What Works Best for Whom:
 Effects of Welfare and Work Policies by Subgroup

Charles Michalopoulos
MDRC
March 2004

Contents

List of Tables and Figures iii
Findings in Brief vii
Chapter

1. Introduction 1
Characteristics of the Programs 2
The Program Models 3
Data Sources 8
Research Questions 9
Summary of Findings 10
2. Impacts on Earnings, Welfare Benefits, and Income 16
Summary of Findings 16
Pooled Impacts by Program Model 17
Impacts on Earnings 17
Impacts on Cash Assistance Payments 19
Impacts on Income 21
Impacts for Individual Programs 21
Most Disadvantaged 22
Moderately Disadvantaged 22
Least Disadvantaged 23
Explaining Differences in Impacts Across Programs 23
Factors Examined in the Analysis 24
Results 25
Use of Performance Indicators 29
Impacts for Other Subgroups 30
3. Impacts on Stable Employment 47
Summary of Findings 48
Pooled Impacts by Program Model 49
Impacts for Individual Programs 50
Explaining Differences in Impacts Across Programs 51
Use of Performance Indicators 52
Impacts for Other Subgroups 53
4. Impacts on Stable Welfare Exits 68
Summary of Findings 69
Pooled Impacts by Program Model 69
Off welfare in 9 of 12 quarters 70
Off welfare in year 1 and 6 of 8 quarters in years 2 and 3 71
Off welfare for four or more consecutive quarters 71
Impacts for Individual Programs 71
Explaining Differences in Impacts Across Programs 73
Use of Performance Indicators 74
Impacts for Other Subgroups 75
Appendices
Appendix A: Additional Impacts on Earnings, Welfare Benefits, and Income 90
Appendix B: Additional Impacts on Stable Employment 137
Appendix C: Additional Impacts on Stable Welfare Exits 181
References 225

List of Tables and Figures

Table
1.1 Policy Components of the Programs 12
1.2 Summary of Self-Sufficiency Approaches of 26 Welfare and Work Programs 13
1.3 Impacts on Participation in Welfare-to-Work Activities 14
1.4 Impacts on Participation in Welfare-to-Work Activities, by Need for Basic Education 15
2.1 Impacts on Earnings, Welfare Payments, and Income by Level of Disadvantage by Program Model 35
2.2 Estimated Determinants of Impacts on Earnings Over 3 Years by Level of Disadvantage 37
2.3 Estimated Determinants of Impacts on Welfare Payments Over 3 Years by Level of Disadvantage 38
2.4 Estimated Determinants of Impacts on Income Over 3 Years by Level of Disadvantage 39
2.5 Impacts on Earnings, Welfare Payments, and Income by Prior-Year Earnings by Program Model 40
2.6 Impacts on Earnings, Welfare Payments, and Income by Welfare Status by Program Model 42
2.7 Impacts on Earnings, Welfare Payments, and Income by High School Credential by Program Model 44
2.8 Impacts on Earnings, Welfare Payments, and Income by Number of Children by Program Model 45
3.1 Impacts on Stable Employment by Level of Disadvantage by Program Model 59
3.2 Estimated Determinants of Impacts on Whether Employed in 9 of 12 Quarters by Level of Disadvantage 61
3.3 Impacts on Stable Employment by Prior-Year Earnings by Program Model 62
3.4 Impacts on Stable Employment by Welfare Status by Program Model 63
3.5 Impacts on Stable Employment by High School Credential by Program Model 64
3.6 Impacts on Stable Employment by Number of Children by Program Model 65
3.7 Impacts on Stable Employment by Risk of Depression by Program 66
4.1 Impacts on Stable Welfare Exits by Level of Disadvantage by Program Model 82
4.2 Estimated Determinants of Impacts on Percentage Off Welfare for Four Consecutive Quarters by Level of Disadvantage 83
4.3 Impacts on Stable Welfare Exits by Prior-Year Earnings by Program Model 84
4.4 Impacts on Stable Welfare Exits by Welfare Status by Program Model 85
4.5 Impacts on Stable Welfare Exits by High School Credential by Program Model 86
4.6 Impacts on Stable Welfare Exits by Number of Children by Program Model 87
4.7 Impacts on Stable Welfare Exits by Risk of Depression by Program 88
A. 1 Impacts on Average Total Earnings, Welfare Payments, and Income per Year Pooled Across Job-Search-First Welfare-to-Work Programs by Selected Characteristics at the Time of Random Assignment 91
A. 2 Impacts on Average Total Earnings, Welfare Payments, and Income per Year Pooled Across Job-Search-First Welfare-to-Work Programs with a POS, by Selected Characteristics at the Time of Random Assignment 93
A. 3 Impacts on Average Total Earnings, Welfare Payments, and Income per Year Pooled Across Employment-Focused Mixed-Activity Welfare-to-Work Programs by Selected Characteristics at the Time of Random Assignment 95
A. 4 Impacts on Average Total Earnings, Welfare Payments, and Income per Year Pooled Across Employment-Focused Mixed-Activity Welfare-to-Work Programs with a POS, by Selected Characteristics at the Time of Random Assignment 97
A. 5 Impacts on Average Total Earnings, Welfare Payments, and Income per Year Pooled Across Education-Focused Mixed-Activity Welfare-to-Work Programs by Selected Characteristics at the Time of Random Assignment 99
A. 6 Impacts on Average Total Earnings, Welfare Payments, and Income per Year Pooled Across Education-First Welfare-to-Work Programs by Selected Characteristics at the Time of Random Assignment 101
A. 7 Impacts on Average Total Earnings, Welfare Payments, and Income per Year Pooled Across Education-First Welfare-to-Work Programs with a POS, by Selected Characteristics at the Time of Random Assignment 103
A. 8 Impacts on Average Total Earnings, Welfare Payments, and Income per Year Pooled Across Programs with Earnings Supplements by Selected Characteristics at the Time of Random Assignment 105
A. 9 Impacts on Average Total Earnings, Welfare Payments, and Income per Year Pooled Across Programs with Earnings Supplements with a POS, by Selected Characteristics at the Time of Random Assignment 107
A. 10 Impacts on Earnings, Welfare Payments, and Income by Level of Disadvantage by Program 109
A. 11 Impacts on Earnings, Welfare Payments, and Income by Prior-Year Earnings by Program 114
A. 12 Impacts on Earnings, Welfare Payments, and Income by High School Credential by Program 119
A. 13 Impacts on Earnings, Welfare Payments, and Income by Welfare Status by Program 124
A. 14 Impacts on Earnings, Welfare Payments, and Income by Race and Ethnicity by Program 129
A. 15 Impacts on Earnings, Welfare Payments, and Income by Risk of Depression by Program 135
B. 1 Impacts on Stable Employment Pooled Across Job-Search-First Welfare-to-Work Programs by Selected Characteristics at the Time of Random Assignment 138
B. 2 Impacts on Stable Employment Pooled Across Job-Search-First Welfare-to-Work Programs with a POS, by Selected Characteristics at the Time of Random Assignment 140
B. 3 Impacts on Stable Employment Pooled Across Employment-Focused Mixed Activity Welfare-to-Work Programs by Selected Characteristics at the Time of Random Assignment 142
B. 4 Impacts on Stable Employment

Pooled Across Employment-Focused Mixed Activity Welfare-to-Work Programs with a POS, by Selected Characteristics at the Time of Random Assignment

B. 5	Impacts on Stable Employment	
Pooled Across Education-Focused Mixed Activity Welfare-to-Work Programs		
by Selected Characteristics at the Time of Random Assignment	146	

B. 6 Impacts on Stable Employment

Pooled Across Education-First Welfare-to-Work Programs
by Selected Characteristics at the Time of Random Assignment
B. 7 Impacts on Stable Employment $\begin{aligned} & \text { Pooled Across Education-First Welfare-to-Work Programs with a POS, } \\ & \text { by Selected Characteristics at the Time of Random Assignment }\end{aligned}$
B. 8 Impacts on Stable Employment Pooled Across Programs with Earnings Supplements by Selected Characteristics at the Time of Random Assignment152
B. 9 Impacts on Stable Employment Pooled Across Programs with Earnings Supplements with a POS, by Selected Characteristics at the Time of Random Assignment 154
B. 10 Impacts on Stable Employment by Level of Disadvantage by Program 156
B. 11 Impacts on Stable Employment by Prior-Year Earnings by Program 161
B. 12 Impacts on Stable Employment by High School Credential by Program 166
B. 13 Impacts on Stable Employment by Welfare Status Prior to Random Assignment by Program 170
B. 14 Impacts on Stable Employment by Race and Ethnicity by Program 175
C. 1 Impacts on Stable Welfare Exits Pooled Across Job-Search-First Welfare-to-Work Programs by Selected Characteristics at the Time of Random Assignment 182
C. 2 Impacts on Stable Welfare Exits Pooled Across Job-Search-First Welfare-to-Work Programs with a POS, by Selected Characteristics at the Time of Random Assignment 184
C. 3 Impacts on Stable Welfare Exits
Pooled Across Employment-Focused Mixed Activity Welfare-to-Work Programs by Selected Characteristics at the Time of Random Assignment 186
C. 4 Impacts on Stable Welfare Exits Pooled Across Employment-Focused Mixed Activity Welfare-to-Work Programs with a POS, by Selected Characteristics at the Time of Random Assignment 188
C. 5 Impacts on Stable Welfare Exits
Pooled Across Education-Focused Mixed Activity Welfare-to-Work Programs by Selected Characteristics at the Time of Random Assignment 190
C. 6 Impacts on Stable Welfare Exits Pooled Across Education-First Welfare-to-Work Programs by Selected Characteristics at the Time of Random Assignment 192
C. 7 Impacts on Stable Welfare Exits Pooled Across Education-First Welfare-to-Work Programs with a POS, by Selected Characteristics at the Time of Random Assignment 194
C. 8 Impacts on Stable Welfare Exits Pooled Across Programs with Earnings Supplements
by Selected Characteristics at the Time of Random Assignment 196
C. 9 Impacts on Stable Welfare Exits
Pooled Across Programs with Earnings Supplements with a POS, by Selected Characteristics at the Time of Random Assignment 198
C. 10 Impacts on Stable Welfare Exits by Level of Disadvantage by Program 200
C. 11 Impacts on Stable Welfare Exits by Prior-Year Earnings by Program 205
C. 12 Impacts on Stable Welfare Exits by High School Credential by Program 210
C. 13 Impacts on Stable Welfare Exits by Welfare Status Prior to Random Assignment by Program 214
C. 14 Impacts on Stable Welfare Exits by Race and Ethnicity by Program 219
Figure
2.1 Impacts on Annual Earnings Over Three Years for Most Disadvantaged Sample Members 32
2.2 Impacts on Annual Earnings Over Three Years for Moderately Disadvantaged Sample Members 32
2.3 Impacts on Annual Earnings Over Three Years for Least Disadvantaged Sample Members 33
2.4 Program Group Earnings Compared to Earnings Impact for Most Disadvantaged Sample Members 34
2.5 Program Group Earnings Compared to Earnings Impact for Least Disadvantaged Sample Members 34
3.1 Impacts on Percentage Employed in 9 of 12 Quarters for Most Disadvantaged Sample Members 56
3.2 Impacts on Percentage Employed in 9 of 12 Quarters for Moderately Disadvantaged Sample Members 56
3.3 Impacts on Percentage Employed in 9 of 12 Quarters for Least Disadvantaged Sample Members 57
3.4 Comparison of Program Group Levels to Impacts Stable Employment for Most Disadvantaged Sample Members 58
3.5 Comparison of Program Group Levels to Impacts Stable Employment for Least Disadvantaged Sample Members 58
4.1 Impacts on Stable Welfare Exits for Most Disadvantaged Sample Members 78
4.2 Impacts on Stable Welfare Exits for Moderately Disadvantaged Sample Members 78
4.3 Impacts on Stable Welfare Exits for Least Disadvantaged Sample Members 79
4.4 Comparison of Program Group Levels to Impact Stable Welfare Exits for Most Disadvantaged Sample Members 80
4.5 Comparison of Program Group Levels to Impact Stable Welfare Exits for Least Disadvantaged Sample Members 80
4.6 Comparison of Program Group Levels to Impact Stable Welfare Exits for Most Disadvantaged Sample Members in California 81
4.7 Comparison of Program Group Levels to Impact Stable Welfare Exits for Least Disadvantaged Sample Members in California 81

Findings in Brief

This report examines the effects of welfare and work policies on earnings, welfare benefits, income, stable employment, and stable welfare exits across a range of subgroups using information from random assignment studies of 26 welfare and work policies studied by MDRC. No two of the programs are alike, but they used one of five broad approaches: (1) job-searchfirst programs required most welfare recipients to initially look for work; (2) education-first programs initially required most welfare recipients to enroll in education and training; (3) employ-ment-focused mixed-activity programs stressed the importance of finding work but required more job-ready welfare recipients to look for work while allowing others to enroll in education or training programs; (4) education-focused mixed-activity programs likewise used a mix of initial activities but did not stress employment; and (5) earnings supplement programs provided extra financial payments to welfare recipients who went to work.

Among the key findings of the report are the following.
X Job search appears to be important for increasing employment and earnings. Earnings and employment generally increased the most for subgroups and program models where job search was stressed more than education or that used earnings supplements to encourage employment. Despite the apparent importance of job search, education still appears to have a role to play. The most effective programs across a range of subgroups were employmentfocused mixed-activity programs, which allowed some more disadvantaged recipients to enroll initially in education and training but stressed the importance of employment to all participants.
x Only earnings supplement programs consistently increased income. Earnings supplement programs increased income across a range of subgroups while other approaches left income largely unchanged across a range of subgroups. All of the earnings supplement programs except one used enhanced earnings disregards, which allow welfare recipients to remain on welfare with more earnings. As a result, they encouraged people to combine work and welfare rather than to leave welfare for work.
x In general, effects of the different types of programs on stable welfare exits were similar across subgroups. For virtually every subgroup that was examined and for each of the five program models, impacts on stable welfare exits were not significantly different across subgroups. In particular, several programs that extensively used partial family sanctions to enforce mandates had much larger effects on stable welfare exits than on stable employment.
x Performance indicators may be more indicative of impacts for more disadvantaged groups than for less disadvantaged groups. For the most disadvantaged sample members, programs with larger impacts also tended to be the ones with higher outcome levels for program group members. This was not the case for the least disadvantaged sample members. This suggests that the use of performance indicators such as earnings levels for program participants might be a more accurate measure of the effect of a program for more disadvantaged groups.

Chapter 1

Introduction

Welfare caseloads have declined by more than half since 1993, and most welfare recipients who left welfare did so to go to work. Nevertheless, only the most optimistic observers believe the question of how to encourage welfare recipients to work has been solved. Even in the unexpectedly strong economy of the 1990s, many welfare recipients did not find work, and there consequently remain many hard-to-employ recipients on the rolls. In this era of time-limited welfare benefits, helping families achieve stable employment so they can remain off the rolls is critical. Finally, federal TANF rules might be reauthorized in 2004, and early indications are the new rules will require more welfare recipients to work and require them to work more hours per week. In light of these facts, states should be wondering how best to help welfare recipients find work, stay at work, and stay off cash assistance, and whether the answer to that question is different for different groups of welfare recipients.

This report examines the question of the best approaches to helping different welfare recipients work, leave welfare, and increase their income by studying 26 recent welfare and work policies. The programs share two distinguishing features. They all implemented a policy that was designed to increase work among welfare recipients, and they were all studied by MDRC using a rigorous experimental research design in which individuals were randomly assigned either to a program group, which took part in the new welfare and work policy, or to a control group, which did not have access to the new policy. The 26 programs cover a wide range of approaches. Some were focused more on education to help people build skills before looking for work, while some required welfare recipients to look for work. Some supplemented earnings to provide additional incentives to work and to help ensure that families benefited financially from work. Two were versions of TANF programs that included time limits on how long families could receive welfare.

This report tries to answer the question of "what works best for whom" among these welfare-to-work programs. Implicit in this question are three issues. For which identifiable subgroups of individuals did the programs have the largest and smallest impacts? Did successful programs affect only earnings and welfare benefits, or did they also increase income from earnings and public assistance? Which programs or program models had the most promising effects either for a broad range of subgroups or for some particularly important groups?

Welfare-to-work programs have existed for several decades, and earlier studies tried to determine who does and does not benefit from such programs. For Work Incentive Programs (WIN) implemented during the 1980s, Gueron and Pauly (1991) and Friedlander and Burtless (1995) found that the programs generally increased employment and earnings and were costeffective. In comparing impacts for various groups in five of these studies, Friedlander (1988) found that earnings gains were concentrated among a middle group of welfare applicants who had spent some but not a great deal of prior time on welfare. In contrast, welfare savings came primarily from long-term recipients, especially those without a high school diploma or with little recent work experience. Partly in response to these findings, the Family Support Act of 1988 (FSA) created the Job Opportunities and Basic Skills Training (JOBS) program, which required
states to target resources toward welfare recipients who were the most likely to have a very long stay on welfare and the least likely to work and to offer services that were thought most likely to benefit this hard-to-serve group. Studying some of these programs, Michalopoulos and Schwartz (2001) found that programs meeting the requirements of the FSA helped more disadvantaged groups as much as or more than less disadvantaged groups.

The remainder of the report is organized as follows. This chapter describes the 26 programs being studied with an eye toward trying to understand similarities and differences that may affect subgroup impacts. Chapter 2 describes the effects of the programs on earnings, welfare benefits, and income by subgroup. Chapter 3 describes the effects of the programs on employment stability by subgroup. Chapter 4 describes the effects of the programs on stable welfare exits by subgroup. In each chapter, the focus is on three subgroups defined according to three barriers to work. The most disadvantaged group consists of long-term welfare recipients who have not graduated from high school and who did not work in the year prior to random assignment. The least disadvantaged group consists of people who faced none of these challenges, while the moderately disadvantaged are those with one or two of these challenges.

CHARACTERISTICS OF THE PROGRAMS

This report presents results for single-parent families from 26 different welfare-to-work programs operated in ten states, two Canadian provinces, and more than a dozen counties over a period of more than 10 years. This section provides some background information on the programs, including the program models and the characteristics of the sample members and the sites. The programs include: ${ }^{1}$
x San Diego's Saturation Work Initiative Model (SWIM)
x Six programs from California's Greater Avenues for Independence (GAIN)
x Eleven programs from the National Evaluation of Welfare-to-Work Strategies (NEWWS)
x Two versions of Minnesota's Family Investment Program (MFIP)
x Two versions of Vermont's Welfare Restructuring Program (WRP)
x Two versions of the Canadian Self-Sufficiency Project (SSP)
x Florida's Family Transition Program (FTP)
x Connecticut's Jobs First

[^0]
The Program Models

The Saturation Work Initiative Model (SWIM) ${ }^{2}$ Operated between July 1985 and September 1987, the Saturation Work Initiative Model (SWIM) was an employment-focused program that was mandatory for most single-parent welfare-recipient households with no child under age 6 . To provide help in finding employment, SWIM started most participants off with a two-week job search workshop. Participants who did not find a job after job search were referred to the Employment Work Experience Program (EWEP), which required them to work 20 to 30 hours per week for 13 weeks in public or nonprofit agencies in exchange for their welfare benefits. Those who were still not working after EWEP were referred to community education and training programs.

Greater Avenues for Independence (GAIN) ${ }^{3}$ Implemented in the mid 1980s, Greater Avenues for Independence (GAIN) was California's welfare-to-work program. In six of the state's 58 counties, the effects of GAIN were studied in a random assignment evaluation begun in early $1988 .{ }^{4}$ Participants in the welfare-to-work program were placed in one of two tracks after an initial assessment. Individuals who had neither a high school diploma nor a General Educational Development (GED) certificate, who obtained low scores on either a basic reading or math test, or who were not proficient in English were considered "in need of basic education." Most entered a program of basic education, GED preparation, or English as a Second Language (ESL). Most other participants were required to enroll in a job search activity, primarily job club or supervised job search. If a participant in either track completed her first activity without finding a job, she may have been referred to on-the-job training, work experience, supported work, or other education and training. Although the six GAIN counties that were studied shared a uniform program model, the characteristics of the counties and their implementation of the model differed somewhat. In particular, the program operated in Riverside was much more employment focused than the others. Nearly all staff in Riverside emphasized quick employment, while no more than half in any other county did so.

The National Evaluation of Welfare-to-Work Strategies (NEWWS) The National Evaluation of Welfare-to-Work Strategies (NEWWS) was a study of 11 welfare-to-work programs created or adapted to fit the provisions of JOBS. ${ }^{5}$ The JOBS program was designed to help states reach the hard-to-serve who sometimes fell through the cracks in earlier programs. To this end, states were required to spend at least 55 percent of JOBS resources on potential long-term recipients or among the more disadvantaged groups, including those who had received welfare in 36 of the prior 60 months, those who were custodial parents under age 24 without a high school diploma or GED, those who had little work experience, and those who were about to lose eligibility for welfare because their youngest child was age 16 or over. Under NEWWS, 11 welfare-to-work programs were studied in seven sites: Atlanta, Georgia; Columbus, Ohio; Detroit and

[^1]Grand Rapids, Michigan; Oklahoma City, Oklahoma; Portland, Oregon; and Riverside, California. ${ }^{6}$ The programs fell into three broad categories. Three sites - Atlanta, Grand Rapids, and Riverside - implemented "labor force attachment" (LFA) programs that required most participants to begin with job search activities. Seven programs - "human capital development" (HCD) programs in Atlanta, Grand Rapids, and Riverside; ${ }^{7}$ two programs in Columbus that tested different forms of case management; ${ }^{8}$ and programs in Detroit and Oklahoma City - operated education-first programs that required most welfare recipients to enroll in education or training. The eleventh program - in Portland -emphasized to clients that the goal of the program was to get a job but encouraged participants to wait until they found a "good" job and encouraged those in need of more skills to enroll in education or training initially and look for a job later.

The Minnesota Family Investment Program (MFIP) ${ }^{9}$ The Minnesota Family Investment Program (MFIP) was begun in 1994 to test whether financial incentives would encourage welfare recipients to work. The financial incentive in MFIP was an enhanced earnings disregard that allowed working welfare recipients to continue receiving benefits until they earned 140 percent of the federal poverty threshold. Put another way, a mother of two who worked 20 hours per week and earned $\$ 6$ per hour would receive almost $\$ 250$ more in income under MFIP than under the usual welfare system (Figure 1.1 in Miller et al., 1997). In addition, MFIP required welfare recipients to participate in its welfare-to-work program after they had received welfare in 24 months over a three-year period. MFIP's welfare-to-work program was an employment-focused program that assigned more job-ready individuals to jobs search but allowed others to enroll initially in education programs. This report describes results for two versions of MFIP, an incen-tives-only program that offered program group members the enhanced earnings disregard, and a full-services program that not only offered the enhanced disregard but also required long-term recipients to participate in the welfare-to-work program.

The Family Transition Program (FTP) Florida's Family Transition Program (FTP) was a pilot version of a time-limited welfare program studied in Escambia County (Pensacola) beginning in 1994). ${ }^{10}$ FTP required participants to engage in employment and training services, included a financial incentive that made work pay more than it did under the usual welfare rules, and imposed a time limit on receipt of welfare benefits. About 40 percent of the program group was considered more disadvantaged and allowed to receive welfare for 36 months in a 72-month

[^2]period before reaching the program's time limit. ${ }^{11}$ The remaining 60 percent of the program group was allowed to receive welfare for 24 months in a 60 -month period before reaching the time limit. Unlike most of the other programs in this report the control group in FTP was also required to participate in services through Project Independence, Florida's JOBS program. Although both the control and program groups were required to participate in employment and training services, the mandate was different for the two groups in several ways. First, the wel-fare-to-work program for the control group was not fully funded during the period when FTP was studied. Second, control group members with a child under age 3 were exempt from the participation mandate. Third, mandates were much more strictly enforced for the program group than for the control group. Fourth, more participants in the program group were allowed to participate in education and skills development because they were not considered job ready.

Connecticut Jobs First. ${ }^{12}$ Jobs First began operating in January 1996 as Connecticut's TANF program. With a 21 -month time limit, Jobs First had the shortest time limit in the country. In practice, however, most families that reached the time limit while the program was being evaluated were granted an extension if they had earnings that were less than their welfare grant plus $\$ 90$. In addition to the time limit, the program required welfare recipients to enroll in employment and training services that included both job search and basic education. Welfare recipients were also encouraged to work through the program's generous financial incentive, which allowed them to keep their entire welfare check and food stamp benefit as long as they were earning less than the federal poverty threshold.

The Vermont Welfare Restructuring Project (WRP) ${ }^{13}$ One of the earliest statewide welfare reform programs initiated under waivers of federal welfare rules prior to 1996, WRP used a number of policies to try to increase self-sufficiency by enabling families to supplement or supplant public assistance with earnings. To provide a financial incentive to work, WRP had an earned income disregard that allowed parents to keep more earnings after an initial period of work. To ease the transition away from welfare, WRP extended Medicaid and child care subsidies. To allow parents a means of finding and keeping a job, WRP permitted welfare recipients to own a more valuable car. Finally, to force parents to work if all other encouragement failed, WRP included a time limit that required parents to work after 30 months.

The Canadian Self-Sufficiency Project (SSP) ${ }^{14}$ SSP offered a three-year earnings supplement to selected single-parent welfare recipients in British Columbia and New Brunswick. The earnings supplement was a monthly cash payment available to single parents who had been on welfare for at least one year and who left welfare for full-time work (30 hours or more per week) within a year of entering the program. The supplement was paid on top of earnings for up to three continuous years, as long as the person continued to work full-time and remained off welfare. While collecting the supplement, an eligible single parent received an immediate payoff from work; in most cases, her total income before taxes was about twice her earnings.

[^3]Table 1.1 summarizes the main work-related components of each program. As the table indicates, nearly every program included mandatory welfare-to-work activities, and most of the programs had neither additional financial incentives nor time limits. However, eight of the sites or programs supplemented the earnings of those who went to work to provide additional financial incentive to work and to further increase the income of those who worked. In addition, two programs had time limits on how long families could receive benefits.

Table 1.2 further summarizes the self-sufficiency approaches used by the programs by placing them into one of five categories.
x Job-Search-First Programs. SWIM, Atlanta LFA, Riverside LFA, and Grand Rapids LFA required most welfare recipients to initially look for work.
x Education-First Programs. Atlanta HCD, Riverside HCD, Grand Rapids HCD, two programs in Columbus, and programs in Detroit and Oklahoma City required most welfare recipients to enroll initially in education and training. In Atlanta, Riverside, and Grand Rapids, education was usually adult basic education (ABE). In Detroit and Oklahoma City, services focused more on long-term education and training.
x Employment-Focused Mixed-Activity Programs. Riverside GAIN and the JOBS program in Portland stressed the importance of finding work but used a mix of initial activities, requiring more job-ready welfare recipients to look for work but allowing others to enroll in education or training programs. While Riverside GAIN used remedial education - ABE, GED preparation, or English-as-a-second-language (ESL) classes - Portland used both remedial education and vocational training.
x Education-Focused Mixed-Activity Programs. The GAIN programs in Alameda, Butte, Los Angeles, San Diego, and Tulare Counties were more education focused while using a mix of initial activities. Participants in these programs who had not graduated from high school or earned a GED, who lacked basic math or verbal skills, or who did not speak English were assigned to ABE, GED preparation, or ESL classes. Other participants were asked to look for work.
x Earnings Supplement Programs. The two versions of Vermont's WRP program, the two versions of the MFIP program, the two provinces in SSP, Florida's FTP, and Connecticut's Jobs First programs all supplemented earnings of welfare recipients who went to work. Sometimes earnings supplements were combined with requirements that welfare recipients engage in job search or education and, in Florida and Connecticut, combined with time limits on welfare receipt.

Different programs using the same basic approach might be more or less effective at engaging welfare recipients, or might rely more or less on job search compared with education. To further explore differences across the programs. Table 1.3 shows the impacts of the programs on four types of welfare-to-work activities: job search, basic education, vocational training, and unpaid work experience.

Not surprisingly, programs in the top two categories (job search first and employmentfocused mixed activities) resulted in larger increase in job search than in education. Neverthe-
less, several of the employment-focused programs did increase the use of education and training. Among the LFA programs, for example, vocational training increased by 16 percentage points and basic education increased by 5.1 percentage points in Atlanta. Because they used a mix of initial activities, Riverside GAIN and Portland both increased the use of education and training, although Riverside's effects were exclusively on basic education while Portland increased the use of vocational training as well.

Likewise, programs that focused more on education activities (education-focused mixed activities and education-first programs) tended to have larger effects on basic education than on job search. There was considerable variation across these programs, however. Among the more education-focused programs, all except two increased use of basic education by more than 10 percentage points. The two exceptions were Detroit and Oklahoma City, which ran de facto voluntary programs during much or all of the period in which they were evaluated. Three programs included only more disadvantaged welfare recipients - the evaluation of Alameda and Los Angeles GAIN included only long-term welfare recipients and only those in need of basic education were randomly assigned to the Riverside HCD program - and all three increased use of basic education by more than 20 percentage points.

There is one dimension on which the more education-oriented programs were generally similar. Most of them emphasized short-term basic education rather than vocational training or post-secondary education. In all cases except one (Detroit), the programs' impact on use of basic education exceeded its impact on use of vocational training. Where impacts on post-secondary education were measures separately from vocational training (all programs not included in NEWWS), impacts on post-secondary education were small and therefore not included in the table.

Regardless of orientation - employment-focused, education-focused, or with earnings supplements - the ultimate goal of every program was to encourage work. Perhaps for this reason, nearly every program with a mandatory participation requirement (that is, excluding SSP and the incentives only versions of MFIP and WRP) increased job search activities by more than 10 percentage points.

Since this is a report about subgroups, it is important to understand the activities that different groups of people were assigned to. In the mixed-activity programs, in particular, job-ready participants were supposed to be assigned to different activities than those who were thought to need more education. To help understand subgroup differences in activities, Table 1.4 shows impacts on participation in GAIN and NEWWS for those who were not considered to need basic education, and for those who were. In NEWWS, the "in-need" group consists of individuals who had not graduated from high school or earned a GED certificate by the time of random assignment. In GAIN, an individual was considered in need of basic education if, at the time of random assignment, they had neither a high school diploma nor a GED certificate, had obtained low scores on either a basic reading or math test, or were not proficient in English. Because it is beyond the scope of the present study to calculate participation rates by subgroup, Table 1.4 relies on numbers that appear in published reports. Impacts on program participation are not shown for other subgroups because they were not consistently reported across studies. They are not shown for other programs because they were not calculated for these subgroups in other studies.

By and large, the job-search-first programs appear to live up to their billing. Whether or not participants were in need of basic education, the primary effect of the programs was to increase job search activities. As shown above, the Atlanta LFA was not quite as single-minded as the other programs, increasing the use of basic education by those in need of basic education by 13.3 percentage points.

For the other three program models, in contrast, education did increase considerably among the in-need group. Most of those programs focused on basic education, with increases as great as 51.8 percentage points in the Alameda GAIN program. But Portland and Detroit had larger effects on post-secondary and vocational training for the in-need group than for basic education.

Perhaps the greatest difference between the two subgroups is seen in the educationfocused mixed-activity programs. All four programs increased job search by those not in need of basic education by more than 20 percentage points and increased use of basic education by the in-need group by more than 25 percentage points. For these programs, therefore, differences between more and less disadvantaged groups might reflect differences between the effectiveness of job search and the effectiveness of basic education. If that is true, then the effects of these programs for more disadvantaged groups should be similar to the effects of education-first programs for more disadvantaged groups, while their effects for less disadvantaged groups should be similar to the effects of the job-search-first programs.

Data Sources

With one exception, follow-up information used in this report comes from administrative records. Earnings information was taken from reports made by employers to the state unemployment insurance (UI) system. Welfare and food stamp information comes from state, county, or provincial welfare system administrative records. The exception is SSP, where information on employment and earnings come from surveys conducted at the time of random assignment and about 18,36 , and 54 months after random assignment. ${ }^{15}$

Some subgroups in this report are defined based solely on administrative records collected for the period prior to random assignment. Others are defined from baseline information provided by caseworkers or sample members at the time of random assignment. Baseline information included demographic information, such as the educational attainment, prior work experience, and welfare history of the sample member; marital status and number and ages of children; race and ethnicity, and sex.

Still other subgroups are defined based on responses to a private opinion survey (POS), which was administered at the time of random assignment to sample members in MFIP, FTP, and the Atlanta, Grand Rapids, Portland, and Riverside NEWWS sites. The POS was designed to ascertain such information as sample members' risk of depression; mastery or locus of control;

[^4]preference for work; barriers to work or program participation because of child care, transportation, and health or family problems; and degree of work-related parental concerns. Similar information was asked on a baseline survey in SSP.

RESEARCH QUESTIONS

This report tries to answer the question of "what works best for whom" among welfare and work policies for single-parent welfare recipients. Implicit in this question are three broad research issues.

x Which groups were affected the most and the least?

To answer the "for whom" part of the question, the report examines subgroups of singleparent families based on a number of characteristics, including educational attainment; work and welfare history; race, ethnicity, and sex; number and age of children; barriers to work because of child care, transportation, and health or emotional problems; preference for work over welfare; parental concerns about leaving family for work; and depression and feeling of mastery over life circumstances. To investigate results for a group of individuals expected to be especially hard to help, a most disadvantaged subgroup was defined to include long-term recipients (those who had ever been on welfare two years or more prior to random assignment) who had not graduated from high school and who had no earnings in the year prior to random assignment. Likewise, a least disadvantaged group was defined as individuals with none of these barriers, while individuals were considered moderately disadvantaged if they had one or two barriers. The report focuses on these three levels of disadvantage because they differ substantially in how much they would work and receive welfare in the absence of the policies that are examined.

x In what dimensions are the programs succeeding?

In studying the policies, the report investigates a number of outcomes: earnings, welfare benefits, income, stable employment, and stable welfare exits. Policymakers may want to encourage welfare recipients to work; for them, the "best" program may be the one that increases employment and earnings the most. Other policymakers may be primarily interested in reducing spending on welfare; for them, the best program may be the one that reduces cash assistance the most. Welfare recipients and policymakers concerned about child and family poverty may care most about total income; for them, the best program may be the one that increases income the most. Finally, programs with similar effects on earnings and welfare receipt might differ in how much they encourage people to work steadily or to remain off the welfare rolls for a sustained period. For example, policies with similar effects on welfare benefit amounts might have different effects on how long people stay off the rolls if one program operates in a state with relatively generous welfare grants while the other operates in a state with relatively low grant levels.

X Which programs or program models work best?

These programs vary in a number of ways, including how they helped clients make the transition from welfare to work, who was enrolled in the programs, how the programs were implemented, where the programs were implemented, and the economic conditions under which they were implemented. If programs with one set of characteristics consistently outperformed others for some subgroups, policymakers might want to repeat those programs for some welfare recipients.

SUMMARY OF FINDINGS

X The group of programs with the most consistent effects on employment and earnings were employment-focused programs that allowed some welfare recipients to enroll in short-term education or training.

One program model had the largest effects on earnings and employment across a wide range of subgroups. Programs in this group assigned job-ready individuals initially to look for work and assigned others initially to education or training activities. Even for those in need of education, however, the programs stressed that employment was the ultimate goal. There are several possible explanations for the success of this group of programs. Perhaps the use of both job search and education allowed each participant to initially do what was best for her, while the programs' employment focus ensured they were looking for work fairly quickly. This result should be interpreted cautiously, however, because there were only two programs in this category, and those two programs - Riverside GAIN and Portland's JOBS program - are perhaps the two most effective welfare-to-work programs ever studied using random assignment.

x Results point to the importance of job search in increasing employment and earnings.

The employment-focused mixed-activity programs mentioned above had substantial effects on job search both for those in need of basic education and for others. Job-search-first programs, which obviously stressed job search, had fairly substantial effects on earnings and employment for a wide range of subgroups. Perhaps most revealing were the effects of education-focused mixed-activity programs. These programs had among the largest effects on earnings and employment for less disadvantaged groups, for whom they substantially increased job search activities, but had fairly small effects on more disadvantaged groups, for whom they stressed education activities.

X Education-oriented programs generated small impacts for more disadvantaged groups.

For more disadvantaged groups, the two types of education-oriented programs had smaller effects on earnings, welfare benefits, and stable employment than the other three program models. Since education costs more than job search, this suggests that education as the primary welfare-to-work activity might not be the best approach for the most disadvantaged, and that education and training might be better targeted at groups that have already had success in school rather than those who appear to lack basic academic skills. Since these education-oriented programs did not necessarily use state-of-the-art education services, it is possible that a program that wants to use education and training to increase earnings for the most disadvantaged could do better than the programs studied by MDRC. Finally, it is important to recognize that a head-tohead comparison of education-first and job-search-first programs in three sites in the National Evaluation of Welfare-to-Work Strategies found that the two approaches had similar effects after the first year or two (Hamilton et al., 2000).
X Only programs that supplemented the income of parents who went to work consistently increased income, but they did so by increasing families' use of public assistance.

Syntheses of the effects of welfare and work policies have found that programs that supplement earnings consistently increase household income while policies that use only workrelated mandates do not (Bloom and Michalopoulos, 2001). This result holds for subgroups as well: earnings supplement programs increase income across a range of subgroups while other programs leave income largely unchanged across a range of subgroups. All of the earnings supplement programs except one used enhanced earnings disregards, which allow welfare recipients to remain on welfare with more earnings. As a result, they encouraged people to combine work and welfare rather than to leave welfare for work. Although these programs encourage self-sufficiency through work, in a world of time-limited welfare they also make it more likely that welfare recipients will use up their time on welfare quickly.

x In general, effects of the different types of programs on stable welfare exits were similar across subgroups.

For virtually every subgroup that was examined, for each of the five program models, and for each of three outcomes that were examined, impacts on stable welfare exits were not significantly different across subgroups. Since differences were found in the impacts of the programs on stable employment by subgroup, this suggests that a number of programs are encouraging people to leave welfare without helping them find stable work. In particular, several programs that enforced participation mandates with extensive use of partial family sanctions had much larger effects on stable welfare exits than on stable employment.

X The most disadvantaged are much less likely to find stable employment or to have stable welfare exits than the least disadvantaged.

Among most disadvantaged control group members, only about 5 percent worked at least 75 percent of the follow-up period, compared with more than one third of the least disadvantaged. About 25 percent of the most disadvantaged sample members stayed off welfare for four or more consecutive quarters, compared with more than half of the least disadvantaged sample members. These differences are not surprising since most disadvantaged sample members were long-term welfare recipients who had not worked in the year prior to random assignment, and history is often an excellent indicator of the future. However, the differences are much larger than for subgroups defined by the individual characteristics.

x Performance indicators may be more indicative of program impacts for more disadvantaged groups than for less disadvantaged groups.

For the most disadvantaged sample members, programs with larger impacts also tended to be the ones with higher average outcome levels for program group members. This was not the case for the least disadvantaged sample members. This result may suggest that the use of performance indicators such as earnings levels for program participants might be a more accurate measure of the effect of a program for more disadvantaged groups, for whom earnings are expected to be consistently low across sites in the absence of a program, than for less disadvantaged groups, for whom earnings vary substantially across sites.

Table 1.1
Policy Components of the Programs

Evaluation or Program	Mandatory Services				Time limited welfare
	Job search first	Education first	Mix of job search and education as initial activities	Earnings supplements	
SWIM (San Diego)	\checkmark				
GAIN					
Alameda			\checkmark		
Butte			\checkmark		
Los Angeles			\checkmark		
Riverside			\checkmark		
San Diego			\checkmark		
Tulare			\checkmark		
NEWWS					
Atlanta LFA	\checkmark				
Atlanta HCD		\checkmark			
Grand Rapids LFA	\checkmark				
Grand Rapids HCD		\checkmark			
Riverside LFA	\checkmark				
Riverside HCD		\checkmark			
Columbus Integrated		\checkmark			
Columbus Traditional		\checkmark			
Detroit		\checkmark			
Oklahoma City		\checkmark			
Portland			\checkmark		
FTP (Florida)			\checkmark	\checkmark	\checkmark
Jobs First (Conn.)			\checkmark	\checkmark	\checkmark
MFIP (Minnesota)					
Full Services			\checkmark	\checkmark	
Incentives Only				\checkmark	
WRP (Vermont)					
Full Services	\checkmark			\checkmark	
Incentives Only				\checkmark	
Self-Sufficiency Project					
British Columbia				\checkmark	
New Brunswick				\checkmark	

Table 1.2

Policies with Earning Supplements	Education-First Programs	Education-Focused Programs with Mix of First Activity	Employment-Focused Programs With Mix of First Activity	Job-Search- First Programs
SSP in New Brunswick	Atlanta HCD	Alameda GAIN	Riverside GAIN	Atlanta LFA
SSP in British Columbia	Grand Rapids HCD	Butte GAIN	Portland	Grand Rapids LFA
Minnesota MFIP Full Services	Riverside HCD	Los Angeles GAIN		Riverside LFA
Minnesota MFIP Incentives Only	Columbus Integrated	San Diego GAIN		San Diego SWIM
Vermont WRP Full Services	Columbus Traditional	Tulare GAIN		
Vermont WRP Incentives Only	Detroit			
Connecticut Jobs First	Oklahoma City			
Florida Family Transition Program				

Table 1.3
Impacts on Participation in Welfare-to-Work Activities

			Post-Secondary or Vocational Training	

SOURCE: NEWWS: Table A. 1 of Freedman et al. (2000); GAIN: Table 2.5 of Riccio et al. (1994); SWIM: Table 3.1 of Friedlander and Hamilton (1993); Jobs First: Table 2.2 of Bloom et al. (2002); FTP: Table 3.2 of Bloom et al. (1998a); WRP: Table 3.9 of Bloom et al. (1998b); MFIP: Tables 3.2 through 3.5 of Miller et al. (2000).

