

3

Cancer

Co-Lead Agencies: Centers for Disease Control and Prevention National Institutes of Health

Contents

Goal Page 3-3
Overview Page 3-3
Issues and Trends Page 3-3
Disparities Page 3-4
Opportunities Page 3-6
Interim Progress Toward Year 2000 Objectives Page 3-7
Healthy People 2010-Summary of Objectives Page 3-9
Healthy People 2010 Objectives Page 3-10
Related Objectives From Other Focus Areas Page 3-29
Terminology Page 3-29
References Page 3-30

Reduce the number of new cancer cases as well as the illness, disability, and death caused by cancer.

Overview

Cancer is the second leading cause of death in the United States. During 2000, an estimated $1,220,100$ persons in the United States were expected to be diagnosed with cancer; 552,200 persons were expected to die from cancer. ${ }^{1}$ These estimates did not include most skin cancers, and new cases of skin cancer are estimated to exceed 1 million per year. One-half of new cases of cancer occur in people aged 65 years and over. ${ }^{2}$

About 491,400 persons who get cancer in a given year, or 4 in 10 patients, are expected to be alive 5 years after diagnosis. When adjusted for normal life expectancy (accounting for factors such as dying of heart disease, injuries, and diseases of old age), a relative 5 -year survival rate of 60 percent is seen for all cancers. ${ }^{1}$ This rate means that the chance of a person recently diagnosed with cancer being alive in 5 years is 60 percent of the chance of someone not diagnosed with cancer. Five-year relative survival rates commonly are used to monitor progress in the early detection and treatment of cancer and include persons who are living 5 years after diagnosis, whether in remission, disease free, or under treatment.

Issues and Trends

Cancer death rates for all sites combined decreased an average of 0.6 percent per year from 1990 to $1996 .{ }^{3}$ This decrease occurred after rates had increased by 0.4 percent per year from 1973 to $1990 .^{4}$ Death rates for male lung, female breast, prostate, and colorectal cancers decreased significantly during the 1990-96 period. ${ }^{3}$ The lung and bronchus, prostate, female breast, and colon and rectum were the most common cancer sites for all racial and ethnic populations in the United States and together accounted for approximately 54 percent of all newly diagnosed cancers. ${ }^{1}$

In addition to the human toll of cancer, the financial costs of cancer are substantial. ${ }^{5}$ The overall annual costs for cancer are estimated at $\$ 107$ billion, with $\$ 37$ billion for direct medical costs (the total of all health expenditures), $\$ 11$ billion for costs of illness (the cost of low productivity due to illness), and $\$ 59$ billion for costs of death (the cost of lost productivity due to death). Treatment for lung, breast, and prostate cancers alone accounts for more than half of the direct medical costs.

Disparities

Cancer death rates vary by gender, race, and ethnicity. ${ }^{3}$ Male cancer death rates peaked in 1990 at 220.8 per 100,000, and female death rates peaked a year later at 142.2 per 100,000. After the peak year, through 1996, male cancer deaths for all sites decreased on average by 1 percent per year, and female deaths decreased on average by 0.4 percent per year. There were significant decreases in death for lung, prostate, brain, and other nervous system cancers in males and a significant decrease in breast cancer death for females. ${ }^{3}$ Among males, lung cancer death

Note: Estimates exclude basal and squamous cell skin cancer and carcinomas in situ except urinary bladder.

Source: American Cancer Society. Surveillance Research, 2000.
rates have declined since 1990. In contrast, lung cancer death rates have continued to increase among females. Since 1987, more females have died from lung cancer than breast cancer.

African Americans are about 34 percent more likely to die of cancer than are whites and more than two times more likely to die of cancer than are Asian or Pacific Islanders, American Indians, and Hispanics. ${ }^{1}$ African American women are more likely to die of breast and colon cancers than are women of any other racial and ethnic group, and they have approximately the same lung cancer death rates as white women. African American men have the highest death rates of colon and rectum, lung, and prostate cancers. Age-adjusted lung cancer death rates are approximately 40 percent higher among African American males than white males. Little difference in age-adjusted lung cancer death rates has been observed between African American females and white females. Hispanics have higher rates of cervical, esophageal, gallbladder, and stomach cancers. Similarly, some specific forms of cancer affect other ethnic groups at rates higher than the national average (for example, stomach and liver cancers among Asian American populations and colorectal [CRC] cancer among Alaska Natives). Certain racial and ethnic groups have lower survival rates than whites for most cancers. ${ }^{1}$

Differences among the races represent both a challenge to understand the reasons and an opportunity to reduce illness and death and to improve survival rates.

The Hispanic cancer experience also differs from that of the non-Hispanic white population, with Hispanics having higher rates of cervical, esophageal, gallbladder, and stomach cancers. New cases of female breast and lung cancers are increasing among Hispanics, who are diagnosed at later stages and have lower survival rates than whites.

The recent decrease in deaths from breast cancer in white females is attributed to greater use of breast cancer screening in regular medical care. However, deaths due to breast cancer in African American females continue to increase, in part, because breast cancer is diagnosed at later stages in African American females. ${ }^{1}$

Data on CRC show a decline in new cases and death rates in white males and females, stable new case rates in African Americans, and a continued rise in death rates in African American males. Five-year survival rates for the 1989-94 period are 64 percent in whites and 52 percent in African Americans. ${ }^{3}$ Early detection and treatment play a key role in these survival rates.

New cases of prostate cancer peaked in 1992 at 190.8 per 100,000 people and declined on average by 8.5 percent each year from 1992 to 1996. Prostate cancer death rates peaked in 1991 at 26.7 per 100,000 people; rates decreased on average by 2.1 percent each year from 1991 to $1995 .{ }^{3}$ Causes of the trends are unclear but may be attributed to a number of factors that are under investigation.

Possible disparities regarding the health status of lesbian women and possible barriers to access to health services by lesbians have been identified by the Institute of Medicine as a research priority. ${ }^{6}$

Opportunities

Evidence suggests that several types of cancer can be prevented and that the prospects for surviving cancer continue to improve. The ability to reduce cancer death rates depends, in part, on the existence and application of various types of resources. First, the means to provide culturally and linguistically appropriate information on prevention, early detection, and treatment to the public and to health care professionals are essential. Second, mechanisms or systems must exist for providing people with access to state-of-the-art preventive services and treatment. Where suitable, participation in clinical trials also should be encouraged. Third, a mechanism for maintaining continued research progress and for fostering new research is essential. Genetic information that can be used to improve disease prevention strategies is emerging for many cancers and may provide the foundation for improved effectiveness in clinical and preventive medicine services.

