, and the relative sediment
transport capacity of the tributary and main stem.
Arbitrary summing distances of 0.2, 0.4, 0.6, 1.0, 1.6,
2.0, 2.6, 3.0, 3.6, and 4.8 km were used in this analysis.
The summed gravel-bar area was normalized by the
estimated channel reference width to account for
expected downstream trends in gravel-bar area as the
channel size increased (figs. 45, 14).

Current River

For the analysis of tributary drainage-basin controls
on the longitudinal distribution of gravel-bar area on the
Current River, we decided to use the 1992 gravel distril
bution because it was unaffected by the November 1993
flood, an extreme event that caused downstream movel]
ment of sediment. Summed, normalized gravel distribul
tions for both dates are shown in figure 45; both show
slight diminishment of the relative magnitude of down-
stream peaks due to normalization.

Correlation analysis was used to explore relations
between summed gravel areas and drainage-basin char!(]
acteristics (table 26). As emphasized in earlier sections
of this report, many drainage-basin characteristics are
correlated with each other (table 8), so relations with
gravel-bar area must to be interpreted with caution.

93

Three features of the gravel-bar correlations are notable.
First, all of the significant correlations are calculated for
sums of gravel-bar area over downstream distances of
3.0 km and greater. Second, there are positive correlal’
tions with geologic and physiographic variables that
might control transport capacity and sediment supply in
the tributary drainage basins (carbonate bedrock area,
elevation range, and drainage-basin average slope, figs.
46A, B, C). Third, and surprisingly, significant correlal
tions with land-use variables are all negative (figs. 46D,
E, F). These relations may result from the strong negal
tive correlations between land-use variables and slope
(table 8).

Multiple regression was used to explore trade-offs
among variables in explaining summed, normalized
gravel accumulations. As with other sections of the
report, this level of analysis is not intended to produce
predictive models; rather the intent is to identify consis(]
tent models for different measures of gravel-bar area.
Of the many possible permutations of models that could
be developed, we chose the most meaningful based on
correlation analysis and an understanding of physical
processes operating in the river basins.

From these constraints, only two statistically signifil
cant models emerged from the analysis (table 27). One
model explains summed, normalized gravel at 4.8 km
downstream as a function of two measures of physiol
graphic relief: drainage-basin average slope and elevall
tion range. The second model explains slightly more
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Figure 44. Scatter plots of gravel-bar area and valley-scale variables, 2000 gravel-bar inventory, Buffalo River. A. Percent gravel-bar area
plotted against valley width. B. Percent gravel-bar area plotted against proximity (distance from channel to valley wall). C. Percent gravel-
bar area plotted against 1-km sinuosity. D. Percent gravel-bar area plotted against 2-km sinuosity. E. Percent gravel-bar area plotted against
3-km sinuosity. F. Percent gravel-bar area plotted against incremental channel-network length.
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EXPLANATION

GRAVEL-BAR AREA, SUMMED OVER
INDICATED DISTANCE, NORMALIZED

— 0.2 KILOMETERS 2.0 KILOMETERS
—— 0.4 KILOMETERS 2.6 KILOMETERS

0.6 KILOMETERS  —— 3.0 KILOMETERS
— 1.0KILOMETERS = —— 3.6 KILOMETERS
— 1.6 KILOMETERS  —— 4.8 KILOMETERS

Plots of unit gravel-bar area summed over distances of 0.2 - 4.8 km downstream, plotted against distance downstream

variation and relates summed, normalized gravel at 4.8  basins in the middle and east Current River basin, relal]

km downstream directly to elevation range and tively independent of land-use patterns. It is also possil]
inversely to cleared land area. Because of the very ble that relations with land-use variables are related to
strong inverse correlation between steepness and agri- the distribution of karst networks in the river system.

cultural land use, these models both probably reflect the Cleared land is concentrated in west Current drainage
over-riding contribution of gravel from steep, high-relief basins where karst hydrology and underdrained streams
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Table 26. Spearman rank correlation coefficients for Current River gravel-bar area against drainage-

basin variables

[km, kilometers; shaded values significant at p = 0.05; bold values > 0.5 or < -0.5]
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predominate. These basins may lack sufficient transport
capacity to introduce large volumes of gravel into the
Current River.