NOTE: $\mathrm{n} / \mathrm{a}=$ not available in published reports.
Participation was measured over a two-year period in NEWWS and FTP; over a 3-year period in MFIP and Jobs First; over a period from two to three years in SWIM and GAIN; and over a period of 42 months in WRP. In NEWWS and GAIN, vocational training includes post-secondary education. In the published SWIM reports, impacts for education were calculated for all education and training combined.

Impacts on Participation in Welfare-to-Work Activities, by Need for Basic Education								
	Not in Need of Basic Education				In Need of Basic Education			
Program and Subgroup	Job search	Basic Education	Post-secondary Education \& Vocational Training	Work Experience	Job Search	Basic Education	Post-secondary Education \& Vocational Training	Work Experience
Job search first								
Atlanta LFA	28.7	0.7	1.5	8.6	29.8	13.3	1.9	2.9
Grand Rapids LFA	29.8	0.8	-3.0	3.8	21.5	-2.8	-0.9	2.1
Riverside LFA	29.3	0.9	0.5	1.0	33.7	-1.7	-0.3	1.1
Employment-focused mixed activities								
Riverside GAIN	47.8	-0.7	-2.4	-0.8	31.3	24.4	-1.2	-0.5
Portland	36.2	4.7	5.2	5.9	25.8	6.2	12.8	8.0
Education-focused mixed activities								
Alameda GAIN	52.3	4.7	16.4	3.9	15.8	51.8	0.2	0.7
Los Angeles GAIN	22.9	1.8	4.6	-1.2	7.4	25.7	3.1	-0.4
San Diego GAIN	34.0	-0.7	4.8	0.9	19.9	25.3	1.8	-0.7
Tulare GAIN	43.4	0.8	12.1	0.3	11.5	48.2	4.0	-0.2
Education first								
Atlanta HCD	14.0	5.4	15.3	7.6	7.2	34.2	1.1	0.7
Grand Rapids HCD	11.9	5.2	3.4	3.6	14.9	25.6	9.7	0.9
Riverside HCD					21.1	38.2	1.3	0.8
Columbus Integrated	10.6	4.6	3.3	8.0	8.9	22.9	-0.5	3.5
Columbus Traditional	8.7	1.8	5.3	6.9	6.8	25.1	5.7	2.4
Detroit	7.0	-3.1	2.1	-1.4	7.9	3.8	10.5	1.5
Oklahoma City	4.8	3.5	1.4	2.6	4.0	17.8	4.0	3.0

SOURCE: NEWWS: Table A. 2 of Freedman et al. (2000); GAIN: Tables 2.7 and 2.8 of Riccio et al. (1994). NOTE: Participation was measured over a two-year period in NEWWS and over a period from two to three years in GAIN.
In NEWWS, the "in-need of basic education" group consists of individuals who had not graduated from high school or earned a GED certificate by the time of random assignment. In GAIN, an individual was considered in need of basic education if, at the time of random assignment, they had neither a high school diploma nor a GED certificate, had obtained low scores on either a basic reading or math test, or were not proficient in English.

Chapter 2

Impacts on Earnings, Welfare Benefits, and Income

This chapter presents the effects of the 26 welfare and work policies by subgroup on earnings, welfare benefits, and income from earnings, cash assistance, and food stamps. Although a number of subgroups are examined, the chapter focuses on a composite subgroup based on three barriers to work: welfare history, recent work history, and high school credential. (Appendix A shows results for a number of other subgroups.) These barriers were used because the baseline information that was collected in most MDRC studies did not include information on psychosocial constructs such as depression, family problems, and barriers to work from child care and transportation. In addition, Michalopoulos and Schwartz (2001) found these barriers, especially recent work history, to be much better predictors of future success in the labor market than the psychosocial barriers.

These barriers were used to define three levels of disadvantage. The "most disadvantaged" group consists of long-term recipients (those who had been on welfare for at least two years prior to random assignment) who had not graduated from high school or worked in the year prior to random assignment. The "least disadvantaged" group consists of people who had none of these barriers. The "moderately disadvantaged" group consists of people who had one or two barriers.

This chapter examines impacts by level of disadvantage in four ways. Impacts are first shown for each of five program models, defined by the self-sufficiency approaches described in Chapter 1. Once the most and least successful program models are identified, impacts for individual programs are examined to determine whether a program model's success was shared by all programs of that type. If there is variability across programs, the next question is whether differences in impacts across programs can be explained by the intensity of what the programs did. This is done by relating impacts by subgroup and program to the effects that the programs had on job search and education, their part-time and full-time work incentives, and whether they had a time limit on welfare benefits. The penultimate section of the chapter tackles a very different issue by comparing impacts to program group outcomes as the beginning of an investigation into the usefulness of performance standards as a means of evaluating the effectiveness of welfare-to-work programs. The chapter ends by briefly examining pooled impacts by program model for a number of additional subgroups.

SUMMARY OF FINDINGS

X Job search assistance produced the most consistent gains in earnings across

 subgroups, particularly for more disadvantaged groups. Programs that required all welfare recipients to initially look for work generated substantial impacts for more disadvantaged subgroups. Employment-focused programs that used a mix of activities, but that primarily increased job search assistance, generated large effects on earnings across subgroups. Perhaps most telling, education-focused programs that used a mix of activities focused on job search for jobready participants and generated substantial earnings gains for groups of more job-ready participants. By contrast, programs that required most participants to engage in education primarily remedial education - generated fairly small effects for most subgroups.x Programs that supplemented the earnings of people who worked full time also generated substantial effects on earnings. Another means of encouraging work, particularly among more disadvantaged groups, is to supplement the earnings of those who work full time. This approach was used in the Canadian Self-Sufficiency Project, which increased earnings substantially in two very different provinces. By contrast, earnings disregards in most welfare programs in the U.S. primarily encourage part-time work. Such earnings disregards by themselves may encourage work among people who would not otherwise have worked, but their overall effects might be mitigated by work cutbacks among people who would have worked full time.
x Only programs that supplemented the income of parents who went to work consistently increased income. Syntheses of the effects of welfare and work policies have found that programs that supplement earnings consistently increase household income while policies that use only work-related mandates do not (Bloom and Michalopoulos, 2001). This result holds for subgroups as well: earnings supplement programs - both those with supplements for full-time work and those with supplements for part-time work - increase income across a range of subgroups while other programs leave income largely unchanged across a range of subgroups.
X Performance indicators such as program group average outcomes may be more indicative of program impacts for more disadvantaged groups than for less disadvantaged groups. For the most disadvantaged sample members, programs with larger impacts on earnings also tended to be the ones with higher average earnings levels for program group members. This was not the case for the least disadvantaged sample members. This result may suggest that the use of performance indicators such as earnings levels for program participants might be a more accurate measure of the effect of a program for more disadvantaged groups, for whom earnings are expected to be consistently low across sites in the absence of a program, than for less disadvantaged groups, for whom earnings vary substantially across sites.

POOLED IMPACTS BY PROGRAM MODEL

Table 2.1 presents pooled impacts on earnings, cash assistance payments, and income from earnings, cash assistance payments, and food stamp benefits by level of disadvantage for the five program models described in Chapter 1 (job search first, education first, employment-focused mixed activity, education-focused mixed activity, and earnings supplements). To calculate the pooled results, impacts from the individual programs of a particular type were averaged together, weighted by the number of sample members in a subgroup in a program. For all three measures, results are shown averaged over the three years following random assignment and for the third year by itself.

Impacts on Earnings

Which program model increased earnings the most for the most disadvantaged?

The ultimate reason to look at impacts by subgroup is to understand the type of program that is most likely to help a particular group. If a state is primarily interested in helping the most disadvantaged, they might want to pick a program model that has the biggest effects for that group. If they want an approach that helps a broad portion of the caseload, they might pick the approach that tends to have relatively large impacts across the board.

Table 2.1 suggests that the best way to increase the earnings of the most disadvantaged welfare recipients over a three-year period is to stress employment, either through case management or financial work incentives, but not to rely too much on education. Of the five program models, only the education-focused mixed-activity programs failed to significantly increase earnings over the three-year period, while the education-first programs had relatively small effects on earnings for the most disadvantaged. While the effects of both education-oriented approaches were greater in the third year, they still lagged behind the effects of the other programs. ${ }^{16}$

If the primary goal is to increase earnings for the most disadvantaged without regard to income, an administrator should probably choose either the job-search-first programs or the mixedactivity programs with an employment focus. Both types of programs used primarily job search to encourage work among the most disadvantaged, an approach that has been found to save money or to be relatively inexpensive to run. In contrast, programs that supplement earnings generally cost more - sometimes substantially more - than the programs they replaced.

Which program model increased earnings the most for the moderately disadvantaged?

All of the program models generated significant earnings gains for the moderately disadvantaged, but impacts were largest - \$1,406 per year over the three-year period and \$1,558 in Year 3 - for the employment-focused mixed-activity programs. In fact, earnings gains for the full sample were greatest for the moderately disadvantaged (not shown on the table) and were significantly larger than for the other two subgroups.

Results in Table 2.1 are consistent with the notion that job search is an effective way to increase earnings for the moderately disadvantaged, a group that includes some people in need of basic education and some job-ready welfare recipients. Both the job-search-first programs and the employment-focused mixed-activity programs would have had large effects on job search for such a mixed group, and impacts on earnings for the moderately disadvantaged were largest for these program models. Likewise, education-first programs would have had the smallest impact on job search for such a group, and they generated the smallest impacts on earnings. Finally, educationfocused mixed-activity programs would have had modest effects on job search, and programs in that category had modest impacts on earnings for the moderately disadvantaged.

Which program model increased earnings the most for the least disadvantaged?

Among the least disadvantaged participants, both categories of mixed-activity programs generated substantial effects on earnings, while none of the other program models significantly increased earnings.

The fact that mixed-activity programs had larger effects on earnings for the least disadvantaged than the job-search-first programs presents a bit of a mystery. All three program models substantially increased job search for high school graduates (recall that all of the least

[^5]disadvantaged had a high school diploma or GED at random assignment) and had much smaller effects on education and training. If job search were responsible for large increases in earnings, impacts on earnings should have been substantial for job-search-first programs as well. Perhaps the large impact of the mixed-activity programs suggests that they successfully targeted education services at the least disadvantaged welfare recipients who were best able to benefit from education. Recall, however, that Chapter 1 showed that the mixed-activity programs had larger effects on job search among high school graduates than did the job-search-first programs. Their larger effects on earnings might reflect their larger effects on job search. Finally, it is worth noting that impacts on earnings for job-search-first programs were not statistically significantly lower for the least disadvantaged than for the other groups.

The results in Table 2.1 suggest that if one program had to be designed to increase earnings for a broad range of welfare recipients, it should be employment focused with a mix of initial activities. It was the only program model with effects on annual earnings exceeding $\$ 800$ for all three groups. Moreover, it had the largest effects for both the most disadvantaged and moderately disadvantaged. Although using education for most welfare recipients was not an effective approach, these results suggest it might be important to use education for those in need of basic skills, especially if the ultimate goal of finding a job is stressed.

Cost might also point away from the education-focused programs and toward the employment-focused programs. In the NEWWS evaluation, for example, the Atlanta, Grand Rapids, and Riverside LFA and HCD programs were run side-by-side, allowing rigorous comparisons of the two approaches. In each case, the LFA program cost less or saved more than the HCD programs. For example, in Grand Rapids, the LFA program saved the government \$2,908 per program group member over a five-year period, while the HCD program cost the government $\$ 308$. The most cost-effective program studied in NEWWS was Portland, which is also an employment-focused program, and which saved the government more than $\$ 5,000$ per program group member over five years. Finally, the evaluation of GAIN, the Riverside program generated the largest savings, and several of the more education-focused generated smaller welfare savings than their programs cost to operate. ${ }^{17}$

Impacts on Cash Assistance Payments

Which program model saved the most welfare dollars for the most disadvantaged?

The middle set of results in Table 2.1 show the effects of the program models on welfare payments. If the sole goal of a welfare-to-work program were to save welfare dollars, these results suggest that a program should be employment-focused, and probably should require all welfare recipients to work. This makes some sense, since welfare payments in most of these programs were reduced when earnings increased, and the more employment-focused programs had larger effects on earnings for the most disadvantaged than did the more education-focused programs.

Although most welfare-to-work programs are designed to reduce welfare use, they are typically not judged solely on their welfare savings, but on whether welfare savings stem from increased self-sufficiency. Thus, it is important to compare the levels of welfare savings to the level

[^6]of earnings gains in judging the effectiveness of the various program models. In this regard, the employment-focused mixed-activity programs stand out. They generated the largest effects on earnings among the most disadvantaged, but reduced welfare payments by less than they increased earnings. In contrast, the job-search-first programs reduced welfare payments by more than they increased earnings. Another way to think of this is that the employment-focused mixed-activity programs had significantly larger effects on earnings for the most disadvantaged than the job-search-first programs, but the two program models generated about the same level of welfare savings.

There is one other important distinction across the program models. With the exception of SSP, which worked by supplementing the income of people who left welfare for full-time work, the earnings supplement programs made it easier for people to combine work and welfare. As a result, those programs did not reduce cash assistance payments to the most disadvantaged. In contrast, all of the other program models reduced cash assistance payments for the most disadvantaged.

Which program model saved the most welfare dollars for the moderately and least disadvantaged?

As for the most disadvantaged, welfare savings for the moderately disadvantaged were a mirror image of earnings gains. Among the mandatory welfare-to-work programs, welfare savings were largest for the more employment-focused programs, just as earnings gains for this group were largest for these programs.

For the least disadvantaged, in contrast, welfare savings from program models other than the earnings supplement programs were fairly consistent, ranging from $\$ 235$ per person among education-focused mixed-activity programs to $\$ 364$ for the job-search-first programs. In contrast, the effects on earnings across the subgroups and program models ranged from close to $\$ 0$ to more than $\$ 1,400$. This might reflect the fact that the least disadvantaged were likely to leave welfare on their own, limiting the amount that a welfare-to-work program could save for them. The best conclusion from the point of view of welfare savings may be that different welfare-to-work activities are somewhat equally effective.

If one program had to be designed to save welfare dollars for a broad range of welfare recipients, the results in Table 2.1 suggest that it should be a job-search-first program. The effects of job-search-first programs on welfare benefits were the largest for the most and least disadvantaged, and they generated considerable welfare savings for the moderately disadvantaged. Since their effects on earnings were not generally as large as the mixed-activity programs, however, the job-search-first programs may have saved welfare dollars without providing large benefits for their participants.

The effects on earnings across subgroups also suggest an important role for job search. For job-search-first programs, which focused on job search for all participants, impacts on earnings were not significantly different across the subgroups. Employment-focused mixed-activity programs likewise had substantial effects on job search for high school graduates and nongraduates, and impacts on earnings were substantial for all three subgroups. Education-first programs had fairly small impacts on job search across the board, and these programs had fairly small effects on earnings for all three subgroups. Perhaps most telling, however, are results for the education-focused mixed-activity programs. These programs focused on job search for participants
who were not thought to need basic education, but they focused on basic education for other participants. Consistent with this difference, education-focused mixed-activity programs had their largest effects on earnings for the least disadvantaged, modest effects for the moderately disadvantaged, and no effect for the most disadvantaged.

Impacts on Income

With regard to income, the story is clear: to increase income across a broad range of welfare recipients, use earnings supplements. Earnings supplement programs were explicitly designed to increase income by supplementing the earnings of program group members who went to work more than the earnings of control group members who went to work. In contrast, the other programs reduced cash assistance payments by the same amount for program group and control group members who worked the same amount. Because those programs increase earnings, they also reduced welfare benefits (as discussed above), and had smaller effects on income by design.

Results with regard to income from earnings, cash assistance, and food stamps are shown in the last two columns of results in Table 2.1. ${ }^{18}$ The distinction between earnings supplement programs and other program models is apparent. While the other program models generally had modest effects on income because individuals traded welfare checks for work checks, the programs with earnings supplements had quite large effects on income, ranging from $\$ 873$ for the most disadvantaged to $\$ 1,166$ for the moderately disadvantaged over the three-year follow-up period and from $\$ 822$ for the most disadvantaged to $\$ 1,769$ for the moderately disadvantaged in year 3 .

Other than earnings supplement programs, the biggest effects on income occurred where program models had large effects on earnings. In particular, employment-focused mixed-activity programs significantly increased income for the most and moderately disadvantaged groups, while education-focused mixed-activity programs significantly increased earnings for the least disadvantaged. Because these program models raised earnings much more than they reduced welfare payments for those subgroups - presumably because many people gained so much in earnings that they left welfare entirely - they increased income for all three groups over the threeyear period.

IMPACTS FOR INDIVIDUAL PROGRAMS

Having established the relative benefits of different program models, it is reasonable to ask how consistent programs are within the five program models. In particular, examining impacts by program provides an opportunity to further explore the notion that job search is key to generating impacts among programs with mandatory program participation. This section addresses the question by showing the effects of each program on annual earnings over three years. The results are shown in three figures, one for each of the subgroups. ${ }^{19}$

[^7]
Most Disadvantaged

Figure 2.1 shows the effects on earnings over the three-year follow-up period for each program for the most disadvantaged. Results were fairly consistent for the employment-focused mixed-activity programs (quite successful), for the education-first programs (moderately successful), and for the education-focused mixed-activity programs (generally not successful at increasing earnings). ${ }^{20}$ With only two programs in the employment-focused mixed-activities category, however, conclusions regarding that program model should be made cautiously. ${ }^{21}$

Less consistent among the most disadvantaged are the job-search-first and earningssupplement programs. While two of the job-search-first programs had sizable effects, two had more modest effects. Likewise, four of the earnings supplement programs had relatively large effects among the most disadvantaged, but four had almost no effect.

Differences across the earnings supplement programs may reflect differences in the generosity and form of the incentives in those programs. For example, the earnings supplement in the Vermont WRP programs was only more generous for most workers after they had combined work and welfare for four months, and the Full WRP program did not require welfare recipients to participate in welfare-to-work activities until they had received benefits for 28 months. This might explain why the Vermont programs - represented by the fifth and sixth bars among the earnings supplement programs - did not have much effect on earnings. In addition, earnings disregard policies may encourage some people who would have worked full time to cut back their work effort, while the SSP supplement is not expected to have this effect because it rewards only fulltime work and the Full MFIP program might have reduced this effect by requiring people to participate in welfare-to-work activities or work for 30 hours per week. This might explain why the impact on earnings of the MFIP incentives-only program (the fourth bar among the earnings supplement programs) are much less than in either Full MFIP (the third bar) or SSP (the first two bars). The likely effect of different types of incentives is examined in more detail in the next section.

Moderately Disadvantaged

Figure 2.2 shows similar results for the moderately disadvantaged. ${ }^{22}$ With the exception of the earnings supplement programs, results are more consistent across programs for this group,

[^8]perhaps because this group is the largest for many of the programs. As for the most disadvantaged, both employment-focused mixed-activity programs were very successful. Compared to the most disadvantaged, however, the education-oriented programs were more consistently effective for the moderately disadvantaged. Finally, the earnings supplement programs were generally ineffective at increasing earnings for this group, with the exception of the two SSP programs.

Least Disadvantaged

Figure 2.3 shows similar results for the least disadvantaged. ${ }^{23}$ Although results are quite variable across the programs, this is partly a consequence of the small number of least disadvantaged individuals in the studies. As Appendix Table A. 10 indicates, individual programs’ impacts on earnings were usually not statistically significant even when they were several hundred dollars per year. For example, the SWIM program increased earnings by nearly $\$ 1,500$ per person, while the other job-search-first programs had little effect on earnings for the least disadvantaged. However, these differences are not statistically significant, in part because the SWIM results were estimated from only 352 people (including both program and control group members).

Despite the small sample sizes, two program models had significant differences in earnings impacts across programs. For the two employment-focused mixed-activity programs, the Riverside GAIN program increased earnings by $\$ 1,769$ per year, while Portland had virtually no effect on earnings for the least disadvantaged. Among the earnings supplement programs, the SSP program in New Brunswick increased earnings by more than $\$ 2,600$ per person (although there were few least disadvantaged participants in this program), while the MFIP incentives-only program significantly reduced earnings for this group. Once again, this might reflect differences in the incentives for different programs. Least disadvantaged sample members might be likely to work full time on their own, but MFIP's earnings disregard provided an incentive to reduce hours of work from full time to part time while the SSP earnings supplement only rewarded full time work.

EXPLAINING DIFFERENCES IN IMPACTS ACROSS PROGRAMS

Figures 2.1 through 2.3 showed that programs that did not supplement earnings were fairly consistent in their effects, particularly for the most and moderately disadvantaged. But factors other than program model varied from site to site, and there was variation in how many people received welfare-to-work services and the degree to which the earnings supplement programs provided financial work incentives. In addition, if the types of welfare-to-work activities that a program used are really responsible for its large or small effects, then programs that used more education should have smaller effects on earnings than programs that used less education, all else equal. This section uses regression techniques from the meta-analysis literature to further explore how subgroup impacts vary with the impact the program had on job search and education work activities, the

[^9]generosity of the welfare system and financial work incentives, the presence of time limits, and the state of the local economy. ${ }^{24}$

Factors Examined in the Analysis

Program participation. Welfare-to-work services are likely to be more effective if people use them. To explore the relationship between the use of services and program impacts, impacts on job search activities and basic education are included in the analysis. ${ }^{25}$ Although this seems clear, there are at least three problems with using impacts of a program on activities. First, we know how many people participated in activities but we do not have consistent information on how long they participated in those activities on average. Second, while impacts on job search might indicate that a program ran effective job search services, it might indicate other factors, such as having had more job-ready participants.

A final difficulty in using information on program participation is that participation rates were not available by level of disadvantage. For programs not included in GAIN or NEWWS, impacts on program participation were available only for the full sample, and those impacts were used for all three subgroups. As discussed in Chapter 1, GAIN and NEWWS published impacts on participation for high school graduates (those not in need of basic education) and high school nongraduates (those in need of basic education). Impacts on participation for high school graduates were used for the least disadvantaged, since all of them had a high school credential at the time of random assignment. Impacts on participation for high school nongraduates were used for the most disadvantaged, since none of them had a high school credential at random assignment. Impacts for the full sample were used for the moderately disadvantaged.

Financial work incentives. Financial work incentives are expected to increase a program's effects on earnings and income. To investigate this relationship, a program's financial work incentive was calculated as the difference in income from earnings, cash assistance payments, food stamps, and SSP earnings supplement payments between the old and new program rules. Because part-time work incentives might have different effects than full-time work incentives, this difference was calculated for someone who worked 20 hours per week and for someone who worked 40 hours per week. In both cases, it was assumed that the parent had two children, had no other sources of income that would reduce cash assistance payments, and earned $\$ 6$ per hour. By this measure, part-time work incentives ranged from $\$ 0$ in SSP, which required people to work full time to receive its supplement, to $\$ 345$ per month in Jobs First. Full-time work incentives ranged from $\$ 0$ in Vermont and FTP to $\$ 542$ in the British Columbia SSP program.

Time limits on welfare receipt. Time limits are expected to reduce income and cash assistance payments relative to what they would have been, and might encourage employment and increase earnings. To capture the effects of time limits, the regressions include a variable that

[^10]equals one for the time-limited welfare programs in Florida and Connecticut. Both time-limited programs included financial work incentives as well, but participants could receive them only until they hit the program's time limit. In Florida, we therefore multiplied the part-time work incentive described above by $2 / 3$, since many recipients were eligible for welfare benefits for only 24 months in the 36 -month follow-up period. In Connecticut, we multiplied the full-time work incentive by $21 / 36$ since families would have lost eligibility for welfare after 21 months if the parent had been working full time. Since a parent working part time in Connecticut could have received an extension when she reached the time limit, the part-time incentive in Connecticut was not adjusted for the presence of the time limit.

The economy. To explore the effects of local economic conditions, the regressions include the local unemployment rate when the study began. It is not clear how program impacts would be affected by these conditions. Weak economic conditions imply that few people will be able to find work and that jobs will pay little. At the same time, a weak economy will result in a less disadvantaged caseload if it brings people onto the rolls who will leave welfare quickly. Both factors are true for both the control and program groups, however, and impacts may therefore be either higher or lower when the economy is in bad shape. Using individual-level data from 59 welfare offices involved in several of the welfare-to-work experiments included here, Bloom, Hill, and Riccio (2001) found that an increase in the unemployment rate of one percentage point was associated with an increase in the annual impact on earnings of $\$ 94$, all else equal.

Welfare grant levels. The final factor examined in the analysis was cash assistance grant levels. Grant levels might be related to a program's effectiveness because of who enters the caseload and the incentives to leave welfare for work. The welfare guarantee in Riverside was close to $\$ 700$ per month for a single mother with two children, among the highest levels in the country, but about $\$ 300$ per month in Atlanta. This suggests that a person receiving welfare in Atlanta would have few other prospects for economic support, and that sample members in Atlanta are likely to be more disadvantaged than sample members in Riverside. In other words, among the most disadvantaged, Atlanta sample members are probably even more disadvantaged in other ways than Riverside sample members. At the same time, sample members in low-grant states like Georgia are likely to be on welfare for only a short period of time because benefits are so low. In lowgrant states, almost any job will pay enough to make a person ineligible for welfare benefits; in a high-grant state, it is easier to combine work and welfare. This suggests that programs will have a harder time reducing welfare use and, presumably, increasing employment and earnings in lowgrant states than in high-grant states.

Results

Earnings. Consider Table 2.2, which shows the relationship between these factors and the impacts on earnings over the three years following random assignment by level of disadvantage. According to these results, a program that wants to increase earnings for the most and moderately disadvantaged should increase the amount of job search that is done and increase full-time work incentives. In particular, a 1 percentage point increase in the impact on job search activities is associated with a $\$ 19.80$ increase in the impact of a program on annual earnings for the most disadvantaged, and an increase of $\$ 29.70$ for the moderately disadvantaged. Increasing full-time work incentives by $\$ 1$ per month would increase the impact on earnings by about $\$ 2$ to $\$ 3$ per year per person. Although none of the factors were associated with earnings impacts for the least
disadvantaged, this reflects the relative imprecision of impact estimates for this group (as reflected by the large standard errors of the estimated coefficients), which is a consequence of the small size of the subgroup in many of the programs.

Two recent analyses by other researchers using some of the same data have also attempted to estimate the effects of increased program participation for the full sample (that is, not by subgroup). A meta-analysis of mandatory U.S. welfare-to-work programs conducted by researchers in the United Kingdom used the studies included in this report except for SSP, and also included earlier programs and programs evaluated by organizations other than MDRC (Ashworth et al., 2001). Results from the meta-analysis implied that a 1 percentage point increase in the impact on job search assistance was associated with earnings gains of $\$ 10.64$ per year, that basic education was not associated with any change in earnings, that vocational training was associated with a decrease of $\$ 27.20$ per year in earnings, and that work experience was associated with an increase in earnings of $\$ 2.84$ per year.

A recent MDRC study of the effects of management practices in NEWWS, GAIN, and Florida's Project Independence found that an emphasis on moving clients into jobs quickly was associated with higher earnings impacts, but that job search assistance per se was not associated with higher earnings gains (Bloom, Hill, and Riccio, 2001). The study of management practices also found that basic education was associated with a reduction in earnings impacts of $\$ 16$ per year, and that vocational training did not significantly affect earnings impacts.

Results in Table 2.2 are consistent with the main finding from the other two analyses, namely that an emphasis on employment is associated with larger earnings gains and that there is little evidence that mandatory basic education will increase earnings.

The effect of job search could help explain why some programs were more effective than others. Compare the Riverside and Los Angeles GAIN programs. Riverside GAIN increased job search among those in need of basic education by 31.3 percentage points, but Los Angeles GAIN increased job search for this group 7.4 percentage points. The regression implies that this difference of 23.9 percentage points (31.3-7.4) explains a difference of $\$ 473$ per year ($\$ 19.8 * 23.9$) in the impact on earnings for the most disadvantaged between the two programs, or about half of the $\$ 939$ difference that actually existed for the most disadvantaged.

The other significant correlate of earnings gains for the most disadvantaged is full-time work incentives. A $\$ 1$ increase in the monthly incentive to work full time is associated with about a $\$ 2$ to $\$ 3$ increase in the annual impact on earnings. This could explain why some programs with financial work incentives had larger effects than other programs. For example, the full-time work incentive in MFIP was calculated at $\$ 148$ per month for a single parent with two children earning $\$ 6$ per hour. In the two SSP programs, by comparison, the full-time work incentive was $\$ 542$ per month in British Columbia and $\$ 436$ per month in New Brunswick, while in Vermont there was no incentive to work full time. Impacts on earnings correspond closely to these different incentives. For the most disadvantaged, results in Table 2.2 imply that the MFIP incentives increased earnings by $\$ 411$ per year, that SSP's incentives increased earnings by $\$ 1,363$ in British Columbia and $\$ 843$ in New Brunswick, and that WRP's incentives did not significantly affect earnings. This is not surprising: more generous work incentives have larger effects on earnings than less generous work incentives.

Note that part-time work incentives are not associated with a significant increase in the impact on earnings for the most disadvantaged, but are associated with a significant reduction in earnings for the moderately disadvantaged. This suggests that enhanced earnings disregards such as the ones used in WRP and MFIP, which typically have larger part-time incentives than full-time incentives, will have smaller effects on earnings than programs such as SSP that provide a large incentive to work full time.

For the moderately disadvantaged, a $\$ 1$ increase per month in the incentive to work part time is associated with a reduction in annual earnings of $\$ 3.63$ per year. Although this result might seem counterintuitive, it is well grounded in economic theory. The idea is as follows. Some welfare recipients would have gone to work full time on their own. Providing extra income to those who work part time allows parents who would have worked full time to curtail their work effort with less of a reduction in their income than under the old welfare system. Reducing their work effort might allow them to spend more time with their children, or it might simply allow them to work less hard without suffering as much financially.

Compare the MFIP incentives only program to the SSP program in British Columbia. MFIP provided a part-time work incentive of $\$ 237$ per month and a full-time work incentive of $\$ 148$ per month. As mentioned above, SSP in British Columbia provided a full-time work incentive of \$542 and no part-time work incentive. Results in Table 2.2 for the moderately disadvantaged imply that MFIP's incentives would have encouraged the average moderately disadvantaged parent to reduce her earnings by $\$ 458$ per year ($2.72 * 148-3.63 * 237$). The results likewise imply that SSP's incentives encouraged the average participant in British Columbia to increase her earnings by $\$ 1474$ per year ($\$ 2.72 * 542$). In actuality, the MFIP incentives only program reduced earnings for the moderately disadvantaged by $\$ 427$ per year, while SSP increased earnings among the moderately disadvantaged in British Columbia by $\$ 1,488$, quite close to the results implied by the regression results shown in Table 2.2.

Another way to think about the results in Table 2.2 is that they present two different means for increasing the earnings of welfare recipients. For the most and moderately disadvantaged, a program could increase earnings by increasing job search participation by one percentage point or by increasing full-time work incentives by about $\$ 10$ to $\$ 11$ per month. Which approach the program should take might depend on the relative costs of the two approaches, and other benefits (such as income gains) that are associated with the two approaches.

Cash assistance payments. Table 2.3 shows how the program components are related to impacts on welfare payments by level of disadvantage. The most consistent determinant of impacts on cash assistance payments is part-time work incentives, which considerably increase benefit amounts for all three groups. In addition, job search is associated with smaller benefit amounts (although significantly so only for the most disadvantaged), which is consistent with their positive effects on earnings. Finally, time limits are associated with decreased cash assistance payments (again, significantly so only for the most disadvantaged).

The effect of financial work incentives on welfare savings reflects the way that the incentives were offered. In each program that provided a part-time work incentive, welfare recipients in the program group were allowed to keep more of their welfare check when they worked than would have been the case under the usual welfare rules. However, earnings disregards in Minnesota, Vermont, and Florida provided greater incentives to work part time than full time,
and the full-time work incentive in SSP actually reduced welfare payments because people were required to stop receiving welfare to receive the SSP earnings supplement.

With regard to time limits, their negative association with welfare payments is certainly not a surprising result, but three things should be remembered when interpreting this result. First, no family reached a time limit until near the end of the second year in Connecticut and until the end of the second year in Florida. Thus, the effect of time limits over the three-year period probably masks a larger effect in the third year after random assignment. Second, time limits were studied in one state with a relatively low benefit level and one state with a relatively high benefit level. The average effect of time limits shown in Table 2.2 might not be representative of either state. Finally, the time-limited welfare programs in Florida and Connecticut also included financial work incentives and welfare-to-work activities. Thus, the total welfare savings generated by those programs are much less than the effects of time limits alone. For example, over the three-year period in Connecticut, program group members received higher cash assistance payments on average than did control group members.

Income. Table 2.4 shows similar results regarding which factors were associated with impacts on annual income for the three subgroups. Several results are noteworthy.

First, welfare-to-work activities by themselves are generally associated with neither an increase nor decrease in income. This has been noted before in individual studies such as the NEWWS and GAIN evaluations and in syntheses of the effects of welfare and work activities, and was seen in the figures shown earlier in the chapter. ${ }^{26}$

Second, policies with financial work incentives increase the income of people who are offered the incentives. According to Table 2.1, a $\$ 1$ increase in the monthly incentive to work part time is associated with a $\$ 5.24$ increase in annual income for the average most disadvantaged sample member. Likewise, a $\$ 1$ increase in the monthly incentive to work full time is associated with an increase in annual income ranging between $\$ 2.52$ and $\$ 6.22$ per family, depending on the subgroup. This is again consistent with other syntheses of the effects of financial incentive programs. ${ }^{27}$

Finally, note that time limits are associated with a decrease in income of about $\$ 917$ per family for the most disadvantaged, resulting largely from a reduction in cash assistance payments. As mentioned above, it is important to remember that both time-limited programs included in the analysis also had financial work incentives. Thus, the total effect those programs had on income was not negative, but adding the time limit to the financial work incentives resulted in smaller income gains than providing the financial work incentives without time limits on welfare. According to the final reports in the two studies, Jobs First substantially increased income for the average sample member over the three years covered in this report, and FTP had modest positive effects on income.

[^11]
USE OF PERFORMANCE INDICATORS

Having compared impacts across subgroups and explored how programs affected earnings, welfare payments, and income by subgroup, the chapter uses subgroup impacts to explore the possibility of using earnings levels of program group members to assess the effectiveness of a program. Because it is difficult to reliably determine whether a program or service provider is having an impact on outcomes of welfare recipients, many policymakers and administrators use performance indicators as a means of judging whether the program is effective. Outside the welfare system, the Job Training and Partnership Act (JTPA) and Workforce Investment Act (WIA) included the use of performance measures to judge whether local service providers were effective.

Although the use of performance indicators has an intuitive appeal, most evidence indicates that the effectiveness of programs is not very closely linked to how well individuals do because it is often not clear whether services helped someone do better or whether they were capable of doing well on their own. Using the random assignment evaluation of JTPA, for example, Barnow (2000) concluded that "there is only a weak correspondence between [performance and impacts] and that the Department of Labor should avoid making significant rewards or sanctions based on the current performance management system." Heckman, Heinrich, and Smith (2002) reached a similar conclusion that "short run measures used to monitor performance are weakly, and sometimes perversely, related to long run impacts."

Using similar data from a random assignment study of the National Job Corps, Burghardt and Schochet (2001) concluded, "The performance measurement system does not distinguish well among centers with large impacts and centers with small or no impacts. Consistently lowperforming centers produced positive impacts that were not distinguishable from the impacts produced by consistently high-performing centers or centers that fell in a middle group that was neither consistently high nor consistently low. This finding is troubling, because the lowest-ranking centers may be penalized financially or otherwise for not showing satisfactory performance, even though they provide the same value added for their students as do high-performing centers."

With regard to welfare programs, Friedlander (1988) investigated the use of performance indicators in welfare-to-work programs of the 1980 s and found little relationship between outcomes and impacts. Some of the programs that changed outcomes the most served clients with relatively poor outcomes and vice-versa. On the other hand, results from the AFDC HomemakerHome Health Aide experiment (Zornitsky and Rubin, 1988) found a more consistent relationship between impacts and outcomes: "A key result that emerged from our validation analysis is that there are candidate measures that represent valid predictors of both earnings gains and reductions in welfare dependency. Of over twenty separate correlations evaluated, fourteen or 70 percent were found to be significant and with the expected sign. As was anticipated, however, some measures performed better than others."

Taken as a whole, these studies suggest that performance indicators appear to work poorly for a wide range of people. Perhaps they are more useful for subgroups of individuals. Figure 2.4 compares, for most disadvantaged sample members over a three-year period, the impacts on earnings of each program used in this report (the vertical axis) to the outcomes for program group members in the various programs (the horizontal axis). If average earnings levels revealed which programs were most effective, then sites with higher earnings levels for program group members
would also be the sites with the largest impacts on earnings. On the figure, they would appear to the right and near the top of the figure. Likewise, the least effective programs would also have low program group earnings and would appear on the left and to the bottom of the figure.

Figure 2.4 implies that earnings levels are a fairly good, though not perfect, indicator of which programs were most effective. For example, three program groups had earnings of nearly $\$ 2,500$ per year, and these three programs had among the largest impacts for the most disadvantaged. One of the three was the only program to increase earnings by more than $\$ 1,200$ per year. Likewise, each of the programs in which individuals earned less than $\$ 1,000$ per year had among the smallest impacts on earnings. Overall, the correlation between program group earnings levels and program impacts was 0.579 for most disadvantaged sample members, indicating a substantial degree of correlation between the two measures.

A very different and less promising story is told by Figure 2.5, which shows the same results for the least disadvantaged sample members. In this case, there is no clear relationship between program group earnings and program impacts on earnings. For example, the least disadvantaged sample members in one program earned nearly $\$ 12,000$ per year on average, but the impact for this program was in the middle of the range shown in Figure 2.5. Overall, the correlation between earnings for the average program group member and a program's impact on earnings was only 0.031 for the least disadvantaged, indicating very little relationship between the two.

These results suggest that performance indicators may be more useful measures of how much effect a program has for more disadvantaged welfare recipients than for less disadvantaged sample members. The reason is that earnings for the most disadvantaged are relatively low in all sites and relatively consistent across sites, so differences in earnings levels of people who passed through programs in different places gives a reasonable - though not perfect - indication of the effect of the program. In contrast, earnings of the least disadvantaged program group members vary substantially from place to place and less disadvantaged sample members who earned a lot in a site may have done so even in the absence of welfare-to-work services.

IMPACTS FOR OTHER SUBGROUPS

This section presents pooled results for four other sets of subgroups: (1) by welfare status prior to random assignment (long-term recipients, short-term recipients, and new applicants); (2) by high school credential; (3) by earnings in the year prior to random assignment; and (4) by number of children at random assignment. In addition, Appendix A presents impacts on earnings, welfare benefits, and income for a range of other subgroups, both pooled within the five program models and by program.

By prior-year earnings. Table 2.5 shows pooled impacts by program model on earnings, welfare benefits, and income over three years for three subgroups defined by earnings reported to the UI system in the year prior to random assignment: (1) those with no earnings, (2) those with $\$ 5,000$ or less in earnings, and (3) those with more than $\$ 5,000$ in earnings. Recall that whether someone worked in the year prior to random assignment was one of the three criteria used to define level of disadvantage. In general, results by prior-year earnings are similar to results by level of disadvantage. Job search activities and a focus on employment appear to be most effective for groups with less recent earnings, implying that they benefit more from help finding work than other groups, and implying that they benefit more from employment than from basic education.

The benefits of an employment focus are less clear for the high-earnings group. While mixed-activity programs, which would have emphasized job search for this group, increased their earnings by about $\$ 1,000$ per year per person, the job-search-first and earnings supplement programs did not significantly increase their earnings. The effects of the earnings supplement programs might be especially instructive. Perhaps because many of the incentives in these programs encouraged primarily part-time work, they had little ability to encourage those who would have worked anyway to work more.

By welfare status. Table 2.6 shows pooled impacts for long-term recipients (those who had been on welfare for at least two years prior to random assignment), short-term recipients, and new applicants. Results for this subgroup might help an administrator target services by how long someone has been on welfare. Differences by program model are also important to the extent that longterm recipients are the group most likely to hit welfare time limits. In general, results are consistent with results by level of disadvantage, with larger impacts for groups and program models where job search was emphasized. One interesting result is the large impact on earnings of education-first programs for new applicants. This result is somewhat mysterious since within the education-first programs, a large proportion of the new applicants came from Oklahoma City where impacts on earnings were quite small.