To provide new opportunities for cancer prevention and control in the future, there is a continuing and vital need to foster new, innovative research on both the causes of cancer (including genetic and environmental causes) and on methods to translate biologic and epidemiologic findings into effective prevention and control programs for use by government and community organizations to reduce further the Nation's cancer burden.

These needs can be met, in part, with the network of cancer control resources now in place. This network has the organizational and personnel capabilities for various cancer interventions. Despite the extent of these resources, they alone are insufficient to reduce deaths from cancer. Gaps exist in information transfer, optimal practice patterns, research capabilities, and other areas. These gaps must be recognized and filled to meet cancer prevention and control needs.

It is estimated that as much as 50 percent or more of cancer can be prevented through smoking cessation and improved dietary habits, such as reducing fat consumption and increasing fruit and vegetable consumption. ${ }^{7,8}$ Physical activity and weight control also can contribute to cancer prevention., ${ }^{9}$

Scientific data from randomized trials of cancer screening together with expert opinions indicate that adherence to screening recommendations for cancers of the breast, cervix, and colon/rectum reduces deaths from these cancers.

To reduce breast cancer deaths in the United States, a high percentage of females aged 40 years and older need to comply with screening recommendations. A reduction in breast cancer deaths could be expected to occur after a delay of roughly 7 years. ${ }^{11}$ To reduce cervical cancer deaths, a high percentage of females in the United States who are aged 18 years and older need to comply with screening rec-
ommendations. Evidence from randomized preventive trials is unavailable, but expert opinion suggests that a beneficial impact on cervical cancer death rates would be expected to occur after a delay of a few years.

Evidence shows that a reduction in CRC deaths can be achieved through detection and removal of precancerous polyps and treatment of CRC in its earliest stages. The findings from three randomized controlled trials indicate that biennial screening with fecal occult blood tests (FOBT) can reduce deaths from CRC by 15 to 21 percent in people aged 45 to 80 years. ${ }^{12,13,14}$ One trial ${ }^{15}$ reported a 33 percent reduction in deaths with annual screening in the same age groups, and a simulation model showed a 56 percent reduction. ${ }^{16}$ The efficacy of sigmoidoscopy has been supported by three case-control studies ${ }^{\mathbf{1 7 , 1 8 , 1 9}}$ that showed 59 to 79 percent reductions in CRC deaths from cancers within reach of the sigmoidoscope in age groups 45 years and older.

Prostate cancer prevention strategies are not available at this time. Race and age are the only clearly identified risk factors for prostate cancer. African Americans and older men are at higher risk. There is no scientific agreement on the benefits of screening for prostate cancer, and screening is not recommended in the general population or in high-risk groups because it is unclear if screening and treatment do more good than harm. ${ }^{20}$ Clinical trials currently are under way to assess the benefits and risks of screening and treatments, and additional research is needed to identify modifiable risk factors for prostate cancer.

Melanoma and other skin cancers were expected to claim the lives of almost 9,600 persons in 2000. ${ }^{1}$ Insufficient evidence exists to determine whether routine skin examinations (self or physician) decrease deaths from melanoma or other skin cancers. However, many of the skin cancers diagnosed each year could be prevented by limiting exposure to the sun, by wearing protective clothing, and by using sunscreen.

For all cancers, treatments designed to increase survival are needed along with improved access to state-of-the-art care. In addition to measurements of survival, indices of quality of life for both the short term and long term are regarded as important considerations.

Interim Progress Toward Year 2000 Objectives

The Healthy People 2000 objective for total cancer deaths was achieved for the total population by 1995. Lung cancer deaths declined for the first time in 50 years in 1991, declined again in 1992, remained level in 1993, and then dropped again in 1994, 1995, and 1996. The decline in the age-adjusted death rate for CRC for the total population has gone beyond the year 2000 target, but declines in death rates have not been as substantial for the black population. Improvements were observed in cancer risk factors, such as tobacco use and dietary fat intake. Data also showed some improvement in the proportion of women receiving mammo-
grams and Pap tests. In addition, for both mammograms and Pap tests, the disparity in use rates for most of the population subgroups and those for all women either has been reduced or eliminated.

Note: Unless otherwise noted, data are from the Centers for Disease Control and Prevention, National Center for Health Statistics, Healthy People 2000 Review, 1998-99.

Healthy People 2010—Summary of Objectives

Cancer

Goal: Reduce the number of new cancer cases as well as the illness, disability, and death caused by cancer.

Number	Objective Short Title
$3-1$	Overall cancer deaths
$3-2$	Lung cancer deaths
$3-3$	Breast cancer deaths
$3-4$	Cervical cancer deaths
$3-5$	Colorectal cancer deaths
$3-6$	Oropharyngeal cancer deaths
$3-7$	Prostate cancer deaths
$3-8$	Melanoma deaths
$3-9$	Sun exposure and skin cancer
$3-10$	Provider counseling about cancer prevention
$3-11$	Pap tests
$3-12$	Colorectal cancer screening
$3-13$	Mammograms
$3-14$	Statewide cancer registries
$3-15$	Cancer survival

Healthy People 2010 Objectives

3-1. Reduce the overall cancer death rate.

Target: 159.9 deaths per 100,000 population.
Baseline: 202.4 cancer deaths per 100,000 population occurred in 1998 (age adjusted to the year 2000 standard population).
Target setting method: 21 percent improvement.
Data source: National Vital Statistics System (NVSS), CDC, NCHS.

Total Population, 1998	Cancer Deaths
	Rate per 100,000
TOTAL	202.4
Race and ethnicity	129.3
American Indian or Alaska Native	124.2
Asian or Pacific Islander	DNC
Asian	DNC
Native Hawaiian and other Pacific Islander	255.1
Black or African American	199.3
White	123.7
Hispanic or Latino	206.6
Not Hispanic or Latino	261.8
Black or African American	203.0
White	169.2
Gender	252.4
Female	
Male	137.8
Education level (aged 25 to 64 years)	139.7
Less than high school	79.6
High school graduate	
At least some college	

DNA = Data have not been analyzed. DNC = Data are not collected. DSU = Data are statistically unreliable. Note: Age adjusted to the year 2000 standard population.