The fact that the best relations are for gravel summed
3.0-4.8 km downstream of the tributary confluences
(table 26) indicates that in the Current River basin grav(]
el has been transported long distances downstream on
the main stem. We believe this may be true either
because substantial time has elapsed since the gravel
was delivered to the main stem or because main-stem
sediment transport capacity is sufficient to move the
sediment downstream rapidly.

Buffalo River

The summed, normalized gravel distribution for the
Buffalo River is shaped much like the non-normalized
data, but with a slight diminishment of the relative mag(]
nitude of downstream peaks due to normalization (fig.
47). Correlation analysis was used to explore summed
gravel areas with tributary drainage-basin variables
(table 28). Many of the drainage-basin characteristics
are also correlated (table 8), so the correlations must be
interpreted with caution.

In contrast to the Current River, many of the signifil]
cant correlations occur for gravel summed within 1 km
of the tributary junctions (table 27). For geologic and
physiographic variables, a significant correlation exists
between carbonate bedrock area and gravel summed at
0.6 km and significant correlations exist for basin shape
factor and gravel summed at 3.0-4.8 km (figs. 48A, B).
For sums over distances of 0.2-0.6 km, gravel-bar area

is negatively correlated with drainage-basin average
slope (fig. 48C). Notably, all significant correlations
with land-use variables are positive (figs. 48 D, E, F, G,
H). Strong negative correlations between average slope
and agricultural land-use variables (table 28) complicate
the interpretation of these correlations.

A greater number of statistically significant multiple
regression models could be compiled to relate gravel-
bar area on the Buffalo River compared to the Current
River. However, no models with drainage-basin aver-
age slope and any of the three land cover variables were
significant, or produced more understanding than correl]
lation analysis. At 0.6 km distance downstream,
summed, normalized gravel-bar area was modeled as an
increasing function of carbonate bedrock area and
cleared land area in the stream buffers. The model is
notable in combining carbonate bedrock area — which is
highly correlated with agricultural land use — and a spel’
cific land-use attribute: cleared land in the stream
buffer. Gravel summed over 2.0 km downstream was
positively correlated with cleared land in the stream
buffers and road density in the stream buffers. For
gravel summed at 3.0 and 3.6 km downstream, signifil
cant models related gravel to drainage-basin shape fac(|
tors and cleared land in stream buffers (and in one case,
slope). Higher values of basin shape factors indicate
longer, narrower basins. We have no information on
physical processes that might link narrow basin forms to
increased sediment delivery.

The fact that most of the significant correlations and
multiple regression models are for gravel summed with-
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Figure 46. Selected scatter plots of drainage-basin characteristics and unit gravel-bar area inventories, Current River. A. Unit gravel-bar

area summed 3.6 km downstream plotted against percent carbonate bedrock in basin. B. Unit gravel-bar area summed 4.8 km downstream
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plotted against drainage-basin elevation range. C. Unit gravel-bar area summed 4.8 km downstream plotted against drainage-basin average
slope. D. Unit gravel-bar area summed 3.6 km downstream plotted against cleared land area. E. Unit gravel-bar area summed 3.6 km down-

stream plotted against steep, cleared land area. F. Unit gravel-bar area summed 4.8 km downstream plotted against cleared land in stream

buffers.
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Table 27. Selected multiple regression models relating gravel-bar area summed at distances
downstream from tributary junctions and tributary drainage-basin variables; explanatory variables

[km, kilometers; m, meters; m/m?, meters per square meter]