By high school credential. Table 2.7 shows pooled impacts by high school credential. Results for this subgroup may shed light on whether mandatory remedial education has been an effective means of increasing the earnings of welfare recipients who lack a high school diploma or GED. In addition, these subgroups correspond most closely to the subgroups shown in Table 1.4, which showed the impacts of programs in GAIN and NEWWS on participation in activities such as job search and education. Impacts on earnings by high school credential might provide the strongest evidence in favor of job search. In the job-search-first programs, where emphasis on job search would have been similar for the two groups, impacts on earnings were similar for the two groups. Most striking are results for the education-focused mixed-activity programs, where impacts on earnings were significantly greater for high school graduates - a group where job search was emphasized - than for nongraduates, for whom education received more emphasis.

By number of children. Table 2.8 shows pooled impacts for families with one, two, or three or more children at the time of random assignment. Impacts vary more widely across these three subgroups than for the subgroups presented above. In each case, impacts over the three-year period are smaller for families with one child than for families with three or more children. This is a somewhat surprising result in light of the notion that larger families will face more barriers to work, such as child care. It might reflect the fact that smaller families in the control group had higher earnings than larger families, leaving less room for the programs to benefit smaller families.

Figure 2.1
Impacts on Annual Earnings Over Three Years for Most Disadvantaged
Sample Members

Figure 2.2
Impacts on Annual Earnings Over Three Years for Moderately Disadvantaged Sample Members

Figure 2.3
Impacts on Annual Earnings Over Three Years for Least Disadvantaged Sample Members

Figure 2.4
Program Group Earnings Compared to Earnings Impact Most Disadvantaged Sample Members

Figure 2.5
Program Group Earnings Compared to Earnings Impact Least Disadvantaged Sample Members

Table 2.1
Impacts on Earnings, Welfare Payments, and Income by Level of Disadvantage by Program Model

Program and Subgroup	Sample Size	Impacts on Average Total Earnings per Year (\$)		Impacts on Average AFDCPayments per Year (\$)		Impacts on Average Total Income per Year	
		Years 1-3	Year 3	Years 1-3	Year 3	Years 1-3	Year 3
Job search first				\dagger	$\dagger \dagger \dagger$		
Most disadvantaged	3,111	586 ***	668 ***	-752 ***	-708***	-348**	-228
Moderately disadvantaged	11,013	634 ***	574 ***	-568 ***	-526 ***	-47	-87
Least disadvantaged	2,570	186	30	-364***	-202 *	-278	-225
Employment-focused mixed activities		$\dagger \dagger$	\dagger	$\dagger \dagger$	$\dagger \dagger \dagger$		
Most disadvantaged	1,854	$866^{* * *}$	1,008 ***	-418 **	-368*	403 *	607 **
Moderately disadvantaged	7,539	1,406 ***	1,558 ***	-855 ***	-886 ***	337 **	426 **
Least disadvantaged	1,600	859 **	769	-359 **	-240	417	529
Education-focused mixed activities		$\dagger \dagger$	$\dagger \dagger$			$\dagger \dagger$	\dagger
Most disadvantaged	4,752	91	152	-351 **	-302	-282	-167
Moderately disadvantaged	10,548	461 ***	688 ***	-342 ***	-337***	62	288
Least disadvantaged	1,983	1,326 ***	1,448 **	-235	-240	1,048 **	1,175 **
Education first		\dagger				$\dagger \dagger$	
Most disadvantaged	5,282	242 ***	404 ***	-362 ***	-410 **	-299	-271
Moderately disadvantaged	21,576	262 ***	350 ***	-262 ***	-287***	-66	16
Least disadvantaged	5,074	-248	-266	-270 ***	-223*	-612 ***	-531
Earnings supplements		\dagger					\dagger
Most disadvantaged	3,778	598 ***	686 ***	74	-87	847 ***	803 ***
Moderately disadvantaged	21,148	393 ***	535 ***	228 ***	-42	1,058 ***	1,095 ***
Least disadvantaged	8,917	104	206	343 **	268	981 ***	1,555 ***

Table 2.1 (Continued)
SOURCE: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, and Baseline Information Forms.
NOTE: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: $*=10$ percent; ${ }^{* *}=5$ percent; and $* * *=1$ percent.
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent; and $\dagger \dagger \dagger=1$ percent.
A Q-test was applied to differences across program models for each subgroup and outcome. Impacts were significantly different at the 1 percent level for all outcomes and subgroups with the following exceptions. Impacts on welfare benefits in Year 3 were not significantly different across program models. Impacts on earnings for the least disadvantaged were significantly different at the 10 percent significance level. Impacts on welfare benefits for the most disadvantaged were significantly different at the 5 percent significance level.
Individuals were classified as most disadvantaged if they had no earnings in the year prior to random assignment, did not have a high school diploma or GED at random assignment, and had received welfare continuously for two years prior to random assignment. Individuals were classified as least disadvantaged if they had none of these characteristics. All other sample members were classified as moderately disadvantaged.

Table 2.2
Estimated Determinants of Impacts on Earnings Over Three Years
by Level of Disadvantage

	Level of Disadvantage		
	Most	Moderate	Least
Welfare-to-work participation			
Impact on Job Search	$19.8 * * *$	$29.7 * * *$	14.5
	(7.7)	(6.7)	(20.3)
Impact on Basic Education	-3.9	-3.0	34.1
	(4.8)	(6.5)	(28.5)
Impact on Vocational Training	15.8	24.4	4.3
	(16.4)	(16.4)	(54.5)
Impact on Work Experience	-32.3	$-44.0 * *$	-12.5
	(20.0)	(19.8)	(62.5)
Financial work incentives			
Part-time (20 hours per week)	-0.06	$-3.63 * * *$	-4.21
	(1.17)	(1.02)	(3.07)
Full-time (40 hours per week)	$1.75 * *$	$2.72 * * *$	1.10
	(0.72)	(0.68)	(2.04)
Time limit	-282	-62	385
	(266)	(247)	(725)
Economic factors			
Welfare grant level	0.00	-0.19	2.81
for a family of 3	(0.45)	(0.60)	(1.80)
Unemployment rate	0.5	-22.3	-67.0
	(26.2)	(28.7)	(106.2)
Intercept	153	277	-1130
	(278)	(340)	(1168)

Notes: Estimates are the result of a random-effects regression using subgroup impacts.
Individuals were classified as most disadvantaged if they had no earnings in the year prior to random assignment, did not have a high school diploma or GED at random assignment, and had received welfare for two years prior to random assignment. Individuals were classified as moderately disadvantaged if they faced one or two of these barriers, and they were classified as least disadvantaged if they faced none of the barriers.

Statistical significance levels are indicated as: $*=10$ percent; ${ }^{* *}=5$ percent; and ${ }^{* * *}=1$ percent. Standard errors are shown in parentheses.

The part-time work incentive is estimated as the difference in income from earnings, cash assistance payments, and Food Stamps (for U.S. studies) or earning supplement payments (for SSP) between the new and old programs for a parent with two children who works 20 hours per week and earns $\$ 6$ per hour. The full-time work incentive is defined in a similar way if the parent works 40 hours per week.

Table 2.3
Estimated Determinants of Impacts on Welfare Payments Over Three Years
by Level of Disadvantage

	Level of Disadvantage		
	Most	Moderate	
Welfare-to-work participation			Least
Impact on Job Search	-12.8^{*}	-14.4	-9.7
	(6.8)	(10.3)	(13.5)
Impact on Education	1.4	6.2	7.5
	(4.4)	(9.6)	(17.4)
Impact on Vocational Training	-2.8	4.1	18.9
	(14.3)	(25.1)	(33.8)
Impact on Work Experience	16.3	11.7	27.0
	(20.5)	(28.4)	(38.1)
Financial work incentives			
Part-time (20 hours per week)	$6.03 * * *$	$8.23 * * *$	$10.35 * * *$
	(1.28)	(1.63)	(2.38)
Full-time (40 hours per week)	-0.83	-0.96	-1.18
	(0.65)	(0.98)	(1.33)
Time limit	$-380 *$	-318	-571
	(216)	(377)	(485)
Economic factors			
Welfare grant level	-0.52	-0.29	0.48
for a family of 3	(0.37)	(0.89)	(1.22)
Unemployment rate	-13.2	-22.1	0.4
	(27.5)	(42.1)	(69.4)
Intercept	51	-34	-624
	(248)	(522)	(739)

Notes: Estimates are the result of a random-effects regression using subgroup impacts.
Individuals were classified as most disadvantaged if they had no earnings in the year prior to random assignment, did not have a high school diploma or GED at random assignment, and had received welfare for two years prior to random assignment. Individuals were classified as moderately disadvantaged if they faced one or two of these barriers, and they were classified as least disadvantaged if they faced none of the barriers.

Statistical significance levels are indicated as: $*=10$ percent; $* *=5$ percent; and ${ }^{* * *}=1$ percent. Standard errors are shown in parentheses.

The part-time work incentive is estimated as the difference in income from earnings, cash assistance payments, and Food Stamps (for U.S. studies) or earning supplement payments (for SSP) between the new and old programs for a parent with two children who works 20 hours per week and earns $\$ 6$ per hour. The full-time work incentive is defined in a similar way if the parent works 40 hours per week.

Table 2.4

Estimated Determinants of Impacts on Income Over Three Years by Level of Disadvantage

	Level of Disadvantage		
	Most	Moderate	Least
Welfare-to-work participation			
Impact on Job Search	$\begin{array}{r} -3.0 \\ (9.9) \end{array}$	$\begin{array}{r} 4.0 \\ (9.8) \end{array}$	$\begin{gathered} -12.3 \\ (23.7) \end{gathered}$
Impact on Education	$\begin{array}{r} -3.3 \\ (6.0) \end{array}$	$\begin{gathered} -1.4 \\ (9.4) \end{gathered}$	$\begin{array}{r} 29.8 \\ (31.8) \end{array}$
Impact on Vocational Training	$\begin{array}{r} -1.7 \\ (20.6) \end{array}$	$\begin{gathered} 43.1 \\ (23.8) \end{gathered}$	$\begin{array}{r} 48.2 \\ (62.4) \end{array}$
Impact on Work Experience	$\begin{array}{r} 8.0 \\ (26.7) \end{array}$	$\begin{array}{r} -18.0 \\ (27.7) \end{array}$	$\begin{array}{r} 38.2 \\ (69.3) \end{array}$
Financial work incentives			
Part-time (20 hours per week)	$\begin{aligned} & 5.24 \text { *** } \\ & (1.56) \end{aligned}$	$\begin{array}{r} 0.82 \\ (1.44) \end{array}$	$\begin{array}{r} -2.26 \\ (3.77) \end{array}$
Full-time (40 hours per week)	$\begin{aligned} & 2.52 \text { *** } \\ & (0.89) \end{aligned}$	$\begin{aligned} & 5.90 \text { *** } \\ & (0.96) \end{aligned}$	$\begin{aligned} & 6.22 \text { ** } \\ & (2.64) \end{aligned}$
Time limit	$\begin{aligned} & -917 \text { *** } \\ & (353) \end{aligned}$	$\begin{array}{r} -586 \\ (358) \end{array}$	$\begin{array}{r} -212 \\ (834) \end{array}$
Economic factors			
Welfare grant level for a family of 3	$\begin{array}{r} -0.09 \\ (0.53) \end{array}$	$\begin{array}{r} 0.05 \\ (0.86) \end{array}$	$\begin{aligned} & 4.95 \text { ** } \\ & (2.19) \end{aligned}$
Unemployment rate	$\begin{array}{r} -20.4 \\ (36.1) \end{array}$	$\begin{array}{r} -21.3 \\ (41.4) \end{array}$	$\begin{array}{r} -57.1 \\ (121.9) \end{array}$
Intercept	$\begin{array}{r} 98 \\ (349) \end{array}$	$\begin{array}{r} -66 \\ (500) \end{array}$	$\begin{gathered} -2348 \text { * } \\ (1339) \end{gathered}$

Notes: Estimates are the result of a random-effects regression using subgroup impacts.
Individuals were classified as most disadvantaged if they had no earnings in the year prior to random assignment, did not have a high school diploma or GED at random assignment, and had received welfare for two years prior to random assignment. Individuals were classified as moderately disadvantaged if they faced one or two of these barriers, and they were classified as least disadvantaged if they faced none of the barriers.

Income includes earnings, cash assistance welfare payments, Food Stamp benefits, and SSP earning supplement payments.

Statistical significance levels are indicated as: $*=10$ percent; $* *=5$ percent; and ${ }^{* * *}=1$ percent. Standard errors are shown in parentheses.

The part-time work incentive is estimated as the difference in income from earnings, cash assistance payments, and Food Stamps (for U.S. studies) or earning supplement payments (for SSP) between the new and old programs for a parent with two children who works 20 hours per week and earns $\$ 6$ per hour. The full-time work incentive is defined in a similar way if the parent works 40 hours per week.
Table 2.5
Impacts on Earnings, Welfare Payments, and Income by Prior-Year Earnings by Program Model

$\underline{\text { Program and Subgroup }}$	SampleSize	Impacts on Average Total Earnings per Year (\$)				Impacts on Average AFDC Payments per Year (\$)				Impacts on Average Total Income per Year			
		Years 1-3		Year 3		Years 1-3		Year 3		Years 1-3		Year 3	
Job search first					\dagger				$\dagger \dagger$				
No earnings	9,832	663	***	678	***	-637	***	-628	***	-117		-113	
\$5,000 or less	4,604	493		503	**	-544		-475	***	-152		-102	
More than \$5,000	2,345	184		-275		-403	***	-151		-316		-446	
Employment-focused mixed activities													
No earnings	6,545	1,366	***	1,509	***	-763	***	-813	***	408	***	468	**
\$5,000 or less	3,082	895	***	914	***	-572		-542	***	202		244	
More than \$5,000	1,428	1,269	***	1,415	**	-748	***	-572	***	358		766	
Education-focused mixed activities													
No earnings	10,911	334	***	537	***	-331	***	-326		-43		159	
\$5,000 or less	4,047	313		310		-289	**	-255		-31		-3	
More than \$5,000	2,325	923	*	1,156	*	-209		-162		703		1,005	*
Education first											\dagger		\dagger
No earnings	17,102	189		293	***	-200	***	-216	***	-65		67	
\$5,000 or less	10,487	14		10		-285	***	-363	***	-363		-476	**
More than \$5,000	4,605	126		308		-213		-83		-136		236	
Earnings supplements			\dagger		\dagger								
No earnings	17,647		***	711	***	184	**	-16		940		1,057	***
\$5,000 or less	9,839	288		285		253	**	3		1,107	***	1,091	***
More than \$5,000	7,196	-66		102		377	***	291		1,187	***	1,384	

Table 2.5 (Continued)
NOTE: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: $*=10$ percent; $* *=5$ percent; and $* * *=1$ percent.
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent; and $\dagger \dagger \dagger=1$ percent.
A Q-test was applied to differences across program models for each subgroup and outcome. Impacts were significantly different at the 1 percent level for all outcomes and subgroups with the following exceptions. Impacts on welfare benefits in Year 3 were not significantly different across program models. Impacts on earnings for the least disadvantaged were significantly different at the 10 percent significance level. Impacts on welfare benefits for the most disadvantaged were significantly different at the 5 percent significance level.
Individuals were classified based on earnings reported to the unemployment insurance (UI) system.
Table 2.6
Impacts on Earnings, Welfare Payments, and Income by Welfare Status by Program Model

$\underline{\text { Program and Subgroup }}$	SampleSize	Impacts on Average Total Earnings per Year (\$)				Impacts on Average AFDC Payments per Year (\$)				Impacts on Average TotalIncome per Year			
		Years 1-3		Year 3		Years 1-3		Year 3		Years 1-3		Year 3	
Job search first							\dagger		\dagger				
Long-term recipient	9,998	607	***	578	***	-662	***	-632	***	-191	**	-208	*
Short-term recipient	6,256	401		311		-463	***	-372		-160		-155	
New applicant	440	1,600	*	1,797	*	-506		-146		709		1,278	
Employment-focused mixed activities													
Long-term recipient	6,084	1,256		1,388	***	-754	***	-750	***	320	**	439	**
Short-term recipient	3,978	1,185		1,145	***	-714		-669		315		337	
New applicant	931	-130		227		-229		-130		-468		109	
Education-focused mixed activities													
Long-term recipient	11,504	351	**	488	***	-339	***	-292		-22		166	
Short-term recipient	4,055	871		1,099		-225		-243		612	**	818	**
New applicant	1,724	622		845		-588	**	-568	*	-82		154	
Education first			\dagger		$\dagger \dagger$		\dagger		$\dagger \dagger$		$\dagger \dagger$		$\dagger \dagger$
Long-term recipient	17,613	216		310		-295	***	-400		-192	*	-275	
Short-term recipient	9,606	-20		98		-162		-94		-228	*	21	
New applicant	4,713	1,197	***	1,883		-2		244		1,213		2,306	***
Earnings supplements											\dagger		$\dagger \dagger$
Long-term recipient	15,511		***	280	**			30		787	***	563	***
Short-term recipient	6,408	358		519	**	304		263		966		991	***
New applicant	11,924	84		311		272	**	-21		366	**	2,010	***

Table 2.6 (Continued)
SOURCE: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, and Baseline Information Forms.
NOTE: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated
as: $*=10$ percent; $* *=5$ percent; and $* *=1$ percent.
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent;
and $\dagger \dagger \dagger=1$ percent.
A Q-test was applied to differences across program models for each subgroup and outcome. Impacts were significantly different at the 1 percent level for
all outcomes and subgroups with the following exceptions. Impacts on welfare benefits in Year 3 were not significantly different across program models.
Impacts on earnings for the least disadvantaged were significantly different at the 10 percent significance level. Impacts on welfare benefits for the most
disadvantaged were significantly different at the 5 percent significance level.
Individuals were classified as long-term recipients if they had received welfare for two or more years prior to random assignment, short-term recipients if
they had received welfare for less than two years prior to random assignment, and new applicants if they had never received welfare prior to random
assignment.
Table 2.7

$\underline{\text { Program and Subgroup }}$	Sample Size	Impacts on Average Total Earnings per Year (\$)			Impacts on Average AFDC Payments per Year (\$)				Impacts on Average Total Income per Year			
		Years 1-3	Year 3		Years 1-3		Year 3		Years 1-3		Year 3	
Job search first												
No high school diploma/GED	6,506	597 ***			-627		-581		-154		-131	
High school diploma/GED	10,275	497 ***	407		-535		-462		-163		-183	
Employment-focused mixed activities		$\dagger \dagger$										
No high school diploma/GED	4,452	896 ***	1,088		-602		-585		199		377	*
High school diploma/GED	6,603	1,449 ***	1,495		-750		-771		496		524	**
Education-focused mixed activities		$\dagger \dagger$		\dagger						$\dagger \dagger$		$\dagger \dagger$
No high school diploma/GED	8,578	135	265		-346		-313		-264	*	-111	
High school diploma/GED	8,705	702 ***			-303		-328		347	*	551	**
Education first		$\dagger \dagger$		$\dagger \dagger$		$\dagger \dagger$		\dagger				
No high school diploma/GED	13,838	306 ***	438		-315		-377		-120		-88	
High school diploma/GED	18,356	48	82		-171		-159	**	-168	*	-57	
Earnings supplements												
No high school diploma/GED	9,178	402 ***			247	*	152		853	***	838	***
High school diploma/GED	25,504	220 **	362	***	273	***	63			***	1,099	***

SOURCE: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, and Baseline Information Forms.
NOTE: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: $*=10$ percent; $* *=5$ percent; and $* * *=1$ percent.
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent; and $\dagger \dagger \dagger=1$ percent.
A Q-test was applied to differences across program models for each subgroup and outcome. Impacts were significantly different at the 1 percent level for all outcomes and subgroups with the following exceptions. Impacts on welfare benefits in Year 3 were not significantly different across program models. Impacts on earnings for the least disadvantaged were significantly different at the 10 percent significance level. Impacts on welfare benefits for the most disadvantaged were significantly different at the 5 percent significance level.
Table 2.8

Program and Subgroup	$\begin{array}{r} \text { Sample } \\ \text { Size } \end{array}$	Impacts on Average Total Earnings per Year (\$)				Impacts on Average AFDC Payments per Year (\$)				Impacts on Average Total Income per Year			
		Years 1-3		Year 3		Years 1-3		Year 3		Years 1-3		Year 3	
Job search first					\dagger		+		$\dagger \dagger$				
Three or more	4,240	744		844		-764	***	-796	***	-179		-136	
Two	5,390	414		259		-506		-384	***	-239	*	-292	
One	7,150	477		400		-500	***	-425	***	-87		-75	
Employment-focused mixed activities			$\dagger \dagger$		$\dagger \dagger$								
Three or more	2,843	1,582		1,599		-797		-812	***	650	**	632	*
Two	3,623	1,417		1,747		-724		-735		483	**	782	***
One	4,524	876		877		-656		-629		78		105	
Education-focused mixed activities			$\dagger \dagger$		\dagger				\dagger				
Three or more	4,379	367		592		-235		-242		64		291	
Two	5,463	865		1,116		-425		-516		375	**	514	**
One	7,266	136		239		-245		-113		-129		120	
Education first							$\dagger \dagger$						
Three or more	7,856	284		377		-355		-423	***	-202		-217	
Two	10,277	102		65		-218		-255		-202	*	-290	
One	14,061	18		150		-150		-136	*	-150		68	
Earnings supplements					\dagger						\dagger		
Three or more	6,338	494				243		-315		1,207		1,237	***
Two	12,735	126		144		303		171		660	***	717	***
One	15,353	287		542	***	255	***	182		805	***	1,050	***

Table 2.8 (Continued)
NOTE: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated
as: $*=10$ percent; $* *=5$ percent; and $* * *=1$ percent.
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent;
and $\dagger \dagger=1$ percent.
A Q-test was applied to differences across program models for each subgroup and outcome. Impacts were significantly different at the 1 percent level for
all outcomes and subgroups with the following exceptions. Impacts on welfare benefits in Year 3 were not significantly different across program models.
Impacts on earnings for the least disadvantaged were significantly different at the 10 percent significance level. Impacts on welfare benefits for the most
disadvantaged were significantly different at the 5 percent significance level.

Chapter 3

Impacts on Stable Employment

This chapter presents results on employment stability by subgroup. Although results on earnings presented in Chapter 2 are likely to generally reflect the impact of programs and program models on employment overall, two programs with similar effects on earnings might have different effects on stable employment. One might operate in a higher-wage labor market than the other, or one might result in sustained employment for a relatively small number of people while the other results in sporadic employment for many more people.

Knowing which programs improved stable employment is useful because stable employment is likely to produce other positive effects. For one, nonexperimental research has found that earnings and wages grow more quickly for individuals who work steadily, so programs that encourage stable employment are more likely to help participants eventually escape poverty and the need for public assistance. ${ }^{28}$ Moreover, welfare-to-work activities that help participants achieve stable employment are also likely to help them avoid reaching welfare time limits.

The chapter presents results for three measures of stable employment: whether someone worked in the year after random assignment and then worked in six of the eight quarters in the second and third years after random assignment; whether they worked in nine of the twelve quarters of the three years after random assignment; and whether they worked in six out of the eight quarters in the second and third years after random assignment (whether or not they worked in the first year after random assignment). Each of these measures defines stable employment as having worked at least 75 percent of the time over some period, and follows the example set by work in NEWWS. ${ }^{29}$ Each measure of stable employment is based solely on quarterly reports to the UI system. ${ }^{30}$ As a result, only jobs in the formal sector count as employment and contribute to the measures of stable employment. Moreover, there is no way to distinguish between stable employment that involved one day of work each quarter from employment in which a person worked full-time every week for several consecutive quarters.

The chapter follows the same format as Chapter 2. Impacts are first presented by level of disadvantage, starting with pooled results by program model, a graphical presentation of results by program, and a meta-analysis to explore which factors are associated with larger or smaller impacts on stable employment. The chapter then compares impacts to program group levels as a means of exploring the usefulness of performance indicators to assess the effectiveness of welfare-to-work programs. The chapter ends with a brief discussion of results for subgroups defined by earnings in the year prior to random assignment, welfare status, high school credential, number of children, and risk of depression. Since the conclusions drawn by looking at other subgroups are essentially the same as the conclusions drawn from the results in this chapter, results for the additional subgroups are presented in Appendix B.

[^12]As discussed in Chapter 2 three levels of disadvantage were defined. The "most disadvantaged" group consists of long-term recipients (who had been on welfare for at least two years prior to random assignment) who had not graduated from high school or worked in the year prior to random assignment. The "least disadvantaged" group consists of people who had none of these barriers. The "moderately disadvantaged" group consists of people who had one or two barriers.

SUMMARY OF FINDINGS

x The most disadvantaged are much less likely to find stable employment than the least disadvantaged. Among most disadvantaged control group members, only about 5 percent worked at least 75 percent of the follow-up period, compared with about 20 percent of the moderately disadvantaged and more than one third of the least disadvantaged. However, the same is not true for new applicants, who were only slightly more likely to find stable employment than were long-term welfare recipients. This suggests that knowing someone is a welfare applicant provides limited useful information on their likely employment prospects.
x A focus on employment, either through job search or full-time work incentives, appears key in using pre-employment policies to increase stable employment among welfare recipients. Job-search first, employment-focused mixed-activity programs, and programs with earnings supplements - particularly supplements for full-time work - were most effective at increasing stable employment for the most disadvantaged and moderately disadvantaged. By contrast, the two types of education-oriented programs had smaller effects on stable employment than the other three program models.
X Impacts on stable employment tended to be larger for groups with less work experience. Effects on stable employment were generally larger for people with no earnings in the year prior to random assignment than for individuals with substantial employment, and were generally larger for the most disadvantaged group than for the least disadvantaged group. This may reflect the fact that that program participants with a more substantial recent work history are better able than others to find stable work on their own: The least disadvantaged control group members were about 10 times as likely as the most disadvantaged to find stable employment.

X Impacts on stable employment tended to be larger for groups who might be better able to respond to participation requirements and work incentives. Effects on stable employment were generally larger for high school graduates than for nongraduates and were generally larger for people with a low risk of depression than for those with a high risk of depression. This might reflect the ability of individuals in the different groups to take advantage of program services and earnings supplements. Regardless of services and incentives they are offered, high school nongraduates might face difficulty convincing a good employer to give them a chance. Likewise, those at a high risk of depression might have difficulty putting lessons learned through job clubs into effect.
x Performance indicators may be more indicative of program impacts for more disadvantaged groups than for less disadvantaged groups. For the most disadvantaged sample members, programs with larger impacts on stable employment also tended to be the ones with more employment stability among program group members. This was not the case for the least
disadvantaged sample members. This result may suggest that the use of performance indicators such as whether program participants stay employed for several quarters in a row might be a more accurate measure of the effect of a program for more disadvantaged groups, for whom stable employment is expected to be low across sites in the absence of a program.

POOLED IMPACTS BY PROGRAM MODEL

Table 3.1 presents pooled impacts on the three measures of stable employment by level of disadvantage for the five program models described in Chapter 1. As discussed in Chapter 2, to calculate the pooled results, the sample from the various studies was pooled, and impacts were calculated from the pooled sample, taking into account the program and site that an individual came from. This is essentially the same as taking a weighted average of the impacts across programs, with weights representing the proportion of a subgroup that came from a particular study.

Because differences in the level of employment stability by subgroup have not been explored in previous analyses of random assignment studies, Table 3.1 shows not only impacts on stable employment but also the proportion of control group members who had stable employment. It is striking - but not surprising - how much less stable employment there was for the most disadvantaged than for the least disadvantaged. For example, in random assignment studies of job-search-first programs, only 4.8 percent of the most disadvantaged control group members worked in six of the eight quarters after they found work (the first measure shown on the table) compared with 18.3 percent of moderately disadvantaged sample members and 36.1 percent of least disadvantaged sample members. Looking across all program models and all three measures of stable employment, only about 4 to 13 percent of most disadvantaged control group members had stable employment. Among the moderately disadvantaged, the level is generally two to four times as high, ranging from about 15 to about 31 percentage points. And among the least disadvantaged, stable employment is even more likely. For example, more than half of the least disadvantaged control group members in earnings supplement studies worked in at least 6 of the first 8 quarters after random assignment.

In terms of impacts, there have been two prior attempts to use random assignment evaluations to synthesize the effects of random assignment studies of pre-employment strategies on stable employment. Freedman (2000) found that Portland's employment-focused mixed-activities approach generated the largest effects on stable employment among programs studied in NEWWS, perhaps because of the use of both job search and education activities, but perhaps because the program operated in a strong economy or because it encouraged participants to take good jobs that paid more than the minimum wage, involved full-time work, and provided fringe benefits. Freedman (2000) also found that job-search-first programs generated somewhat larger effects on employment stability than education-focused programs, although many of the people who found work quickly in the Riverside LFA program also lost their jobs quickly. Adding MFIP and SSP to this synthesis, Michalopoulos (2001) found that the two earnings supplement programs generated even larger effects on stable employment on average than programs that used only welfare-to-work services. The monthly incentive provided by those programs may have encouraged recipients to stay at work when they felt like quitting or to find new jobs if they lost their first jobs. This chapter
expands on the prior two syntheses by examining results for about twice as many programs and by examining impacts on employment stability by subgroup.

For the most disadvantaged, results in Table 3.1 generally confirm the results from Freedman (2000) and Michalopoulos (2001), and are similar to the impacts on earnings described in Chapter 2. For the most disadvantaged welfare recipients, earnings supplement programs and the two program models that stressed job search for the most disadvantaged all resulted in greater steady work, while the two program models that stressed basic education for this group had relatively small effects on stable employment.

For the moderately disadvantaged, all of the program models generated statistically significant increases in stable employment using all three measures, with impacts ranging from 1.5 percentage points (or about 7 percent of the control group level) to 10.2 percentage points (or about 47 percent of the control group level), depending on which measure and which program model are examined. According to all three measures, however, the more education-oriented program models resulted in substantially smaller increases in stable employment than the other program models.

Results for the least disadvantaged sample members also point to the importance of an employment focus. The two versions of mixed-activity programs (employment-focused and education-focused) had the largest effects on stable employment, and both primarily increased job search among job-ready participants. By contrast, education-first programs reduced the proportion of the least disadvantaged that worked in 6 of the 8 quarters in years 2 and 3 by 3.8 percentage points.

IMPACTS FOR INDIVIDUAL PROGRAMS

Having established the relative benefits of different program models, it is reasonable to ask how consistent programs are within the five program models. This section addresses the question by showing the effects of each program on annual earnings over three years. The results are shown in three figures, one for each level of disadvantage. ${ }^{31}$

Figure 3.1 shows for the most disadvantaged the effects of the programs on the proportion of sample members who worked in nine of the twelve quarters during the three years after random assignment (the second outcome shown in the tables). In general, impacts within each program model are fairly consistent. In fact, differences across programs within a program model were statistically insignificant for the five program models. ${ }^{32}$ Both employment-focused mixed-activity programs had substantial effects on employment stability, three of the four job-search-first programs had modest effects, and the education-focused mixed-activities and education-first programs generally had small effects for the most disadvantaged.

Less consistent among the most disadvantaged are the earnings supplement programs. One of the programs generated among the largest increases in stable employment for the most disadvantaged and several generated increases in stable employment that were larger than any of

[^13]the education-oriented programs. However, several of the earnings supplement programs generated fairly small increases in stable employment. Especially ineffective were the two versions of the Vermont WRP policy, which had the least generous supplement of all the programs shown in Figure 3.1 (shown as the fifth and sixth bars among the earnings supplement programs). This suggests that generous earnings supplements can help individuals maintain steady work, perhaps because they provide a constant incentive to remain at work. Even among earnings supplement programs, however, differences in impacts on stable employment were not statistically significant.

Figure 3.2 shows that results for the moderately disadvantaged are similar to results for the most disadvantaged. Impacts are fairly consistent and fairly positive for the job-search-first and employment-focused mixed-activity programs, fairly consistent but less positive for the two education-oriented sets of programs, and less consistent for the earnings supplement programs.

As for the most disadvantaged, several earnings supplement programs generated sizable impacts on stable employment for the moderately disadvantaged, but the two versions of WRP and the MFIP Incentives Only program did not. Because the programs generally had more moderately disadvantaged than most disadvantaged sample members, however, differences across the earnings supplements were statistically significant for the moderately disadvantaged. This provides more rigorous evidence that some incentives - presumably the more generous incentives - encourage more stable employment than other incentives. ${ }^{33}$

Figure 3.3 shows similar results for the least disadvantaged. In general, few of the programs generated sizable effects on stable employment for the least disadvantaged. This may be due to the relatively high levels of stable employment for this group. The most notable exception is the SSP program in New Brunswick, which increased stable employment by 17 percentage points, but which had few least disadvantaged sample members (which suggests that the increase in stable employment may be as much statistical fluke as a real effect). ${ }^{34}$

EXPLAINING DIFFERENCES IN IMPACTS ACROSS PROGRAMS

Pooled results by program model implied that job search and earnings supplements were effective methods for encouraging stable employment. However, some programs with earnings supplements generated much larger effects on stable employment than others, and there was likewise variation across the programs that used mandatory employment-related services. This section explores the relationship between policies and impacts on stable employment using metaanalytic techniques that were motivated and described in Chapter 2.

Table 3.2 shows the relationship between various factors and impacts on whether someone worked in 9 of the 12 quarters following random assignment. Results using the other two measures of stable employment were quite similar and are therefore not presented.

[^14]As anticipated, the two factors that are associated with larger increases in stable employment are impacts on participation in job search activities and full-time work incentives (but not part-time incentives). For the most disadvantaged and the moderately disadvantaged, an increase in job search of one percentage point is associated with an increase in stable employment of .24 percentage points and an increase in the monthly full-time work incentive of $\$ 1$ is associated with an increase in stable employment of .02 percentage points.

The effect of job search helps explain why some programs were more effective than others. Compare the Riverside and Los Angeles GAIN programs. Riverside GAIN increased job search among those in need of basic education by 31.3 percentage points, but Los Angeles GAIN increased job search for this group 7.4 percentage points. The regression implies that this difference of 23.9 percentage points (31.3-7.4) explains a difference of 5.8 percentage points (.24*23.9) in the impact on stable employment for the most disadvantaged between the two programs, or about half of the 10 percentage point difference that actually existed for the most disadvantaged (an impact of 10.0 percentage points for Riverside GAIN and -0.1 percentage point for Los Angeles GAIN).

The other significant correlate of increases in stable employment for the most disadvantaged is full-time work incentives. This could explain why some programs with financial work incentives had larger effects than other programs. For example, the full-time work incentive in MFIP was calculated at $\$ 148$ per month for a single parent with two children earning $\$ 6$ per hour. In the two SSP programs, by comparison, the full-time work incentive was $\$ 542$ per month in British Columbia and $\$ 436$ per month in New Brunswick, while in Vermont there was no incentive to work full time. Impacts on stable employment correspond closely to these different incentives. For the most disadvantaged, the MFIP's incentives increased stable employment by 4.4 percentage points, SSP's incentives increased earnings by 6.5 percentage points in British Columbia and 6.8 percentage points in New Brunswick, and WRP's incentives did not significantly affect stable employment.

Finally, the results imply that a program can be especially effective if it combines an emphasis on employment with financial work incentives. By adding a participation requirement to its financial incentive, the full MFIP program increased stable employment among the most disadvantaged by 9.8 percentage points compared with 4.4 percentage points for the MFIP incentives-only program. Among the moderately disadvantaged, the full MFIP program increased stable employment by 6.5 percentage points, while the MFIP incentives by themselves did not significantly affect stable employment.

USE OF PERFORMANCE INDICATORS

Chapter 2 showed that earnings levels might be a useful measure of the effectiveness of a welfare-to-work program for the most disadvantaged but not for the least disadvantaged. In light of the large number of welfare recipients that have gone to work since 1993, the focus of many welfare systems has turned to employment retention. This section explores whether levels of stable employment among program group members are likely to provide an indication of the effectiveness of a program at encouraging stable employment. As in Chapter 2, this section argues that performance indicators might be more useful among more disadvantaged groups than among welfare recipients more generally.

Figure 3.4 compares the proportion of most disadvantaged program group members with stable employment in a program to that program's impact on stable employment among the most disadvantaged. For this figure, a person is considered to have steady employment if she works in 9 of the 12 quarters following random assignment. The figure implies that levels of stable employment are a fairly good, though not perfect, indicator of which programs were most effective at encouraging stable employment. For example, in two programs, more than 15 percent of most disadvantaged sample members had stable employment, and both programs generated impacts on stable employment of more than 10 percentage points. Overall, the correlation between stable employment in the program group and program impacts was 0.667 for most disadvantaged sample members, indicating a substantial degree of correlation between the two measures.

A very different and less promising story is told by Figure 3.5, which shows the same results for the least disadvantaged sample members. In this case, there is no clear relationship between the proportion of the program group that achieved stable employment and program impacts on stable employment. For example, more than 60 percent of the least disadvantaged sample members in Jobs First had stable employment, but the impact of Jobs First on employment stability was in the middle of the range shown in Figure 3.5. At the other extreme, only about 25 percent of the least disadvantaged sample members in Oklahoma City had stable employment, but the impact of this program was also near the middle of the range shown in the figure. Overall, the correlation between stable employment in the program group and a program's impact on stable employment was -0.069 for the least disadvantaged, indicating very little relationship between the outcomes and impacts.

These results suggest that performance indicators may be more useful measures of how much effect a program has for more disadvantaged welfare recipients than for less disadvantaged sample members. The reason is that more disadvantaged groups are unlikely to find stable employment on their own in all sites, so differences in levels of stable employment of people who passed through programs in different places gives a reasonable - though not perfect - indication of the effect of the program. In contrast, levels of stable employment among the least disadvantaged program group members vary substantially from place to place.

IMPACTS FOR OTHER SUBGROUPS

This section presents pooled results for four other sets of subgroups: (1) by welfare status prior to random assignment (long-term recipients, short-term recipients, and new applicants); (2) by high school credential; (3) by earnings in the year prior to random assignment; and (4) by number of children at random assignment. In addition, it presents results by program by risk of depression. Appendix B presents impacts on stable employment for a range of other subgroups, both pooled within the five program models and by program. ${ }^{35}$

By prior-year earnings. Table 3.3 shows pooled control group levels and program impacts by program model on the three measures of stable employment for three subgroups defined by earnings reported to the UI system in the year prior to random assignment: (1) those with no earn-

[^15]ings, (2) those with $\$ 5,000$ or less in earnings, and (3) those with more than $\$ 5,000$ in earnings. Recall that whether someone worked in the year prior to random assignment was one of the three criteria used to define level of disadvantage. In general, results by prior-year earnings are similar to results by level of disadvantage. Job search activities and a focus on employment appear to be most effective for groups with less recent earnings, implying that they benefit more from help finding work than other groups, and implying that they benefit more from employment than from basic education.

The benefits of an employment focus are less clear for the high-earnings group. While em-ployment-focused mixed-activity programs substantially increased stable employment for the highearnings group, the job-search-first and education-focused mixed-activity programs did not consistently results in more stable employment for them.

Also noteworthy is the contrast between the effect of the earnings supplement programs on stable employment and their effect on earnings. As shown in Chapter 2, the earnings supplement programs as a group had little effect on earnings for the high-earnings groups, most likely because the part-time work incentives contained in most welfare earnings disregards encouraged some members of this group to cut back their work effort from full time to part time. By contrast, the earnings supplement programs did significantly increase stable employment for the high-earnings group, although the impact is modest. This might reflect the ability of the programs to move some people into work and give them a constant incentive to stay there, even while they encourage some people to work fewer hours when they do work.

By welfare status. Table 3.4 shows pooled results for long-term recipients (those who had been on welfare for at least two years prior to random assignment), short-term recipients, and new applicants. Results for this subgroup might help an administrator target services by how long someone has been on welfare. Differences by program model are also important to the extent that longterm recipients are the group most likely to hit welfare time limits. In general, results are consistent with results by level of disadvantage, with larger impacts for groups and program models where job search was emphasized.

There is a striking contrast between impacts by level of disadvantage and impacts by welfare status for the groups that might be considered most job ready - the least disadvantaged and new welfare applicants. While more employment-focused approaches significantly increased stable employment for the least disadvantaged, they did not generally have much effect on stable employment for new welfare applicants. This may reflect the heterogeneous nature of new applicants. Some have encountered circumstances that have forced them on the rolls temporarily, but others are at the beginning of a long welfare spell. While the least disadvantaged also have recent work experience and a high school diploma, new applicants might have neither of these. This contrast also appears in the proportion of control group members who found stable employment. While the least disadvantaged control group members were 10 times as likely to find stable employment as the most disadvantaged, new applicants in many of the programs were no more likely than longterm recipients to find stable employment.

By high school credential. Table 3.5 shows pooled results by high school credential. Because of how stable employment is defined, it is not surprising that the more education-oriented approaches had relatively small effects on stable employment for high school nongraduates. If participants followed through with their education assignments, it would have been hard for them to
find work early enough to work in 9 of the 12 quarters following random assignment. If they did not follow through on their education assignments, on the other hand, it is unlikely that the programs would have much of an effect. The results make it clear that encouraging stable employment in the short term requires more of an employment focus.