3-2. Reduce the lung cancer death rate.

Target: 44.9 deaths per 100,000 population.
Baseline: 57.6 lung cancer deaths per 100,000 population occurred in 1998 (age adjusted to the year 2000 standard population).

Target setting method: 22 percent improvement.
Data source: National Vital Statistics System (NVSS), CDC, NCHS.

Total Population, 1998	Lung Cancer Deaths				
	Rate per 100,000	$	$	TOTAL	37.6
:---:	:---:				
Race and ethnicity	29.2				
American Indian or Alaska Native	DNC				
Asian or Pacific Islander	DNC				
Asian	66.7				
Native Hawaiian and other Pacific Islander	57.5				
Black or African American	22.7				
White	59.6				
Hispanic or Latino	68.6				
Not Hispanic or Latino	59.6				
Black or African American					
White	41.5				
Gender	79.9				
Female					
Male	49.0				
Education level (aged 25 to 64 years)	41.8				
Less than high school	17.6				
High school graduate					
At least some college					

DNA = Data have not been analyzed. DNC = Data are not collected. DSU = Data are statistically unreliable. Note: Age adjusted to the year 2000 standard population.

Lung cancer is the most common cause of cancer death among both females and males in the United States. Estimates indicated that 164,100 (74,600 females and 89,500 males) new cases of lung cancer would be diagnosed in 2000; 156,900 persons (67,600 females and 89,300 males) would die from lung cancer in 2000, accounting for 28 percent of all cancer deaths. ${ }^{1}$

Cigarette smoking is the most important risk factor for lung cancer, accounting for 68 to 78 percent of lung cancer deaths among females and 88 to 91 percent of lung cancer deaths among males. ${ }^{21}$ Other risk factors include occupational exposures (radon, asbestos) and indoor and outdoor air pollution (radon, environmental tobacco smoke). ${ }^{22}$ One to two percent of lung cancer deaths are attributable to air pollution. ${ }^{23}$ After 10 years of abstinence, smoking cessation decreases the risk of lung cancer to 30 to 50 percent of that of continuing smokers. ${ }^{7}$

3-3. Reduce the breast cancer death rate.

Target: 22.3 deaths per 100,000 females.
Baseline: 27.9 breast cancer deaths per 100,000 females occurred in 1998 (age adjusted to the year 2000 standard population).

Target setting method: 20 percent improvement.
Data source: National Vital Statistics System (NVSS), CDC, NCHS.

Females, 1998	Breast Cancer Deaths
	Rate per 100,000
TOTAL	27.9
Race and ethnicity	14.2
American Indian or Alaska Native	13.1
Asian or Pacific Islander	DNC
Asian	DNC
Native Hawaiian and other Pacific Islander	35.7
Black or African American	27.3
White	
Hispanic or Latino	16.8
Not Hispanic or Latino	28.5
Black or African American	36.7
White	27.9
Education level (aged 25 to 64 years)	
Less than high school	20.0
High school graduate	28.4
At least some college	22.0

DNA = Data have not been analyzed. DNC = Data are not collected. DSU = Data are statistically unreliable.
Note: Age adjusted to the year 2000 standard population.

Breast cancer is the most common cancer among women in the United States. An estimated 184,200 new cases were expected to be diagnosed in 2000. About 40,800 U.S. women were expected to die from breast cancer in 2000, accounting for about 15.2 percent of cancer deaths among women. ${ }^{1}$ Death from breast cancer can be reduced substantially if the tumor is discovered at an early stage. Mammography is the most effective method for detecting these early malignancies. Clinical trials have demonstrated that mammography screening can reduce breast cancer deaths by 20 to 39 percent in women aged 50 to 74 years and about 17 percent in women aged 40 to 49 years. ${ }^{24}$ Breast cancer deaths can be reduced through increased adherence with recommendations for regular mammography screening.

Many breast cancer risk factors, such as age, family history of breast cancer, reproductive history, mammographic densities, previous breast disease, and race and ethnicity, are not subject to intervention. ${ }^{25,26}$ However, being overweight is a well-established breast cancer risk for postmenopausal women that can be addressed. ${ }^{25}$ Avoiding weight gain is one method by which older women may reduce their risk of developing breast cancer.

3-4. Reduce the death rate from cancer of the uterine cervix.

Target: 2.0 deaths per 100,000 females.
Baseline: 3.0 cervical cancer deaths per 100,000 females occurred in 1998 (age adjusted to the year 2000 standard population).
Target setting method: Better than the best.
Data source: National Vital Statistics System (NVSS), CDC, NCHS.
Note: The table below may continue to the following page.

Females, 1998	Cervical Cancer Deaths
	Rate per 100,000
TOTAL	3.0
Race and ethnicity	2.5
American Indian or Alaska Native	3.3
Asian or Pacific Islander	DNC
Asian	DNC
Native Hawaiian and other Pacific Islander	6.0
Black or African American	2.7
White	

Females, 1998	Cervical Cancer Deaths
	Rate per 100,000
Hispanic or Latino	3.3
Not Hispanic or Latino	3.0
Black or African American	6.2
White	2.6
Education level (aged 25 to 64 years)	
Less than high school	7.2
High school graduate	4.8
At least some college	2.1

DNA = Data have not been analyzed. DNC = Data are not collected. DSU = Data are statistically unreliable. Note: Age adjusted to the year 2000 standard population.

Note: The table above may have continued from the previous page.

Cervical cancer is the 10 th most common cancer among females in the United States, with an estimated 12,800 new cases in 2000. The number of new cases of cervical cancer is higher among females from racial and ethnic groups than among white females. An estimated 4,600 U.S. females were expected to die from cervical cancer in 2000. ${ }^{1}$ Cervical cancer accounts for about 1.7 percent of cancer deaths among females. Infections of the cervix with certain types of sexually transmitted human papilloma virus increase risk of cervical cancer and may be responsible for most cervical cancer in the United States. ${ }^{27}$

Considerable evidence suggests that screening can reduce the number of deaths from cervical cancer. Invasive cervical cancer is preceded in a large proportion of cases by precancerous changes in cervical tissue that can be identified with a Pap test. If cervical cancer is detected early, the likelihood of survival is almost 100 percent with appropriate treatment and followup; that is, almost all cervical cancer deaths could be avoided if all females complied with screening and followup recommendations. ${ }^{28}$ Risk is substantially decreased among former smokers in comparison to continuing smokers. ${ }^{7}$

3-5. Reduce the colorectal cancer death rate.