Model coefficients for explanatory variables

Geology| Physiography | Land use
0 ©
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o .= @© = 0 c © Q + ()
o T N (O] 3 = < = :6 = NE
5 9 @ 3 = ) o < n a 0 = el
o © g £ . =2 5 0 =S £ € @
Response 8 o5 &¢9 % O G s 5 - 2 > c S
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Current River System, n = 16
= 4.8 km -3364.44 365.04 19.57 0.55
_‘; 1113.00 17.59 -7815.49 0.64
o &
E 3
£ 2
2 2 Buffalo River System, n = 19
g3 06km 7209 35839 885.89 0.56
] § 20km 437.88 2498.19 274999 0.66
< § 3.0km 598.94 114.69 2533.77 0.62
% % 3.6 km -1243.66 186.36 144.58 3858.45 0.66
5 756.65 161.10 2166.01 0.46

in 1.0 km of tributary confluences suggests that little
time or opportunity has existed for transport of the
sediment downstream on the main stem. Accumulations
close to the confluences may indicate that little time has
elapsed since episodic sediment delivery at the conflu]
ence, or that sediment delivery in these tributary basins
has been increased relative to sediment-transport capacil
ty in the main stem.

Summary of Main-stem Gravel-bar Analyses

Similar to analysis of the links between drainage-
basin characteristics and reach-scale habitats, the
analysis of links to segment-scale gravel distributions is
complicated by the complex relations among landscape
variables. In particular, the relations among carbonate
bedrock, relief variables, and land-use variables make it
difficult to separate out individual influences. Added to
the spatial variation is the additional complication that
the response variable — gravel-bar area — is lagged in
time from the initiation of disturbance. Hence, the
gravel-bar area measured today may not correspond
with land-use characteristics measured today. To some
extent, temporal lags can be accounted for by summing
gravel-bar area downstream, yet how far to sum is itself
an unknown and may be highly variable in time and

along the river system.

The longitudinal distribution of gravel in the Current
and Buffalo Rivers have high-frequency variations that
appear to be the result of hydraulic interactions of the
channel with valley walls, resulting in gravel accumulalJ
tions at the scale of disturbance reaches (Jacobson and
Gran, 1997). These high frequency accumulations are
superimposed on broader scale influences of valley
width and tributary influxes.

On the Current River, the effects of tributary influxes
are seen in the broad wave-like form associated with the
confluence of Jacks Fork (figs. 37, 42A). The direct
effects of tributary influxes are diminished by down-
stream transport of gravel in the main stem, making
direct correlations on a point-by-point basis weak (fig.
40G). The simple routing model proposed by Jacobson
and Gran (1997; fig. 41) and the comparison of the
1996 distribution to the 1992 distribution (fig. 42A)
support the conceptual model that the broadscale distril]
bution of gravel in the Current River results from deliv(]
ery of excess gravel at tributary junctions and progres!|
sive downstream transport. The present-day longitudil]
nal distribution of gravel on the Current River is strong[]
ly influenced by lagged effects of spatially varying
influxes.
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The conclusions derived from analysis of the longitul]
dinal distribution of gravel also are supported by
analysis of the relations between summed gravel-bar
areas compared to tributary drainage-basin characteris(’
tics (tables 26-28). On the Current River, the best corl]
relations and multiple regression models are for gravel-
bar areas summed over 3.0-4.8 km downstream from
the tributary confluences. These relations are positive
with respect to physiographic and geologic variables
and negative with respect to land-use variables.

Because of the strong negative correlations among geol[
ogy, steepness, and agricultural land use, it is difficult to
separate out the individual effects of land use. One
hypothesis is that large gravel-bar accumulations in the
Current River result from gravel delivery from the natul’
rally steep East Current drainage basins. Present-day
land-use data (early-mid 1990's) indicate that these
drainage basins now have low land-use disturbance
potential. The evident, transient influxes of sediment
from these tributaries, however, may have resulted from

relatively low levels of land-use change in the past.
High natural potential for sediment delivery from these
basins may be accompanied by relatively low thresholds
for disturbance.