By number of children. Table 3.6 shows pooled impacts for families with one, two, or three or more children at the time of random assignment. Impacts are fairly consistent across the three subgroups for all of the program models.

By risk of depression. Table 3.7 shows results by risk of depression for nine programs where information was available on sample members' risk of depression at the time of random assignment. This subgroup is of interest for two reasons. First, many welfare recipients are at high risk of depression. For example, Brock et al. (2002) found that about one-fourth of current and former welfare recipients in high-poverty neighborhoods in Cuyahoga County (Cleveland), Ohio were at risk of depression. Second, previous subgroup analyses have indicated that welfare-to-work programs have been most effective for those at the lowest risk of depression, raising the question of whether this is true for other outcomes such as stable employment,

Risk of depression was assessed using sample members' responses to four items from the 20-item Center for Epidemiological Studies Depression (CES-D) Scale. Each respondent was asked how often in the prior week she felt sad, how often she felt depressed, how often she felt lonely, and how often she had trouble shaking the blues. Answers to these questions were used to assess an individual's risk of depression because the CES-D Scale has been found to be correlated with clinical depression. That is, individuals who say they suffer from many of the symptoms or suffer from some symptoms frequently are more likely than others to be judged by a psychiatrist to be depressed. Sample members were divided into three groups: those at high risk of depression, those at moderate risk, and those at low risk. (In the interest of brevity, those groups will often be referred to as the most depressed, the moderately depressed, and the least depressed.) For more details on how the subgroups were defined, see Appendix A of Michalopoulos and Schwarz (2000).

Because results are available for only nine programs, results are shown for each program. Because there are so few programs in each program model (and no education-focused mixedactivity programs), pooled results are shown across all programs. The pooled results indicate that the programs did not significantly increase stable employment for the highest risk group, but had larger effects for those at moderate risk of depression and the largest effects for those at low risk of depression.

Figure 3.1
Impacts on Percentage Employed in 9 of 12 Quarters for Most Disadvantaged Sample Members

Figure 3.2
Impacts on Percentage Employed in 9 of 12 Quarters for Moderately Disadvantaged Sample Members

Figure 3.3
Impacts on Percentage Employed in 9 of 12 Quarters for Least Disadvantaged Sample Members

Figure 3.4
Comparison of Program Group Levels to Impacts
Stable Employment
for Most Disadvantaged Sample Members

Figure 3.5
Comparison of Program Group Levels to Impacts
Stable Employment
for Least Disadvantaged Sample Members

NOTE: A person is considered to have stable employment if she worked in 9 of the 12 quarters following random assignment.
Table 3.1 (Continued)
SOURCE: MDRC calculations from unemployment insurance (UI) earnings records, information colleted at baseline, and (for SSP) follow-up surveys with sample members.
NOTE: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: *
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent; at random assignment, and had received welfare for two years prior to random assignment. Individuals were classified as least disadvantaged if they had none o these characteristics. All other sample members were classified as moderately disadvantaged.

Table 3.2

Estimated Determinants of Impacts on Whether Employed in 9 of 12 Quarters by Level of Disadvantage

	Level of Disadvantage		
	Most		Moderate
Welfare-to-work participation			Least
Impact on Job Search	$0.24^{* * *}$	$0.24 * * *$	0.16
Impact on Basic Education	(0.09)	(0.06)	(0.13)
Impact on Vocational Training	-0.02	-0.03	0.10
	(0.05)	(0.06)	(0.18)
Impact on Work Experience	0.10	0.02	-0.14
	(0.19)	(0.16)	(0.37)
Financial work incentives	-0.31	-0.21	-0.21
Part-time (20 hours per week)	(0.22)	(0.17)	(0.39)
Full-time (40 hours per week)			-0.01
	0.01	-0.01	(0.02)
Time limit	(0.01)	(0.01)	0.01
	$0.02 *$	$0.02 * * *$	(0.01)
Economic factors	(0.01)	(0.01)	-0.15
Welfare grant level	-0.78	-0.50	(4.74)
for a family of 3	(3.29)	(2.48)	
Unemployment rate			0.01
Intercept	0.00	$(0.01$	(0.01)

Notes: Estimates are the result of a random-effects regression using subgroup impacts.
Individuals were classified as most disadvantaged if they had no earnings in the year prior to random assignment, did not have a high school diploma or GED at random assignment, and had received welfare for two years prior to random assignment. Individuals were classified as moderately disadvantaged if they faced one or two of these barriers, and they were classified as least disadvantaged if they faced none of the barriers.

Statistical significance levels are indicated as: $*=10$ percent; $* *=5$ percent; and ${ }^{* * *}=1$ percent. Standard errors are shown in parentheses.

The part-time work incentive is estimated as the difference in income from earnings, cash assistance payments, and Food Stamps (for U.S. studies) or earning supplement payments (for SSP) between the new and old programs for a parent with two children who works 20 hours per week and earns $\$ 6$ per hour. The full-time work incentive is defined in a similar way if the parent works 40 hours per week.
Table 3.3
Impacts on Stable Employment by Prior-Year Earnings by Program Model

$\underline{\text { Program and Subgroup }}$	Sample Size	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)			Employed in 9 of 12 Quarters (\%)			Employed in 6 of 8 Quarters (\%)		
		Control Group	Impact		Control Group	Impact		Control Group	Impact	
Job search first										
No earnings	9,832	9.5	5.5		10.8			14.7	5.3	
\$5,000 or less	4,604	26.0	5.2		28.9	4.8		32.7	4.1	
More than \$5,000	2,345	41.6	1.1		42.1	1.7		46.0	0.6	
Employment-focused mixed activities										
No earnings	6,545	7.9	10.3		8.7	11.0		13.5	11.2	***
\$5,000 or less	3,082	23.2	6.7		24.5	8.0		29.4	6.6	***
More than \$5,000	1,428	39.1	8.3		41.0	5.8		44.8	5.2	
Education-focused mixed activities										
No earnings	10,911	6.6	2.0		7.1	2.5		9.4	3.4	
\$5,000 or less	4,047	21.5	0.9		22.0	2.1		25.3	1.6	
More than \$5,000	2,325	38.2	3.5		37.8	4.4		40.4	5.7	
Education first										
No earnings	17,102	10.0	0.9		11.8	1.6		16.2	2.3	***
\$5,000 or less	10,487	26.6	-0.1		30.9	-1.0		35.1	-0.7	
More than \$5,000	4,605	45.0	0.0		47.4	1.1		51.0	1.4	
Earnings supplements										
No earnings	18,333	14.3			15.6	5.8		20.7		
\$5,000 or less	10,036	36.1	4.6		38.1	4.8		42.8	4.4	
More than \$5,000	7,413	57.9	3.5	***	58.2	3.3	***	61.5	3.4	***

SOURCE: MDRC calculations from unemployment insurance (UI) earnings records, information colleted at baseline, and (for SSP) follow-up surveys with sample members.
NOTE: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: $*=10$ percent; ${ }^{* *}=5$ percent; and ${ }^{* * *}=1$ percent. An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent; and $\dagger \dagger \dagger=1$ percent.
Table 3.4
Impacts on Stable Employment by Welfare Status by Program Model

Program and Subgroup	Sample	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)		Employed in 9 of 12Quarters (\%)		Employed in 6 of 8 Quarters (\%)	
		Control Group	Impact	Control Group	Impact	Control Group	Impact
Job search first					\dagger		$\dagger \dagger$
Long-term recipient	9,998	15.1	5.9 ***	16.7	6.1 ***	20.0	6.1 ***
Short-term recipient	6,256	23.8	3.2 ***	25.6	3.0 **	30.3	1.6
New applicant	440	17.7	9.1	19.0	10.6 *	24.1	10.0
Employment-focused mixed activities					\dagger		$\dagger \dagger \dagger$
Long-term recipient	6,084	13.8	9.6 ***	14.7	$10.4{ }^{* * *}$	19.2	11.1 ***
Short-term recipient	3,978	18.5	9.4 ***	19.6	9.8 ***	25.1	7.9 ***
New applicant	931	26.0	-2.4	29.7	-6.0	34.1	-9.3
Education-focused mixed activities							
Long-term recipient	11,504	11.6	2.3 ***	11.7	3.4 ***	13.9	4.1 ***
Short-term recipient	4,055	17.2	3.6 **	18.3	3.2 *	21.5	3.8 **
New applicant	1,724	20.9	2.1	21.8	2.5	26.2	1.6
Education first			\dagger				$\dagger \dagger$
Long-term recipient	17,613	19.3	1.6 **	22.1	1.5 **	26.0	2.6 ***
Short-term recipient	9,606	24.4	-1.0	27.0	-0.5	31.7	-0.5
New applicant	4,713	15.6	1.2	19.0	0.6	23.9	-1.5
Earnings supplements			$\dagger \dagger$		$\dagger \dagger \dagger$		
Long-term recipient	15,792	25.6	5.2 ***	27.2	5.4 ***	32.6	4.7 ***
Short-term recipient	6,533	29.7	5.7 ***	31.5	5.6 ***	36.2	5.1 ***
New applicant	12,608	36.0	0.5	36.7	1.1	40.6	2.2 **

SOURCE: MDRC calculations from unemployment insurance (UI) earnings records, information colleted at baseline, and (for SSP) follow-up surveys with sample members.
NOTE: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: $*=10$ percent; ${ }^{* *}=5$ percent; and $* * *=1$ percent. An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent; and $\dagger \dagger \dagger=1$ percent.
New applicants had never received welfare in the past; short-term recipients had received welfare for less than two years.
Table 3.5
Impacts on Stable Employment by High School Credential by Program Model

Program and Subgroup	Sample Size	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)			Employed in 9 of 12 Quarters (\%)			Employed in 6 of 8 Quarters (\%)		
		Control Group	Impact		Control Group	Impact		Control Group	Impact	
Job search first										
No high school diploma/GED	6,506	11.9	5.6		13.3	5.9		16.5	5.4	
High school diploma/GED	10,275	22.8	4.2		24.5	4.2		28.8	3.6	
Employment-focused mixed activities				$\dagger \dagger$						
No high school diploma/GED	4,452	10.6	6.6		11.2			14.8	8.3	
High school diploma/GED	6,603	20.1	10.6	***	21.4	10.4		26.6	10.0	
Education-focused mixed activities				$\dagger \dagger \dagger$			$\dagger \dagger \dagger$			\dagger
No high school diploma/GED	8,578	11.3	0.1		11.9	0.4		13.4	1.4	
High school diploma/GED	8,705	17.2			17.7			21.3		
Education first										
No high school diploma/GED	13,838	13.9	1.2		16.5	1.4		19.9	2.0	
High school diploma/GED	18,356	25.1	0.4		27.9	0.6		32.6	1.1	
Earnings supplements										
No high school diploma/GED	9,315	19.2			20.9			24.8	4.4	***
High school diploma/GED	26,467	33.5	4.5		34.6	4.8		39.5	4.9	***

SOURCE: MDRC calculations from unemployment insurance (UI) earnings records, information colleted at baseline, and (for SSP) follow-up surveys with sample members.
NOTE: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: $*=10$ percent; ${ }^{* *}=5$ percent; and $* * *=1$ percent. An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent; and $\dagger \dagger \dagger=1$ percent.

Table 3.6

Impacts on Employment Stability by Number of Children by Program Model

Program and Subgroup	Sample Size	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)			Employed in 9 of 12 Quarters (\%)			Employed in 6 of 8 Quarters (\%)		
		Control Group	Impact		Control Group	Impact		Control Group	Impact	
Job search first										
Three or more	4,240	15.5	5.8		16.8	6.0		20.1	6.0	
Two	5,390	20.5	3.9		21.9	4.2		26.0	3.5	
One	7,150	19.1	4.3		20.9	4.5	***	25.0	3.6	
Employment-focused mixed activities										
Three or more	2,843	13.1	11.7		14.6	11.6		20.0	10.8	
Two	3,623	17.3	7.7		17.8	9.0		22.3	9.4	***
One	4,524	17.6	8.2		18.9	8.3	***	23.1	7.8	***
Education-focused mixed activities										
Three or more	4,379	12.0	2.3		12.1	3.3		13.9	4.2	
Two	5,463	14.8	3.6		15.8	3.0		18.4	3.7	
One	7,266	15.4	0.6		15.7	1.7		18.8	2.2	*
Education first										
Three or more	7,856	18.0	0.7		20.9	0.8		25.0	2.1	
Two	10,277	21.2	1.0		23.7	1.3		28.0	1.5	*
One	14,061	21.4	-0.3		24.2	-0.1		28.3	0.1	
Earnings supplements										
Three or more	6,495	25.4	6.2		27.0	6.1	***	31.5	6.1	***
Two	13,064	29.4	4.1		30.4			35.3	4.4	***
One	15,892	31.8	3.7		33.3	3.8	***	37.9	4.2	***

[^16]Table 3.7
Impacts on Stable Employment by Risk of Depression by Program

Program and Subgroup	SampleSize	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)		Employed in 9 of 12Quarters (\%)		Employed in 6 of 8Quarters in Years 2 and 3 (\%)	
		Control Group	Impact	Control Group	Impact	Control Group	Impact
Pooled across all progams			\dagger		\dagger		\dagger
High risk	3,615	19.9	2.3	22.3	2.0	27.2	1.8
Moderate risk	6,170	19.3	4.1 ***	21.1	5.0 ***	25.7	4.8 ***
Low risk	16,832	20.7	5.8 ***	22.0	6.3 ***	26.8	6.4 ***
Job search first							
Atlanta LFA							
High risk	383	28.4	0.6	30.0	3.7	33.2	5.2
Moderate risk	762	24.2	0.6	26.7	1.2	30.4	2.8
Low risk	1,999	25.5	3.8 *	27.0	3.8	31.3	4.0 *
Grand Rapids LFA							
High risk	319	25.3	2.6	31.7	1.1	40.8	-3.8
Moderate risk	488	22.2	9.3 **	24.9	11.5 ***	30.6	10.1 **
Low risk	1,148	24.3	7.2 ***	29.4	4.8	34.7	5.0 *
Riverside LFA							
High risk	519	12.9	3.0	14.1	1.1	17.5	0.9
Moderate risk	858	12.6	5.2 **	13.3	7.1 ***	17.8	5.2 *
Low risk	2,425	14.2	5.6 ***	14.5	6.1 ***	18.7	5.0 ***
Employment-focused mixed activities							
Portland			\dagger		$\dagger \dagger$		\dagger
High risk	775	17.9	6.3 **	19.5	6.9 **	24.6	6.3 *
Moderate risk	1,174	23.7	4.2	25.2	5.2	29.9	6.8 **
Low risk	2,946	19.9	11.4 ***	20.6 ***	13.4 ***	25.9	14.3 ***
Education first							
Atlanta HCD							
High risk	400	28.3	-5.6	29.9	-4.3	33.1	-1.3
Moderate risk	826	24.3	1.8	26.8	2.7	30.5	5.1
Low risk	1,970	25.5	0.0	27.0	0.2	31.2	3.1

Table 3.7 (continued)

Program and Subgroup	Sample Size	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)		Employed in 9 of 12 Quarters (\%)		Employed in 6 of 8 Quarters in Years 2 and 3 (\%)	
		Control Group	Impact	Control Group	Impact	Control Group	Impact
Education first (continued)							
Grand Rapids HCD							
High risk	304	25.1	-3.4	31.5	-4.4	40.9	-3.4
Moderate risk	474	22.5	0.6	25.1	3.6	30.9	1.1
Low risk	1,164	24.3	5.0 *	29.4	3.9	34.7	5.8 **
Riverside HCD							
High risk	270	11.9	-1.6	11.9	-0.9	15.7	-1.7
Moderate risk	444	7.9	3.5	8.8	2.6	11.6	2.5
Low risk	1,010	11.1	3.6 *	11.4	4.1 *	15.1	4.1 *
Earnings Supplements							
SSP - British Columbia			$\dagger \dagger$				
High risk	263	5.2	13.0 ***	9.3	15.3 ***	10.1	16.7 ***
Moderate risk	482	7.4	5.0 *	10.0	6.0 **	10.9	5.9 *
Low risk	1,782	14.3	1.9	15.1	7.9 ***	17.2	6.6 ***
SSP - New Brunswick							
High risk	247	18.0	-1.2	19.5	1.5	20.3	2.4
Moderate risk	451	9.0	7.8 **	11.2	$9.5{ }^{* * *}$	12.6	10.0 ***
Low risk	1,724	17.4	$7.8{ }^{* * *}$	18.9	10.6 ***	20.1	11.3 ***

[^17]
Chapter 4

Impacts on Stable Welfare Exits

According to Chapter 2, employment-focused programs caused larger reductions in welfare receipt than either education-focused programs or programs with earnings supplements, especially for more disadvantaged groups. A program can generate large reductions in welfare receipt either by helping a relatively small number of people leave welfare for a prolonged period or by helping many people leave welfare for a short period, to return after a few months. This chapter explores the ability of various welfare-to-work programs to help people remain off welfare. This is the first attempt we know of to systematically examine the effects of welfare-to-work programs on stable welfare exits using data from random assignment studies.

Understanding which approaches to encouraging work help people stay off the rolls takes on obvious added importance in this era of time-limited welfare benefits. Education and training programs had smaller impacts on welfare benefit payments overall (according to Chapter 2), but their payoff might be better jobs that allow people to stay off the rolls for a sustained period later. Likewise, programs with enhanced earnings disregards increase welfare use in the short term, but they generate considerable employment stability (according to Chapter 3) that might help families stay off the rolls longer when they finally do leave. On the contrary, job-search-first programs might be reducing welfare receipt only temporarily if they help parents find unstable welfare exits.

As in Chapters 2 and 3, this chapter first examines these issues for subgroups defined by level of disadvantage, starting with pooled results by program model, a graphical presentation of results by program, and a meta-analysis to explore which factors are associated with larger or smaller impacts on stable welfare exits. The chapter then compares impacts to program group levels as a means of exploring the usefulness of performance indicators to assess the effectiveness of welfare-to-work programs. The chapter ends with a brief discussion of results for subgroups defined by earnings in the year prior to random assignment, welfare status, high school credential, number of children, and risk of depression. Since the conclusions drawn by looking at the other subgroups are essentially the same as the conclusions drawn from the results in this chapter, results for the additional subgroup are presented in Appendix C.

The chapter examines three measures of stable welfare exits: whether someone left welfare in the year after random assignment and was off welfare in six of the eight quarters in the second and third years after random assignment; whether they were off welfare in nine of the twelve quarters of the three years after random assignment; and whether they stayed off welfare for four or more consecutive quarters the first time they were off the rolls after random assignment. These measures are modeled after the types of stable employment outcomes used in Chapter 3 and MDRC's other work on employment stability in random assignment studies.

The effectiveness of a program at encouraging stable welfare exits might vary with the measure that is used. A person must leave welfare in the first year to have a stable welfare exit by either of the first two measures (being off welfare in the year after random assignment and six of the eight quarters in the second and third years after random assignment, and being off welfare for nine quarters in the twelve-quarter follow-up period). Programs that rely on education and training might fare poorly by these measures, since they are successful only if some people stay on welfare
while they take advantage of education and training opportunities. Education-focused programs might be better judged by the third outcome, which deems someone to have had a stable welfare exit if they are off the rolls for four consecutive quarters at any time in the following period. By this measure, a person who continued to receive welfare while enrolled in school for two years but remained off the rolls for the entire third year would be counted as having a stable welfare exit.

SUMMARY OF FINDINGS

x More disadvantaged sample members are less likely to have stable welfare exits than less disadvantaged sample members. About 25 percent of the most disadvantaged sample members stayed off welfare for four or more consecutive quarters within three years of random assignment, compared with more than half of the least disadvantaged sample members. Results were similar for the other two measures of stable welfare exits. These differences are not surprising since most disadvantaged sample members were long-term welfare recipients prior to random assignment, and history is often an excellent indicator of the future.
x Conclusions about stable welfare exits were sensitive to which definition was used. The three measures represent somewhat different concepts. One of the measures counts an individual as having a stable exit only if she left welfare in the year after random assignment, while a second measure looks at the entire three-year period. The third measure does not require an early exit but regards an exit as a success if it is sustained for four or more quarters. While the educationfocused programs are unlikely to be successful by either of the first two measures because they try to keep individuals on welfare for some time while their skills are improved, they are more likely to be successful according to the third measure.

X In general, results were similar across subgroups. For virtually every subgroup split that was examined, for each of the five program models, and for each of the three outcomes, impacts on stable welfare exits were not statistically significantly different for different subgroups. Since Chapter 3 found greater differences in the impacts of the programs on stable employment, this suggests that a number of programs are encouraging people to leave welfare without helping them find stable work.

X Most earnings supplement programs do not encourage stable welfare exits. All of the earnings supplement programs except SSP used enhanced earnings disregards, which allow welfare recipients to remain on welfare with more earnings. As a result, they encourage people to combine work and welfare rather than to leave welfare for work. Although these programs encourage selfsufficiency through work, in a world of time-limited welfare they also make it more likely that welfare recipients will use up their time on welfare quickly.
x Program group levels of stable welfare exits were not especially good indicators of how effective programs were at encouraging stable welfare exits for either the most disadvantaged or the least disadvantaged. In contrast to results on earnings and stable employment shown in Chapters 2 and 3, the proportion of program group members with stable welfare exits was not highly correlated with how much a program increased stable welfare exits for either the most disadvantaged or least disadvantaged. Focusing just on programs that operated in California's relatively generous welfare environment, however, there was more of a relationship for the most disadvantaged. This suggests that the use of performance indicators might be a more
accurate measure of how well programs promote stable welfare exits for more disadvantaged groups, as long as adjustments are made for features of the local environment that might increase or decrease the likelihood that people stay on the rolls.

POOLED IMPACTS BY PROGRAM MODEL

Table 4.1 presents pooled impacts and control group levels for the three measures of stable welfare exits by level of disadvantage for the five program models described in Chapter 1. As discussed in Chapter 2 three levels of disadvantage were defined. The "most disadvantaged" group consists of long-term recipients (who had been on welfare for at least two years prior to random assignment) who had not graduated from high school or worked in the year prior to random assignment. The "least disadvantaged" group consists of people who had none of these barriers. The "moderately disadvantaged" group consists of people who had one or two barriers. Also as discussed in Chapter 2, to calculate the pooled results, the sample from the various studies was pooled, and impacts were calculated from the pooled sample, taking into account the program and site that an individual came from. This is essentially the same as taking a weighted average of the impacts across programs, with weights representing the proportion of a subgroup that came from a particular study.

Off welfare in 9 of $\mathbf{1 2}$ quarters

The three measures of stable welfare exits may potentially tell very different stories. The first measure, having been off welfare for nine of twelve quarters, is in some ways the most comprehensive. A stable welfare exit by this definition requires someone to leave welfare within the first year and to remain off welfare most of the rest of the follow-up period. Programs with immediate and sustained effects will look better than either programs with delayed effects (such as education-oriented programs) or with temporary effects.

According to this first measure, the most disadvantaged are about one-third as likely to have stable welfare exits as the least disadvantaged. In job-search-first programs, for example, 10.8 percent of the most disadvantaged sample members had stable welfare exits compared with 35.4 percent of the least disadvantaged. In addition, results for control group members are similar across the five program models, suggesting that bias from different samples will not have much effect on comparisons across the program models.

In terms of impacts, the results are somewhat different from the impacts on earnings presented in Chapter 2 and the impacts on stable employment presented in Chapter 3. In those analyses, programs that used a substantial amount of job-search activities or work incentives especially full-time work incentives - were the most effective. Focusing still on the first outcome shown in Table 4.1, only the job-search-first and the education-first programs succeeded at increasing the number of stable welfare exits among the most disadvantaged. In particular, the employment-focused mixed-activities programs that were so successful at increasing employment and earnings did not significantly increase the likelihood of leaving welfare steadily.

Results for the earnings supplement programs are instructive. While these programs were fairly effective at promoting stable employment and increasing earnings, they resulted in fewer welfare exits for moderately and least disadvantaged sample members. This is a consequence of the fact that earnings were supplemented through enhanced welfare earnings disregards in most of
these studies, with the two SSP sites being the exceptions. Enhanced earnings disregards encourage people to combine work and welfare, and thus lengthen the time that people stay on welfare.

In contrast to the small to modest effects on stable welfare exits for the most disadvantaged, all of the program models without earnings supplements increased stable welfare exits for the least disadvantaged and all except the education-focused mixed-activities programs increased stable welfare exits for the moderately disadvantaged. Combined with results from Chapter 3, this implies that mandatory welfare-to-work services discourage welfare use even when they don't result in extra employment, especially for the least disadvantaged.

Off welfare in year 1 and 6 of 8 quarters in years 2 and 3

The second measure, being off welfare in year 1 and six of the next eight quarters, is similar to the first definition in that it requires an effect within the first year and requires someone to remain off welfare 75 percent or more of the time. It is slightly less restrictive than the first measure in the sense that someone who leaves welfare in the last quarter of year 1 could have a stable welfare exit by remaining off welfare for six of the next eight quarters, or only seven of the twelve quarters overall. It is slightly more restrictive in the sense that the person must be off welfare for three-fourths of the second and third years, rather than three-fourths of the entire follow-up period.

Despite these minor differences, the results using this second measure are extremely close to the results using the first measure. This suggests that there is a great deal of overlap between the two measures. People who are off welfare for nine quarters in a three year period are also off for six of the last eight quarters, and vice versa, perhaps because most leave welfare and stay off through the remainder of the follow-up period.

Off welfare for four or more consecutive quarters

The third measure, being off welfare for four consecutive quarters during the first spell off welfare, is both more restrictive and less restrictive than the other measures. It is more restrictive in that it requires someone to have a sustained period of a year off welfare rather than being off welfare most of the time. It is less restrictive in that the year off welfare could happen at any time during the three-year follow-up period, and the person could have been on welfare every other quarter outside of that year. Since the year off welfare could have occurred in the second or third year after random assignment, programs that relied more on education and training to prepare individuals for work may look better by this measure.

More control group members had stable welfare exits according to this definition than by the other definitions. In evaluations of job-search-first programs, for example, 27.3 percent of the most disadvantaged control group members left welfare and stayed off for a year or more, compared to about 10 percentage points by the other definitions. Among the least disadvantaged control group members in those evaluations, 57.8 percent were off welfare for at least a year at a stretch.

In terms of impacts, results using the third measure are quite similar to results using the other two measures, although differences across the program models are somewhat smaller. Education-first programs had somewhat larger effects on stable welfare exits among the most disadvantaged using this measure. Employment-focused mixed-activities programs had virtually no
effect on stable welfare exits among the least disadvantaged. And earnings supplement programs did not reduce welfare exits by this definition.

IMPACTS FOR INDIVIDUAL PROGRAMS

Having established the relative benefits of different program models, it is reasonable to ask how consistent programs are within the five program models. This section addresses the question by showing the effects of each program on stable welfare exits, defined as having been off welfare for four or more consecutive quarters. The results are shown in three figures, one for each of the subgroups.

Figure 4.1 shows for the most disadvantaged the effects of the programs on the proportion of sample members who were off welfare for four or more consecutive quarters during the three years after random assignment (the third outcome shown in the tables). ${ }^{36}$ With the exception of the earnings supplement programs, the results suggest that programs within a program model were about equally effective or ineffective (in the case of the mixed-activity programs) at encouraging stable welfare exits among the most disadvantaged.

Both the job-search-first and education-first programs had fairly consistent and fairly positive effects. It is not clear why education-first programs performed more consistently better on this outcome than on other outcomes, although it is consistent with the notion that education programs take some time to have an effect (since someone could have remained on welfare for two years and still had a stable welfare exit by this definition).

The fact that programs in both categories consistently encouraged people to leave welfare might also reflect the use of tougher sanctions in most of these programs in comparison to most of the programs in the mixed-activities categories, although no program in this analysis used fullfamily sanctions that would eliminate a family's benefit entirely. Among the education-first programs, three programs that made extensive use of sanctions - the Grand Rapids HCD program and the two Columbus programs - are among those that increased stable welfare exits. Moreover, one of the two education-first programs with a small impact for the most disadvantaged was the Oklahoma City program, which was identified by NEWWS researchers as a de facto voluntary program. Although these suggest an important role for sanctioning, the Detroit program, which was also identified as less mandatory than education-first programs other than Oklahoma City, increased stable welfare exits by about as much as the Grand Rapids and Columbus programs.

Both employment-focused mixed-activity programs (Riverside GAIN and Portland JOBS) had large effects on earnings and stable employment for the most disadvantaged, but both had small to modest effects on stable welfare exits. Since California's welfare benefits are among the highest in the country, it is possible that most disadvantaged sample members worked steadily as a result of the Riverside program but did not earn enough to leave welfare. This is also consistent with the small effects of the education-focused mixed-activity programs, which were also in California, although it is interesting to note that the San Diego SWIM program (the leftmost bar on

[^18]the figure), the Riverside LFA program (the third bar from the left), and the Riverside HCD program (the third bar from the left among the education-first programs) significantly increased stable welfare exits, and increased stable welfare exits by about as much as they increased stable employment.

Earnings supplement programs were the one category with varying effects by program. There are two reasons for this diversity. As described earlier, the two SSP sites supplemented the earnings only of people who left welfare for full-time work. Thus, these two programs, which are represented by the two leftmost bars in the figure, increased work only by reducing welfare receipt. The other six programs supplemented earnings through the welfare system. By itself, this would have allowed more people to continue receiving welfare when they went to work, and should have reduced stable welfare exits. However, two of these programs - Florida's FTP program and Connecticut's Jobs First program - combined earnings supplements with time-limited welfare. These two programs, which are represented by the two rightmost bars on the figure, consequently increased welfare exits by the somewhat extreme measure of ending welfare benefits of families that reached the time limits in these programs.

Figure 4.2 shows that impacts on stable welfare exits for the moderately disadvantaged are similar to results for the most disadvantaged. Impacts are fairly consistent across programs except for the earnings supplement programs. ${ }^{37}$ The primary difference between impacts for the most disadvantaged and moderately disadvantaged is in the employment-focused mixed-activity programs, which had larger and more consistently positive effects among the moderately disadvantaged.

Figure 4.3 shows similar results for the least disadvantaged. ${ }^{38}$ In general, few of the programs generated sizable effects on stable welfare exits for the least disadvantaged. This may be because many in this group would have left welfare on their own, without the assistance of a welfare-to-work program. The most notable exception is the SSP program in New Brunswick, which increased stable welfare exits by 17 percentage points, but which had few least disadvantaged sample members (which suggests that the increase in stable employment may be as much statistical fluke as a real effect).

EXPLAINING DIFFERENCES IN IMPACTS ACROSS PROGRAMS

Pooled results by program model showed much less difference across the different program models than did results for earnings or stable employment. In particular, programs that stressed job search did about as well as programs that stressed education. Moreover, results were fairly consistent across programs within each program model that used only mandatory welfare-to-work services. This section delves deeper into these comparisons by exploring the relationship between

[^19]policies and impacts on stable welfare exits using meta-analytic techniques that were motivated and described in Chapter 2.

Table 4.2 shows the relationship between various factors and impacts on whether someone was off welfare for four consecutive quarters in the three years following random assignment. Results using the other two measures of stable employment were fairly similar and are therefore not presented.

As anticipated by the results by program and subgroup, welfare-to-work services do not generally appear to be associated with larger impacts on stable welfare exits. This stands in contrast to results on earnings and stable employment, for which job search was associated with larger effects.

Also as anticipated, part-time financial work incentives are associated with smaller impacts on stable welfare exits. This reflects the fact that part-time financial work incentives in these programs stemmed solely from welfare earnings disregards which would have encouraged or allowed families to stay on welfare when parents went to work.

By contrast, full-time work incentives are associated with increased impacts on stable welfare exits. The three programs with the strongest full-time work incentives were the two SSP programs and the Connecticut Jobs First program. The SSP programs increased stable welfare exits because people had to leave welfare for full-time work to receive SSP earnings supplements. The Connecticut program might have encouraged stable welfare exits not because of its full-time work incentive, but because it limited recipients to 21 months of welfare during the three years following random assignment.

As discussed earlier, programs that had relatively large effects on employment might have smaller effects on stable welfare exits if generous welfare grants allow people to combine work and welfare relatively easily. If that is the case, then programs in sites with higher welfare grants should have had smaller effects on stable welfare exits, all else equal. In other words, the estimated effect of welfare grant levels shown in Table 4.2 should be negative. In fact, it is negative for all three subgroups, but never statistically significantly different from zero.

USE OF PERFORMANCE INDICATORS

Chapter 2 showed that earnings levels might be a useful measure of the effectiveness of a welfare-to-work program for the most disadvantaged but not for the least disadvantaged, and Chapter 3 reached a similar conclusion regarding stable employment. Zornitsky and Rubin (1988) found that it was much harder to use outcomes as an indicator of the effectiveness of a program at reducing welfare use than at increasing employment and earnings. This section explores whether dividing people into subgroups by level of disadvantage provides a means of using levels of stable welfare exits as indicators of the effectiveness of a program at encouraging people to leave welfare. In contrast to Chapters 2 and 3, and in concurrence with Zornitsky and Rubin (1998), this section argues that subgroups do not increase the usefulness of performance indicators in assessing whether programs help recipients leave welfare and stay off the roles.

Figure 4.4 compares the proportion of most disadvantaged program group members with stable welfare exits in a program to that program's impact on stable welfare exits among the most
disadvantaged. For this figure, the third measure of stable welfare exits was used (off welfare in four or more consecutive quarters). The figure implies that levels of stable welfare exits are not especially strong indicators of which programs were most effective. For example, about 55 percent of most disadvantaged program group members in Oklahoma City had stable welfare exits, but the program had essentially no impact on this outcome. Likewise, there are a number of programs with relatively low levels of stable welfare exits among program group members, but their impacts were both high and low. Overall, the correlation between program group earnings levels and program impacts was 0.376 for most disadvantaged sample members, indicating only a marginally statistically significant relationship (p-value=0.064). Figure 4.5 actually shows a somewhat higher relationship between outcomes and impacts for the least disadvantaged group (correlation of .466).

As mentioned earlier, it is likely that people leave welfare faster in low-grant states than in high-grant states. In particular, employment is more likely to make someone ineligible for welfare in a low-grant state than in a high-grant state. To look for patterns in programs where welfare benefit levels are similar, Figures 4.6 and 4.7 restrict the comparisons to nine California programs included in the analysis.

There appears to be somewhat more of a relationship between outcomes and impacts of the California programs when looking at the most disadvantaged. The program with the largest effect on stable welfare exits - Riverside LFA, with an impact of 8 percentage points - had the second highest level of stable welfare exits as well. Likewise, the program with the smallest impact Alameda GAIN, at -2 percentage points - also had the lowest rate of stable exits. In fact, the correlation between outcomes and impacts in this case is 0.710 , which, despite the fact that only eight programs were involved in the estimate, is statistically significant at the 5 percent level (pvalue $=0.048$).

A less promising story is told by Figure 4.7, which shows results for the six California programs that had some least disadvantaged sample members (that is, excluding Alameda GAIN, Los Angeles GAIN, and Riverside HCD). In this case, there is no clear relationship between program group levels of stable welfare exits and program impacts on stable welfare exits. In all six programs, about 60 percent of the least disadvantaged left welfare for four or more consecutive quarters, but the impacts of the six programs ranged from about 0 to about 6 percentage points. Overall, the correlation between outcomes and impacts was only -0.181 for the least disadvantaged, indicating very little relationship between the two.

These results confirm the finding from Chapters 2 and 3 that performance indicators may be more useful measures of a program's effectiveness among more disadvantaged groups than among less disadvantaged groups.

IMPACTS FOR OTHER SUBGROUPS

This section presents pooled results for four other sets of subgroups: (1) by welfare status prior to random assignment (long-term recipients, short-term recipients, and new applicants); (2) by high school credential; (3) by earnings in the year prior to random assignment; and (4) by number of children at random assignment. In addition, it presents results by program by risk of depres-
sion. Appendix C presents impacts on stable welfare exits for a range of other subgroups, both pooled within the five program models and by program. ${ }^{39}$

By prior-year earnings. Table 4.3 shows pooled impacts by program model on stable welfare exits for three subgroups defined by earnings reported to the UI system in the year prior to random assignment: (1) those with no earnings, (2) those with $\$ 5,000$ or less in earnings, and (3) those with more than $\$ 5,000$ in earnings. Recall that whether someone worked in the year prior to random assignment was one of the three criteria used to define level of disadvantage. In general, results are similar across the three subgroups. In fact, there are no significant differences across the subgroups in any of the five program models for any of the three measures of stable welfare exits.

By welfare status. Table 4.4 shows pooled impacts for long-term recipients (those who had been on welfare for at least two years prior to random assignment), short-term recipients, and new applicants. Results for this subgroup might help an administrator target services by how long someone has been on welfare. Differences by program model are also important to the extent that longterm recipients are the group most likely to hit welfare time limits. There is little consistent pattern across subgroups, program models, or outcomes. In some cases, impacts are largest for short-term recipients, while in other cases they are larger for new applicants.

By high school credential. Table 4.5 shows pooled impacts by high school credential. In general, results are similar for high school graduates and nongraduates. In fact, only in one case for one subgroup are differences in impacts between the two subgroups statistically significant.

By number of children. Table 4.6 shows pooled impacts for families with one, two, or three or more children at the time of random assignment. As for the other subgroups, impacts are fairly consistent across the three subgroups for all of the program models, with no significant differences by family size for any of the program models for any of the outcomes.

By risk of depression. Table 4.7 shows results by risk of depression for nine programs where information was available on sample members' risk of depression at the time of random assignment. ${ }^{40}$ This subgroup is of interest for two reasons. First, many welfare recipients are at high risk of depression. For example, Brock et al. (2002) found that about one-fourth of current and former welfare recipients in high-poverty neighborhoods in Cuyahoga County (Cleveland), Ohio were at risk of depression. Second, previous subgroup analyses have indicated that welfare-to-work programs have been most effective for those at the lowest risk of depression, raising the question of whether this is true for other outcomes such as stable welfare exits.

[^20]Because results are available for only nine programs, results are shown for each program. Because there are so few programs in each program model (and no education-focused mixedactivity programs), pooled results are shown across all programs.

The pooled results indicate that the programs significantly increased stable welfare exits for all three risk groups, and that the impacts were about the same size for all three groups. This is in contrast to the effects of the programs on stable employment, which were largest for those at low risk of depression and close to zero for those at high risk of depression. This might be reason for concern. It implies that welfare and work policies - particularly those that use mandatory welfare-to-work services - are encouraging a number of people who might be depressed to leave the rolls without helping them find sustained employment.

Looking across programs models, the job-search first programs and the two SSP programs generally resulted in the largest increases in stable welfare exits for the high-risk group. By contrast, the Portland JOBS program did not have a significant effect for this group, just as it did not have a significant effect on stable employment for this group.

Figure 4.1
Impacts on Stable Welfare Exits for Most Disadvantaged Sample Members

Figure 4.2
Impacts on Stable Welfare Exits for Moderately Disadvantaged Sample Members

Figure 4.3
Impacts on Stable Welfare Exits for Least Disadvantaged Sample Members

Figure 4.4
Comparison of Program Group Level to Impact Stable Welfare Exits for Most Disadvantaged Sample Members

Figure 4.5
Comparison of Program Group Level to Impact Stable Welfare Exits for Least Disadvantaged Sample Members

NOTE: A person is considered to have a stable welfare exit if she was off welfare for four or more consecutive quarters in the three years following random assignment.

Figure 4.6
Comparison of Program Group Level to Impact Stable Welfare Exits for Most Disadvantaged Sample Members in California

Figure 4.7
Comparison of Program Group Level to Impact Stable Welfare Exits
for Least Disadvantaged Sample Members in California

NOTE: A person is considered to have a stable welfare exit if she was off welfare for four or more consecutive quarters in the three years following random assignment.

Table 4.1

Impacts on Stable Welfare Exits by Level of Disadvantage by Program Model

Program and Subgroup	Size	$\begin{gathered} \hline \text { Off Welfare in } 9 \text { of } 12 \\ \text { Quarters (\%) } \\ \hline \end{gathered}$		Off Welfare in Year 1 and 6 of 8 Quarters in Years 2 and 3 (\%)		Off Welfare 4Consecutive Quarters (\%)	
		Control Group	Impact	Control Group	Impact	Control Group	Impact
Job search first							
Most disadvantaged	3,111	10.8	7.3 ***	11.5	$7.6{ }^{* * *}$	27.3	7.2 ***
Moderately disadvantaged	11,013	21.5	5.0 ***	22.6	$5.5{ }^{* * *}$	41.5	5.4 ***
Least disadvantaged	2,570	35.4	5.5 ***	37.3	5.5 ***	57.8	4.7 **
Education first							
Most disadvantaged	5,213	12.6	2.4 *	12.8	3.1 *	29.6	4.0 **
Moderately disadvantaged	20,348	23.9	2.2 ***	25.2	2.3 ***	44.1	3.6 ***
Least disadvantaged	4,654	36.4	5.1 ***	37.6	5.6 ***	60.1	3.4 *
Employment-focused mixed activities			\dagger		$\dagger \dagger$		$\dagger \dagger \dagger$
Most disadvantaged	1,854	18.6	2.3	19.9	2.0	38.6	3.0
Moderately disadvantaged	7,539	26.0	8.3 ***	27.4	8.8 ***	46.3	9.9 ***
Least disadvantaged	1,600	39.3	7.0 **	41.1	8.9 **	64.2	-1.1
Education-focused mixed activities							
Most disadvantaged	4,752	11.5	1.2	11.7	1.3	24.2	1.8
Moderately disadvantaged	10,548	20.5	1.5	21.2	1.7	37.6	3.3 ***
Least disadvantaged	1,983	33.4	4.7 *	36.2	3.1 *	54.9	4.4
Earnings supplements			\dagger				
Most disadvantaged	3,836	14.1	-1.4	15.4	-1.9	27.6	-0.1
Moderately disadvantaged	21,496	25.3	$-3.5 * * *$	27.5	-3.6 ***	44.5	0.3
Least disadvantaged	8,936	42.5	-5.3 ***	45.9	-5.4 ***	60.6	-0.4

SOURCE: MDRC calculations from welfare administrative records records and information collected at baseline.
NOTE: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: $*=10$ percent; ${ }^{* *}=5$ percent; and ${ }^{* * *}=1$ percent.
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent; and $\dagger \dagger \dagger=1$ percent.
Individuals were classified as most disadvantaged if they had no earnings in the year prior to random assignment, did not have a high school diploma or GED at random assignment, and had received welfare for two years prior to random assignment. Individuals were classified as least disadvantaged if they had none of these characteristics, and were classified as moderately disadvantaged otherwise.