Target: 13.9 deaths per 100,000 population.
Baseline: 21.2 colorectal cancer deaths per 100,000 population occurred in 1998 (age adjusted to the year 2000 standard population).

Target setting method: 34 percent improvement.
Data source: National Vital Statistics System (NVSS), CDC, NCHS.

Total Population, 1998	Colorectal Cancer Deaths
	Rate per 100,000
TOTAL	21.2
Race and ethnicity	13.3
American Indian or Alaska Native	13.7
Asian or Pacific Islander	DNC
Asian	DNC
Native Hawaiian and other Pacific Islander	28.2
Black or African American	20.8
White	12
Hispanic or Latino	21.7
Not Hispanic or Latino	28.9
Black or African American	21.1
White	
Gender	18.2
Female	25.4
Male	
Education level (aged 25 to 64 years)	10.4
Less than high school	12.0
High school graduate	7.5
At least some college	

DNA = Data have not been analyzed. DNC = Data are not collected. DSU = Data are statistically unreliable. Note: Age adjusted to the year 2000 standard population.

Colorectal cancer is the second leading cause of cancer-related deaths in the United States. An estimated 130,200 cases (66,600 females and 63,600 males) of CRC and 56,300 deaths (28,500 females and 27,800 males) from CRC were expected to occur in 2000. When cancer-related deaths are estimated separately for males and females, however, CRC becomes the third leading cause of cancer death behind lung and breast cancers for females and behind lung and prostate cancers for males. ${ }^{1}$

Risk factors for CRC may include age, personal and family history of polyps or colorectal cancer, inflammatory bowel disease, inherited syndromes, physical inactivity (colon only), obesity, alcohol use, and a diet high in fat and low in fruits and vegetables. ${ }^{29}$ Detecting and removing precancerous colorectal polyps and detecting and treating the disease in its earliest stages will reduce deaths from CRC. FOBT and sigmoidoscopy are widely used to screen for CRC, and barium enema and colonoscopy are used as diagnostic tests.

3-6. Reduce the oropharyngeal cancer death rate.

Target: 2.7 deaths per 100,000 population.
Baseline: 3.0 oropharyngeal cancer deaths per 100,000 population occurred in 1998 (age adjusted to the year 2000 standard population).
Target setting method: 10 percent improvement.
Data source: National Vital Statistics System (NVSS), CDC, NCHS.

Total Population, 1998	Oropharyngeal Cancer Deaths				
	Rate per 100,000	$	$	TOTAL	2.0
:---	:---:				
Race and ethnicity	2.2				
American Indian or Alaska Native	DNC				
Asian or Pacific Islander	DNC				
Asian	4.5				
Native Hawaiian and other Pacific Islander	2.8				
Black or African American	1.8				
White	3.1				
Hispanic or Latino	4.7				
Not Hispanic or Latino	2.9				
Black or African American					
White	1.7				
Gender	4.5				
Female					
Male	3.6				
Education level (aged 25 to 64 years)	3.0				
Less than high school	1.2				
High school graduate					
At least some college					

DNA = Data have not been analyzed. DNC = Data are not collected. DSU = Data are statistically unreliable. Note: Age adjusted to the year 2000 standard population.

Oral and pharyngeal (oropharyngeal) cancers comprise a diversity of malignant tumors that affect the oral cavity and pharynx; the overwhelming majority of these tumors are squamous cell carcinomas. In 2000, 30,200 new cases of oropharyngeal cancer were expected to be diagnosed, and approximately 7,800 deaths were expected to occur from the disease. Oropharyngeal cancer is the 10th most common cancer among U.S. men and the 14th most common among U.S. women. ${ }^{1}$ Its

5-year survival rate is only 53 percent. The risk of oral cancer is increased in current smokers. Alcohol consumption is an independent risk factor, and when alcohol is combined with use of tobacco products, 90 percent of all oral cancers are explained. ${ }^{30}$

3-7. Reduce the prostate cancer death rate.

Target: 28.8 deaths per 100,000 males.
Baseline: 32.0 prostate cancer deaths per 100,000 males occurred in 1998 (age adjusted to the year 2000 standard population).
Target setting method: 10 percent improvement.
Data source: National Vital Statistics System (NVSS), CDC, NCHS.

Males, 1998	Prostate Cancer Deaths				
	Rate per 100,000	$	$	TOTAL	15.0
:---	:---:				
Race and ethnicity	12.4				
American Indian or Alaska Native	DNC				
Asian or Pacific Islander	DNC				
Asian	68.7				
Native Hawaiian and other Pacific Islander	29.4				
Black or African American	20.9				
White	32.4				
Hispanic or Latino	70.2				
Not Hispanic or Latino	29.7				
Black or African American					
White	4.4				
Education level (aged 25 to 64 years)	5.0				
Less than high school	2.8				
High school graduate					
At least some college					

DNA = Data have not been analyzed. DNC = Data are not collected. DSU = Data are statistically unreliable.
Note: Age adjusted to the year 2000 standard population.
Prostate cancer is the most commonly diagnosed form of cancer (other than skin cancer) in males and the second leading cause of cancer death among males in the United States. Prostate cancer was expected to account for an estimated 180,400 cases and 31,900 deaths in 2000 , or about 29 percent and 11 percent of the cases
and deaths due to all cancers, respectively. ${ }^{1}$ Prostate cancer is most common in men aged 65 years and older, who account for approximately 80 percent of all cases of prostate cancer.

Digital rectal examination (DRE) and the prostate-specific antigen (PSA) test are two commonly used methods for detecting prostate cancer. Clinical trials of the benefits of DRE and PSA screening are under way, with results expected in the early 21 st century.

Although several treatment alternatives are available for prostate cancer, their impact on reducing death from prostate cancer when compared with no treatment in patients with operable cancer is uncertain. ${ }^{31,32,33}$ Efforts aimed at reducing deaths through screening and early detection remain controversial because of the uncertain benefits and potential risks of screening, diagnosis, and treatment.