On the Buffalo River, valley width appears to com[]
bine with tributary influxes to determine the broad-scale
influences on gravel accumulations (fig. 38). The
abrupt and dramatic change of valley width at km 120-
160 where the river flows onto the Mississippian Boone
Formation is associated with a steplike increase in grav(]
el-bar area. In addition, steplike increases in gravel-bar
area are apparent at major tributary junctions like Little
Buffalo River, Big Creek (upper), Richland Creek, and
Big Creek (lower) (figs. 38, 43). These step-like
increases related to tributary junctions are more appar!]
ent on the Buffalo River than on the Current River, indilJ
cating that there may be a closer temporal linkage
between cause and effect on the Buffalo River. Similar
to the Current River, point-by-point correlations of vall
ley-scale effects indicate tremendous variability and
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Figure 48. Selected scatter plots of drainage-basin characteristics and unit gravel-bar area inventories, Buffalo River. A.
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summed 4.8 km downstream plotted against drainage-basin shape factor. C. Unit gravel-bar area summed 0.2 km down-
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Table 28. Spearman rank correlation coefficients for Buffalo River gravel-bar area against drainage-basin

variables

[km, kilometers; shaded values significant at p = 0.05; bold values > 0.5 or < -0.5]
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enveloping relations between gravel-bar area and valley Conclusions

width, proximity of channel to valley wall, and channel
sinuosity.

Tributary drainage-basin effects apparent in correlal]
tions and multiple regression models on the Buffalo
River are most significant for gravel-bar areas summed
0-1.0 km downstream from the tributary junctions
(tables 27, 28). For distances of 0-0.6 km, correlations
with land-use variables are confounded by strong
inverse correlations between land-use and slope, and an
inverse correlation between slope and carbonate
bedrock area. Hence, it is difficult to distinguish statis[]
tically the mechanism for increased gravel-bar areas:
land use or natural increased gravel delivery due to carl]
bonate bedrock. When gravel is summed for longer dis[
tances downstream, basin slope diminishes in signifil’]
cance in regression models, but the significance of
cleared land in the stream buffer remains. At 3.0-3.6
km, basin shape is also significant in multiple regres[’]
sion models (table 27). Taken as a whole, these correlal]
tion models support the conclusion that on the Buffalo
River gravel influxes from tributaries are presently clos(]
er to tributary junctions than on the Current River, and
gravel-bar areas are significantly affected by either agril]
cultural land use or geologic and physiographic differ!]
ences between study drainage basins; these relations
additionally are obscured over time as gravel is progres/|
sively transported downstream from tributary junctions.

This study investigated links between drainage-basin
characteristics and stream habitat conditions in tributar!(]
ies of the Buffalo River, Arkansas and the Current River
and Jacks Fork, Missouri. Data collected for tributary
drainage basins, reach-scale channel characteristics, and
main-stem gravel-bar area highlight the influence of
physiographic controls on stream characteristics and
suggest that land use exerts a subtle affect in these
stream systems. Land-use effects were more prominent
in the Buffalo River system than the Current River sys!(]
tem.

GIS inventories of drainage-basin characteristics
highlight the major physiographic and geologic differ!|
ences between the two river systems. Buffalo River
tributaries have more sandstone bedrock, steeper
drainage-basin average slopes, greater elevation ranges,
a greater proportion of streamside bluffs, and fewer
impacts from karst hydrology than those in the Current
River system. In both river systems, study drainage
basins can be subset on the basis of differences in
topography. In the Buffalo, differences in elevation
range distinguish basins sourcing in the Boston
Mountains from those sourcing in the Springfield and
Salem Plateaus. In the Current, drainage-basin average
slope separates the steep middle and east Current basins
from the low-relief west Current basins.