Table 4.2
Estimated Determinants of Impacts on Percentage Off Welfare for Four Consecutive Quarters By Level of Disadvantage

	Level of Disadvantage		
	Most	Moderate	Least
Welfare-to-work participation Impact on Job Search	$\begin{array}{r} 0.11 \\ (0.08) \end{array}$	$\begin{array}{r} 0.11 \\ (0.08) \end{array}$	$\begin{array}{r} -0.01 \\ (0.08) \end{array}$
Impact on Basic Education	$\begin{gathered} -0.06 \\ (0.05) \end{gathered}$	$\begin{gathered} -0.03 \\ (0.08) \end{gathered}$	$\begin{array}{r} 0.07 \\ (0.11) \end{array}$
Impact on Vocational Training	$\begin{array}{r} 0.07 \\ (0.18) \end{array}$	$\begin{gathered} -0.03 \\ (0.19) \end{gathered}$	$\begin{aligned} & -0.45 \text { ** } \\ & (0.22) \end{aligned}$
Impact on Work Experience	$\begin{gathered} -0.14 \\ (0.23) \end{gathered}$	$\begin{array}{r} 0.02 \\ (0.22) \end{array}$	$\begin{array}{r} 0.23 \\ (0.27) \end{array}$
Financial work incentives Part-time (20 hours per week, \$00)	$\begin{aligned} & -4.55 \text { *** } \\ & (1.15) \end{aligned}$	$\begin{aligned} & -5.76 \text { *** } \\ & (1.10) \end{aligned}$	$\begin{aligned} & -7.54^{\text {*** }} \\ & (1.10) \end{aligned}$
Full-time (40 hours per week, \$00)	$\begin{array}{r} 0.54 \\ (0.66) \end{array}$	$\begin{gathered} 1.40 \text { * } \\ (0.75) \end{gathered}$	$\begin{gathered} 0.98 \text { * } \\ (0.58) \end{gathered}$
Time limit	$\begin{gathered} 7.4 \text { ** } \\ (3.1) \end{gathered}$	$\begin{array}{r} 3.4 \\ (2.9) \end{array}$	$\begin{aligned} & 10.1 \text { *** } \\ & (2.7) \end{aligned}$
Economic factors Welfare grant level for a family of 3 (\$000)	$\begin{array}{r} -4.45 \\ (3.48) \end{array}$	$\begin{array}{r} -1.22 \\ (6.86) \end{array}$	$\begin{array}{r} -1.53 \\ (6.61) \end{array}$
Unemployment rate	$\begin{gathered} 0.46 \text { * } \\ (0.25) \end{gathered}$	$\begin{array}{r} 0.34 \\ (0.32) \end{array}$	$\begin{array}{r} 0.25 \\ (0.34) \end{array}$
Intercept	$\begin{array}{r} 2.48 \\ (2.92) \end{array}$	$\begin{array}{r} 1.68 \\ (4.03) \end{array}$	$\begin{array}{r} 3.14 \\ (5.59) \end{array}$

Notes: Estimates are the result of a random-effects regression using subgroup impacts.
Individuals were classified as most disadvantaged if they had no earnings in the year prior to random assignment, did not have a high school diploma or GED at random assignment, and had received welfare for two years prior to random assignment.

Statistical significance levels are indicated as: *= 10 percent; ${ }^{* *}=5$ percent; and ${ }^{* * *}=1$ percent. Standard errors are shown in parentheses.

The part-time work incentive is estimated as the difference in income from earnings, cash assistance payments, and Food Stamps (for U.S. studies) or earning supplement payments (for SSP) between the new and old programs for a parent with two children who works 20 hours per week and earns $\$ 6$ per hour. The full-time work incentive is defined in a similar way if the parent works 40 hours per week.
Table 4.3

Program and Subgroup	$\begin{array}{r} \text { Sample } \\ \text { Size } \end{array}$	Off Welfare in 9 of 12Quarters (\%)			Off Welfare in Year 1 and 6 of 8 Quarters in Years 2 and 3 (\%)			Off Welfare 4Consecutive Quarters (\%)		
		Control Group	Impact		Control Group	Impac		Control Group	Impact	
Job search first										
No earnings	9,832	18.5	5.5		15.1	3.8		34.2	5.9	
\$5,000 or less	4,604	21.8	5.1		12.3	3.1		39.7	6.9	
More than \$5,000	2,345	34.8	6.4		12.8	1.8		55.1	2.3	
Employment-focused mixed activities										
No earnings	6,545	23.5	7.3		20.8	0.8		39.4	9.7	
\$5,000 or less	3,082	29.2	4.7		15.4	2.0		48.8	4.5	**
More than \$5,000	1,428	36.7	10.8		14.9	0.7		54.2	7.4	**
Education-focused mixed activities										
No earnings	10,911	17.0	1.0		13.5	1.5		29.4	2.9	
\$5,000 or less	4,047	21.3	1.4		11.5	2.3	*	37.9	2.3	
More than \$5,000	2,325	30.3	3.1		11.4	1.5		47.1	0.5	
Education first										
No earnings	17,102	22.9	1.4		18.9	1.8		36.3	3.2	
\$5,000 or less	10,487	24.9	2.8		13.6	2.0		42.6	3.8	
More than \$5,000	4,605	35.0	4.0		10.7	3.0		55.1	2.4	
Earnings supplements										
No earnings	17,915	23.2	-3.0		18.0	-2.2		35.8	1.3	
\$5,000 or less	9,971	25.2	-2.7		10.4	-0.8		40.5	2.5	
More than \$5,000	7,221	47.6	-5.5		10.5	-0.6		56.8	-1.0	

SOURCE: MDRC calculations from welfare administrative records records and information collected at baseline.
NOTE: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: $*=10$ percent; $* *=5$ percent; and $* * *=1$ percent.
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent; and $\dagger \dagger \dagger=1$ percent.
Individuals earnings were based on reports to state unemployment insurance (UI) systems.
Table 4.4

$\underline{\text { Program and Subgroup }}$	$\begin{array}{r} \text { Sample } \\ \text { Size } \\ \hline \end{array}$	Off Welfare in 9 of 12 Quarters (\%)		Off Welfare in Year 1 and 6 of 8 Quarters in Years 2 and 3 (\%)			Off Welfare 4 Consecutive Quarters (\%)	
		Control Group	Impact	Control Group	Impact		Control Group	Impact
Job search first								
Long-term recipient	9,998	15.1	6.0 ***	11.3	3.0		31.4	6.1 ***
Short-term recipient	6,256	30.9	4.6 ***	17.9	3.2		49.0	$5.4 * * *$
New applicant	440	35.0	13.6 **	22.7	6.0		58.9	-0.6
Employment-focused mixed activities			$\dagger \dagger$					
Long-term recipient	6,084	21.5	5.3 ***	15.4	0.8		37.9	$8.6{ }^{* * *}$
Short-term recipient	3,978	30.1	10.4 ***	19.6	2.2		49.9	7.3 ***
New applicant	931	50.8	-1.5	26.7	8.8	*	60.9	2.9
Education-focused mixed activities								
Long-term recipient	11,504	14.0	1.3	9.5	1.5	*	27.1	2.3
Short-term recipient	4,055	27.6	1.0	17.8	1.2		43.3	3.3
New applicant	1,724	37.6	6.1	22.2	5.4	*	51.5	9.5 **
Education first								\dagger
Long-term recipient	17,613	16.6	2.6 ***	10.3	1.7	***	33.4	4.6 ***
Short-term recipient	9,606	31.1	2.1 **	18.1	2.5		49.3	2.3
New applicant	4,713	42.6	5.9	32.2	3.0		58.9	-4.5
Earnings supplements			$\dagger \dagger$					
Long-term recipient	15,768	19.2	-2.5 ***	9.6	-0.5		32.9	0.6
Short-term recipient	6,529	31.7	-4.3 ***	16.0	-1.9		47.4	-1.5
New applicant	11,971	39.8	-5.8***	17.8	-1.0		50.1	1.5

SOURCE: MDRC calculations from welfare administrative records records and information collected at baseline.
NOTE: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: $*=10$ percent; $* *=5$ percent; and $* * *=1$ percent.
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent; and $\dagger \dagger \dagger=1$ percent.
New applicants had never received welfare in the past; short-term recipients had received welfare for less than two years.
Table 4.5

Program and Subgroup	$\begin{array}{r} \text { Sample } \\ \text { Size } \\ \hline \end{array}$	Off Welfare in 9 of 12 Quarters (\%)		Off Welfare in Year 1 and 6 of 8 Quarters in Years 2 and 3 (\%)		Off Welfare 4Consecutive Quarters (\%)	
		Control Group	Impact	Control Group	Impact	Control Group	Impact
Job search first							
No high school diploma/GED	6,506	17.0	$5.4 * * *$	13.5	3.3 ***	32.1	5.1 ***
High school diploma/GED	10,275	24.6	5.6 ***	14.4	3.3 ***	42.6	5.9 ***
Employment-focused mixed activities							
No high school diploma/GED	4,452	24.0	5.5 ***	21.1	0.6	40.2	5.9 ***
High school diploma/GED	6,603	29.0	7.5 ***	17.1	1.1	46.3	9.2 ***
Education-focused mixed activities							
No high school diploma/GED	8,578	15.5	2.0	11.5	2.9 ***	28.4	1.8
High school diploma/GED	8,705	23.6	1.3	13.6	1.0	38.4	3.8 ***
Education first							
No high school diploma/GED	13,838	21.0	$2.6{ }^{* * *}$	16.7	$1.6{ }^{* * *}$	35.4	$3.4{ }^{* * *}$
High school diploma/GED	18,356	28.4	2.1 ***	15.6	2.3 ***	45.1	3.3 ***
Earnings supplements			$\dagger \dagger$				
No high school diploma/GED	9,305	20.9	-2.4 ***	14.4	-0.8	31.4	0.5
High school diploma/GED	25,802	32.1	-4.6 ***	14.1	$-1.4^{* * *}$	44.8	1.0

SOURCE: MDRC calculations from welfare administrative records records and information collected at baseline.
NOTE: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as:
$*=10$ percent; $* *=5$ percent; and $* * *=1$ percent.
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent;
and $\dagger \dagger=1$ percent.

Impacts on Stable Welfare Exits by Number of Children by Program Model										
	Sample Size	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)			Employed in 9 of 12 Quarters (\%)			Employed in 6 of 8 Quarters (\%)		
Program and Subgroup		Control Group	Impact		Control Group	Impact		Control Group	Impact	
Job search first										
Three or more	4,240	16.2	5.7	***	12.3	2.7	***	30.7	4.7	***
Two	5,390	20.6	5.1		12.9	3.4		38.7	4.8	
One	7,150	25.8	5.6		15.9	3.5		43.3	6.4	
Employment-focused mixed activities										
Three or more	2,843	21.9	6.0		17.6	0.4		38.0	7.9	
Two	3,623	25.1	7.7		16.5	1.7		42.2	9.6	
One	4,524	31.2	6.9		20.4	1.4		48.9	6.8	***
Education-focused mixed activities										
Three or more	4,379	14.2	0.0		11.1	0.0		25.7	0.0	
Two	5,463	17.0	2.5	*	10.1	3.0	***	29.3	5.3	
One	7,266	24.8	2.0		15.5	2.1	*	41.5	2.3	
Education first										
Three or more	7,856	19.6	2.3		12.8	2.5	***	33.3	3.8	***
Two	10,277	25.0	1.7	*	15.6	1.4	**	40.1	4.7	
One	14,061	28.8	2.4		18.2	2.1	***	45.9	2.2	
Earnings supplements										
Three or more	6,409	24.6	-5.0		13.5	-1.7	*	35.6	1.2	
Two	12,860	28.7	-3.6		13.4	-0.4		41.8	-0.1	
One	15,582	31.2	-4.2		14.9	-1.8	***	42.6	1.4	

SOURCE: MDRC calculations from welfare administrative records records and information collected at baseline.
NOTE: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: $*=10$ percent; ${ }^{* *}=5$ percent; and ${ }^{* * *}=1$ percent.
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent; and $\dagger \dagger \dagger=1$ percent.
Table 4.7
Impacts on Stable Welfare Exits by Risk of Depression at Random Assignment

Program and Subgroup	Size	Off AFDC in 9 of 12 Quarters in Years 1-3		Off AFDC in Year 1 and 6 of the next 8 Quarters		Off AFDC in 4 ConsecutiveQuarters	
		Control Group	Impact	Control Group	Impact	Control Group	Impact
Full Sanple							
High risk	3,017	19.8	5.8 ***	12.6	2.5 *	35.9	4.6 **
Moderate risk	5,090	18.4	5.1 ***	11.6	1.8 *	33.1	5.6 ***
Low risk	14,094	18.5	6.3 ***	10.9	2.4 ***	34.0	6.2 ***
Job search first							
Atlanta LFA							
High risk	383	14.8	7.0 *	10.0	-1.7	34.3	5.2
Moderate risk	762	14.3	4.1	7.9	1.3	32.9	0.0
Low risk	1,999	16.3	2.9 *	7.2	0.9	32.1	4.7 **
Grand Rapids LFA					\dagger		
High risk	319	20.1	15.0 ***	6.4	14.2 ***	46.7	-2.3
Moderate risk	488	14.2	8.1 **	7.9	5.4 *	36.4	4.5
Low risk	1,148	17.0	9.4 ***	7.1	4.4 **	38.3	2.7
Riverside LFA							
High risk	519	25.9	5.6	19.5	7.5 **	36.9	10.0 **
Moderate risk	858	24.6	7.4 **	19.9	5.6 **	36.5	8.7 ***
Low risk	2,425	25.4	6.4 ***	20.3	3.2 *	40.8	4.7 **
Employment-focused mixed activities							
Portland			$\dagger \dagger$				$\dagger \dagger$
High risk	775	26.7	3.9	16.4	0.1	43.0	3.5
Moderate risk	1,174	28.0	4.4	15.6	-1.5	44.5	3.2
Low risk	2,946	22.4	13.0 ***	13.2	2.8 **	38.5	13.2 ***

Table 4.7 (Continued)

Program and Subgroup	Size	Off AFDC in 9 of 12 Quarters in Years 1-3		Off AFDC in Year 1 and 6 of the next 8 Quarters		Off AFDC in 4 Consecutive Quarters	
		Control Group	Impact	Control Group	Impact	Control Group	Impact
Education first							
Atlanta HCD							
High risk	400	14.9	4.8	10.0	0.5	34.3	3.4
Moderate risk	826	14.4	2.0	7.9	-1.5	32.9	0.7
Low risk	1,970	16.2	1.1	7.2	0.0	32.0	2.8
Grand Rapids HCD							
High risk	304	19.6	6.0	5.9	5.2	46.7	-3.1
Moderate risk	474	14.1	8.7 **	7.8	5.7 **	36.3	5.7
Low risk	1,164	17.0	4.6 **	7.2	3.1 *	38.4	5.8 **
Riverside HCD			\dagger				
High risk	270	23.8	-7.0	19.4	-0.3	36.6	4.6
Moderate risk	444	21.0	6.8 *	20.0	3.8	35.4	8.7 *
Low risk	1,010	23.0	3.2	18.3	4.6 *	37.0	1.3
Earning supplements							
British Columbia							
High risk	263	5.9	9.3 **	6.5	-0.8	13.1	5.6
Moderate risk	482	6.1	3.5	3.5	1.3	11.8	8.2 **
Low risk	1,782	9.5	2.9 *	4.9	1.8	20.8	6.3 ***
New Brunswick							
High risk	247	9.2	10.8 **	5.4	2.1	22.5	7.6
Moderate risk	451	8.5	6.9 **	8.5	-2.3	19.2	9.4 **
Low risk	1,724	12.3	13.4 ***	7.9	2.7 *	24.7	11.3 ***

SOURCE: MDRC calculations from welfare administrative records records and information collected at baseline.

[^21]
Appendix A

Additional Impacts on Earnings, Welfare Benefits, and Income

Chapter 2 described results by level of disadvantage, as represented by welfare status, work history, and high school credential. The main findings were that employment-focused programs with a mix of initial activities worked well across a broad range of subgroups, that educationfocused programs worked especially poorly for more disadvantaged groups, and that only earnings supplements consistently increased income and did so across the range of subgroups. This appendix presents similar results for a range of other subgroups defined based on demographic characteristics or psychosocial characteristics. The results support the conclusions drawn in Chapter 2.

Tables A.1, A.3, A.5, A.6, and A. 8 show pooled impacts for the five program models discussed in Chapters 1 and 2 (job search first, employment focused with a mix of initial activities, education focused with a mix of initial activities, education first, and earnings supplements). Each table shows results for several subgroups defined from administrative records or baseline demographic information. These subgroups include welfare history (long-term and short-term welfare recipients, and welfare applicants), earnings in the year prior to random assignment, high school credential, number of children, and age of youngest child. As in Chapter 2, results are presented for the average of the three-year follow-up period and for the third year alone.

Tables A.2, A.4, A.7, and A. 9 show additional pooled impacts for the four program models for subgroups defined based on the opinion surveys collected at the time of random assignment. (None of the education-focused mixed activity programs had private opinion data.) These subgroups include preference for work, work-related parental concerns, mastery, risk of depression, health or emotional problems, child care problems, and transportation problems. Appendix A of Michalopoulos and Schwartz (2001) describes how these subgroups were defined.

Tables A. 10 through A. 15 show results by program for several subgroups, including by level of disadvantage (Table A.10), by earnings in the year prior to random assignment (Table A.11), by high school credential (Table A.12), by welfare status (Table A.13), by race and ethnicity (Table A.14), and by risk of depression (Table A.15).

Impacts on Average Total Earnings, Welfare Payments, and Income per Year Pooled Across Job-Search-First Welfare-to-Work Programs by Selected Characteristics at the Time of Random Assignment							
Sample or Subgroup	SampleSize	Impacts on Average Total Earnings per Year (\$)		Impacts on Average Total AFDC Payments per Year (\$)		Impacts on Average Total Income per Year (\$)	
		Years 1-3	Year 3	Years 1-3	Year 3	Years 1-3	Year 3
Total earnings in past 12 months			\dagger		$\dagger \dagger$		
No earnings	9,832	663 ***	678 ***	-637 ***	-628 ***	-117	-113
\$5,000 or less	4,604	493 ***	503 **	-544 ***	-475 ***	-152	-102
More than \$5,000	2,345	184	-275	-403 ***	-151	-316	-446
Welfare history ${ }^{\text {a }}$				+	\dagger		
Long-term recipient	9,998	607 ***	578 ***	-662 ***	-632 ***	-191 **	-208 *
Short-term recipient	6,256	401 **	311	-463 ***	-372 ***	-160	-155
New applicant	440	1,600 *	1,797 *	-506	-146	709	1,278
Education credential receipt							
No high school diploma/GED	6,506	597 ***	591 ***	-627 ***	-581 ***	-154	-131
High school diploma/GED	10,275	497 ***	407 ***	-535 ***	-462 ***	-163	-183
Number of children			\dagger	\dagger	\dagger		
Three or more	4,240	744 ***	844 ***	-764 ***	-796 ***	-179	-136
Two	5,390	414 ***	259	-506 ***	-384 ***	-239 *	-292
One	7,150	477 ***	400 **	-500 ***	-425 ***	-87	-75
Age of youngest child		\dagger	\dagger			\dagger	\dagger
Under 6	7,735	768 ***	762 ***	-570 ***	-505 ***	92	144
6 or older	8,956	380 ***	306 **	-589 ***	-512 ***	-373 ***	-375 **
Gender							
Female	15,465	557 ***	469 ***	-585 ***	-524 ***	-147 *	-183 *
Male	1,266	198	348	-380 **	-249	-349	-7

Table A. 1 (continued)
NOTES: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: *
$=10$ percent; $* *=5$ percent; and $* * *=1$ percent.
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger=5$ percent; and
$\dagger \dagger=1$ percent.
${ }^{\text {a Sample members were classified as new applicants if they responded on the BIF that they had never received welfare in the past. Sample members were }}$
classified as short term recipients if they had received welfare before on their own case or their spouses' case but had received it for a total of less than two
years. They were classified as long term recipients if they had received welfare for two years or more prior to random assignment.

Table A. 2 (continued)

Subgroup	Sample Size	Average Total Earnings per Year (\$)		Average Total AFDC Payments per Year (\$)		Average Total Income per Year (\$)	
		Years 1-3	Year 3	Years 1-3	Year 3	Years 1-3	Year 3
Transportation problem			\dagger				
Yes	3,107	807 ***	881 ***	-637 ***	-600 ***	-3	77
No	5,717	546 ***	361 *	-600 ***	-503 ***	-235*	-322*

[^22]| Table A. 3 | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Impacts on Average Total Earnings, Welfare Payments, and Income per Year Pooled Across Employment-Focused Mixed-Activity Welfare-to-Work Programs by Selected Characteristics at the Time of Random Assignment | | | | | | | |
| | Sample | Impacts on Average Total Earnings per Year (\$) | | Impacts on Average Total AFDC Payments per Year (\$) | | Impacts on Average Total Income per Year (\$) | |
| Sample or Subgroup | Size | Years 1-3 | Year 3 | Years 1-3 | Year 3 | Years 1-3 | Year 3 |
| Full sample | 11,055 | 1,231 *** | 1,337*** | -707 *** | -706 *** | 355 *** | 451 *** |
| Total earnings in past 12 months | | | | | | | |
| No earnings | 6,545 | 1,366 *** | 1,509 *** | -763 *** | -813 *** | 408 *** | 468 ** |
| \$5,000 or less | 3,082 | 895 *** | 914 *** | -572 *** | -542 *** | 202 | 244 |
| More than \$5,000 | 1,428 | 1,269 *** | 1,415 ** | -748 *** | -572 *** | 358 | 766 |
| Welfare history ${ }^{\text {a }}$ | | | | | | | |
| Long-term recipient | 6,084 | 1,256 *** | 1,388 *** | -754 *** | -750 *** | 320 ** | 439 ** |
| Short-term recipient | 3,978 | 1,185 *** | 1,145 *** | -714 *** | -669 *** | 315 | 337 |
| New applicant | 931 | -130 | 227 | -229 | -130 | -468 | 109 |
| Education credential receipt | | \dagger | | | | | |
| No high school diploma/GED | 4,452 | 896 *** | 1,088 *** | -602 *** | -585 *** | 199 | 377 * |
| High school diploma/GED | 6,603 | 1,449 *** | 1,495 *** | -750 *** | -771 *** | 496 *** | 524 ** |
| Number of children | | \dagger | \dagger | | | | |
| Three or more | 2,843 | 1,582 *** | 1,599 *** | -797 *** | -812 *** | 650 ** | 632 * |
| Two | 3,623 | 1,417 *** | 1,747 *** | -724 *** | -735 *** | 483 ** | 782 *** |
| One | 4,524 | 876 *** | 877 *** | -656 *** | -629 *** | 78 | 105 |
| Age of youngest child | | \dagger | \dagger | | \dagger | | |
| Under 6 | 4,623 | 1,610 *** | 1,942 *** | -936 *** | -1,098 *** | 442 | 563 |
| 6 or older | 6,295 | 1,009 *** | 1,065 *** | -617 *** | -553 *** | 260 | 387 * |
| Gender | | \dagger | \dagger | | | \dagger | $\dagger \dagger$ |
| Female | 9,915 | 1,237 *** | 1,342 *** | -756 *** | -756 *** | 292 ** | 391 ** |
| Male | 1,033 | 1,185 ** | 1,207 * | -408 * | -343 | 717 | 761 |

Table A. 3 (Continued)
SOURCES: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, and Baseline Information Forms.
NOTES: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: * $=10$ percent; ${ }^{* *}=5$ percent; and $* * *=1$ percent.
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent; and $\dagger \dagger$ \dagger = 1 percent.
${ }^{\text {a }}$ Sample members were classified as new applicants if they responded on the BIF that they had never received welfare in the past. Sample members were years. They were classified as long term recipients if they had received welfare for two years or more prior to random assignment.
Table A. 4

Pooled Across Employment-Focused Mixed-Activity Welfare-to-Work Programs with a POS, by Selected Characteristics at the Time of Random Assignment

Table A. 4 (continued)
SOURCES: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, and Private Opinion Survey data.
NOTES: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are
indicated as: $*=10$ percent; ** $=5$ percent; and $* * *=1$ percent.
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$
percent; and $\dagger \dagger=1$ percent.
asample members in the "yes" category on this measure could have had a health or emotional problem themselves at random assignment or one
of their family members could have had such a problem.
Table A. 5
Impacts on Average Total Earnings, Welfare Payments, and Income per Year Pooled Across Education-Focused Mixed-Activity Welfare-to-Work Programs

Sample or Subgroup	SampleSize	Impacts on Average Total Earnings per Year (\$)		Impacts on Average Total AFDC Payments per Year (\$)		Impacts on Average Total Income per Year (\$)	
		Years 1-3	Year 3	Years 1-3	Year 3	Years 1-3	Year 3
Full sample	17,283	428 ***	601 ***	-291 ***	-276 ***	95	281 *
Total earnings in past 12 months							
No earnings	10,911	334 ***	537 ***	-331 ***	-326 ***	-43	159
\$5,000 or less	4,047	313	310	-289 **	-255	-31	-3
More than \$5,000	2,325	923 *	1,156 *	-209	-162	703	1,005 *
Welfare history ${ }^{\text {a }}$							
Long-term recipient	11,504	351 **	488 ***	-339 ***	-292 ***	-22	166
Short-term recipient	4,055	871 ***	1,099 ***	-225	-243	612 **	818 **
New applicant	1,724	622	845	-588 **	-568 *	-82	154
Education credential receipt		\dagger	\dagger			\dagger	\dagger
No high school diploma/GED	8,578	135	265 *	-346 ***	-313 **	-264 *	-111
High school diploma/GED	8,705	702 ***	931 ***	-303 ***	-328 ***	347 *	551 **
Number of children		\dagger	\dagger		\dagger		
Three or more	4,379	367	592 **	-235	-242	64	291
Two	5,463	865 ***	1,116 ***	-425 ***	-516 ***	375 **	514 **
One	7,266	136	239	-245 ***	-113	-129	120
Age of youngest child							
Under 6	2,360	398	971 **	-65	-138	293	812 *
6 or older	14,748	423 ***	532 ***	-322 ***	-296 ***	56	189
Gender							
Female	14,987	425 ***	611 ***	-279 ***	-292 ***	114	286 *
Male	2,228	407	610	-337	-198	-18	346

Table A. 5 (continued)

$=10$ percent, $=5$ percent, an $=1$ percent. An F-test was ap
$\dagger \dagger=1$ percent.
${ }^{\text {a }}$ Sample members were classified as new applicants if they responded on the BIF that they had never received welfare in the past. Sample members were classified as short term recipients if they had received welfare before on their own case or their spouses' case but had received it for a total of less than two years. They were classified as long term recipients if they had received welfare for two years or more prior to random assignment.

Table A. 6 (continued)
NOTES: A two-tailed t -test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: *
$=10$ percent, $=5$ percent, $=1$ percent. An F-test was ap
$\dagger \dagger=1$ percent.
${ }^{\text {a }}$ Sample members were classified as new applicants if they responded on the BIF that they had never received welfare in the past. Sample members were classified as short term recipients if they had received welfare before on their own case or their spouses' case but had received it for a total of less than two years. They were classified as long term recipients if they had received welfare for two years or more prior to random assignment.

Table A. 7 Impacts on Average Total Earnings, Welfare Payments, and Income per Year Pooled Across Education-First Welfare-to-Work Programs with a POS, by Selected Characteristics at the Time of Random Assignment							
Subgroup	Sample Size	Average Total Earnings per Year (\$)		Average Total AFDC Payments per Year (\$)		Average Total Income per Year (\$)	
		Years 1-3	Year 3	Years 1-3	Year 3	Years 1-3	Year 3
Preference for work							
Low	3,181	114	228	-154	-172	-89	-23
Moderate	3,292	329 **	526 **	-372 ***	-331***	-139	74
High	1,037	-355	-415	-237	-135	$-634 * *$	-555
Work-Related Parental Concerns scale							
High	1,801	135	327	-396 ***	-441 ***	-413*	-292
Low	6,045	164	280	-227 ***	-201 **	-110	3
Mastery scale							
Low	3,055	298 *	451 **	-312***	-311***	-93	13
High	4,793	112	232	-228***	-228 **	-181	-79
Risk of depression							
High	1,109	-346	-461	-143	-172	-578 **	-697 *
Moderate	1,955	-17	224	-254 **	-288*	-360	-193
Low	4,808	287 *	420 **	-308 ***	-273***	-68	68
Barriers to work or participation							
Health or emotional problem ${ }^{\text {a }}$							
Yes	2,158	-18	252	-164	-152	-247	-11
No	5,690	236	316	-299 ***	-296 ***	-127	-69
Cannot afford/arrange for child care							
Yes	4,909	176	366 **	-275 ***	$-261 * * *$	-172	15
No	2,801	45	66	-240 **	-255 **	-259	-305

Table A. 7 (continued)

Subgroup	Sample Size	Average TotalEarnings per Year (\$)		Average Total AFDC Payments per Year (\$)		Average Total Income per Year (\$)	
		Years 1-3	Year 3	Years 1-3	Year 3	Years 1-3	Year 3
Transportation problem				\dagger	\dagger		
Yes	2,802	309 **	415 **	$-464 * * *$	-452 ***	-292 *	-181
No	4,981	174	339	-160 *	-148	-16	122
SOURCES: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, and Private Opinion Survey data.							
NOTES: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: $*=10$ percent; $* *=5$ percent; and $* * *=1$ percent.							
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent; and $\dagger \dagger \dagger=1$ percent.							
${ }^{\text {a }}$ Sample members in the "yes" category on this measure could have had a health or emotional problem themselves at random assignment or one of their family members could have had such a problem.							

Table A. 8 (continued)

$$
\begin{aligned}
& \text { (continued) }
\end{aligned}
$$

Table A. 9 (continued)

Subgroup	Sample Size	Average Total Earnings per Year (\$)		Average Total AFDC Payments per Year (\$)		Average Total Income per Year (\$)	
		Years 1-3	Year 3	Years 1-3	Year 3	Years 1-3	Year 3
Transportation problem		\dagger	\dagger				\dagger
Yes	4,987	418 ***	$684^{* * *}$	291 *	-17	795 ***	972 ***
No	8,719	52	211	588 ***	596	530 ***	519 ***
SOURCES: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, and Private Opinion Survey data.							
NOTES: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: ${ }^{*}=10$ percent; ${ }^{* *}=5$ percent; and ${ }^{* * *}=1$ percent.							
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent; and $\dagger \dagger \dagger=1$ percent.							
${ }^{\text {a }}$ Sample members in the "yes" category on this measure could have had a health or emotional problem themselves at random assignment or one of their family members could have had such a problem.							

Table A. 10
Impacts on Earnings, Welfare Payments, and Income by Level of Disadvantage by Program

Program and Subgroup	SampleSize	Impacts on Average Total Earnings per Year (\$)				Impacts on Average AFDC Payments per Year (\$)				Impacts on Average Total Income per Year			
		Years 1-3		Year 3		Years 1-3		Year 3		Years 1-3		Year 3	
Job search tirst													
SWIM													
Most disadvantaged	745	465	**	444		-531	*	-492		-66		-48	
Moderately disadvantaged	2,113	544	**	565	*	-811	***	-791	***	-267		-226	
Least disadvantaged	352	1,493	*	1,586		-181		-83		1,313	*	1,503	
Atlanta LFA			\dagger										
Most disadvantaged	828	268		356		-232	***	-259	**	-16		15	
Moderately disadvantaged	2,401	703	***	748	***	-204	***	-178		407	**	435	*
Least disadvantaged	564	-322		-393		-108		-24		-413		-383	
Grand Rapids LFA			\dagger		$\dagger \dagger$				\dagger				\dagger
Most disadvantaged	456	1,031		1,627	***	-962	***	-960	***	-161		445	
Moderately disadvantaged	2,124	291		94		-699		-566		-550	***	-612	**
Least disadvantaged	432	450		411		-442		-109		-133		255	
Riverside LFA			\dagger		\dagger						\dagger		
Most disadvantaged	1,084			540	**	-1,054	***	-947	***	-708	**	-722	*
Moderately disadvantaged	4,374	791		670	***	-602		-583		23		-113	
Least disadvantaged	1,221	-202		-655		-563		-398	**	-965	**	-1,187	**
Employment-focused mixed activities													
Riverside GAIN													
Most disadvantaged	974	1,023	***	1,008	***	-333		-211		804	**	938	**
Moderately disadvantaged	3,739	1,424		1,338	***	-894		-773		429	*	445	
Least disadvantaged	795	1,769		1,810	**	-436		-446		1,245	*	1,269	
Portland			$\dagger \dagger$		$\dagger \dagger$		$\dagger \dagger$		$\dagger \dagger$				
Most disadvantaged	880	749		1,029	***	-608	***	-658	***	-156		5	
Moderately disadvantaged	3,800	1,414		1,748	***	-884		-1,027		157		284	
Least disadvantaged	805	-56		-336		-340	***	-106		-515		-396	

Table A. 10 (continued)

Program and Subgroup	SampleSize	Impacts on Average Total Earnings per Year (\$)				Impacts on Average AFDC Payments per Year (\$)			Impacts on Average Total Income per Year			
		Years 1-3		Year 3		Years 1-3	Year 3		Years 1-3		Year 3	
Education-focused mixed activities												
Alameda												
Most disadvantaged	1,205	542	*	835	**	-201	-315		357		550	
Moderately disadvantaged	839	784	*	1,128	**	-85	-200		775	*	1,024	*
Least disadvantaged	n/a	n/a		n/a		n/a	n/a		n / a		n / a	
Butte												
Most disadvantaged	n/a	n/a		n/a		n/a	n/a		n/a		n/a	
Moderately disadvantaged	807	876	*	968		-187	-272		630		588	
Least disadvantaged	243	1,581		2,287	*	6	75		1,665		2,443	**
Los Angeles												
Most disadvantaged	4,396	96		164		-351 ***	-275	**	-342	*	-210	
Moderately disadvantaged	2,074	159		280		-425 ***	-406	**	-386		-255	
Least disadvantaged	n/a	n/a		n/a		n / a	n / a		n/a		n / a	
San Diego			\dagger						\dagger			
Most disadvantaged	1,331	124		121		-528 *	-460		-435		-377	
Moderately disadvantaged	5,405	668		899	***	-456 ***	-386	**	122		425	
Least disadvantaged	1,483	1,549		1,528	**	-352	-288		1,109	**	1,169	*
Tulare												
Most disadvantaged	554	121		441	*	-160	-333		-94		93	
Moderately disadvantaged	1,423	225		641	*	110	53		315		671	
Least disadvantaged	257	548		1,714		418	-86		980		1,614	

Table A. 10 (continued)

Program and Subgroup	SampleSize	Impacts on Average Total Earnings per Year (\$)			Impacts on Average AFDC Payments per Year (\$)				Impacts on Average Total Income per Year			
		Years 1-3	Year 3		Years 1-3		Year 3		Years 1-3		Year 3	
Education first												
Atlanta HCD												
Most disadvantaged	860	40	80		-135		-114		-122		-73	
Moderately disadvantaged	2,408	489 ***	708	***	-203	***	-192		253		453	**
Least disadvantaged	562	-139	-35		-62		-38		-155		-12	
Grand Rapids HCD						\dagger		\dagger				
Most disadvantaged	450	543 ***	837	***	-772	***	-783		-485	*	-288	
Moderately disadvantaged	2,077	290	243		-477	***	-496		-278		-406	
Least disadvantaged	466	600	581		-169		-31		465		570	
Riverside HCD												
Most disadvantaged	1,094	436 ***	671	***	-764	***	-796		-571	**	-412	
Moderately disadvantaged	1,865	313	439	*	-523	***	-640		-370		-441	
Least disadvantaged	n / a	n / a	n/a		n/a		n / a		n/a		n / a	
Columbus Integrated		\dagger	\dagger	\dagger					\dagger	\dagger		
Most disadvantaged	899	398 **	496		-448	***	-522		-330		-336	
Moderately disadvantaged	3,134	523 ***	652	**	-331	***	-351		-16		38	
Least disadvantaged	613	-993	-1,032		-278	***	-220	*	-1,464	***	-1,405	**
Columbus Traditional												
Most disadvantaged	888	159	79		-345	***	-371		-345		-472	
Moderately disadvantaged	3,222	354	422	*	-232	***	-260		-16		-5	
Least disadvantaged	595	-241	-525		-380	***	-249		-949		-1,007	
Detroit												
Most disadvantaged	1,097	265	572	*	-126		-260		28		107	
Moderately disadvantaged	3,033	434 **	603	**	-197	**	-300		124		124	
Least disadvantaged	324	30	331		-307		-236		-478		-128	
Oklahoma City												\dagger
Most disadvantaged	291	307	493		-101		12		202		657	
Moderately disadvantaged	4,057	26	84		-57		-41		-29		26	
Least disadvantaged	1,459	-83	-511	*	-135	*	-89		-303		-714	**

Table A. 10 (continued)

Program and Subgroup	Sample Size	Impacts on Average Total Earnings per Year (\$)				Impacts on Average AFDC Payments per Year (\$)				Impacts on Average Total Income per Year			
		Years 1-3		Year 3		Years 1-3		Year 3		Years 1-3		Year 3	
Earnings Supplements													
SSP - British Columbia											$\dagger \dagger$		$\dagger \dagger \dagger$
Most disadvantaged	611	1,363		1,483	***	-1,047		-1,029		1,171	***	1,464	
Moderately disadvantaged	3,163	1,488		1,659		-714		-790		3,342		4,698	
Least disadvantaged	1,511	880		1,496	**	-542	**	-961		5,224	***	9,823	
SSP - New Brunswick							$\dagger \dagger$				$\dagger \dagger$		\dagger
Most disadvantaged	769	843		840		-700	***	-719		967	***	935	***
Moderately disadvantaged	1,538	1,098		855		-1,375		-1,315		2,285		2,093	
Least disadvantaged	117	2,605		1,548		-1,639		-1,504		4,354	***	3,387	
MFIP Full Services			$\dagger \dagger \dagger$								\dagger		
Most disadvantaged	530	1,024		1,086		416		325		1,432	***	1,410	***
Moderately disadvantaged	4,430	317	*	338		472		-692		1,300	***	1,172	
Least disadvantaged	2,383	-348		88		723		-67		586	**	701	
MFIP Incentives Only			$\dagger \dagger$		\dagger		$\dagger \dagger$		$\dagger \dagger \dagger$				
Most disadvantaged	424	411		721		1,392	***	1,154	**	1,795		1,874	
Moderately disadvantaged	3,552	-428		-588	**	2,384		3,633		1,292	***	1,129	***
Least disadvantaged	1,653	-825	*	-695		3,052		6,097		655	*	768	
WRP Full Services									\dagger				
Most disadvantaged	414	206		286		34		-52		397		406	
Moderately disadvantaged	4,283	231		599		-193	**	-351		14		182	
Least disadvantaged	2,291	263		405		54		-20		357		449	
WRP Incentives Only													
Most disadvantaged	201	-244		-495		437		577		444		416	
Moderately disadvantaged	2,136	-175		132		-12		-67		-167		57	
Least disadvantaged	1,152	18		49		167		173		251		348	

Table A. 10 (continued)

Program and Subgroup	Sample Size	Impacts on Average Total Earnings per Year (\$)				Impacts on Average AFDC Payments per Year (\$)				Impacts on Average Total Income per Year		
		Years 1-3		Year 3		Years 1-3		Year 3		Years 1-3		Year 3
Earnings Supplements (Continued)												
Jobs First						+	\dagger		$\dagger \dagger$			
Most disadvantaged	796	681	**	785		-15		-590	***	768	**	257
Moderately disadvantaged	3,940	573	**			422	***	-362		1,127		371
Least disadvantaged	1,212	-547		-750		443	***	-77		101		-719
FTP									\dagger			
Most disadvantaged	436	294		398		-312	**	-465		-447		-399
Moderately disadvantaged	1,783	465	**	729		-142	**	-301		208		350
Least disadvantaged	515	697		1,042		-36		-129		563		844