3-8. Reduce the rate of melanoma cancer deaths.

Target: 2.5 deaths per 100,000 population.
Baseline: 2.8 melanoma cancer deaths per 100,000 population occurred in 1998 (age adjusted to the year 2000 standard population).
Target setting method: 11 percent improvement.
Data source: National Vital Statistics System (NVSS), CDC, NCHS.
Note: The table below may continue to the following page.

Total Population, 1998	Melanoma Cancer Deaths
	Rate per 100,000
TOTAL	2.8
Race and ethnicity	DSU
American Indian or Alaska Native	0.3
Asian or Pacific Islander	DNC
Asian	DNC
Native Hawaiian and other Pacific Islander	0.5
Black or African American	3.1
White	
Hispanic or Latino	0.8
Not Hispanic or Latino	2.9
Black or African American	0.5
White	3.3

Total Population, 1998	Melanoma Cancer Deaths
	Rate per 100,000
Gender	1.8
Female	4.1
Male	
Education level (aged 25 to 64 years)	1.8
Less than high school	2.7
High school graduate	2.3
At least some college	

DNA = Data have not been analyzed. DNC = Data are not collected. DSU = Data are statistically unreliable. Note: Age adjusted to the year 2000 standard population.

Note: The table above may have continued from the previous page.

Melanoma, the deadliest of all skin cancers, was expected to account for an estimated 47,700 new cancer cases and 7,700 deaths in 2000. ${ }^{1}$ Trends show annual rises in the number of new cases of 4.3 percent (1973-90) and 2.5 percent (199095) and an annual rise in deaths of 1.7 percent (1973-90) followed by a decline of 0.4 percent in 1990-95. In whites, the population at highest risk, death rates are twice as high in males as in females. ${ }^{3}$

Although the cause of melanoma is unknown, risk factors include a personal or family history of melanoma, the presence of atypical moles, a large number of moles, intermittent sun exposure, a history of sunburns early in life, freckles, and sun-sensitive skin (as measured by poor tanning ability and light skin, eye, or hair color). ${ }^{34}$ Evidence is insufficient to determine whether early detection through routine skin examination (self or physician) decreases the number of deaths from melanoma, but reduced ultraviolet exposure is likely to have a beneficial impact on the risk of melanoma and other skin cancers (basal and squamous cell skin cancers). ${ }^{33}$

3-9. Increase the proportion of persons who use at least one of the following protective measures that may reduce the risk of skin cancer: avoid the sun between 10 a.m. and 4 p.m., wear sun-protective clothing when exposed to sunlight, use sunscreen with a sun-protective factor (SPF) of 15 or higher, and avoid artificial sources of ultraviolet light.

3-9a. (Developmental) Increase the proportion of adolescents in grades 9 through 12 who follow protective measures that may reduce the risk of skin cancer.

Potential data source: Youth Risk Behavior Surveillance System (YRBSS), CDC, NCCDPHP.

3-9b. Increase the proportion of adults aged 18 years and older who follow protective measures that may reduce the risk of skin cancer.

Target: 75 percent of adults aged 18 years and older use at least one of the identified protective measures.

Baseline: 47 percent of adults aged 18 years and older regularly used at least one protective measure in 1998 (age adjusted to the year 2000 standard population).

Target setting method: Better than the best.
Data source: National Health Interview Survey (NHIS), CDC, NCHS. Data on artificial ultraviolet light source are developmental.

Note: The table below may continue to the following page.

Persons Aged 18 Years and Older, 1998 (unless noted)	Type of Protective Measure			
	3-9b. Regularly Used at Least One Protective Measure	Limited Sun Exposure*	Wore Protective Clothing*	Used Sunscreen
	Percent			
TOTAL	47	28	24	31
Race and ethnicity				
American Indian or Alaska Native	48	28	26	31
Asian or Pacific Islander	44	34	25	22
Asian	44	34	25	23
Native Hawaiian and other Pacific Islander	50	39	31	17
Black or African American	44	37	23	12
White	49	26	24	34
Hispanic or Latino	41	30	24	22
Not Hispanic or Latino	48	27	24	32
Black or African American	44	37	24	12
White	49	26	24	35
Gender				
Female	54	33	25	39
Male	40	22	24	22

Persons Aged 18 Years and Older, 1998 (unless noted)	Type of Protective Measure			
	3-9b. Regularly Used at Least One Protective Measure	Limited Sun Exposure*	Wore Protective Clothing*	Used Sunscreen*
	Percent			
Education level (aged 25 years and older)				
Less than high school	41	29	24	17
High school graduate	45	28	24	27
Some college	54	30	29	39
Family income level				
Poor	43	33	25	19
Near poor	46	32	25	24
Middle/high income	51	27	26	35
Geographic location				
Urban	49	29	25	32
Rural	44	25	24	28
Disability status				
Persons with activity limitations	57 (1992)	38 (1992)	33 (1992)	27 (1992)
Persons without activity limitations	53 (1992)	31 (1992)	28 (1992)	29 (1992)

DNA = Data have not been analyzed. DNC = Data are not collected. DSU = Data are statistically unreliable.
Note: Age adjusted to the year 2000 standard population.
*Data for limited sun exposure, used sunscreen, and wore protective clothing are displayed to further characterize the issue.

Note: The table above may have continued from the previous page.

3-10. Increase the proportion of physicians and dentists who counsel their at-risk patients about tobacco use cessation, physical activity, and cancer screening.