Regression analysis of drainage-basin variables high-
light the complex ways geology, physiography, and land
use patterns are interrelated. For example, topographic
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relief variables are correlated with carbonate bedrock
area, but with opposite trends in the two river systems.
Drainage-basin average slope is negatively correlated
with carbonate bedrock area in the Buffalo River system
and positively correlated in the Current River system.
Stratigraphic position and erosional history appear to
moderate the effect of lithology on topography. Impacts
from land use may also differ in the two river systems.
Although cleared land area is negatively correlated with
drainage-basin average slope in both river systems,
basins in the Buffalo tend to have more cleared land for
a given average slope than those in the Current. This
suggests that the impact from land use may be greater in
the Buffalo River system where more cleared land is in
sensitive landscape positions.

Analyses of reach-scale channel characteristics sug!
gest that physiography is the primary control on channel
characteristics. After accounting for differences in
drainage area, channel geometry and substrate variables
are positively correlated with measures of topographic
relief or an indicator variable specifying river system.
Buffalo River tributaries tend to have larger bankfull
and residual pool dimensions and coarser substrate than
those in the carbonate-dominated Current River system.
These differences are consistent with flashy runoff and
large storm flows in the rugged Buffalo River system
and with impacts from the karst hydrology in the
Current River system.

When basins are subset by river system, Current
River tributaries continue to show associations consis/
tent with impacts from karst hydrology. Tributaries that
drain the karst-rich western Current have smaller chan(]
nel dimensions and finer and more embedded substrate
than those that drain the middle and eastern part of the
basin. West Current drainage basins also show some
indication of impacts from land use — cleared land area
in these basins is negatively correlated with the propor!(]
tion of residual pools and positively correlated with
embedded substrate.

When Buffalo River tributaries are subset, channel
characteristics show strong associations with geology
and land use. Drainage basins with larger proportions
of carbonate bedrock and cleared land have shallower
channels, a lower proportion of residual pools, better-
sorted, gravel-rich substrate, and more eroding banks
than those with little cleared land and abundant sand-
stone bedrock. Because carbonate bedrock and cleared
land area are correlated, it is difficult to separate associl]
ations between natural and anthropogenic factors.

Measurements of gravel-bar area on main-stem rivers
are consistent with basin-scale and reach-scale findings.
After accounting for differences due to valley morphol(
ogy, gravel-bar area within 1 km of tributary junctions
on the Buffalo River show associations with tributary

BIOLOGICAL SCIENCE REPORT USGS/BRD/BSR-2001-0005

geology, physiography, and land use. Gravel-bar area is
positively correlated with carbonate bedrock and cleared
land area and negatively correlated with drainage-basin
average slope. These correlations diminish as gravel-
bar area is measured over longer distances downstream.

In contrast, on the Current River, correlations
between gravel-bar area and tributary characteristics are
strongest when measured over greater distances down-
stream. Gravel-bar areas summed over 3.0-4.8 km
downstream from the tributary confluences is positively
correlated with drainage-basin average slope and negall
tively correlated with cleared land area. This difference
is consistent with the distinction between west and mid[!
dle and east Current groups — eastern basins have steepl
er slopes, little cleared land area, and fewer impacts
from karst hydrology than west Current drainage basins.
Steeper slopes and a higher relative transport capacity
may facilitate gravel transport out of these basins com[
pared to the karst-rich west Current basins. Gravel-bar
distributions along the Current River are also more conl[!
sistent with hypothesized, lagged historical effects than
with recent impacts from land use. Temporal compar!]
isons of 1992 and 1996 gravel distributions show down-
stream translation of gravel that is consistent with time-
series models of impacts from low-level historical dis[]
turbance.