SOURCE: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, and Baseline Information Forms.
NOTE: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: $*=10$ percent; ${ }^{* *}=5$ percent; and $* * *=1$ percent.
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent; and $\dagger \dagger \dagger=1$ percent.
$\mathrm{n} / \mathrm{a}=$ not applicable because sample sizes were too small to reliably calculate impacts.
Individuals were classified as most disadvantaged if they had no earnings in the year prior to random assignment, did not have a high school diploma or GED at random assignment, and had received welfare for two years prior to random assignment. Individuals were classified as least disadvantaged if they had none of these characteristics. All other sample members were classified as moderately disadvantaged.
Table A. 11
Impacts on Earnings, Welfare Payments, and Income by Prior-Year Earnings by Program

Program and Subgroup	SampleSize	Impacts on Average Total Earnings per Year (\$)			Impacts on Average AFDCPayments per Year (\$)				Impacts on Average Total Income per Year			
		Years 1-3	Year 3		Years 1		Year 3		Years 1-3		Year 3	
Job searen turst												
SWIM												
No earnings	1,948	628 ***	634	**	-837		-838	***	-209		-204	
\$5,000 or less	768	733	1,174	**	-642		-579	*	91		595	
More than \$5,000	494	1,176 *	564		-404		-215		772		349	
Atlanta LFA												
No earnings	2,353	601 ***	711		-236	***	-225		255	*	354	*
\$5,000 or less	1,120	353	396		-141	*	-99		194		192	
More than \$5,000	360	81	-332		-176		-98		-141		-379	
Grand Rapids LFA								\dagger				
No earnings	1,527	520 ***	690	**	-788		-790	***	-462	**	-332	
\$5,000 or less	1,119	416	216		-641		-387		-320		-218	
More than \$5,000	366	134	-421		-541		-144		-575		-601	
Riverside LFA								\dagger				
No earnings	4,010	779 ***	643		-699		-681		-123		-263	
\$5,000 or less	1,598	473	343		-680		-680		-406		-579	*
More than \$5,000	1,118	-4	-454		-497		-180		-665		-712	
Employment-focused mixed activities												
Riverside GAIN												
No earnings	3,331	1,255 ***	1,156	***	-649		-564	***	583	**	564	*
\$5,000 or less	1,419	1,185 ***	1,138	***	-718		-600	**	377		423	
More than \$5,000	758	2,046 ***	2,146	**	-947		-810	**	935		1,184	
Portland		$\dagger \dagger$		$\dagger \dagger$		$\dagger \dagger$		$\dagger \dagger$				
No earnings	3,214	1,566 ***	1,917	***	-980		-1,127		151		268	
\$5,000 or less	1,663	601 **	643	*	-488	***	-542	***	-89		-103	
More than \$5,000	670	504	654		-577	***	-359		-289		223	

Table A. 11 (continued)

Program and Subgroup	SampleSize	Impacts on Average Total Earnings per Year (\$)				Impacts on Average AFDC Payments per Year (\$)			Impacts on Average Total Income per Year			
		Years 1-3		Year 3		Years 1-3	Year 3		Years 1-3		Year 3	
Education-focused mixed activities												
Alameda												
No earnings	915	655	**	1,060	**	-154	-303		544		805	*
\$5,000 or less	226	345		170		-239	-305		94		-98	
More than \$5,000	n/a	n/a		n/a		n/a	n/a		n/a		n/a	
Butte			\dagger		$\dagger \dagger$					\dagger		$\dagger \dagger$
No earnings	652	-207		-512		76	82		-186		-485	
\$5,000 or less	379	1,172	**	1,655	**	-447	-165		727		1,473	*
More than \$5,000	198	3,672	**	4,999		153	-369		3,975		4,749	
Los Angeles												
No earnings	3,435	170		253		-446 ***	-390	***	-380	**	-261	
\$5,000 or less	720	-114		125		-352	-278		-584		-311	
More than \$5,000	241	-1,279		-1,955		30	135		-1,209		$-1,702$	
San Diego												
No earnings	4,615	521	**	810		-463 ***	-408	**	-9		337	
\$5,000 or less	2,109	437		193		-300	-282		48		-165	
More than \$5,000	1,495	1,569	**	1,786	**	-369	-199		1,131	*	1,516	**
Tulare												
No earnings	1,294	256		600	**	-15	-150		176		376	
\$5,000 or less	613	-38		53		17	-131		1		-55	
More than \$5,000	327	791		2,502	**	546	424		1,384		3,035	**

Table A. 11 (continued)

Program and Subgroup	Sample Size	Impacts on Average Total Earnings per Year (\$)			Impacts on Average AFDC Payments per Year (\$)				Impacts on Average TotalIncome per Year			
		Years 1-3	Year 3		Years 1-3		Year 3		Years 1-3		Year 3	
Education first												
Atlanta HCD												
No earnings	2,398	527 ***	756		-182	***	-183	***	291	*	499	**
\$5,000 or less	1,115	-21	-6		-168	**	-160	*	-212		-243	
More than \$5,000	368	-189	64		-92		54		-181		335	
Grand Rapids HCD								\dagger				
No earnings	1,489	238	208		-494		-573	***	-333	*	-519	*
\$5,000 or less	1,121	340	343		-532		-479		-317		-323	
More than \$5,000	387	967	1,172		-252		-51		632		1,072	
Riverside HCD												
No earnings	2,065	299 **	470	**	-571	***	-677	***	-476	**	-476	*
\$5,000 or less	687	100	481		-461	*	-596	**	-470		-314	
More than \$5,000	383	73	-240		-841		-718	**	-976		-1,179	
Columbus Integrated												
No earnings	2,143	481 ***	677		-349		-423		-111		-40	
\$5,000 or less	1,563	132	202		-394		-363		-493	**	-447	
More than \$5,000	966	274	269		-304		-288		-220		-183	
Columbus Traditional												
No earnings	2,160	583 ***	633	**	-363		-398		2		-9	
\$5,000 or less	1,593	161	154		-246	***	-229	**	-208		-221	
More than \$5,000	976	-299	-436		-166	*	-150		-631		-712	
Detroit												
No earnings	2,978	176	312		-83		-179	*	31		22	
\$5,000 or less	1,199	352	580		-325		-437		-165		-137	
More than \$5,000	282	1,253	1,931		-282		-326		771		1,251	
Oklahoma City \dagger												
No earnings	2,581	34	129		-34		51		25		250	
\$5,000 or less	2,353	60	-110		-130	**	-162	**	-145		-404	*
More than \$5,000	927	-232	-408		-104		-99		-382		-617	

Table A. 11 (continued)

Program and Subgroup	$\begin{array}{r} \text { Sample } \\ \text { Size } \\ \hline \end{array}$	Impacts on Average Total Earnings per Year (\$)			Impacts on Average AFDC Payments per Year (\$)				Impacts on Average Total Income per Year			
		Years 1-3	Year 3		Years 1-3		Year 3		Years 1-3		Year 3	
Earnings Supplements												
SSP - British Columbia										\dagger		\dagger
No earnings	3,262	1,478 ***	1,915	***	-742	***	-876	***	2,400	***	4,218	***
\$5,000 or less	932	884	471		-750	**	-814		3,192	***	4,347	***
More than \$5,000	1,091	693	1,138		-379		-745	***	5,182	**	7,112	***
SSP - New Brunswick		\dagger				\dagger				$\dagger \dagger$		\dagger
No earnings	1,651	862 ***	878	***	-897	**	-955	***	1,238	***	1,269	***
\$5,000 or less	595	2,023 ***	1,387	**	-1,723		-1,473	***	3,390		2,730	***
More than \$5,000	178	70	-964		-1,840		-1,405	***	4,234		3,658	**
MFIP Full Services		$\dagger \dagger$								\dagger		
No earnings	2,874	713 ***	753		485		-358		1,525	***	1,381	***
\$5,000 or less	2,483	114	305		279		-958				1,048	***
More than \$5,000	2,179	-511	-182		945	*	162		631	**	611	
MFIP Incentives Only												
No earnings	2,318	-196	-162		2,296		3,368	***	1,479		1,398	***
\$5,000 or less	1,942	-571 **	-657	*	2,653		4,331	***	1,286		1,366	***
More than \$5,000	1,523	10	72		2,541		4,963	***	1,218		1,117	
WRP Full Services								\dagger				
No earnings	3,564	244	573	**	-210	**	-375	***	36		149	
\$5,000 or less	2,103	150	365		-46		-187		99		151	
More than \$5,000	1,321	609	834		2		25		618	*	943	**
WRP Incentives Only												
No earnings	1,781	17	195		-64		-35		-11		175	
\$5,000 or less	1,025	-152	30		135		20		16		86	
More than \$5,000	683	-206	3		201		195		59		346	

Table A. 11 (continued)

Program and Subgroup	Sample Size	Impacts on Average Total Earnings per Year (\$)		Impacts on Average AFDC Payments per Year (\$)		Impacts on Average Total Income per Year		
		Years 1-3	Year 3	Years 1-3	Year 3	Years 1-3	Year 3	
Earnings Supplements (Continued)								
Jobs First		$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger \dagger$	$\dagger \dagger$			
No earnings	3,136	853 ***	1,100 ***	153 *	-459 ***	1,061 ***	546	**
\$5,000 or less	1,860	532 *	578	415 ***	-388 ***	1,127 ***	205	
More than \$5,000	1,462	-990	-1,107	682 ***	125	21	-761	
FTP						\dagger		
No earnings	1,499	351 *	495	-199 ***	-334***	-71	13	
\$5,000 or less	923	770 ***	1,147 ***	-27	-259 ***	742 ***	874	**
More than \$5,000	393	721	1,149	-250 ***	-264***	177	661	

[^23]Table A. 12
Impacts on Earnings, Welfare Payments, and Income by High School Credential by Program

Program and Subgroup	Size Sample	Impacts on Average Total Earnings per Year (\$)				Impacts on Average AFDC Payments per Year (\$)				Impacts on Average Total Income per Year			
		Years 1-3		Year 3		Years 1-3		Year 3		Years 1-3		Year 3	
Job search first													
SWIM													
No high school diploma/GED	1,408	512		534	*	-689		-650	***	-176		-116	
High school diploma/GED	1,802	741		764	*	-684		-654	***	57		110	
Atlanta LFA													
No high school diploma/GED	1,454	455		463	*	-182		-196	**	257		209	
High school diploma/GED	2,379	512		577	**	-221		-170	***	171		263	
Grand Rapids LFA			$\dagger \dagger$		\dagger							\dagger	
No high school diploma/GED	1,246	835		1,005	***	-821		-699		-177		134	
High school diploma/GED	1,766	139		-66		-617		-466	***	-607	***	-647	**
Riverside LFA													
No high school diploma/GED	2,398	633		517	**	-765		-714		-346		-438	*
High school diploma/GED	4,328	545		322		-606		-536		-248		-400	*
Employment-focused mixed activities													
Riverside GAIN			$\dagger \dagger$								\dagger		
No high school diploma/GED	2,613	1,021		1,029	***	-730		-552	**	248		417	
High school diploma/GED	2,895	1,767		1,637	***	-730		-684	***	964	***	880	**
Portland							$\dagger \dagger$						
No high school diploma/GED	1,839	764	***	1,121	***	-478		-615	***	145		318	
High school diploma/GED	3,708	1,198	***	1,413	***	-789	***	-868	***	78		217	

Table A. 12 (continued)

Program and Subgroup	$\begin{array}{r} \text { Sample } \\ \text { Size } \\ \hline \end{array}$	Impacts on Average Total Earnings per Year (\$)			Impacts on Average AFDC Payments per Year (\$)				Impacts on Average Total Income per Year			
		Years 1-3	Year 3		Years 1-3		Year 3		Years 1-3		Year 3	
Education-focused mixed activities												
Alameda												
No high school diploma/GED	444	-538	-538		-378		-369		-1,041	**	-992	*
High school diploma/GED	761	1,196 ***	1,673	***	-112		-297		1,178	***	1,469	***
Butte						\dagger						
No high school diploma/GED	517	1,247 ***	1,463	***	-640		-565		538		827	
High school diploma/GED	712	654	843		308		288		1,001	*	1,153	
Los Angeles												
No high school diploma/GED	2,873	-36	10		-242	*	-97		-330		-145	
High school diploma/GED	1,523	316	429		-546	***	-599	***	-382		-343	
San Diego		\dagger								\dagger		$\dagger \dagger$
No high school diploma/GED	3,520	169	300		-431	**	-422	*	-319		-207	
High school diploma/GED	4,699	1,021 ***	1,168		-414		-339	**	556	*	802	**
Tulare												
No high school diploma/GED	1,224	96	410	*	-64		-164		47		267	
High school diploma/GED	1,010	48	696		142		-112		203		564	

Table A. 12 (continued)

Program and Subgroup	Sample Size	Impacts on Average Total Earnings per Year (\$)				Impacts on Average AFDC Payments per Year (\$)				Impacts on Average Total Income per Year			
		Years 1-3		Year 3		Years 1-3		Year 3		Years 1-3		Year 3	
Education first													
Atlanta HCD													
No high school diploma/GED	1,488	224		335		-166	**	-134		49		196	
High school diploma/GED	2,393	381	*	595	**	-180	***	-175		149		336	
Grand Rapids HCD													
No high school diploma/GED	1,204	398	*	722	**	-588		-637		-361		-159	
High school diploma/GED	1,793	389		192		-412	***	-366	***	-71		-271	
Riverside HCD													
No high school diploma/GED	2,423	335	**	495	**	-670	***	-769		-528	**	-543	**
High school diploma/GED	712	299		471		-460	*	-461		-355		-214	
Columbus Integrated			\dagger				\dagger		\dagger				
No high school diploma/GED	1,951					-485		-533		6		-25	
High school diploma/GED	2,721	41		166		-271	***	-269		-401	*	-281	
Columbus Traditional													
No high school diploma/GED	1,967	291		270		-322		-347		-212		-294	
High school diploma/GED	2,762	293		292		-261	***	-253		-142		-129	
Detroit													
No high school diploma/GED	1,897	367	**	649	**	-78		-208		205		276	
High school diploma/GED	2,562	393	*	570	*	-264	***	-343		-15		24	
Oklahoma City													
No high school diploma/GED	2,569	148		204		-34		-22		152		193	
High school diploma/GED	3,292	-60		-194		-128	**	-91		-263	*	-365	

Table A. 12 (continued)

$\underline{\text { Program and Subgroup }}$	SampleSize	Impacts on Average Total Earnings per Year (\$)				Impacts on Average AFDC Payments per Year (\$)				Impacts on Average Total Income per Year			
		Years 1-3		Year 3		Years 1-3		Year 3		Years 1-3		Year 3	
Earnings Supplements													
SSP - British Columbia							$\dagger \dagger$				$\dagger \dagger$		$\dagger \dagger$
No high school diploma/GED	1,015	1,649	***	1,588	***	-1,247	***	-1,071	***	1,718		1,787	***
High school diploma/GED	4,270	1,245	***	1,637	***	-597	***	-841	***	2,924		5,786	***
SSP - New Brunswick											$\dagger \dagger$		$\dagger \dagger$
No high school diploma/GED	1,146	980	***	934	***	-962		-957		1,319		1,181	***
High school diploma/GED	1,278			636		-1,230		-1,139		2,433		2,243	***
MFIP Full Services											\dagger		\dagger
No high school diploma/GED	1,931	398	*	771	**	759		25		1,471		1,749	***
High school diploma/GED	5,605	102		210		437		-612		925		793	***
MFIP Incentives Only													
No high school diploma/GED	1,514	-212		-268		2,098		3,291	***	1,248		1,174	
High school diploma/GED	4,269	-347		-324		2,198		3,885				1,014	
WRP Full Services													
No high school diploma/GED	1,303	408		744	**	-278	*	-336	*	122		418	
High school diploma/GED	5,685	249		512	**	-83		-220	***	171		270	
WRP Incentives Only													
No high school diploma/GED	623	-87		91		93		-12		58		152	
High school diploma/GED	2,866	-59		116		35		39		13		197	

Table A. 12 (continued)							
Program and Subgroup	$\begin{array}{r} \text { Sample } \\ \text { Size } \end{array}$	Impacts on Average Total Earnings per Year (\$)		Impacts on Average AFDC Payments per Year (\$)		Impacts on Average Total Income per Year	
		Years 1-3	Year 3	Years 1-3	Year 3	Years 1-3	Year 3
Earnings Supplements (Continued)							
Jobs First					\dagger		
No high school diploma/GED	2,031	360	505	229 **	-458 ***	750 ***	84
High school diploma/GED	4,427	-1	82	437 ***	$-210^{* * *}$	606 **	-114
FTP		\dagger	\dagger			$\dagger \dagger \dagger$	$\dagger \dagger$
No high school diploma/GED	1,076	246	359	-231 ***	-359 ***	-269	-176
High school diploma/GED	1,739	831 ***	1,201 ***	-124**	-280 ***	600 **	825 ***

SOURCE: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, and Baseline Information Forms.
NOTE: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: $*=10$ percent; $* *=5$ percent; and $* * *=1$ percent.
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent; and $\dagger \dagger \dagger=1$ percent.
Table A. 13
Impacts on Earnings, Welfare Payments, and Income by Welfare Status by Program

Program and Subgroup	$\begin{array}{r} \text { Sample } \\ \text { Size } \\ \hline \end{array}$	Impacts on Average Total Earnings per Year (\$)				Impacts on Average AFDC Payments per Year (\$)				Impacts on Average Total Income per Year			
		Years 1-3		Year 3		Years 1-3		Year 3		Years 1-3		Year 3	
Job search first													
SWIM													
Long Term Recipient	2,202	570		526	*	-765		-700		-195		-174	
Short Term Recipient	648	603		672		-662		-704		-59		-32	
New Applicant	360	1,073		1,415		-102		-87		971		1,328	
Atlanta LFA													
Long Term Recipient	2,495			594	***	-244		-239		254	*	236	
Short Term Recipient	1,288	232		336		-97		-39		118		252	
New Applicant	n / a	n/a		n/a		n/a		n /a		n / a		n / a	
Grand Rapids LFA									\dagger				
Long Term Recipient	1,791	400		339		-765		-694		-520		-514	**
Short Term Recipient	1,219	406		346		-573		-332		-304		-79	
New Applicant	n/a	n / a		n/a		n/a		n / a		n/a		n / a	
Riverside LFA									\dagger				
Long Term Recipient	3,510			676		-806		-796		-288		-366	
Short Term Recipient	3,101			111		-529		-421		-275		-477	*
New Applicant	n/a	n / a		n/a		n/a		n / a		n/a		n / a	
Employment-focused mixed activities													
Riverside GAIN													
Long Term Recipient	2,661	1,293	***	1,155		-744		-561		522	*	576	*
Short Term Recipient	1,979	1,353		1,173	***	-794		-741		438		301	
New Applicant	868	1,678	***	2,103	***	-529	*	-545	*	1,115	**	1,466	**
Portland			$\dagger \dagger$		\dagger				$\dagger \dagger$				
Long Term Recipient	3,423	1,293		1,680		-836	***			74		228	
Short Term Recipient New Applicant	1,999	1,031	***	1,054		-709		-653		74		199	

Table A. 13 (continued)

Program and Subgroup	SampleSize	Impacts on Average Total Earnings per Year (\$)			Impacts on Average AFDC Payments per Year (\$)			Impacts on Average Total Income per Year			
		Years 1-3	Year 3		Years 1-3	Year 3		Years 1-3		Year 3	
Education-focused mixed activities											
Alameda											
Long Term Recipient	1,205	542	835	**	-201	-315		357		550	
Short Term Recipient	n/a	n/a	n/a		n/a	n/a		n / a		n/a	
New Applicant	n/a	n/a	n/a		n/a	n / a		n/a		n/a	
Butte											
Long Term Recipient	558	1,434 ***	1,688	***	69	261		1,550	***	2,064	***
Short Term Recipient	285	877	1,051		-49	-200		891		863	
New Applicant	386	179	368		-341	-447		-304		-317	
Los Angeles											
Long Term Recipient	4,396	4	71		-396 ***	-335	***	-489	***	-379	*
Short Term Recipient	n/a	n/a	n/a		n/a	n/a		n / a		n/a	
New Applicant	n / a	n/a	n / a		n/a	n / a		n / a		n / a	
San Diego											
Long Term Recipient	3,948	428	462		-511 ***	-392	*	-153		7	
Short Term Recipient	3,079	914 ***	1,145	***	-234	-218		619	**	864	**
New Applicant	1,192	855	1,055		-725 **	-693	**	-22		220	
Tulare											
Long Term Recipient	1,397	155	674	*	18	-122		158		547	
Short Term Recipient	691	267	719		288	102		528		799	
New Applicant	n/a	n/a	n / a		n/a	n / a		n/a		n / a	

Table A. 13 (continued)

$\underline{\text { Program and Subgroup }}$	Sample Size	Impacts on Average Total Earnings per Year (\$)				Impacts on Average AFDC Payments per Year (\$)				Impacts on Average Total Income per Year			
		Years 1-3		Year 3		Years 1-3		Year 3		Years 1-3		Year 3	
Education first													
Atlanta HCD													
Long Term Recipient	2,543	366		497	**	-193		-189	***	127		236	
Short Term Recipient	1,275	179		400		-120	*	-84		83		332	
New Applicant	n / a	n / a		n / a		n / a		n/a		n/a		n/a	
Grand Rapids HCD			$\dagger \dagger$		$\dagger \dagger$		$\dagger \dagger$				$\dagger \dagger$		$\dagger \dagger$
Long Term Recipient	1,775	283		265		-585		-589	***	-446	**	-532	
Short Term Recipient	1,215	570	*	622		-325		-308	**	213		231	
New Applicant	n / a	n / a		n / a		n / a		n/a		n/a		n/a	
Riverside HCD													
Long Term Recipient	1,841	479		697	***	-581		-639		-280		-156	
Short Term Recipient	1,238	90		198		-675		-820		-795		-952	**
New Applicant	n / a	n / a		n / a		n / a		n/a		n/a		n/a	
Columbus Integrated													
Long Term Recipient	3,392	511		580	**	-381		-426		-106		-144	
Short Term Recipient	806	-403		-184		-317		-289		-912	**	-654	
New Applicant	448	539		745		-271	**	-185		2		360	
Columbus Traditional													
Long Term Recipient	3,415	349	**	360		-272		-307	***	-63		-126	
Short Term Recipient	793	67		277		-246	**	-186	*	-380		-37	
New Applicant	497	104		-307		-335		-251	**	-520		-802	
Detroit													
Long Term Recipient	3,313	328	**	462	*	-236		-342		-34		-93	
Short Term Recipient	1,015	552		1,063	**	-34		-141		446		813	*
New Applicant	n / a	n / a		n/a		n / a		n/a		n/a		n/a	
Oklahoma City													
Long Term Recipient	1,419	177		245		-121		-144		42		89	
Short Term Recipient	1,858	5		-145		-180		-159	**	-274		-445	*
New Applicant	2,530	-53		-110		12		77		-10		2	

Table A. 13 (continued)

Program and Subgroup	SampleSize	Impacts on Average Total Earnings per Year (\$)				Impacts on Average AFDC Payments per Year (\$)				Impacts on Average TotalIncome per Year			
		Years 1-3		Year 3		Years 1-3		Year 3		Years 1-3		Year 3	
Earnings Supplements													
SSP - British Columbia													$\dagger \dagger$
Long Term Recipient	1,804	1,170		830		-977	***	-844		1,856		1,629	***
Short Term Recipient	733	1,786		1,962	**	-838	**	-789	*	3,126		3,354	***
New Applicant	2,748	1,431	***	2,191		-626		-1,064		\#N/A		14,195	***
SSP - New Brunswick													
Long Term Recipient	1,967	1,015	***	852	***	-1,150		-1,098	***	1,867	***	1,748	***
Short Term Recipient	457	796	*	331		-838		-773	*	1,942		1,540	**
New Applicant	n/a	n/a		n/a		n/a		n/a		n / a		n / a	
MFIP Full Services													
Long Term Recipient	3,048	267		115		693	***	273		1,118		884	***
Short Term Recipient	1,344	-120		599		405		-1,173		882	**	1,248	
New Applicant	2,951	178		395		500		-728		1,170		1,141	***
MFIP Incentives Only			\dagger				\dagger		$\dagger \dagger$				
Long Term Recipient	2,587	-418	*	-486		1,846	***	2,500	***	1,077	***	1,052	***
Short Term Recipient	1,027	-1,459	***	-1,412	**	3,591		7,053	***	402		551	
New Applicant	2,015	-149		-272		2,335	***	4,400	**	1,069		826	*
WRP Full Services													
Long Term Recipient	2,650	33		321		-114		-319	**	-57		-21	
Short Term Recipient	1,038	368		339		-304	*	-233		6		89	
New Applicant	3,300	465	**	829	***	-71		-183	*	395	*	635	**
WRP Incentives Only													
Long Term Recipient	1,302	-170		49		10		-38		-98		51	
Short Term Recipient	530	-45		-104		17		292		37		368	
New Applicant	1,657	83		322		70		-16		164		313	

Table A. 13 (continued)

$\underline{\text { Program and Subgroup }}$	Sample Size	Impacts on Average Total Earnings per Year (\$)				Impacts on Average AFDC Payments per Year (\$)				Impacts on Average Total Income per Year			
		Years 1-3		Year 3		Years 1-3		Year 3		Years 1-3		Year 3	
Earnings Supplements (Continued)													
Jobs First			$\dagger \dagger \dagger$		$\dagger \dagger$				\dagger		$\dagger \dagger$		\dagger
Long Term Recipient	3,234	454		493		349		-454	***	964	***	37	
Short Term Recipient	1,394	1,178		1,522		370		-264	**	1,671		1,204	
New Applicant	1,320	-1,051	*	-967		432		-86		-496		-1,077	
FTP									$\dagger \dagger$				\dagger
Long Term Recipient	1,444	419		726		-146	**	-375		136		214	
Short Term Recipient	956	838		1,196		-103	*	-169		581	*	983	
New Applicant	334	-412		-643		-87		-157	**	-551		-832	

SOURCE: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, and Baseline Information Forms.
 as: $*=10$ percent; $* *=5$ percent; and $* * *=1$ percent.
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent; and $\dagger \dagger \dagger=1$ percent.
Individuals were classified as new applicants if they had never received welfare prior to random assignment, and as short-term recipients if they had received welfare for less than two years prior to random assignment.
Table A. 14
Impacts on Earnings, Welfare Payments, and Income

$\underline{\text { Program and Subgroup }}$	Sample Size	Impacts on Average Total Earnings per Year (\$)				Impacts on Average AFDC Payments per Year (\$)				Impacts on Average Total Income per Year (\$)			
		Years 1-3		Year 3		Years 1-3		Year 3		Years 1-3		Year 3	
SWIM													
White	877	589		114		-858	***	-628	**	-269		-514	
Black	1,361	442		507		-705	***	-659	***	-263		-152	
Hispanic	814	687	*	1,044	**	-470	*	-657	**	217		387	
Other	n/a	n/a		n / a		n / a		n / a		n/a		n/a	
GAIN Evaluation Programs													
Alameda													
White	216	56		251		36		-169		218		191	
Black	844	731	*	937	*	-268		-231		499		779	
Hispanic	n/a	n/a											
Other	n/a	n / a		n/a		n / a							
Butte													
White	1,061	1,027	**	1,220	**	58		125		1,116	**	1,372	**
Black	n / a	n/a		n / a		n / a		n / a		n/a		n / a	
Hispanic	n /a	n/a		n/a		n/a		n / a		n / a		n / a	
Other	n / a	n / a		n/a		n/a		n / a		n / a		n / a	
Los Angeles													
White	512	327		286		-410		-313		-170		-101	
Black	1,987	-134		-105		-508	***	-434	**	-823	***	-727	**
Hispanic	1,408	192		310		-135		-108		70		178	
Other	489	402	**	565	**	-237		-48		197		562	
Riverside									\dagger				
White	2,847	1,698	***	1,610	***	-771	***	-850	***	839	***	638	*
Black	862	1,277	**	997		-777	**	-495		407		408	
Hispanic	1,510	961	***	1,120	***	-733	***	-504	*	167		568	
Other	289	351		-63		19		924		779		1,443	

Table A. 14 (continued)

Program and Subgroup	SampleSize	$\begin{gathered} \text { Impacts on Average Total } \\ \text { Earnings per Year (\$) } \\ \hline \end{gathered}$				Impacts on Average AFDC Payments per Year (\$)				Impacts on Average TotalIncome per Year (\$)			
		Years 1-3		Year 3		Years 1-3		Year 3		Years 1-3		Year 3	
San Diego			\dagger								\dagger		
White	3,478	1,139	***	1,315	***	-347	**	-386	**	768	***	912	**
Black	1,865	553		606		-442	*	-475	*	42		44	
Hispanic	2,094	-278		-21		-377		-204		-707		-264	
Other	782	800	*	652		-801	*	-457		-153		59	
Tulare													
White	1,165	-42		359		125		-9		169		424	
Black	n/a	n/a											
Hispanic	871	230		756	*	-139		-344		12		339	
Other	n/a	n/a		n / a		n/a		n/a		n/a		n/a	
NEWWS Evaluation Programs													
Atlanta LFA													
White	n/a	n/a											
Black	3,624	458	***	510	**	-192	***	-171	***	200		244	
Hispanic	n / a	n / a		n / a		n/a		n / a		n / a		n/a	
Other	n/a	n/a											
Atlanta HCD													
White	n / a	n/a											
Black	3,669	295	*	478	**	-174	***	-157	***	94		278	
Hispanic	n/a	n/a		n/a		n/a		n / a		n / a		n/a	
Other	n / a	n/a		n / a		n/a		n / a		n/a		n/a	
Grand Rapids LFA			\dagger		\dagger								
White	1,470	-10		-226		-600	***	-431	***	-756	***	-782	**
Black	1,214	596	***	704	**	-758	***	-629	***	-264		-10	
Hispanic	244	1,349	***	1,484	**	-1,093	***	-1,037	***	-189		42	
Other	n/a	n / a		n / a		n/a		n / a		n/a		n/a	

Table A. 14 (continued)

Program and Subgroup	SampleSize	Impacts on Average Total Earnings per Year (\$)				Impacts on Average AFDC Payments per Year (\$)				Impacts on Average Total Income per Year (\$)			
		Years 1-3		Year 3		Years 1-3		Year 3		Years 1-3		Year 3	
Grand Rapids HCD			\dagger				\dagger						
White	1,515	261		306		-330	***	-372	***	-147		-204	
Black	1,158	395		315		-535	***	-416	***	-208		-198	
Hispanic	249	1,498	***	2,051	***	-1,062	***	-1,166	***	125		447	
Other	n/a	n / a		n / a		n / a		n/a		n/a		n / a	
Riverside LFA													
White	3,464	418	**	126		-660	***	-558	***	-435	**	-610	**
Black	1,121	420		249		-526	***	-273		-248		-121	
Hispanic	1,858	938	***	991	***	-768	***	-836	***	-60		-135	
Other	255	447		-140		-33		-424		324		-849	
Riverside HCD			\dagger		\dagger								
White	1,208	207		371		-616	***	-529	**	-591	*	-318	
Black	510	-239		-64		-278		-494		-640		-755	
Hispanic	1,240	728	***	1,003	***	-798	***	-956	***	-333		-335	
Other	n / a	n / a		n/a		n / a							
Columbus Integrated											\dagger		
White	2,161	315		304		-435	***	-415	***	-429	*	-424	
Black	2,414	434	*	654	**	-283	***	-340	***	2		92	
Hispanic	n / a	n / a		n / a		n/a		n / a		n/a		n / a	
Other	n/a	n/a		n / a									
Columbus Traditional							\dagger		\dagger				
White	2,204	154		57		-256	***	-213	***	-265		-299	
Black	2,431	420	*	538	*	-283	***	-328	***	-33		1	
Hispanic	n/a	n/a		n/a		n/a		n / a		n/a		n / a	
Other	n / a	n/a		n/a		n/a		n / a		n / a		n/a	

Table A. 14 (continued)

Table A. 14 (continued)

$\underline{\text { Program and Subgroup }}$	Sample Size \qquad	Impacts on Average Total Earnings per Year (\$)				Impacts on Average AFDC Payments per Year (\$)				Impacts on Average Total Income per Year (\$)			
		Years 1 to 3		Year 3		Years 1 to 3		Year 3		Years 1 to 3		Year 3	
Vermont													
Full Service													
White	6,655	315	**	555	***	-155	**	-262	***	154		272	
Black	n / a	n / a											
Hispanic	n / a	n / a											
Other	n / a	n / a											
Incentives Only							\dagger		\dagger				$\dagger \dagger$
White	3,316	25		187		-27		-36		16		176	
Black	n / a	n / a		n/a		n / a		n / a		n/a		n / a	
Hispanic	n / a	n / a											
Other	n/a	n / a											
MFIP													
Full Service			\dagger										
White	4,468	-16		159		375		-1,022		873	***	721	***
Black	1,876	833	***	912	**	829	***	859	***	1,660	***	1,768	***
Hispanic	n/a	n/a		n / a									
Other	659	-423		-117		1,623	***	2,270		828	**	1,040	*
Incentives Only							$\dagger \dagger \dagger$		$\dagger \dagger$		\dagger		$\dagger \dagger$
White	3,216	-91		204		2,637	***	4,999	***	1,260	***	1,456	***
Black	1,675	-309		-612		1,327	***	1,461	***	1,016	***	848	**
Hispanic	n/a	n/a		n/a		n / a		n / a		n / a		n/a	
Other	523	-946	*	-1,476	**	1,330	***	2,606	**	-181		-559	
Connecticut													
White	2,322	730	**	870	**	451	***	-271	***	1,453	***	677	
Black	2,216	-169		-150		419	***	-239	**	450		-298	
Hispanic	1,382	159		329		285	**	-365	**	508		-88	
Other	n / a	n / a		n/a									

Table A. 14 (continued)

Program and Subgroup	SampleSize	Impacts on Average Total Earnings per Year (\$)		Impacts on Average AFDC Payments per Year (\$)		Impacts on Average Total Income per Year (\$)			
		Years 1 to 3	Year 3	Years 1 to 3	Year 3	Years 1 to 3		Year 3	
FTP									
White	1,234	758 ***	1,126 ***	-125	$-246{ }^{* * *}$	505	*	782	**
Black	1,410	392	629 **	-178 **	$-336{ }^{* * *}$	19		162	
Hispanic	n / a	n/a	n/a	n/a	n/a	n / a		n/a	
Other	n/a	n / a	n / a	n/a	n/a	n / a		n/a	
SOURCES: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, and Baseline Information Forms.									
NOTES: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicate 10 percent; $* *=5$ percent; and ${ }^{* * *}=1$ percent. An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ perce $\dagger \dagger \dagger=1$ percent. $\mathrm{n} / \mathrm{a}=$ not applicable because sample sizes were too small to reliably calculate impacts.									

Table A. 15
Impacts on Earnings, Welfare Payments, and Income

Program and Subgroup	$\begin{array}{r} \text { Sample } \\ \text { Size } \end{array}$	Impacts on Average Total Earnings per Year (\$)		$\begin{gathered} \text { Impacts on Average AFDC } \\ \text { Payments per Year (\$) } \\ \hline \end{gathered}$		Impacts on Average Total Income per Year (\$)			
		Years 1-3	Year 3	Years 1-3	Year 3	Years 1-3		Year 3	
NEWWS Evaluation Programs									
Atlanta LFA									
High risk	383	707	686	-165	-138	206		617	
Moderate risk	762	216	538	-159	-143	113		339	
Low risk	1,999	586 ***	567 **	-177 ***	-131 *	112		337	
Atlanta HCD									
High risk	400	-20	-442	-155	-149	-152		-457	
Moderate risk	826	392	945 **	-165 *	-155	217		650	
Low risk	1,970	358 *	534 *	-138 **	-94	151	*	454	*
Grand Rapids LFA									
High risk	319	-15	-511	-797 ***	-624 **	-424		-1,273	
Moderate risk	488	441	508	-838 ***	-681 ***	-113		-339	
Low risk	1,148	510 **	473	-758 ***	-604 ***	-117		-352	
Grand Rapids HCD			\dagger			\dagger			\dagger
High risk	304	-424	-936	-413 *	-358	-504	*	-1,512	*
Moderate risk	474	152	260	-500 ***	-491 **	-165		-494	
Low risk	1,164	848 ***	1,036 **	-543 ***	-528 ***	112		335	
Riverside LFA									
High risk	519	428	373	-945 ***	-803 **	-251		-752	
Moderate risk	858	786 **	643	-801 ***	-749 ***	-93		-278	
Low risk	2,425	713 ***	398	-702 ***	-644 ***	-158	*	-474	*
Riverside HCD									
High risk	270	-217	381	-393	-473	-108		-324	
Moderate risk	444	527	575	-479	-695 *	-84		-252	
Low risk	1,010	515 **	751 **	-651 ***	-711 ***	-79		-238	

Table A. 15 (continued)

$\underline{\text { Program and Subgroup }}$	$\begin{array}{r} \text { Sample } \\ \text { Size } \end{array}$	Impacts on Average Total Earnings per Year (\$)		Impacts on Average AFDC Payments per Year (\$)		Impacts on Average Total Income per Year (\$)		
		Years 1-3	Year 3	Years 1-3	Year 3	Years 1-3	Year 3	
Portland				$\dagger \dagger \dagger$	$\dagger \dagger$			
High risk	775	731 **	828 *	-278*	-242	161	482	
Moderate risk	1,174	768 **	1,001 **	-435 ***	-585 ***	80	240	
Low risk	2,946	1,381 ***	1,749 ***	-987***	$-1,071$ ***	82	247	
Self Sufficiency Project								
British Columbia				\dagger				
High risk	263	1,737 **	1,422	$-1,863$ ***	$-1,552 * *$	524	1,571	*
Moderate risk	482	1,215 **	1,259 **	-1,233 ***	$-1,123 * *$	630 ***	1,891	***
Low risk	1,782	1,219 ***	957	-640 ***	-560 **	746 ***	2,237	***
New Brunswick								
High risk	247	549	-142	-1,049 **	-783	318	954	
Moderate risk	451	928 **	1,113 **	-860 ***	-910 **	532 ***	1,596	***
Low risk	1,724	1,032 ***	779 **	$-1,149$ ***	$-1,094 * * *$	617 ***	1,850	***

SOURCES: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, Food Stamp, and Private Opinion Survey data.
NOTES: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: $*=10$ percent; $* *=5$ percent; and $* * *=1$ percent.
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent; and $\dagger \dagger \dagger=1$ percent.

Appendix B

Additional Impacts on Stable Employment

Chapter 3 described results by program by level of disadvantage, as represented by welfare status, work history, and high school credential. It also showed pooled results for several other subgroups. This appendix presents pooled results for a wider range of other subgroups defined based on demographic characteristics or psychosocial characteristics, and it presents results by program for several additional subgroups.

Tables B.1, B.3, B.5, B.6, and B. 8 show pooled impacts for the five program models discussed in Chapters 1 and 2 (job search first, employment focused with a mix of initial activities, education focused with a mix of initial activities, education first, and earnings supplements). Each table shows results for several subgroups defined from administrative records or baseline demographic information. These subgroups include welfare history (long-term and short-term welfare recipients, and welfare applicants), earnings in the year prior to random assignment, high school credential, number of children, and age of youngest child.

Tables B.2, B.4, B.7, and B. 9 show additional pooled impacts for the four program models for subgroups defined based on the opinion surveys collected at the time of random assignment. (None of the education-focused mixed activity programs had private opinion data.) These subgroups include preference for work, work-related parental concerns, mastery, risk of depression, health or emotional problems, child care problems, and transportation problems. Appendix A of Michalopoulos and Schwartz (2001) describes how these subgroups were defined.