Target and baseline:

Objective	Increase in Counseling About Tobacco Use Cessation, Physical Activity, and Cancer Screening	1988 Baseline (unless noted) Percent	2010 Target
3-10a.	Internists who counsel about smoking cessation	50	85
3-10b.	Family physicians who counsel about smoking cessation	43	85
3-10c.	Dentists who counsel about smoking cessation	59 (1997)	85
3-10d.	Primary care providers who counsel about blood stool tests	56	85
3-10e.	Primary care providers who counsel about proctoscopic examinations	23	85
3-10f.	Primary care providers who counsel about mammograms	37	85
3-10g.	Primary care providers who counsel about Pap tests	55	85
3-10h.	Primary care providers who counsel about physical activity	22 (1995)	85

Target setting method: Better than the best.
Data sources: Survey of Physicians' Attitudes and Practices in Early Cancer Detection, NIH, NCI; National Ambulatory Medical Care Survey (NAMCS), CDC, NCHS; Survey of Current Issues in Dentistry, American Dental Association.
Smoking cessation, ${ }^{7,21}$ adoption of healthy diets, ${ }^{\mathbf{8}}$ increased physical activity, ${ }^{9,10}$ and increased cancer screening ${ }^{\mathbf{1 1}, \mathbf{1 2 , 1 3}, 14,15,16,17,18,19}$ can all contribute to reduced numbers of cancer deaths. Experts recommend that providers screen patients for breast, cervical, and colorectal cancers and counsel patients to prevent or reduce tobacco use, promote physical activity, and promote a healthy diet. ${ }^{32}$ Provider counseling should be conducted in a linguistically and culturally appropriate manner.

3-11. Increase the proportion of women who receive a Pap test.

Target and baseline:

Objective Increase in Pap Testing

1998	2010
Baseline*	Target
Percent	

Percent
92
97 ever received a Pap test

90
3-11b. \quad Women aged 18 years and older who received a Pap test within the preceding 3 years
*Age adjusted to the year 2000 standard population. Includes women without a uterine cervix.
Target setting method: Better than the best.
Data source: National Health Interview Survey (NHIS), CDC, NCHS.
Note: The table below may continue to the following page.

Women Aged 18 Years and Older, 1998 (unless noted)	Pap Test	
	3-11a. Ever	3-11b. In Preceding 3 Years
TOTAL	92	79
Race and ethnicity		
American Indian or Alaska Native	88	72
Asian or Pacific Islander	78	67
Asian	78	67
Native Hawaiian and other Pacific Islander	80	66
Black or African American	94	83
White	93	79
Hispanic or Latino	85	74
Not Hispanic or Latino	93	80
Black or African American	94	83
White	94	80
Education level (aged 25 years and older)		
Less than high school	89	69
High school graduate	95	78
At least some college	97	83

Women Aged 18 Years and Older, 1998 (unless noted)	Pap Test	
	3-11a. Ever	3-11b. In Preceding 3 Years
	88	69
Poor	92	73
Near poor	94	83
Middle/high income		80
Geographic location	92	78
Urban	93	$74(1994)$
Rural		$78(1994)$
Disability status	$95(1994)$	
With activity limitations	$94(1994)$	
Without activity limitations		

DNA = Data have not been analyzed. DNC = Data are not collected. DSU = Data are statistically unreliable. Note: Age adjusted to the year 2000 standard population. Includes women without a uterine cervix.

3-12. Increase the proportion of adults who receive a colorectal cancer screening examination.

Target and baseline:
Objective

Increase in Colorectal Cancer Screening	1998 Baseline*	2010 Target
	Percent	

3-12a.
Adults aged 50 years and older who have received a fecal occult blood test (FOBT) within the pre35 50 ceding 2 years
3-12b.
Adults aged 50 years and older who have ever received a 37

50 sigmoidoscopy
*Age adjusted to the year 2000 standard population.
Target setting method: Better than the best.
Data source: National Health Interview Survey (NHIS), CDC, NCHS.

Adults Aged 50 Years and Older, 1998 (unless noted)	Colorectal Cancer Screening	
	3-12a. Fecal Occult Blood Test	3-12b. Sigmoidoscopy
	Percent	
TOTAL	35	37
Race and ethnicity		
American Indian or Alaska Native	24	29
Asian or Pacific Islander	31	34
Asian	33	35
Native Hawaiian and other Pacific Islander	DSU	DSU
Black or African American	30	32
White	35	38
Hispanic or Latino	23	27
Not Hispanic or Latino	35	38
Black or African American	30	32
White	36	39
Gender		
Female	34	33
Male	36	43
Education level		
Less than high school	26	29
High school graduate	34	35
At least some college	41	44
Family income level		
Poor	23	28
Near poor	31	31
Middle/high income	39	43
Geographic location		
Urban	36	38
Rural	31	36
Disability status		
Persons with activity limitations	32 (1992)	37 (1992)
Persons without activity limitations	28 (1992)	31 (1992)

DNA = Data have not been analyzed. DNC = Data are not collected. DSU = Data are statistically unreliable. Note: Age adjusted to the year 2000 standard population.

3-13. Increase the proportion of women aged 40 years and older who have received a mammogram within the preceding 2 years.

Target: 70 percent.
Baseline: 67 percent of women aged 40 years and older received a mammogram within the preceding 2 years in 1998 (age adjusted to the year 2000 standard population).
Target setting method: Better than the best.
Data source: National Health Interview Survey (NHIS), CDC, NCHS.
Note: The table below may continue to the following page.

Women Aged 40 Years and Older, 1998 (unless noted)	Mammogram	
	Percent	
TOTAL	67	
Race and ethnicity		
American Indian or Alaska Native	45	
Asian or Pacific Islander	61	
Asian	61	
Native Hawaiian and other Pacific Islander	DSU	
Black or African American	66	
White	67	
Hispanic or Latino	61	
Not Hispanic or Latino	68	
Black or African American	66	
White	68	
Education level	53	
Less than high school	66	
High school graduate	73	
At least some college		
Family income level	50	
Poor	54	
Near poor	73	
Middle/high income	68	
Geographic location	65	
Urban		
Rural		

Women Aged 40 Years and Older, 1998	Mammogram
(unless noted)	Percent
Disability status	
Persons with activity limitations	$55(1994)$
Persons without activity limitations	$61(1994)$

DNA = Data have not been analyzed. DNC = Data are not collected. DSU = Data are statistically unreliable. Note: Age adjusted to the year 2000 standard population.

3-14. Increase the number of States that have a statewide population-based cancer registry that captures case information on at least 95 percent of the expected number of reportable cancers.

Target: 45 States.
Baseline: 21 States had a statewide population-based cancer registry that captured case information on at least 95 percent of the expected number of reportable cancers in 1999.