This study highlights the relation between landscape
physiographic characteristics and stream conditions in
the Ozark Highlands. Channel dimensions, habitat dis[]
tributions, and substrate characteristics are related to
drainage-basin geology, size, and physiographic relief.
The influence of these natural landscape characteristics
appears to overshadow relations between rural land use
and stream physical habitat conditions in the study
basins. For the Buffalo and Current River systems, land
use appears to exert a subtle influence notable only
when streams are subset into physiographic groups.
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Appendix 1

Estimates of land cover in this study were based on a preliminary version of National Land Cover
Data (NLCD) developed by the U.S. Geological Survey’s Eros Data Center
(http://edcsgs9.cr.usgs.gov/programs/lccp/nationallandcover.html ). Eros released preliminary versions of
the coverage for Missouri and Arkansas in July and August 2000. It was created from Landsat Thematic
Mapper Images collected during the late 1980°s and early 1990’s and maps 21 classes of ground cover with
a grid cell size of 30-meters. The data set is particularly valuable for this project, because data classes and
processing techniques were uniform across state boundaries.

Until this data set became available, earlier projects in the parks relied on land cover data sets

developed by state or university researchers. These coverages include:

e 1992 Land Cover for the State of Missouri developed by the Missouri Resource Assessment
Partnership, version 2.3 (MoRAP, 2000;
http://www.cerc.cr.usgs.gov/morap/projects/lulc/landcover2.htm ).

e 1992 Land Cover for the Buffalo Watershed developed by the University of Arkansas (Scott and
Hofer, 1995).

e 1992 Land Cover for the State of Arkansas developed by the University of Arkansas (CAST,
1997; http://cast.cast.uark.edu/local/isite/GeoLibraryCatalog.htm#Themes).

These three coverages are also based on Landsat Thematic Mapper images from the early 1990’s, yet
because their processing methods and land cover classes were different, it is difficult to compare land cover
between the Buffalo and Current study basins.

The NLCD data set also provided an opportunity to compare different land cover versions. Some
error is inherent in all classification methods, but without extensive “ground truthing” the magnitude of
error is difficult to quantify. In general, there was good agreement between the NLCD and MoRAP land
cover versions, the two coverages available for the Current River drainage basin. The average difference of
cleared land (dominantly pasture) in a tributary study basin was 1.6% and the maximum difference was
4.2% with MoRAP’s coverage documenting slightly more cleared land than the NLCD coverage. For the
Buffalo drainage basin, the NLCD and CAST land cover version were also similar — the average difference
in cleared land area for tributary study basins was 2.2% and the maximum different was 5.4%. Depending
on the drainage basin, the CAST landcover version either underestimated or overestimated cleared land
area. There was a more substantial difference between the land cover developed by Scott and Hofer (1995)
and the NLCD data set. The Scott and Hofer (1995) coverage consistently mapped a greater proportion of
cleared land with an average difference compared to the NLCD coverage of 10% and a maximum
difference of 18%. Tomahawk Creek, for example, was mapped with 49% cleared land area (pasture and
grasslands) by the Scott coverage but only 33% by the NLCD coverage. The difference between the NLCD
and Scott and Hofer (1995) land cover versions accounts for discrepancies between the proportion of
cleared land reported in this study and in earlier Buffalo River drainage-basin studies.
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Appendix 2

Detailed procedure for reach-scale channel surveys [designed for a field team of three]:

1.

[Entire Team] Identify the downstream riffle for the reach, close to the confluence for the mainstem river but
upstream of backwater effects. Flag it and take a Global Positioning System (GPS) reading. Walk upstream
through four riffles; identify potential instrument positions for surveying. Record a GPS reading at the top of
the fourth riffle; this will mark the top of the longitudinal profile. The number of riffles within a reach may
vary slightly, be sure to include a distance equal to at least 15-20 channel widths.