Tables B. 10 through B. 14 show results by program for several subgroups, including by level of disadvantage (Table B.10), by earnings in the year prior to random assignment (Table B.11), by high school credential (Table B.12), by welfare status (Table B.13), and by race and ethnicity (Table B.14).
Table B. 1

$\underline{\text { Program and Subgroup }}$	$\begin{array}{r} \text { Sample } \\ \text { Size } \end{array}$	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)		Employed in 9 of 12Quarters (\%)		Employed in 6 of 8Quarters in Years 2 and 3 (\%)	
		Contro Group	Impact	$\begin{gathered} \hline \text { Control } \\ \text { Group } \\ \hline \end{gathered}$	Impact	Control Group	Impact
Full sample	16,781	18.6	4.7 ***	20.2	4.9 ***	24.1	4.2 ***
Total earnings in past 12 months							
No earnings	9,832	9.5	5.5 ***	10.8	5.8 ***	14.7	5.3 ***
\$5,000 or less	4,604	26.0	5.2 ***	28.9	4.8 ***	32.7	$4.1{ }^{* * *}$
More than \$5,000	2,345	41.6	1.1	42.1	1.7	46.0	0.6
Welfare history ${ }^{\text {a }}$					\dagger		$\dagger \dagger$
Long-term recipient	9,998	15.1	5.9 ***	16.7	6.1 ***	20.0	$6.1{ }^{* * *}$
Short-term recipient	6,256	23.8	3.2 ***	25.6	3.0 **	30.3	1.6
New applicant	440	17.7	9.1	19.0	10.6 *	24.1	10.0
Education credential receipt							
No high school diploma/GED	6,506	11.9	5.6 ***	13.3	5.9 ***	16.5	5.4 ***
High school diploma/GED	10,275	22.8	4.2 ***	24.5	4.2 ***	28.8	3.6 ***
Number of children							
Three or more	4,240	15.5	5.8 ***	16.8	6.0 ***	20.1	6.0 ***
Two	5,390	20.5	3.9 ***	21.9	4.2 ***	26.0	3.5 ***
One	7,150	19.1	4.3 ***	20.9	4.5 ***	25.0	3.6 ***
Age of youngest child			\dagger		\dagger		\dagger
Under 6	7,735	17.4	6.4 ***	19.2	6.9 ***	23.3	6.7 ***
6 or older	8,956	19.5	3.3 ***	20.8	3.6 ***	24.5	2.6 ***
Gender \dagger							
Female	15,465	18.7	5.0 ***	20.3	5.2 ***	24.3	4.6 ***
Male	1,266	16.6	1.8	18.4	1.8	22.1	-1.1

Table B. 1 (Continued)
SOURCES: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, and Baseline Information Forms.
NOTES: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated
as: $*=10$ percent; ** $=5$ percent; and $* * *=1$ percent.
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$
percent; and $\dagger \dagger \dagger=1$ percent.
${ }^{\text {a }}$ Sample members were classified as new applicants if they responded on the BIF that they had never received welfare in the past. Sample members
were classified as short term recipients if they had received welfare before on their own case or their spouses' case but had received it for a total of less
than two years. They were classified as long term recipients if they had received welfare for two years or more prior to random assignment.
Table B. 2
Pooled Across Job-Search-First Welfare-to-Work Programs with a POS by Selected Characteristics at the Time of Random Assignment

$\underline{\text { Program and Subgroup }}$	Sample Size	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)		Employed in 9 of 12 Quarters (\%)		Employed in 6 of 8Quarters in Years 2 and $3(\%)$	
		$\begin{aligned} & \hline \text { Control } \\ & \text { Group } \\ & \hline \end{aligned}$	Impact	Control Group	Impact	Control Group	Impact
Preference for work							
Low	3,646	18.8	5.0 ***	20.5	5.2 ***	24.6	$5.5 * * *$
Moderate	3,725	20.3	4.8 ***	22.6	5.2 ***	27.5	4.3 ***
High	1,158	23.0	4.9 *	24.9	4.5 *	28.6	2.3
Work-Related Parental Concerns scale							
High	2,002	11.8	5.3 ***	14.1	$5.5 * * *$	18.3	5.3 ***
Low	6,887	22.6	4.6 ***	24.4	4.7 ***	29.0	4.1 ***
Mastery scale							
Low	3,252	16.7	5.2 ***	18.1	$6.5 * * *$	22.2	5.8 ***
High	5,637	22.1	4.8 ***	24.2	4.2 ***	29.0	3.9 ***
Risk of depression							
High	1,221	21.0	2.2	23.7	1.8	28.5	1.1
Moderate	2,108	18.9	4.8 ***	20.7	$6.4 * * *$	25.3	$5.6^{* * *}$
Low	5,572	20.3	$5.5 * * *$	22.0	5.1 ***	26.5	4.7 ***
Barriers to work or participation							
Health or emotional problem ${ }^{\text {a }}$							
Yes	2,369	13.3	3.8 ***	14.6	4.8 ***	18.2	$4.4 * * *$
No	6,503	22.3	5.7 ***	24.5	5.4 ***	29.3	4.7 ***
Cannot afford/arrange for child care							
Yes	5,586	17.7	5.3 ***	19.6	$5.8 * * *$	24.1	5.2 ***
No	3,157	24.4	4.6 ***	26.2	4.1 ***	30.8	3.5 **
Transportation problem					\dagger		$\dagger \dagger$
Yes	3,107	12.6	$6.4 * * *$	13.9	7.5 ***	17.1	7.7 ***
No	5,717	23.8	4.9 ***	26.1	$4.4 * * *$	31.2	3.6 ***

$$
\begin{aligned}
& \text { Table B. } 2 \text { (Continued) } \\
& \text { SOURCES: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, and Baseline Information Forms. } \\
& \text { NOTES: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated } \\
& \text { as: } *=10 \text { percent; ** }=5 \text { percent; and } * * *=1 \text { percent. } \\
& \text { An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as } \dagger=10 \text { percent; } \dagger \dagger=5 \\
& \text { percent; and } \dagger \dagger=1 \text { percent. } \\
& \text { as }{ }^{\text {Sample members in the "yes" category on this measure could have had a health or emotional problem themselves at random assignment or one of }} \\
& \text { their family members could have had such a problem. }
\end{aligned}
$$

Table B. 3
Impacts on Stable Employment
Pooled Across Employment-Focused Mixed-Activity Welfare-to-Work Programs
by Selected Characteristics at the Time of Random Assignment

$\underline{\text { Program and Subgroup }}$	$\begin{array}{r} \text { Sample } \\ \text { Size } \\ \hline \end{array}$	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)		Employed in 9 of 12Quarters (\%)		Employed in 6 of 8Quarters in Years 2 and 3 (\%)	
		Contro Group	Impact	$\begin{gathered} \hline \text { Control } \\ \text { Group } \\ \hline \end{gathered}$	Impact	Control Group	Impact
Full sample	11,055	16.2	9.0 ***	17.3	9.4 ***	22.0	9.1 ***
Total earnings in past 12 months							\dagger
No earnings	6,545	7.9	10.3 ***	8.7	11.0 ***	13.5	11.2 ***
\$5,000 or less	3,082	23.2	6.7 ***	24.5	8.0 ***	29.4	6.6 ***
More than \$5,000	1,428	39.1	8.3 ***	41.0	5.8 *	44.8	5.2 *
Welfare history ${ }^{\text {a }}$					\dagger		$\dagger \dagger$
Long-term recipient	6,084	13.8	9.6 ***	14.7	10.4 ***	19.2	11.1 ***
Short-term recipient	3,978	18.5	9.4 ***	19.6	9.8 ***	25.1	7.9 ***
New applicant	931	26.0	-2.4	29.7	-6.0	34.1	-9.3
Education credential receipt			\dagger				
No high school diploma/GED	4,452	10.6	6.6 ***	11.2	8.0 ***	14.8	8.3 ***
High school diploma/GED	6,603	20.1	10.6 ***	21.4	10.4 ***	26.6	10.0 ***
Number of children							
Three or more	2,843	13.1	11.7 ***	14.6	11.6 ***	20.0	10.8 ***
Two	3,623	17.3	7.7 ***	17.8	9.0 ***	22.3	9.4 ***
One	4,524	17.6	8.2 ***	18.9	8.3 ***	23.1	7.8 ***
Age of youngest child			\dagger		\dagger		\dagger
Under 6	4,623	15.3	11.5 ***	16.8	11.9 ***	21.8	12.3 ***
6 or older	6,295	17.3	6.7 ***	18.1	7.2 ***	22.1	6.7 ***
Gender							
Female	9,915	16.2	9.2 ***	17.5	9.6 ***	22.3	9.2 ***
Male	1,033	15.0	7.1 **	15.0	8.0 ***	18.6	8.1 **

Table B. 4
Pooled Across Employment-Focused Mixed-Activity Welfare-to-Work Programs with a POS by Selected Characteristics at the Time of Random Assignment

Program and Subgroup	$\begin{array}{r} \text { Sample } \\ \text { Size } \\ \hline \end{array}$	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)		Employed in 9 of 12 Quarters (\%)		Employed in 6 of 8Quarters in Years 2 and 3 (\%)	
		Control Group	Impact	Control Group	Impact	Control Group	Impact
Work-Related Parental Concerns scale							
High	1,423	10.2	10.7 ***	11.0	11.8 ***	15.6	14.2 ***
Low	3,486	24.7	8.0 ***	25.9	9.5 ***	31.3	10.2 ***
Mastery scale			\dagger		$\dagger \dagger$		\dagger
Low	1,719	18.4	5.4 ***	20.7	5.4 **	24.5	7.0 ***
High	3,193	21.5	$11.1{ }^{\text {*** }}$	22.0	13.3 ***	27.8	14.3 ***
Risk of depression			\dagger		\dagger		\dagger
High	775	18.0	6.3 **	19.5	6.9 **	24.6	6.3 *
Moderate	1,174	23.7	4.2	25.2	5.2 *	29.9	6.8 **
Low	2,946	19.9	11.5 ***	20.6	13.4 ***	25.9	14.5 ***
Barriers to work or participation							
Health or emotional problem ${ }^{\text {a }}$							
Yes	1,385	11.7	8.9 ***	13.7	9.3 ***	18.9	9.6 ***
No	3,517	23.9	8.7 ***	24.5	10.7 ***	29.7	12.1 ***
Cannot afford/arrange for child care							
Yes	3,371	18.5	8.4 ***	19.3	10.2 ***	25.0	11.1 ***
No	1,475	25.1	9.9 ***	26.3	11.3 ***	30.6	12.8 ***
Transportation problem			$\dagger \dagger$		\dagger		
Yes	1,428	17.1	4.0 *	17.4	6.6 ***	21.4	9.8 ***
No	3,447	21.7	$11.1{ }^{\text {*** }}$	23.0	12.2 ***	28.6	12.4 ***

Table B. 4 (Continued)
NOTES: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$
percent; and $\dagger \dagger=1$ percent.
${ }^{\text {a }}$ Sample members in the "yes" category on this measure could have had a health or emotional problem themselves at random assignment or one of
their family members could have had such a problem.
Table B. 5
Pooled Across Education-Focused Mixed-Activity Welfare-to-Work Programs by Selected Characteristics at the Time of Random Assignment

Program and Subgroup	SampleSize	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)		Employed in 9 of 12 Quarters (\%)		Employed in 6 of 8Quarters in Years 2 and 3 (\%)	
		Control Group	Impact	$\begin{aligned} & \hline \text { Control } \\ & \text { Group } \end{aligned}$	Impact	Control Group	Impact
Full sample	17,283	14.3	2.0 ***	14.8	2.5 ***	17.4	3.1 ***
Total earnings in past 12 months							
No earnings	10,911	6.6	2.0 ***	7.1	2.5 ***	9.4	3.4 ***
\$5,000 or less	4,047	21.5	0.9	22.0	2.1	25.3	1.6
More than \$5,000	2,325	38.2	3.5	37.8	4.4	40.4	5.7 **
Welfare history ${ }^{\text {a }}$							
Long-term recipient	11,504	11.6	2.3 ***	11.7	3.4 ***	13.9	4.1 ***
Short-term recipient	4,055	17.2	3.6 **	18.3	3.2 *	21.5	3.8 **
New applicant	1,724	20.9	2.1	21.8	2.5	26.2	1.6
Education credential receipt			$\dagger \dagger$		$\dagger \dagger$		\dagger
No high school diploma/GED	8,578	11.3	0.1	11.9	0.4	13.4	1.4
High school diploma/GED	8,705	17.2	4.0 ***	17.7	4.6 ***	21.3	5.0 ***
Number of children							
Three or more	4,379	12.0	2.3	12.1	3.3 **	13.9	4.2 ***
Two	5,463	14.8	3.6 ***	15.8	3.0 **	18.4	3.7 ***
One	7,266	15.4	0.6	15.7	1.7	18.8	2.2 *
Age of youngest child							
Under 6	2,360	15.5	0.0	16.6	0.2	20.7	0.1
6 or older	14,748	14.3	2.1 ***	14.7	2.7 ***	17.0	3.5 ***
Gender							
Female	14,987	14.2	1.9 **	14.9	2.3 ***	17.3	3.2 ***
Male	2,228	15.0	2.7	14.9	3.9 **	18.6	2.4

Table B. 5 (continued)
NOTES: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated were classified as short term recipients if they had received welfare before on their own case or their spouses' case but had received it for a total of less than two years. They were classified as long term recipients if they had received welfare for two years or more prior to random assignment.
Table B. 6

$\underline{\text { Program and Subgroup }}$	$\begin{array}{r} \text { Sample } \\ \text { Size } \end{array}$	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)		Employed in 9 of 12 Quarters (\%)		Employed in 6 of 8Quarters in Years 2 and 3 (\%)	
		Control Group	Impact	$\begin{aligned} & \hline \text { Control } \\ & \text { Group } \\ & \hline \end{aligned}$	Impact	Control Group	Impact
Full sample	32,194	20.4	0.5	23.2	0.6	27.3	1.1 **
Total earnings in past 12 months					\dagger		\dagger
No earnings	17,102	10.0	0.9 *	11.8	1.6 ***	16.2	2.3 ***
\$5,000 or less	10,487	26.6	-0.1	30.9	-1.0	35.1	-0.7
More than \$5,000	4,605	45.0	0.0	47.4	1.1	51.0	1.4
Welfare history ${ }^{\text {a }}$			\dagger				\dagger
Long-term recipient	17,613	19.3	1.6 **	22.1	1.5 **	26.0	2.6 ***
Short-term recipient	9,606	24.4	-1.0	27.0	-0.5	31.7	-0.5
New applicant	4,713	15.6	1.2	19.0	0.6	23.9	-1.5
Education credential receipt							
No high school diploma/GED	13,838	13.9	1.2 **	16.5	1.4 **	19.9	2.0 ***
High school diploma/GED	18,356	25.1	0.4	27.9	0.6	32.6	1.1
Number of children							
Three or more	7,856	18.0	0.7	20.9	0.8	25.0	2.1 **
Two	10,277	21.2	1.0	23.7	1.3	28.0	1.5 *
One	14,061	21.4	-0.3	24.2	-0.1	28.3	0.1
Age of youngest child					\dagger		$\dagger \dagger$
Under 6	18,207	18.2	1.1 *	21.1	1.7 ***	25.4	2.4 ***
6 or older	13,748	23.5	-0.4	25.9	-0.8	29.9	-0.4
Gender							
Female	29,981	20.4	0.4	23.3	0.6	27.5	1.1 **
Male	1,995	21.4	1.0	23.1	0.2	27.1	-0.8

Table B. 6 (continued)
NOTES: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated "Sample members were classified as new applicants if they responded on the BIF that they had never received welfare in the past. Sample members
were classified as short term recipients if they had received welfare before on their own case or their spouses' case but had received it for a total of less than two years. They were classified as long term recipients if they had received welfare for two years or more prior to random assignment.
Table B. 7
Pooled Across Education-First Welfare-to-Work Programs with a POS by Selected Characteristics at the Time of Random Assignment

$\underline{\text { Program and Subgroup }}$	$\begin{array}{r} \text { Sample } \\ \text { Size } \end{array}$	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)		Employed in 9 of 12Quarters (\%)		Employed in 6 of 8Quarters in Years 2 and 3 (\%)	
		Control Group	Impact	Control Group	Impact	Control Group	Impact
Preference for work							
Low	3,181	20.1	1.0	22.0	0.5	26.3	1.5
Moderate	3,292	20.9	1.4	23.5	1.8	28.5	2.6
High	1,037	24.9	-2.3	27.0	-3.1	31.0	-2.3
Work-Related Parental Concerns scale							
High	1,801	12.6	2.2	15.2	0.9	19.5	0.9
Low	6,045	23.7	0.1	25.7	0.6	30.5	1.7
Mastery scale							
Low	3,055	17.2	0.9	18.8	1.7	23.2	2.9 *
High	4,793	23.5	0.4	25.9	0.2	30.9	0.9
Risk of depression							
High	1,109	21.7	-3.8	24.5	-3.8	29.6	-2.7
Moderate	1,955	20.2	0.2	22.2	1.0	27.0	0.4
Low	4,808	21.3	1.5	23.2	1.5	28.0	2.7 **
Barriers to work or participation							
Health or emotional problem ${ }^{\text {a }}$							
Yes	2,158	13.8	-1.4	15.2	-0.7	18.9	0.7
No	5,690	23.6	1.4	26.0	1.3	31.1	1.9
Cannot afford/arrange for child care							
Yes	4,909	18.6	1.1	20.7	1.3	25.5	2.0
No	2,801	25.8	-0.5	27.8	-0.4	32.5	0.5
Transportation problem							
Yes	2,802	13.2	1.6	14.6	2.0	17.8	2.5 *
No	4,981	24.9	0.8	27.5	1.0	32.9	2.0

Table B. 7 (Continued)
NOTES: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: $*=10$ percent; $* *=5$ percent; and $* * *=1$ percent.
An F -test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$
percent; and $\dagger \dagger=1$ percent.
${ }^{\text {a }}$ Sample members in the "yes" category on this measure could have had a health or emotional problem themselves at random assignment or one of
their family members could have had such a problem.
Table B. 8
Pooled Across Programs with Earnings Supplements
by Selected Characteristics at the Time of Random Assignm

$\underline{\text { Program and Subgroup }}$	$\begin{array}{r} \text { Sample } \\ \text { Size } \\ \hline \end{array}$	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)		$\begin{gathered} \hline \text { Employed in } 9 \text { of } 12 \\ \text { Quarters (\%) } \end{gathered}$		Employed in 6 of 8Quarters in Years 2 and $3(\%)$	
		Contro Group	Impact	$\begin{gathered} \hline \text { Control } \\ \text { Group } \\ \hline \end{gathered}$	Impact	Control Group	Impact
Full sample	35,782	29.9	4.1 ***	31.2	4.4 ***	35.7	4.7 ***
Total earnings in past 12 months							\dagger
No earnings	18,333	14.3	5.3 ***	15.6	5.8 ***	20.7	6.5 ***
\$5,000 or less	10,036	36.1	4.6 ***	38.1	4.8 ***	42.8	4.4 ***
More than \$5,000	7,413	57.9	3.5 ***	58.2	3.3 ***	61.5	3.4 ***
Welfare history ${ }^{\text {a }}$			$\dagger \dagger$		\dagger		
Long-term recipient	15,792	25.6	5.2 ***	27.2	5.4 ***	32.6	4.7 ***
Short-term recipient	6,533	29.7	5.7 ***	31.5	5.6 ***	36.2	5.1 ***
New applicant	12,608	36.0	0.5	36.7	1.1	40.6	2.2 **
Education credential receipt							
No high school diploma/GED	9,315	19.2	3.8 ***	20.9	4.1 ***	24.8	4.4 ***
High school diploma/GED	26,467	33.5	4.5 ***	34.6	4.8 ***	39.5	4.9 ***
Number of children							
Three or more	6,495	25.4	6.2 ***	27.0	6.1 ***	31.5	6.1 ***
Two	13,064	29.4	4.1 ***	30.4	4.6 ***	35.3	4.4 ***
One	15,892	31.8	3.7 ***	33.3	3.8 ***	37.9	4.2 ***
Age of youngest child							
Under 6	17,823	28.3	4.6 ***	29.6	5.1 ***	34.4	5.3 ***
6 or older	12,220	32.1	3.9 ***	33.0	3.8 ***	37.4	3.8 ***
Gender							
Female	32,633	29.9	4.2 ***	31.2	4.6 ***	35.9	4.7 ***
Male	2,540	30.6	1.9	31.3	1.5	34.8	2.2

Table B. 8 (continued)
NOTES: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated were classified as short term recipients if they had received welfare before on their own case or their spouses' case but had received it for a total of less than two years. They were classified as long term recipients if they had received welfare for two years or more prior to random assignment.

			Table B				
		Across lected Ch	on Stable with Ear tics at the	loyment Supplem of Ran	h a POS gnment		
		$\begin{aligned} & \text { Employed i } \\ & \text { Subsequ } \end{aligned}$	$\begin{aligned} & \hline \text { and } 6 \text { of } 8 \\ & \text { ters (\%) } \end{aligned}$	$\begin{array}{r} \mathrm{Empl} \\ \mathrm{Q} \end{array}$	$\text { of } 12$	$\begin{array}{r} \text { Emp } \\ \text { Quarters in } \end{array}$	of 8 and 3 (\%)
Program and Subgroup	$\begin{array}{r} \text { Sample } \\ \text { Size } \\ \hline \end{array}$	Control Group	Impact	Control Group	Impact	Control Group	Impact
Preference for work							
Low	5,109	28.0	3.9 ***	29.5	4.7 ***	35.7	4.4 ***
Moderate	6,003	32.0	2.8 **	34.3	2.4 *	39.0	2.5 *
High	2,598	39.3	3.7	40.0	4.2 *	43.4	3.9 *
Work-Related Parental Concerns sca							\dagger
High	3,119	17.6	6.0 ***	19.5	6.2 ***	24.1	7.4 ***
Low	10,840	35.6	3.1 ***	37.4	3.2 ***	42.4	2.7 **
Mastery scale							
Low	7,300	24.4	3.9 ***	25.9	4.5 ***	30.5	4.4 ***
High	11,668	30.9	5.6 ***	32.5	5.8 ***	37.7	5.1 ***
Risk of depression							
High	510	16.2	11.0 ***	18.2	9.0 **	23.0	7.6 *
Moderate	933	12.6	9.7 ***	14.3	$10.1{ }^{* * *}$	18.9	10.1 ***
Low	3,506	21.5	8.5 ***	21.7	9.9 ***	26.4	8.3 ***
Barriers to work or participation							
Health or emotional problem ${ }^{\text {a }}$							
Yes	3,613	24.0	3.0 *	25.4	3.6 **	29.8	4.5 ***
No	10,248	34.5	3.6 ***	36.4	3.6 ***	41.5	3.2 ***
Cannot afford/arrange for child care					\dagger		\dagger
Yes	5,085	24.5	5.3 ***	25.7	6.4 ***	31.0	6.2 ***
No	8,753	36.1	2.6 **	38.1	2.3 *	42.9	2.2 *
Transportation problem			\dagger		\dagger		\dagger
Yes	5,015	18.8	5.8 ***	20.7	6.2 ***	25.9	6.6 ***
No	8,827	38.8	2.4 **	40.5	2.4 **	45.4	2.0 *

Table B. 9 (Continued)
NOTES: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: $*=10$ percent; $* *=5$ percent; and $* * *=1$ percent.
An F -test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$
percent; and $\dagger \dagger=1$ percent.
${ }^{\text {a }}$ Sample members in the "yes" category on this measure could have had a health or emotional problem themselves at random assignment or one of
their family members could have had such a problem.
Table B. 10 (continued)

Program and Subgroup	$\begin{array}{r} \text { Sample } \\ \text { Size } \\ \hline \end{array}$	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)			Employed in 9 of 12 Quarters (\%)			Employed in 6 of 8 Quarters in Years 2 and 3 (\%)	
		Control Group	Impact		$\begin{gathered} \text { Control } \\ \text { Group } \\ \hline \end{gathered}$	Impact		Control Group	Impact
Education-focused mixed activities									
Alameda GAIN									
Most disadvantaged	1,205	10.9	-0.1		10.9	0.5		13.4	2.3
Moderately disadvantaged	839	13.5	0.5		13.5	0.9		16.5	2.4
Least disadvantaged	n/a	n/a	n/a		n/a	n/a		n / a	n/a
Butte GAIN									
Most disadvantaged	n/a	n/a	n/a		n/a	n/a		n/a	n/a
Moderately disadvantaged	807	12.1	5.1	*	14.7	4.4		18.5	4.0
Least disadvantaged	243	19.9	9.0		23.9	6.6		23.9	11.2
Los Angeles GAIN									
Most disadvantaged	4,396	10.6	0.1		10.8	0.9		12.4	1.4
Moderately disadvantaged	2,074	16.5	1.0		16.4	2.4		18.6	2.7
Least disadvantaged	n/a	n/a	n/a		n/a	n/a		n/a	n/a
San Diego GAIN									
Most disadvantaged	1,331	5.2	1.9		5.7	2.4		7.5	3.4
Moderately disadvantaged	5,405	15.2	4.3 *	***	15.7	4.6	***	18.9	5.1 ***
Least disadvantaged	1,483	27.5	5.4	*	27.9	5.7	*	32.4	5.0
Tulare GAIN									
Most disadvantaged	554	3.8	-0.2		4.4	0.2		4.4	2.7
Moderately disadvantaged	1,423	17.8	0.2		18.3	1.0		21.0	2.3
Least disadvantaged	257	29.9	-0.4		32.4	2.0		37.6	1.8

Table B. 10 (continued)

Program and Subgroup	Sample Size	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)			Employed in 9 of 12 Quarters (\%)			Employed in 6 of 8Quarters in Years 2 and $3(\%)$		
		$\begin{aligned} & \hline \text { Control } \\ & \text { Group } \\ & \hline \end{aligned}$	Impact		Control Group	Impact		$\begin{aligned} & \text { Control } \\ & \text { Group } \\ & \hline \end{aligned}$	Impact	
Education first										
Atlanta HCD										\dagger
Most disadvantaged	860	8.0	-1.9		9.5	-1.9		12.6	0.7	
Moderately disadvantaged	2,408	23.6	0.9		24.9	2.1		28.6	5.6	***
Least disadvantaged	562	50.3	-1.1		54.0	-3.0		59.1	-3.2	
Grand Rapids HCD										
Most disadvantaged	450	4.5	0.8		5.8	2.1		6.7	5.6	**
Moderately disadvantaged	2,077	21.3	2.5		26.5	1.6		32.7	1.1	
Least disadvantaged	466	37.5	9.3	**	41.2	7.6		44.4	10.0	**
Riverside HCD										
Most disadvantaged	1,094	3.8	2.3	*	4.0	3.3	**	5.9	5.6	***
Moderately disadvantaged	1,865	13.7	2.2		14.3	2.6		18.1	1.6	
Least disadvantaged	n / a	n / a	n / a		n / a	n/a		n / a	n / a	
Columbus Integrated			\dagger				$\dagger \dagger$			$\dagger \dagger$
Most disadvantaged	899	8.2	2.0		9.1	4.2	**	14.5	5.0	**
Moderately disadvantaged	3,134	32.7	3.7	**	35.3	4.7	***	39.3	6.1	***
Least disadvantaged	613	53.4	-6.1		54.5	-6.4		60.7	-8.0	**
Columbus Traditional										
Most disadvantaged	888	8.2	1.8		9.1	2.6		14.5	2.4	
Moderately disadvantaged	3,222	32.7	3.3	**	35.3	3.4	**	39.3	4.0	**
Least disadvantaged	595	53.5	-5.0		54.6	-4.3		60.9	-5.0	
Detroit										
Most disadvantaged	1,097	7.9	-1.2		8.8	1.5		12.7	2.2	
Moderately disadvantaged	3,033	17.1	2.0		21.3	1.9		26.8	3.3	**
Least disadvantaged	324	33.9	-3.0		40.9	-5.9		49.9	-7.1	
Oklahoma City										\dagger
Most disadvantaged	291	3.1	1.3		5.8	-1.3		6.4	-1.1	
Moderately disadvantaged	4,057	11.5	0.1		14.6	0.2		17.7	0.7	
Least disadvantaged	1,459	21.8	-0.7		28.7	-3.9	*	33.3	-5.8	**

Table B. 10 (continued)

Program and Subgroup	Sample Size	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)		Employed in 9 of 12 Quarters (\%)			Employed in 6 of 8Quarters in Years 2 and 3 (\%)		
		Control Group	Impact	Control Group	Impact		Control Group	Impact	
Earnings Supplements									
SSP - British Columbia									
Most disadvantaged	611	2.6	1.9	5.0	6.5	***	7.3	5.1	
Moderately disadvantaged	3,453	9.2	4.0 ***	12.2	6.9		13.6	7.3	
Least disadvantaged	1,855	28.0	1.8	30.3	6.0	***	31.1	7.9	***
SSP - New Brunswick			\dagger						
Most disadvantaged	769	4.1	3.3 **	4.4	6.9	***	4.9	8.6	***
Moderately disadvantaged	1,538	19.9	9.6 ***	22.7	11.2		24.1	11.5	
Least disadvantaged	117	32.0	9.5	28.3	17.0	*	31.0	16.7	*
MFIP Full Services			\dagger						
Most disadvantaged	530	7.7	$9.5 * * *$	10.4	9.8		14.7	10.3	
Moderately disadvantaged	4,430	30.1	6.5 ***	31.9	6.5		37.4	5.9	
Least disadvantaged	2,383	52.1	2.0	53.6	2.7		57.5	3.2	
MFIP Incentives Only									
Most disadvantaged	424	7.7	4.1	10.4	4.4		14.5	2.5	
Moderately disadvantaged	3,552	30.2	0.3	32.0	-0.3		37.4	-0.8	
Least disadvantaged	1,653	52.2	-2.3	53.6	-0.2		57.5	-1.6	
WRP Full Services									
Most disadvantaged	414	13.1	0.6	15.0	-1.3		17.7	2.4	
Moderately disadvantaged	4,283	23.0	1.1	24.4	1.8		30.1	1.9	
Least disadvantaged	2,291	46.5	2.9	48.7	2.1		51.9	1.9	
WRP Incentives Only									
Most disadvantaged	201	13.2	-3.5	15.0	-2.2		17.7	1.4	
Moderately disadvantaged	2,136	23.0	-1.4	24.4	-1.1		30.2	-1.5	
Least disadvantaged	1,152	46.5	-0.4	48.6	-1.3		51.9	-1.1	

Table B. 10 (continued)

$\underline{\text { Program and Subgroup }}$	$\begin{array}{r} \text { Sample } \\ \text { Size } \\ \hline \end{array}$	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)		Employed in 9 of 12 Quarters (\%)		Employed in 6 of 8Quarters in Years 2 and 3 (\%)	
		Control Group	Impact	Control Group	Impact	Control Group	Impact
Earnings Supplements (Continued)							
Jobs First					\dagger		$\dagger \dagger$
Most disadvantaged	806	9.7	$9.6{ }^{* * *}$	11.5	10.1 ***	16.7	8.9 ***
Moderately disadvantaged	3,960	32.4	6.4 ***	33.7	7.3 ***	38.3	$7.6{ }^{* * *}$
Least disadvantaged	1,213	59.5	2.4	60.6	1.2	65.2	-0.1
FTP							
Most disadvantaged	436	8.9	3.7	12.7	4.0	16.9	6.6
Moderately disadvantaged	1,783	26.6	6.1 ***	28.3	5.9 ***	33.3	6.1 ***
Least disadvantaged	515	48.9	4.4	50.0	3.2	53.6	3.1

SOURCE: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, and Baseline Information Forms.
NOTE: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are
indicated as: $*=10$ percent; $* *=5$ percent; and $* * *=1$ percent.
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$
percent; and $\dagger \dagger=1$ percent.
$\mathrm{n} / \mathrm{a}=$ not applicable because sample sizes were too small to reliably calculate impacts.
Individuals were classified as most disadvantaged if they had no earnings in the year prior to random assignment, did not have a high school diploma
or GED at random assignment, and had received welfare for two years prior to random assignment. Individuals were classified as least disadvantaged
if they had none of these characteristics. All other sample members were classified as moderately disadvantaged.
Table B. 11 (continued)

Program and Subgroup	$\begin{array}{r} \text { Sample } \\ \text { Size } \end{array}$	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)			Employed in 9 of 12 Quarters (\%)			Employed in 6 of 8Quarters in Years 2 and $3(\%)$		
		Control Group	Impact		Control Group	Impact		Control Group	Impact	
Education-focused mixed activities										
Alameda GAIN										
No earnings	915	4.3	2.0		4.3	2.0		6.9	4.0	**
\$5,000 or less	226	25.7	-6.2		26.5	-3.5		28.3	-1.8	
More than \$5,000	n/a	n/a	n/a		n/a	n/a		n/a	n/a	
Butte GAIN									\dagger	
No earnings	652	7.7	-0.2		9.2	-0.2		12.3	-0.8	
\$5,000 or less	379	14.3	6.2		16.8	6.3		18.1	9.0	*
More than \$5,000	198	28.0	16.7	**	33.5	11.7		36.4	15.1	*
Los Angeles GAIN										
No earnings	3,435	5.1	1.0		5.6	1.3		7.3	1.8	*
\$5,000 or less	720	23.9	-2.9		24.3	-1.7		26.5	-1.4	
More than \$5,000	241	51.4	-7.2		46.4	-1.7		46.3	0.2	
San Diego GAIN										
No earnings	4,615	8.2			8.6	3.9		11.3	4.9	
\$5,000 or less	2,109	20.3	3.4		20.6	4.0		25.1	2.7	
More than \$5,000	1,495	33.7	6.6	*	34.6	5.8	*	37.8	6.2	*
Tulare GAIN										
No earnings	1,294	6.0	1.4		6.5	2.1		8.4	4.2	**
\$5,000 or less	613	21.7	-1.6		22.2	0.4		25.6	-0.6	
More than \$5,000	327	42.3	-1.4		44.3	-2.2		46.4	1.4	

Table B. 11 (continued)

Program and Subgroup	$\begin{array}{r} \text { Sample } \\ \text { Size } \end{array}$	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)		Employed in 9 of 12 Quarters (\%)			Employed in 6 of 8 Quarters in Years 2 and 3 (\%)	
		Control Group	Impact	Control Group	Impact		Control Group	Impact
Education first								
Atlanta HCD					\dagger			\dagger
No earnings	2,398	12.7	1.6	14.1	2.4		18.3	5.6 ***
\$5,000 or less	1,115	36.9	-3.5	39.8	-4.6		42.8	-1.9
More than \$5,000	368	58.9	-0.4	58.9	3.4		62.7	2.9
Grand Rapids HCD								
No earnings	1,489	10.8	2.2	14.3	2.2		19.1	2.4
\$5,000 or less	1,121	27.9	3.7	33.4	1.7		38.9	2.0
More than \$5,000	387	42.7	6.5	47.1	7.4		51.0	9.9 *
Riverside HCD								
No earnings	2,065	5.4	1.6	6.0	2.0	*	8.9	3.0 **
\$5,000 or less	687	15.8	0.4	17.0	1.2		19.7	-0.1
More than \$5,000	383	37.0	-0.3	35.9	2.3		42.1	-1.7
Columbus Integrated					+			\dagger
No earnings	2,143	12.2	3.7 **	12.9	6.5		19.2	7.3 ***
\$5,000 or less	1,563	36.9	1.3	41.4	0.2		44.6	2.0
More than \$5,000	966	61.5	-0.3	62.7	0.9		65.4	0.8
Columbus Traditional			\dagger					\dagger
No earnings	2,160	12.2	5.1 ***	12.9	6.3		19.2	6.2 ***
\$5,000 or less	1,593	36.9	0.3	41.4	-0.4		44.6	0.6
More than \$5,000	976	61.5	-1.8	62.7	-2.0		65.4	-1.9
Detroit								
No earnings	2,978	10.0	-0.6	12.5	0.6		17.3	1.7
\$5,000 or less	1,199	25.5	2.8	31.7	1.2		38.3	1.0
More than \$5,000	282	43.4	1.1	46.0	2.3		52.2	7.0
Oklahoma City								
No earnings	2,581	6.5	0.1	8.7	-0.6		11.6	-0.7
\$5,000 or less	2,353	16.0	0.9	20.9	0.0		24.1	0.4
More than \$5,000	927	28.3	-3.6	35.8	-5.3	*	40.5	$-6.6{ }^{* *}$

Table B. 11 (continued)

Program and Subgroup	Sample \qquad	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)		Employed in 9 of 12 Quarters (\%)		Employed in 6 of 8Quarters in Years 2 and 3 (\%)	
		Control Group	Impact	Control Group	Impact	Control Group	Impact
Earnings Supplements							
SSP - British Columbia							
No earnings	3,552	5.3	$3.5{ }^{* * *}$	8.5	$6.5 * * *$	10.2	$6.7{ }^{* * *}$
\$5,000 or less	1,036	22.2	0.9	23.4	5.6 **	23.9	6.0 **
More than \$5,000	1,331	33.4	2.4	35.7	6.2 **	36.9	8.2 ***
SSP - New Brunswick			$\dagger \dagger$				
No earnings	1,651	5.7	4.8 ***	7.6	9.1 ***	8.9	10.2 ***
\$5,000 or less	595	30.8	13.3 ***	31.2	12.3 ***	32.5	12.4 ***
More than \$5,000	178	51.7	20.3 ***	56.0	17.4 **	57.0	16.3 **
MFIP Full Services			$\dagger \dagger$		$\dagger \dagger$		$\dagger \dagger$
No earnings	2,062	18.2	10.1 ***	20.6	9.3 ***	26.0	$9.5{ }^{* * *}$
\$5,000 or less	1,698	35.7	1.9	38.9	2.1	43.4	2.0
More than \$5,000	1,378	58.2	3.4	59.5	3.4	62.7	3.7
MFIP Incentives Only							
No earnings	1,646	18.3	2.8	20.6	1.3	26.1	1.1
\$5,000 or less	1,296	35.7	-1.2	38.9	-2.2	43.4	-3.7
More than \$5,000	902	58.1	1.1	59.6	-1.2	62.8	-1.5
WRP Full Services							
No earnings	4,367	17.9	0.0	19.3	0.6	24.0	2.3
\$5,000 or less	2,815	39.6	2.3	43.0	1.3	48.3	0.0
More than \$5,000	2,788	66.1	3.7	65.7	4.1 **	68.7	3.0
WRP Incentives Only							
No earnings	2,196	17.9	0.0	19.3	0.6	24.0	1.4
\$5,000 or less	1,400	39.6	-0.6	43.0	-2.9	48.3	-5.0 *
More than \$5,000	1,404	66.1	0.5	65.7	1.9	68.7	0.8

Table B. 11 (continued)

Program and Subgroup	SampleSize	Employed in Year 1 and 6 of 8Subsequent Quarters (\%)		Employed in 9 of 12Quarters (\%)		Employed in 6 of 8 Quarters in Years 2 and 3 (\%)	
		Control Group	Impact	Control Group	Impact	Control Group	Impact
Earnings Supplements (Continued)							
Jobs First					\dagger		$\dagger \dagger$
No earnings	3,176	14.4	7.9 ***	15.4	8.8 ***	20.7	8.5 ***
\$5,000 or less	1,860	42.7	7.4 ***	44.4	8.8 ***	49.3	8.6 ***
More than \$5,000	1,463	68.5	2.2	69.3	0.7	71.9	0.4
FTP							
No earnings	1,499	16.0	3.7	18.5	4.1	23.2	5.6 **
\$5,000 or less	923	33.1	9.5 ***	35.1	8.5 ***	40.3	8.3 **
More than \$5,000	393	58.2	4.3	58.7	2.2	61.2	0.8

[^24]| Impacts on Stable Employment by High School Credential by Program | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | |
| Program and Subgroup | $\begin{array}{r} \text { Sample } \\ \text { Size } \\ \hline \end{array}$ | Employed in Year 1 and 6 of 8 Subsequent Quarters (\%) | | | Employed in 9 of 12 Quarters (\%) | | | | Employed in 6 of 8Quarters in Years 2 and 3 (\%) | |
| | | Control Group | Impact | | Contro Group | | Impact | | Control Group | Impact |
| Job search first | | | | | | | | | | |
| SWIM | | | | | | | | | | |
| No high school diploma/GED | 1,408 | 9.6 | 7.4 | | 11.2 | | 6.8 | | 14.6 | 5.3 *** |
| High school diploma/GED | 1,802 | 20.1 | 4.6 | ** | 20.9 | | 5.6 | | 23.8 | 5.8 *** |
| Atlanta LFA | | | | | | | | | | |
| No high school diploma/GED | 1,454 | 15.9 | 2.5 | | 16.8 | | 3.7 | * | 19.7 | 4.9 ** |
| High school diploma/GED | 2,379 | 29.0 | 2.7 | | 31.2 | | 2.7 | | 35.6 | 3.0 |
| Grand Rapids LFA | | | | | | | | \dagger | | \dagger |
| No high school diploma/GED | 1,246 | 13.0 | 9.0 | *** | 15.9 | | 9.9 | | 19.9 | 9.1 *** |
| High school diploma/GED | 1,766 | 26.7 | 6.1 | *** | 32.2 | | 3.9 | * | 37.7 | 3.0 |
| Riverside LFA | | | | | | | | | | |
| No high school diploma/GED | 2,398 | 10.1 | | | 10.8 | | 4.9 | | 13.9 | 4.1 *** |
| High school diploma/GED | 4,328 | 18.8 | | *** | 19.3 | | 4.7 | *** | 23.6 | 3.1 ** |
| Employment-focused mixed activities | | | | | | | | | | |
| Riverside GAIN | | | | \dagger | | | | | | $\dagger \dagger$ |
| No high school diploma/GED | 2,613 | 8.7 | 6.7 | | 9.8 | | 7.0 | | 14.4 | $4.1{ }^{* *}$ |
| High school diploma/GED | 2,895 | 14.7 | 11.6 | | 16.1 | | 10.6 | | 20.4 | 10.1 *** |
| Portland | | | | | | | | | | |
| No high school diploma/GED | 1,839 | 12.6 | 6.9 | | 13.4 | | 9.2 | | 17.4 | 12.0 *** |
| High school diploma/GED | 3,708 | 24.2 | | | 25.7 | *** | 10.2 | | 31.6 | 9.8 *** |
| Education-focused mixed activities | | | | | | | | | | |
| Alameda GAIN | | | | | | | | | | |
| No high school diploma/GED | 444 | 10.5 | -5.2 | ** | 10.1 | | -3.0 | | 11.0 | -0.4 |
| High school diploma/GED | 761 | 11.2 | 2.9 | | 11.4 | | 2.7 | | 14.8 | 4.1 |