Target setting method: 114 percent improvement.
Data source: National Program of Cancer Registries, CDC.
Cancer surveillance serves as the foundation for a national comprehensive strategy to reduce illness and death from cancer. Such surveillance is the indispensable tool that enables public health professionals at the national, State, and community levels to better understand and tackle the cancer burden while advancing clinical, epidemiologic, and health services research. In addition, surveillance data from cancer registries, such as cancer incidence and deaths, stage at diagnosis, treatment, and demographics of cancer patients, are essential for planning and evaluating cancer control programs, allocating preventive and treatment resources, targeting and conducting research, and responding to concerns from citizens about the occurrence of cancer in their communities.

Population-based State cancer registries that provide accurate, complete, and timely data are a critical component of the public health infrastructure in the United States. The National Program of Cancer Registries (NPCR) provides funds to 45 States to assist in planning or enhancing cancer registries; develop model legislation and regulations for programs to increase the viability of registry operations; set standards for data quality, completeness, and timeliness; provide training for registry personnel; and help establish computerized reporting and data processing systems. The National Cancer Institute's SEER Program covers the remaining 5 States.

3-15. Increase the proportion of cancer survivors who are living 5 years or longer after diagnosis.

Target: 70 percent.
Baseline: 59 percent of persons with invasive cancer of any type were living 5 years or longer after diagnosis in 1989-95.
Target setting method: 19 percent improvement.
Data source: Surveillance, Epidemiology, and End Results (SEER) Program, $\mathrm{NIH}, \mathrm{NCI}$.

Persons With Invasive Cancer of Any Type, 1989-95	5 Years or Longer Survival
	Percent
TOTAL	59
Race and ethnicity	DNA
American Indian or Alaska Native	DNA
Asian or Pacific Islander	DNA
Asian	DNA
Native Hawaiian and other Pacific Islander	48
Black or African American	61
White	DNA
Hispanic or Latino	DNA
Not Hispanic or Latino	DNA
Black or African American	DNA
White	
Gender	61
Female	58
Male	
Education level (aged 25 to 64 years)	DNA
Less than high school	DNA
High school graduate	DNA
At least some college	

DNA = Data have not been analyzed. DNC = Data are not collected. DSU = Data are statistically unreliable.

Related Objectives From Other Focus Areas

19. Nutrition and Overweight

19-5. Fruit intake
19-6. Vegetable intake
19-8. Saturated fat intake
19-9. Total fat intake
21. Oral Health

21-6. Early detection of oral and pharyngeal cancers
21-7. Annual examinations for oral and pharyngeal cancers
27. Tobacco Use

27-1. Adult tobacco use
27-2. Adolescent tobacco use
27-5. Smoking cessation by adults
27-7. Smoking cessation by adolescents
27-8. Insurance coverage of cessation treatment

Terminology

(A listing of abbreviations and acronyms used in this publication appears in Appendix H.)
Cancer: A term for diseases in which abnormal cells divide without control. Cancer cells can invade nearby tissue and can spread through the bloodstream and lymphatic system to other parts of the body.
Cancer screening: Checking for changes in tissue, cells, or fluids that may indicate the possibility of cancer when there are no symptoms.
Carcinoma: Cancer that begins in the epithelial tissue that lines or covers an organ.
Clinical trials: Research studies that evaluate the effectiveness of new treatment or disease prevention methods on patients.
Colonoscopy: An examination of the rectum and entire colon using a lighted instrument called a colonoscope. A colonoscope allows the physician to remove polyps or other abnormal tissue for examination under a microscope.

Digital rectal exam (DRE): A test in which the health care provider inserts a lubricated, gloved finger into the rectum to feel for abnormal areas.
Fecal occult blood test (FOBT): A test to check for small amounts of hidden blood in stool.
Grade: A system for classifying cancer cells in terms of how abnormal they appear under a microscope. The grading system provides information about the probable growth rate of the tumor and its tendency to spread. The systems used to grade tumors vary with each type of cancer. Grading plays a role in treatment decisions.
Invasive cervical cancer: Cancer that has spread from the surface of the cervix to tissue deeper in the cervix or to other parts of the body.
Malignant: Cancerous.
Mammogram: An x ray of the breast.
Melanoma: Cancer of the cells that produce pigment in the skin.

Pap (Papanicolaou) test: Microscopic examination of cells collected from the cervix. The Pap test is used to detect cancer, changes in the cervix that may lead to cancer, and noncancerous conditions, such as infection or inflammation.

PSA (prostate-specific antigen) test: A test that measures the level of an enzyme (PSA) in the blood that increases due to diseases of the prostate gland, including prostate cancer.

Risk factor: Something that increases a person's chance of developing a disease.
Sigmoidoscopy: A procedure in which the physician or health care provider looks inside the rectum and the lower part of the colon (sigmoid colon) through a flexible lighted tube. During the procedure, the physician or health care provider may collect samples of tissues or cells for closer examination.

Squamous cells: Flat cells that look like fish scales. These cells are found in the tissue that forms the surface of the skin, the lining of the hollow organs of the body, and the passages of the respiratory and digestive tracts.
Stage: The size and extent of a cancer, including whether the disease has spread from the original site into surrounding tissue and other parts of the body.