[Persons 1 and 2] Survey points along the thalweg of the channel spacing them as needed to define the
topography (about 3-10 meters apart). Two points will be shot at each location, the first point with base of pole
on ground, the second with the base of the pole on the water surface. For the ground point, use data logger
codes to note:

a. habitat type

b. dominant substrate size

c. the proportion of embeddedness

For water surface point use data logger codes to note:

a. the proportion of the left bank covered with vegetation — this is an estimate of vegetation cover on
vertical or near vertical banks below the bankfull elevation, do not consider point bars

b. erosion on the left bank — Descriptive classes are “not eroding, moderately eroding, or severely
eroding”. Moderately eroding banks show limited root exposure or a small portion of the bank
undercut; severely eroding show near-vertical cut banks with many exposed roots.

c. the proportion of the right bank covered with vegetation

d. erosion on the right bank

[Persons 1 and 2] Where apparent, survey indicators of bankfull elevation. Note the quality of the indicator in
the data logger. We found indicators on point bars to be especially consistent.

[Person 3] Take photographs of gravel-bar substrate at locations equally spaced across the point bar along a
line bisecting the adjacent riffle. Place label with site name and bar number in corner of photo frame. Record
photo numbers on data sheet.

[Person 3] Decide on locations for cross-sections within each of three glides. Stretch tag lines across cross
section. While choosing cross-section locations, take photographs of the study reach looking upstream and
downstream. Fill out top of data sheet and sketch reach and make notes as needed.

[Person 3] Conduct embeddedness measure at locations one third and two thirds across the wetted width of
each glide cross section. Place sediment viewer to break water surface and estimate the proportion of fines
covering the 60x60 cm area of viewer frame. Refer to illustration cards to help with making visual estimates.
Record estimates on data sheet.

[Person 1 and 2] Survey cross sections where Person 3 has set up the tag line. Survey estimates of bankfull
maximum and minimum elevations. Estimates of bankfull elevation will be plotted and compared with other
estimates made along the longitudinal profile. At each point, record substrate.

[Person 3] Conduct canopy closure measure at the water’s edge of each cross section. Hold the densiometer
on the transect line perpendicular to the bank 30 cm from and 30 cm above the shoreline. Count the number of
intersections within the taped V that reflect vegetation. Record this number (out of a total of 17) on the data
sheet. This procedure is described more completely in Fitzpatrick and others (1998).
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9. [Persons 1, 2, and 3] Repeat steps 5-7 until all cross-sections have been surveyed.

10. [Persons 1, 2, and 3] Conduct pebble counts in three glide habitats along the surveyed cross section. Use data
sheet to record particle size. Scatter points throughout glide picking up the first particle reached on each
“blind” touch to the streambed.

Table of codes used for data entry into data logger

Habitat Code Substrate Code 8Lher . Code
servations
Bedrock riffle 1 Bedrock 11 Embeddness % in intervals of 10
Alluvial riffle 2 Mud/organics 12
S=step Sand 13 LB Veg % % in intervals of 10
Glide (run) 3 Fine/Medium Gravel 14 LB eroding? Y = severely
(2-16mm) M = moderately
N =no
Race 4 C. Gravel (16-32mm) 15 RB Veg % % in intervals of 10
Obstruction Pool 5 Very Coarse Gravel 16 LB eroding? Y = severely
(32-64mm) M = moderately
N =no
Lateral Pool 6 Small Cobbles (64-128mm) 17
Bluff Pool 7 Lg Cobbles (128-256mm) 18 Bankfull Indicators BF1 = good quality
Mid-Channel Pool 8 Sm Boulders (256-512mm) 19 BF2 = fair quality
Lg Boulders (>512 mm) 20 BF3 = poor quality
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Appendix 2 continued

Tributary:

GPS upstm: elev
GPS dnstm: elev
Flood plain Vegetation:

Draw sketch of reach on back of page and make notes.

Date and Time:

Weather:

Data Logger File Name:

Team:

Reach Photo Numbers:

Photo Sieving: (photo number) (on cross-section at middle of framework riffles)
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Bar 1 Bar 2 Bar 3
A B A B A B
Surface
Glide Embeddedness and Canopy Closure:
Glide 1 Glide 2 Glide 3
LB RB LB LB RB
% embedded
# crosses covered
Glide Pebble Count: (particles <4 mm recorded as 4)
Glide 1 Glide 2 Glide 3
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