References

${ }^{1}$ Landis, S.H.; Murray, T.; Bolden, S.; et al. Cancer statistics, 2000. CA: A Cancer Journal for Clinicians 50(1):2398-2424, 2000.
${ }^{2}$ Ries, L.A.G.; Kosary, C.L.; Hankey, B.F.; et al. SEER Cancer Statistics Review, 19731996. Bethesda, MD: National Cancer Institute, 1999.
${ }^{3}$ Wingo, P.A.; Ries, L.A.G.; Giovino, G.A.; et al. Annual report to the nation on the status of cancer, 1973-1996, with a special section on lung cancer and tobacco smoking. Journal of the National Cancer Institute 91(8):675-690, 1999.
${ }^{4}$ Wingo, P.A.; Ries, L.A.; Rosenberg, H.M.; et al. Cancer incidence and mortality 19731995: A report card for the U.S. Cancer 82(6):1197-1207, 1998.
${ }^{5}$ Brown, M.L.; Hodgson, T.A.; and Rice, D.P. Economic impact of cancer in the United States. In: Schottenfeld, D., and Fraumeni, Jr., J.F.; eds. Cancer Epidemiology and Prevention. 2nd ed. New York, NY: Oxford University Press, 1996.
${ }^{6}$ Solarz, A., ed. Lesbian Health: Current Assessment and Directions for the Future 1999. Washington, DC: National Academy Press, 1999.
${ }^{7}$ U.S. Department of Health and Human Services (HHS). The Health Benefits of Smoking Cessation. DHHS Publication No. CDC 90-8416. Atlanta, GA: Public Health Service, Centers for Disease Control, Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, 1990.
${ }^{8}$ Willet, W. Diet and nutrition. In: Schottenfeld, D., and Fraumeni, Jr., J.F.; eds. Cancer Epidemiology and Prevention. 2nd ed. New York, NY: Oxford University Press, 1996, 438461.
${ }^{9}$ Greenwald, P.; Kramer, B.; and Weed, D.L.; eds. Cancer Prevention and Control. New York, NY: Marcel Dekker, 1995, 303-327.
${ }^{10}$ HHS. Physical Activity and Health: A Report of the Surgeon General. Atlanta, GA: Centers for Disease Control and Prevention (CDC), 1996.
${ }^{11}$ Fletcher, S.W.; Black, W.; Harris, R.; et al. Report of the International Workshop on Screening for Breast Cancer. Journal of the National Cancer Institute 85(20):1644-1656, 1993.
${ }^{12}$ Kronborg, O.; Fenger, C.; Olsen, J.; et al. Randomized study of screening for colorectal cancer with faecal-occult-blood test. Lancet 348(9640):1467-1471, 1996.
${ }^{13}$ Hardcastle, J.D.; Chamberlain, J.O.; Robinson, M.H.E.; et al. Randomized controlled trial of faecal-occult-blood screening for colorectal cancer. Lancet 348(9040):1472-1477, 1996.
${ }^{14}$ Mandel, J.S. Reducing mortality from colorectal cancer by screening for fecal occult blood. Journal of the National Cancer Institute 91(5): 434-437, 1999.
${ }^{15}$ Mandel, J.S.; Bond, J.H.; Church, T.R.; et al. Reducing mortality from colorectal cancer by screening for fecal occult blood. New England Journal of Medicine 328(19):1365-1371, 1993.
${ }^{16}$ Winawer, S.; Fletcher, R.; Miller, L.; et al. Colorectal cancer screening: Clinical guidelines and rationale. Gerontology 112:594-642, 1997.
${ }^{17}$ Selby, J.V.; Freidman, G.D.; Quesenberry, Jr., C.P.; et al. A case-control study of screening sigmoidoscopy and mortality from colorectal cancer. New England Journal of Medicine 326(10):653-657, 1992.
${ }^{18}$ Muller, A.D., and Sonnenberg, A. Protection by endoscopy against death from colorectal cancer-A case-control study among veterans. Archives of Internal Medicine 155:1741-1748, 1995.
${ }^{19}$ Newcomb, P.A.; Norfleet, R.G.; Storer, B.E.; et al. Screening sigmoidoscopy and colorectal cancer mortality. Journal of the National Cancer Institute 84(20):1572-1575, 1992.
20
Alexander, F.E.; Edinburgh, G.L.; Andriole, G.L.; et al. Rationale for randomized trials of prostate cancer screening. European Journal of Cancer 35(2):262-271, 1999.
${ }^{21}$ CDC. Cigarette smoking-attributable mortality and years of potential life lost-United States, 1990. Morbidity and Mortality Weekly Report 42(33):645-649, 1993.

22
Greenwald, P.; Kramer, B.S.; and Weed, D.L.; eds. Cancer Prevention and Control. New York, NY: Marcel Dekker, 1995, 568-569.
${ }^{23}$ Doll, R., and Peto, R. The Causes of Cancer. Quantitative Estimates of Avoidable Risks of Cancer in the United States Today. New York, NY: Oxford University Press, 1981.
${ }^{24}$ Kerlikowske, K.; Grady, D.; Rubin, S.M.; et al. Efficacy of screening mammography. A meta-analysis. Journal of the American Medical Association 273:149-154, 1995.
${ }^{25}$ Henderson, B.E.; Pike, M.C.; Bernstein, L.; et al. Breast cancer. In: Schottenfeld, D., and Fraumeni, Jr., J.F., eds. Cancer Epidemiology and Prevention. 2nd ed. New York, NY: Oxford University Press, 1996, 1022-1039.
${ }^{26}$ Harvard report on cancer prevention. Vol. 1. Causes of human cancer. Cancer Causes \& Control 7(Suppl. 1):53-59, 1996.
${ }^{27}$ National Institutes of Health. Cervical cancer. NIH Consensus Statement 14(1):1-38, 1996.
${ }^{28}$ Schiffman, M.H.; Brinton, L.A.; Devesa, S.S.; et al. Cervical cancer. In: Schottenfeld, D., and Fraumeni, Jr., J.F., eds. Cancer Epidemiology and Prevention. 2nd ed. New York, NY: Oxford University Press, 1996, 1090-1116.
${ }^{29}$ Schottenfeld, D., and Winawer, S.J. Cancers of the large intestine. In: Schottenfeld, D., and Fraumeni, Jr., J.F., eds. Cancer Epidemiology and Prevention. 2nd ed. New York, NY: Oxford University Press, 1996, 813-840.
${ }^{30}$ Silverman, S. Oral Cancer. 4th ed. Hamilton, Ontario, Canada: American Cancer Society, B.C. Decker, Inc., 1998.
${ }^{31}$ Chodak, G.W.; Thisted, R.A.; Gerber, G.S.; et al. Results of conservative management of clinically localized prostate cancer. New England Journal of Medicine 330(4):242-248, 1994.
${ }^{32}$ Gerber, G.S.; Thisted, R.A.; Scardino, P.T.; et al. Results of radical prostatectomy in men with clinically localized prostate cancer: Multi-institutional pooled analysis. Journal of the American Medical Association 276(8):615-619, 1996.
${ }^{33}$ U.S. Preventive Services Task Force. Guide to Clinical Preventive Services. 2nd ed. Washington, DC: HHS, 1996.
${ }^{34}$ Armstrong, B.K., and English, D.R. Cutaneous malignant melanoma. In: Schottenfeld, D., and Fraumeni, Jr., J.F., eds. Cancer Epidemiology and Prevention. 2nd ed. New York, NY: Oxford University Press, 1996, 1282-1312.