Table B. 12 (continued)

$\underline{\text { Program and Subgroup }}$	$\begin{array}{r} \text { Sample } \\ \text { Size } \end{array}$	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)			Employed in 9 of 12 Quarters (\%)			Employed in 6 of 8Quarters in Years 2 and 3 (\%)		
		Control Group	Impact		Contro Group	Impact		Control Group	Impact	
Education-tocused mixed activities (continued)										
Butte GAIN										
No high school diploma/GED	517	8.8	4.4		11.8	3.4		13.7	3.9	
High school diploma/GED	712	15.6	5.1		17.7	4.5		20.6	6.1	
Los Angeles GAIN										
No high school diploma/GED	2,873	9.8	-1.6		9.9	-0.8		11.3	-0.3	
High school diploma/GED	1,523	13.0	2.0		13.2	2.7		15.4	3.4	*
San Diego GAIN							\dagger			
No high school diploma/GED	3,520	12.0	1.9		12.9	1.8		14.8	2.9	
High school diploma/GED	4,699	19.0		***	19.3	5.9	***	23.4	5.7	***
Tulare GAIN										
No high school diploma/GED	1,224	12.8	-1.5		13.1	-0.4		14.2	1.1	
High school diploma/GED	1,010	19.3	1.7		20.7	2.3		24.4	3.7	
Education first										
Atlanta HCD										
No high school diploma/GED	1,488	15.9	-1.2		16.8	-0.6		19.7	1.9	
High school diploma/GED	2,393	29.0	0.9		31.2	1.3		35.6	4.2	**
Grand Rapids HCD										
No high school diploma/GED	1,204	13.0	0.6		15.8	2.0		19.8	3.4	
High school diploma/GED	1,793	26.7	5.4	**	32.2	3.3		37.8	3.3	
Riverside HCD										
No high school diploma/GED	2,423	10.1	2.2	*	10.7	2.7	**	13.8	2.5	*
High school diploma/GED	712	15.1	0.5		15.3	1.9		19.0	2.2	
Columbus Integrated										
No high school diploma/GED	1,951	21.4	4.3	**	24.8	4.4	**	29.1	5.6	
High school diploma/GED	2,721	37.0	1.2		38.1	3.0		42.8	3.8	

Table B. 12 (continued)

Program and Subgroup	SampleSize	Employed in Year 1 and 6 of 8Subsequent Quarters (\%)			$\begin{gathered} \hline \text { Employed in } 9 \text { of } 12 \\ \text { Quarters (\%) } \\ \hline \end{gathered}$			Employed in 6 of 8Quarters in Years 2 and 3 (\%)		
		Control Group	Impact		Contro Group	Impact		Control Group	Impact	
Education first (continued)										
Columbus Traditional										
No high school diploma/GED	1,967	21.4	3.2	*	24.7	3.0		29.1	2.7	
High school diploma/GED	2,762	37.0	1.9		38.1	2.6		42.8	3.2	*
Detroit										
No high school diploma/GED	1,897	11.5	0.8		15.2	0.8		19.6	1.3	
High school diploma/GED	2,562	19.4	1.0		22.9	1.7		28.9	3.1	*
Oklahoma City										\dagger
No high school diploma/GED	2,569	9.0	1.3		12.2	1.3		14.9	1.7	
High school diploma/GED	3,292	17.3	-1.0		22.1	-2.6	*	25.9	-3.0	**
Earnings Supplements										
SSP - British Columbia							\dagger			
No high school diploma/GED	1,015	5.4	5.9	***	7.3	10.5	***	9.3	9.3	***
High school diploma/GED	4,904	16.2	2.6	**	19.1	5.9	***	20.3	7.0	***
SSP - New Brunswick										
No high school diploma/GED	1,146	10.6	4.9	**	11.2	7.8	***	11.6	9.0	***
High school diploma/GED	1,278	20.4	8.9	***	23.0	11.2	***	25.0	11.5	***
MFIP Full Services										
No high school diploma/GED	1,278	23.5	2.5		26.5	2.2		29.9	2.5	
High school diploma/GED	3,860	38.3	6.9	***	40.5	6.6	***	45.3	6.8	***
MFIP Incentives Only										
No high school diploma/GED	977	23.3	-5.6	**	26.3	-6.4	**	29.6	-7.3	**
High school diploma/GED	2,867	38.3	-0.8		40.5	-2.3		45.4	-2.6	
WRP Full Services										
No high school diploma/GED	1,922	28.6	2.2		30.7	1.2		34.5	2.4	
High school diploma/GED	8,048	39.4	1.9		40.7	2.3	*	45.2	2.1	

Table B. 12 (continued)

$\underline{\text { Program and Subgroup }}$	$\begin{array}{r} \text { Sample } \\ \text { Size } \end{array}$	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)		Employed in 9 of 12 Quarters (\%)		Employed in 6 of 8Quarters in Years 2 and 3 (\%)	
		Control Group	Impact	Control Group	Impact	Control Group	Impact
Earnings Supplements (Continued)							
WRP Incentives Only							
No high school diploma/GED	928	28.7	-2.1	30.8	-2.0	34.5	-1.0
High school diploma/GED	4,072	39.4	0.8	40.7	0.8	45.2	-0.1
Jobs First							
No high school diploma/GED	2,041	23.2	5.8 ***	24.5	7.2 ***	29.3	6.9 ***
High school diploma/GED	4,458	40.8	5.0 ***	41.9	5.2 ***	46.3	5.1 ***
FTP					$\dagger \dagger$		\dagger
No high school diploma/GED	1,076	18.0	4.2	22.0	1.4	25.9	2.4
High school diploma/GED	1,739	32.8	7.8 ***	33.7	8.8 ***	38.6	9.2 ***

[^25]Table B. 13
Impacts on Stable Employment by Welfare Status Prior to Random Assignment by Program

Program and Subgroup	$\begin{array}{r} \text { Sample } \\ \text { Size } \\ \hline \end{array}$	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)			Employed in 9 of 12Quarters (\%)				Employed in 6 of 8Quarters in Years 2 and 3 (\%)		
		Control Group	Impact		Control Group		Impact		Control Group	Impact	
Job search first											
SWIM											
Long Term Recipient	2,202	13.6	5.4	***	14.9		5.6	***	17.7	5.3	***
Short Term Recipient	648	20.8	6.5	*	21.2		5.2		24.5	4.7	
New Applicant	360	17.8	6.6		19.1		10.1	**	23.8	8.0	
Atlanta LFA				\dagger				\dagger			$\dagger \dagger$
Long Term Recipient	2,495	17.9	4.1	**	19.3		4.9		22.8	6.1	***
Short Term Recipient	1,288	36.2	-0.6		38.4		-0.6		42.8	-0.9	
New Applicant	n / a	n/a	n/a		n/a		n/a		n/a	n / a	
Grand Rapids LFA											
Long Term Recipient	1,791	23.1	8.4	***	28.0		7.1	***	33.2	6.9	***
Short Term Recipient	1,219	97.2	5.5	**	97.4		5.0	*	98.3	3.2	
New Applicant	n / a	n/a	n / a		n/a		n / a		n/a	n / a	
Riverside LFA											\dagger
Long Term Recipient	3,510	12.2	6.0		12.7				15.6	6.0	***
Short Term Recipient	3,101	19.1	2.8	*	19.9		3.0	**	24.7	0.9	
New Applicant	n/a	n/a	n / a		n / a		n / a		n/a	n / a	
Employment-focused mixed activities											
Riverside GAIN											
Long Term Recipient	2,661	9.4	10.9		10.6		10.8		15.2	9.5	
Short Term Recipient	1,979	12.2	8.2	***	12.8		8.4		17.8	6.2	***
New Applicant	868	18.4	6.7	**	21.3		4.5		24.3	3.2	
Portland								\dagger			$\dagger \dagger$
Long Term Recipient	3,423	17.0	8.8	***	18.0		10.2	***	22.7	12.3	***
Short Term Recipient	1,999	25.0	10.4	***	26.8		11.0		32.7	9.3	***
New Applicant	63	39.2	-14.1		43.3	*	-20.7	*	51.3	-25.7	

Table B. 13 (continued)

Program and Subgroup	Sample Size	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)			$\begin{gathered} \hline \text { Employed in } 9 \text { of } 12 \\ \text { Quarters (\%) } \\ \hline \end{gathered}$			Employed in 6 of 8Quarters in Years 2 and 3 (\%)		
		Control Group	Impact		$\begin{gathered} \text { Control } \\ \text { Group } \\ \hline \end{gathered}$	Impact		$\begin{gathered} \text { Control } \\ \text { Group } \end{gathered}$	Impact	
Education-focused mixed activities										
Alameda GAIN										
Long Term Recipient	1,205	10.9	-0.1		10.9	0.5		13.4	2.3	
Short Term Recipient	n / a	n/a	n/a		n/a	n/a		n/a	n/a	
New Applicant	n / a	n / a	n / a		n/a	n / a		n / a	n / a	
Butte GAIN										
Long Term Recipient	558	9.5	6.9	**	10.4	8.4	**	12.3	10.5	
Short Term Recipient	285	9.3	7.6	*	11.0	6.5		15.8	4.8	
New Applicant	386	20.3	-0.7		25.6	-4.5		27.0	-2.7	
Los Angeles GAIN										
Long Term Recipient	4,396	10.9	-0.4		11.1	0.5		12.7	1.0	
Short Term Recipient	n / a	n/a	n / a		n / a	n/a		n/a	n/a	
New Applicant	n / a	n/a	n / a		n/a	n / a		n / a	n / a	
San Diego GAIN										
Long Term Recipient	3,948	13.4	4.3	***	13.4	5.4	***	16.7	5.3	
Short Term Recipient	3,079	17.6	3.2	*	18.9	2.4		21.4	3.9	
New Applicant	1,192	21.1	3.3		21.1	4.3		26.1	2.7	
Tulare GAIN										
Long Term Recipient	1,397	13.3	0.2		14.0	0.9		15.5	2.9	
Short Term Recipient	691	19.4	0.8		20.4	1.6		24.5	1.0	
New Applicant	n / a	n/a	n / a		n/a	n / a		n/a	n / a	

Table B. 13 (continued)

Program and Subgroup	Sample Size	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)			Employed in 9 of 12 Quarters (\%)			Employed in 6 of 8Quarters in Years 2 and 3 (\%)		
		Control Group	Impact		Control Group	Impact		Control Group	Impact	
Education first										
Atlanta HCD			\dagger							
Long Term Recipient	2,543	17.9	0.4		19.4	0.9		22.9	4.1	**
Short Term Recipient	1,275	36.2	-1.0		38.4	-0.6		42.8	1.4	
New Applicant	n/a	n / a	n/a		n / a	n /a		n/a	n / a	
Grand Rapids HCD										
Long Term Recipient	1,775	26.4	2.2		31.3	1.1		36.7	2.2	
Short Term Recipient	1,215	97.1	5.7	**	97.2	5.4	**	97.3	5.2	*
New Applicant	n / a	n / a	n / a		n / a	n / a		n / a	n / a	
Riverside HCD										
Long Term Recipient	1,841	8.1	3.2	**	8.4	3.8	***	10.6	5.3	***
Short Term Recipient	1,238	15.6	-0.3		16.6	0.6		20.7	-1.1	
New Applicant	n / a	n / a	n / a		n / a	n / a		n / a	n / a	
Columbus Integrated										\dagger
Long Term Recipient	3,392	27.4	3.6	**	29.7	5.2	***	33.9	6.5	***
Short Term Recipient	806	41.2	-2.6		42.1	-2.8		46.4	-1.8	
New Applicant	448	34.6	2.1		36.8	1.7		44.4	0.0	
Columbus Traditional										
Long Term Recipient	3,415	27.4	3.7	**	29.7	3.9	**	33.9	4.4	***
Short Term Recipient	793	41.3	-2.2		42.1	-1.9		46.4	-0.1	
New Applicant	497	34.7	0.3		36.9	1.7		44.4	-2.5	
Detroit										
Long Term Recipient	3,313	15.8	1.2		19.0	1.7		24.0	2.8	*
Short Term Recipient	1,015	15.9	1.4		21.2	1.2		27.7	1.6	
New Applicant	n / a	n / a	n/a		n / a	n / a		n/a	n / a	
Oklahoma City										
Long Term Recipient	1,419	14.2	1.8		18.5	-0.3		20.7	0.5	
Short Term Recipient	1,858	16.1	-1.6		20.1	-0.7		23.9	-1.3	
New Applicant	2,530	11.5	0.2		15.5	-1.3		19.1	-1.6	

Table B. 13 (continued)

Program and Subgroup	Sample Size	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)			$\begin{gathered} \hline \text { Employed in } 9 \text { of } 12 \\ \text { Quarters (\%) } \\ \hline \end{gathered}$			Employed in 6 of 8Quarters in Years 2 and $3(\%)$		
		Group	Impact		Contro Group	Impact		Group	Impact	
Earnings Supplements										
SSP - British Columbia							\dagger			\dagger
Long Term Recipient	1,804	11.4	2.3		13.7	6.0	***	15.4	5.1	***
Short Term Recipient	733	13.5	7.5	***	13.1	14.6	***	14.9	14.2	***
New Applicant	3,382	16.1	3.0	**	19.6	5.5	***	20.7	7.3	***
SSP - New Brunswick										
Long Term Recipient	1,967	15.5			17.3	10.4	***	18.5	11.2	***
Short Term Recipient	457	17.3	3.4		18.6	5.3		19.8	5.4	
New Applicant	n/a	n/a	n/a		n/a	n/a		n/a	n / a	
MFIP Full Services				\dagger						
Long Term Recipient	2,202	28.6	9.6		31.2	8.5	***	37.2	6.8	
Short Term Recipient	959	37.7	1.9		39.4	1.8		42.3	3.1	
New Applicant	1,835	40.5	3.3		43.0	4.1	*	46.7	5.5	**
MFIP Incentives Only										
Long Term Recipient	1,869	28.8	1.4		31.3	-0.2		37.1	-1.7	
Short Term Recipient	730	37.7	-5.5		39.3	-7.1	*	42.2	-7.2	*
New Applicant	1,136	40.9	-3.8		43.3	-2.9		47.0	-3.1	
WRP Full Services				\dagger						
Long Term Recipient	3,407	28.5	-0.8		30.4	-0.5		35.5	0.6	
Short Term Recipient	1,369	28.1	6.1	**	31.4	4.6		36.7	3.5	
New Applicant	5,194	45.5	2.6	*	46.3	3.0	*	50.0	2.7	*
WRP Incentives Only										
Long Term Recipient	1,708	28.5	-0.9		30.4	-0.8		35.5	-0.8	
Short Term Recipient	693	28.1	2.2		31.4	1.2		36.6	-0.2	
New Applicant	2,599	45.5	0.8		46.3	0.9		50.0	0.3	

Table B. 13 (continued)

Program and Subgroup	Sample Size	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)		Employed in 9 of 12 Quarters (\%)		Employed in 6 of 8Quarters in Years 2 and $3(\%)$	
		Control Group	Impact	Control Group	Impact	Control Group	Impact
Earnings Supplements (Continued)							
Jobs First			$\dagger \dagger$		$\dagger \dagger$		$\dagger \dagger \dagger$
Long Term Recipient	3,258	32.2	7.1 ***	33.9	7.6 ***	38.4	7.3 ***
Short Term Recipient	1,398	34.0	10.8 ***	34.9	$12.2{ }^{* * *}$	40.3	11.2 ***
New Applicant	1,323	43.5	-3.7	44.3	-4.6	48.6	-3.8
FTP			\dagger		\dagger		$\dagger \dagger$
Long Term Recipient	1,444	24.7	6.3 ***	26.5	7.3 ***	32.1	7.5 ***
Short Term Recipient	956	29.6	7.9 ***	32.2	5.2	35.8	7.1 **
New Applicant	334	37.7	-6.6	38.3	-5.4	41.9	-7.2

[^26]Table B. 14
Impacts on Stable Employment

Program and Subgroup	$\begin{array}{r} \text { Sample } \\ \text { Size } \\ \hline \end{array}$	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)			Employed in 9 of 12 Quarters (\%)			Employed in 6 of 8Quarters in Years 2 and 3 (\%)		
		Control Group	Impact		Control Group	Impact		Control		
SWIM										
White	877	5.5	7.6	***	5.9	7.7	***	7.1	6.4	**
Black	1,361	5.1	3.9	*	5.6	2.9		6.5	3.1	
Hispanic	814	5.0	6.6	**	5.0	9.0	***	6.1	8.5	***
Other	n / a	n / a	n / a		n / a	n / a		n / a	n / a	
GAIN Evaluation Programs										
Alameda										
White	216	4.3	-3.3		4.3	-3.3		6.7	-4.0	
Black	844	3.6	1.8		3.6	2.2		4.0	3.7	
Hispanic	n / a	n/a	n / a		n/a	n/a		n / a	n / a	
Other	n/a	n / a	n/a		n/a	n/a		n/a	n/a	
Butte										
White	1,061	4.2	5.1	*	5.0	4.1		5.9	4.9	*
Black	n / a	n / a	n/a		n / a	n / a		n / a	n/a	
Hispanic	n / a	n / a	n / a		n / a	n / a		n/a	n/a	
Other	n/a	n/a	n/a		n/a	n/a		n/a	n/a	
Los Angeles										
White	512	4.5	-2.7		4.6	-0.9		5.6	0.2	
Black	1,987	4.0	-0.2		3.9	1.1		4.3	1.7	
Hispanic	1,408	3.0	0.3		3.3	-0.1		4.0	-0.4	
Other	489	2.2	3.2		2.0	4.7	*	2.4	6.2	**
Riverside							\dagger			
White	2,847	3.2	10.6	***	3.8	10.4	***	5.6	7.9	***
Black	862	4.4	9.9	***	4.2	10.8	***	5.1	11.2	***
Hispanic	1,510	5.5	6.8	***	5.7	6.8	***	7.2	4.5	*
Other	289	3.8	0.9		4.9	-3.2		5.1	0.0	

Table B. 14 (continued)

Program and Subgroup	$\begin{array}{r} \text { Sample } \\ \text { Size } \\ \hline \end{array}$	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)			Employed in 9 of 12Quarters (\%)			Employed in 6 of 8Quarters in Years 2 and 3 (\%)		
		Control Group	Impact		Control Group	Impact		Control Group	Impact	
San Diego										
White	3,478	5.2	5.4	***	5.6	5.5	***	6.8	6.0	***
Black	1,865	5.9	2.3		5.6	3.5		6.6	3.5	
Hispanic	2,094	5.8	0.6		6.0	1.4		7.1	1.6	
Other	782	3.9	6.9	**	3.9	6.6	*	4.9	6.1	
Tulare										
White	1,165	5.7	-2.0		6.4	-2.3		7.6	-2.0	
Black	n/a	n/a	n/a		n/a	n/a		n/a	n/a	
Hispanic	871	5.6	1.3		5.4	3.7		5.8	6.6	**
Other	n/a	n/a	n/a		n/a	n / a		n / a	n / a	
NEWWS Evaluation Programs										
Atlanta LFA										
White	n/a	n/a	n/a		n/a	n/a		n/a	n / a	
Black	3,624	8.2	2.1		8.8	2.6	*	10.0	3.4	**
Hispanic	n/a	n/a	n/a		n/a	n/a		n / a	n / a	
Other	n/a	n/a	n/a		n / a	n/a		n/a	n/a	
Atlanta HCD										
White	n/a	n / a	n/a		n/a	n/a		n/a	n/a	
Black	3,669	8.2	-0.4		8.8	0.2		10.0	2.9	*
Hispanic	n/a	n/a	n/a		n/a	n/a		n / a	n/a	
Other	n/a	n/a	n/a		n/a	n/a		n/a	n/a	
Grand Rapids LFA										
White	1,470	8.1	4.6	**	9.6	3.9		11.6	2.3	
Black	1,214	6.1	9.7	***	7.8	8.4	***	9.1	8.0	***
Hispanic	244	5.1	9.3	*	5.9	9.2	*	7.3	8.9	
Other	n/a	n / a	n/a		n/a	n / a		n / a	n / a	

Table B. 14 (continued)

Table B. 14 (continued)

$\underline{\text { Program and Subgroup }}$	$\begin{array}{r} \text { Sample } \\ \text { Size } \end{array}$	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)			Employed in 9 of 12 Quarters (\%)			Employed in 6 of 8Quarters in Years 2 and 3 (\%)		
		Control Group	Impact		Control Group	Impact		Control Group	Impact	
Detroit							\dagger			
White	481	4.2	4.6		4.3	8.6	**	6.3	6.7	*
Black	3,836	5.5	0.6		6.8	0.7		8.5	2.2	
Hispanic	n / a	n / a	n / a		n / a	n /a		n / a	n / a	
Other	n/a	n / a	n / a		n / a	n / a		n / a	n / a	
Oklahoma City										
White	4,095	3.7	-0.1		5.0	-1.5		6.1	-1.6	
Black	1,996	6.6	1.1		8.2	1.6		9.2	1.2	
Hispanic	298	3.4	-0.8		4.1	1.8		5.9	-0.9	
Other	478	4.3	0.2		5.6	-2.4		6.5	-2.0	
Portland										
White	3,795	6.4	10.0	***	6.6	11.8	***	8.4	12.5	***
Black	1,099	7.6	6.4	**	8.4	6.5	**	10.1	7.0	**
Hispanic	226	7.0	8.6		8.3	5.9		9.6	8.9	
Other	335	9.2	2.3		9.2	5.2		10.0	8.6	
SSP										
British Columbia										
White	4,275	7.7	6.4	***	7.6	7.6	***	8.8	9.9	***
Black	n / a	n / a	n / a		n / a	n/a		n / a	n /a	
Hispanic	n/a	n/a	n / a		n/a	n / a		n / a	n/a	
Other	1,312	5.3	6.1	***	5.5	4.9	**	6.6	6.9	***
New Brunswick				$\dagger \dagger$			\dagger			
White	2,135	6.8	11.9		7.1	12.9	***	8.8	11.5	***
Black	n / a	n/a	n / a		n / a	n / a		n / a	n / a	
Hispanic	n/a	n/a	n / a		n/a	n/a		n / a	n / a	
Other	245	8.9	-3.1		8.9	-2.2		10.3	0.3	

Table B. 14 (continued)

Program and Subgroup	$\begin{array}{r} \text { Sample } \\ \text { Size } \\ \hline \end{array}$	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)			Employed in 9 of 12Quarters (\%)			Employed in 6 of 8Quarters in Years 2 and 3 (\%)		
		Control Group	Impact		Control Group	Impact		Control		
Vermont										
Full Service										
White	6,661	9.7	2.5	*	10.2	2.6	**	11.9	2.7	**
Black	n / a	n/a	n/a		n/a	n/a		n/a	n/a	
Hispanic	n/a	n/a	n/a		n / a	n / a		n/a	n/a	
Other	n/a	n/a	n/a		n/a	n / a		n/a	n/a	
Incentives Only										
White	3,319	9.7	0.0		10.2	0.1		11.9	-0.2	
Black	n / a	n/a	n/a		n/a	n/a		n / a	n/a	
Hispanic	n/a	n/a	n/a		n/a	n / a		n/a	n/a	
Other	n/a	n/a	n/a		n/a	n/a		n/a	n/a	
MFIP										
Full Service				\dagger			\dagger			
White	4,622	13.6	4.4	***	13.9	5.2	***	15.7	4.8	***
Black	1,877	9.4	8.6	***	10.4	7.9	***	11.8	7.9	***
Hispanic	n/a	n/a	n/a		n/a	n / a		n/a	n/a	
Other	666	8.0	-3.3		8.8	-2.1		10.1	-1.3	
Incentives Only										
White	3,286	13.4	-0.1		13.7	1.2		15.6	0.1	
Black	1,676	9.4	2.5		10.3	1.4		11.7	0.4	
Hispanic	n/a	n/a	n/a		n/a	n/a		n/a	n / a	
Other	526	7.9	-4.5		8.8	-5.4		10.1	-4.5	
Connecticut										
White	2,327	12.2	8.4	***	12.2	8.9	***	14.0	7.7	***
Black	2,237	12.7	4.5	**	13.5	4.0	*	14.9	4.9	**
Hispanic	1,386	9.0	3.4		9.4	5.0	**	10.8	5.1	**
Other	n / a	n / a	n/a		n/a	n / a		n / a	n/a	

Table B. 14 (continued)

Program and Subgroup	SampleSize	Employed in Year 1 and 6 of 8 Subsequent Quarters (\%)				Employed in 9 of 12 Quarters (\%)				Employed in 6 of 8Quarters in Years 2 and 3 (\%)		
		Control Group		Impact		Contro Group		Impact		Control Group	Impact	
FTP												
White	1,234	7.8	**	5.8		8.0	**	6.0	**	9.4 ***	7.8	***
Black	1,410	10.8	**	5.7		11.7	**	5.5	**	13.4 **	5.3	**
Hispanic	n/a	n / a		n / a	n / a							
Other	n / a	n / a		n / a	n / a							
SOURCES: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, and Baseline Information Forms.												
NOTES: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated 10 percent; ${ }^{* *}=5$ percent; and ${ }^{* * *}=1$ percent. An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent; $\dagger \dagger \dagger=1$ percent. $\mathrm{n} / \mathrm{a}=$ not applicable because sample sizes were too small to reliably calculate impacts.												

Appendix C

Additional Impacts on Stable Welfare Exits

Chapter 4 described results by program by level of disadvantage, as represented by welfare status, work history, and high school credential. It also showed pooled results for several other subgroups. This appendix presents pooled results for a wider range of other subgroups defined based on demographic characteristics or psychosocial characteristics, and it presents results by program for several additional subgroups.

Tables C.1, C.3, C.5, C.6, and C. 8 show pooled impacts for the five program models discussed in Chapters 1 and 2 (job search first, employment focused with a mix of initial activities, education focused with a mix of initial activities, education first, and earnings supplements). Each table shows results for several subgroups defined from administrative records or baseline demographic information. These subgroups include welfare history (long-term and short-term welfare recipients, and welfare applicants), earnings in the year prior to random assignment, high school credential, number of children, and age of youngest child.

Tables C.2, C.4, C.7, and C. 9 show additional pooled impacts for the four program models for subgroups defined based on the opinion surveys collected at the time of random assignment. (None of the education-focused mixed activity programs had private opinion data.) These subgroups include preference for work, work-related parental concerns, mastery, risk of depression, health or emotional problems, child care problems, and transportation problems. Appendix A of Michalopoulos and Schwartz (2001) describes how these subgroups were defined.

Tables C. 10 through C. 14 show results by program for several subgroups, including by level of disadvantage (Table C.10), by earnings in the year prior to random assignment (Table C.11), by high school credential (Table C.12), by welfare status (Table C.13), and by race and ethnicity (Table C.14).
Table C. 1

Program and Subgroup	SampleSize	Off AFDC in 9 of 12Quarters (\%)		Off AFDC in Year 1 and 6 of 8 Subsequent Quarters (\%)		$\begin{gathered} \hline \text { Off AFDC in } 4 \\ \text { Consecutive Quarters (\%) } \\ \hline \end{gathered}$	
		Control Group	Impact	Control Group	Impact	Control Group	Impact
Full sample	16,781	21.7	5.5 ***	14.0	3.3 ***	38.5	5.6 ***
Total earnings in past 12 months							
No earnings	9,832	18.5	5.5 ***	15.1	3.8 ***	34.2	5.9 ***
\$5,000 or less	4,604	21.8	5.1 ***	12.3	3.1 ***	39.7	6.9 ***
More than \$5,000	2,345	34.8	6.4 ***	12.8	1.8	55.1	2.3
Welfare history ${ }^{\text {a }}$							
Long-term recipient	9,998	15.1	6.0 ***	11.3	3.0 ***	31.4	6.1 ***
Short-term recipient	6,256	30.9	4.6 ***	17.9	3.2 ***	49.0	5.4 ***
New applicant	440	35.0	13.6 **	22.7	6.0	58.9	-0.6
Education credential receipt							
No high school diploma/GED	6,506	17.0	5.4 ***	13.5	3.3 ***	32.1	5.1 ***
High school diploma/GED	10,275	24.6	5.6 ***	14.4	3.3 ***	42.6	5.9 ***
Number of children							
Three or more	4,240	16.2	5.7 ***	12.3	2.7 ***	30.7	4.7 ***
Two	5,390	20.6	5.1 ***	12.9	3.4 ***	38.7	4.8 ***
One	7,150	25.8	5.6 ***	15.9	3.5 ***	43.3	6.4 ***
Age of youngest child							
Under 6	7,735	17.8	5.4 ***	12.0	3.0 ***	34.8	5.6 ***
6 or older	8,956	25.0	5.6 ***	15.7	3.5 ***	41.6	6.0 ***
Gender							
Female	15,465	20.6	5.8 ***	13.2	3.4 ***	38.0	5.3 ***
Male	1,266	35.8	0.8	25.2	0.5	46.4	8.8 ***

Table C. 1 (Continued)
SOURCES: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, and Baseline Information Forms.
NOTES: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated
as: * $=10$ percent; ** $=5$ percent; and $* * *=1$ percent.
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$
percent; and $\dagger \dagger=1$ percent.
as ${ }^{\text {Sample members were classified as new applicants if they had never received welfare in the past. Sample members were classified as short term }}$
recipients if they had received welfare before on their own case or their spouses' case but had received it for a total of less than two years. They were
classified as long term recipients if they had received welfare for two years or more prior to random assignment.
Table C. 2

$\underline{\text { Program and Subgroup }}$	$\begin{array}{r} \text { Sample } \\ \text { Size } \end{array}$	Off AFDC in 9 of 12Quarters (\%)		Off AFDC in Year 1 and 6 of 8 Subsequent Quarters (\%)		Off AFDC in 4Consecutive Quarters (\%)	
		Control Group	Impact	Control Group	Impact	Control Group	Impact
Preference for work							
Low	3,646	20.2	6.8 ***	14.0	2.7 **	39.5	4.9 ***
Moderate	3,725	19.3	7.0 ***	11.4	5.7 ***	37.1	7.3 ***
High	1,158	19.7	5.5 **	11.8	3.1	37.9	6.9 **
Work-Related Parental Concerns scale							
High	2,002	15.5	7.8 ***	13.4	3.3 **	31.0	7.9 ***
Low	6,887	21.2	6.1 ***	12.5	3.8 ***	40.8	5.4 ***
Mastery scale							
Low	3,252	16.9	5.9 ***	12.4	2.9 **	34.7	3.5 *
High	5,637	21.9	6.6 ***	13.1	3.9 ***	41.1	6.8 ***
Risk of depression							
High	1,221	21.2	8.1 ***	13.2	6.4 ***	40.5	6.6 **
Moderate	2,108	18.3	6.6 ***	12.5	4.5 ***	36.5	6.9 ***
Low	5,572	20.3	6.1 ***	12.8	2.8 ***	38.9	5.3 ***
Barriers to work or participation							
Health or emotional problem ${ }^{\text {a }}$							
Yes	2,369	16.7	7.7 ***	13.5	5.1 ***	34.1	4.0 *
No	6,503	20.9	6.1 ***	12.4	3.1 ***	40.2	6.5 ***
Cannot afford/arrange for child care							
Yes	5,586	18.3	6.0 ***	12.5	3.6 ***	36.1	5.9 ***
No	3,157	22.6	7.7 ***	13.2	4.2 ***	43.1	5.9 ***
Transportation problem							
Yes	3,107	15.2	8.0 ***	12.8	4.6 ***	31.5	6.1 ***
No	5,717	22.0	6.2 ***	12.5	3.4 ***	42.0	6.4 ***

Table C. 2 (Continued)
SOURCES: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, and Baseline Information Forms.
NOTES: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: $*=10$ percent; ${ }^{* *}=5$ percent; and ${ }^{* * *}=1$ percent.
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$
asample members in the "yes" category on this measure could have had a health or emotional problem themselves at random assignment or one of
their family members could have had such a problem.
Table C. 3

Program and Subgroup	SampleSize	Off AFDC in 9 of 12 Quarters (\%)		Off AFDC in Year 1 and 6 of 8 Subsequent Quarters (\%)		$\begin{gathered} \text { Off AFDC in } 4 \\ \text { Consecutive Quarters (\%) } \end{gathered}$	
		$\begin{gathered} \text { Control } \\ \text { Group } \\ \hline \end{gathered}$	Impact	Control Group	Impact	Control Group	Impact
Full sample	11,055	26.8	7.0 ***	18.5	1.2	43.8	8.0 ***
Total earnings in past 12 months							
No earnings	6,545	23.5	7.3 ***	20.8	0.8	39.4	9.7 ***
\$5,000 or less	3,082	29.2	4.7 **	15.4	2.0	48.8	4.5 **
More than \$5,000	1,428	36.7	10.8 ***	14.9	0.7	54.2	7.4 **
Welfare history ${ }^{\text {a }}$			\dagger				
Long-term recipient	6,084	21.5	5.3 ***	15.4	0.8	37.9	8.6 ***
Short-term recipient	3,978	30.1	10.4 ***	19.6	2.2	49.9	7.3 ***
New applicant	931	50.8	-1.5	26.7	8.8 *	60.9	2.9
Education credential receipt							
No high school diploma/GED	4,452	24.0	5.5 ***	21.1	0.6	40.2	5.9 ***
High school diploma/GED	6,603	29.0	7.5 ***	17.1	1.1	46.3	9.2 ***
Number of children							
Three or more	2,843	21.9	6.0 ***	17.6	0.4	38.0	7.9 ***
Two	3,623	25.1	7.7 ***	16.5	1.7	42.2	9.6 ***
One	4,524	31.2	6.9 ***	20.4	1.4	48.9	6.8 ***
Age of youngest child							
Under 6	4,623	22.1	8.0 ***	14.3	2.3	41.6	8.4 ***
6 or older	6,295	29.3	7.3 ***	20.9	1.1	46.6	6.3 ***
Gender					\dagger		$\dagger \dagger$
Female	9,915	25.1	7.6 ***	17.0	2.0 **	42.7	8.6 ***
Male	1,033	40.3	4.1	29.6	-2.6	54.7	2.2

Table C. 3 (Continued)
SOURCES: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, and Baseline Information Forms.
NOTES: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated
as: $*=10$ percent; $* * 5$ percent; and ${ }^{* * *}=1$ percent.
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$
percent; and $\dagger \dagger=1$ percent.
${ }^{\text {a }}$ Sample members were classified as new applicants if they had never received welfare in the past. Sample members were classified as short term
recipients if they had received welfare before on their own case or their spouses' case but had received it for a total of less than two years. They were
classified as long term recipients if they had received welfare for two years or more prior to random assignment.
Table C. 4
Impacts on Stable Welfare Exits
Pooled Across Employment-Focused Mixed-Activity Welfare-to-Work Programs with a POS by Selected Characteristics at the Time of Random Assignment

Program and Subgroup	SampleSize	Off AFDC in 9 of 12Quarters (\%)		Off AFDC in Year 1 and6 of 8 Subsequent Quarters (\%)		Off AFDC in 4Consecutive Quarters (\%)	
		Control Group	Impact	Control Group	Impact	Control Group	Impact
Work-Related Parental Concerns scale							
High	1,423	19.3	9.4 ***	16.8	0.1	36.8	13.8 ***
Low	3,486	26.7	9.3 ***	13.1	2.1	46.5	9.9 ***
Mastery scale							
Low	1,719	22.1	7.8 ***	15.5	0.0	41.3	10.2 ***
High	3,193	25.5	10.8 ***	13.2	2.4 *	44.5	12.1 ***
Risk of depression			$\dagger \dagger$				$\dagger \dagger$
High	775	26.7	3.9	16.1	0.5	46.1	5.4
Moderate	1,174	28.0	4.4	15.3	-1.2	48.8	4.4
Low	2,946	22.5	13.0 ***	13.2	2.8 **	41.2	14.7 ***
Barriers to work or participation							
Health or emotional problem ${ }^{\text {a }}$			\dagger				
Yes	1,385	23.2	5.0 **	17.2	-1.1	41.0	8.8 ***
No	3,517	25.2	11.2 ***	12.8	2.9 **	44.7	11.8 ***
Cannot afford/arrange for child care							
Yes	3,371	22.4	8.7 ***	13.8	1.9	40.6	12.2 ***
No	1,475	30.0	11.0 ***	14.8	1.2	51.0	8.6 ***
Transportation problem			$\dagger \dagger$		\dagger		$\dagger \dagger$
Yes	1,428	23.1	1.3	15.6	-1.4	42.1	4.2
No	3,447	25.5	12.7 ***	13.8	2.6 **	44.5	13.9 ***

Table C. 4 (Continued)
NOTES: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: * $=10$ percent; $* *=5$ percent; and $* * *=1$ percent.
${ }^{\text {a }}$ Sample members in the "yes" category on this measure could have had a health or emotional problem themselves at random assignment or one of their family members could have had such a problem.
Table C. 5

Program and Subgroup	SampleSize	Off AFDC in 9 of 12 Quarters (\%)		Off AFDC in Year 1 and 6 of 8 Subsequent Quarters (\%)		$\begin{gathered} \text { Off AFDC in } 4 \\ \text { Consecutive Quarters (\%) } \end{gathered}$	
		$\begin{gathered} \text { Control } \\ \text { Group } \\ \hline \end{gathered}$	Impact	Control Group	Impact	Control Group	Impact
Full sample	17,283	19.7	1.5 *	12.8	1.7 **	33.6	2.5 ***
Total earnings in past 12 months							
No earnings	10,911	17.0	1.0	13.5	1.5	29.4	2.9 **
\$5,000 or less	4,047	21.3	1.4	11.5	2.3 *	37.9	2.3
More than \$5,000	2,325	30.3	3.1	11.4	1.5	47.1	0.5
Welfare history ${ }^{\text {a }}$							
Long-term recipient	11,504	14.0	1.3	9.5	1.5 *	27.1	2.3 *
Short-term recipient	4,055	27.6	1.0	17.8	1.2	43.3	3.3
New applicant	1,724	37.6	6.1 *	22.2	5.4 *	51.5	9.5 **
Education credential receipt							
No high school diploma/GED	8,578	15.5	2.0 *	11.5	2.9 ***	28.4	1.8
High school diploma/GED	8,705	23.6	1.3	13.6	1.0	38.4	3.8 ***
Number of children							
Three or more	4,379	14.2	0.0	11.1	0.0	25.7	0.0
Two	5,463	17.0	2.5 *	10.1	3.0 ***	29.3	5.3 ***
One	7,266	24.8	2.0	15.5	2.1 *	41.5	2.3
Age of youngest child					\dagger		
Under 6	2,360	18.4	-1.6	12.7	-2.2	30.9	0.7
6 or older	14,748	20.0	1.9 **	12.7	2.3 ***	34.0	2.8 ***
Gender							
Female	14,987	19.3	1.3	12.5	1.4 *	32.8	2.8 ***
Male	2,228	22.8	2.5	14.4	4.0 **	38.6	1.5

Table C. 5 (continued)
SOURCES: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, and Baseline Information Forms.
NOTES: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: $*=10$ percent; $* *=5$ percent; and $* * *=1$ percent.
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger=5$ percent; and $\dagger \dagger \dagger=1$ percent.
Sample members were classified as new applicants if they had never received welfare in the past. Sample members were classified as short term recipients if they had received welfare before on their own case or their spouses' case but had received it for a total of less than two years. They were classified as long term recipients if they had received welfare for two years or more prior to random assignment.
Table C. 6
Impacts on Three Measures of Stable Welfare Exits

$\underline{\text { Program and Subgroup }}$	SampleSize	Off AFDC in 9 of 12Quarters (\%)		Off AFDC in Year 1 and 6 of 8 Subsequent Quarters (\%)		Off AFDC in 4Consecutive Quarters (\%)	
		Control Group	Impact	Control Group	Impact	Control Group	Impact
Full sample	32,194	25.3	2.2 ***	16.1	1.9 ***	40.9	3.3 ***
Total earnings in past 12 months							
No earnings	17,102	22.9	1.4 **	18.9	1.8 ***	36.3	3.2 ***
\$5,000 or less	10,487	24.9	2.8 ***	13.6	2.0 ***	42.6	3.8 ***
More than \$5,000	4,605	35.0	4.0 ***	10.7	3.0 ***	55.1	2.4
Welfare history ${ }^{\text {a }}$							\dagger
Long-term recipient	17,613	16.6	2.6 ***	10.3	1.7 ***	33.4	4.6 ***
Short-term recipient	9,606	31.1	2.1 **	18.1	2.5 ***	49.3	2.3 *
New applicant	4,713	42.6	5.9	32.2	3.0	58.9	-4.5
Education credential receipt							
No high school diploma/GED	13,838	21.0	2.6 ***	16.7	1.6 ***	35.4	3.4 ***
High school diploma/GED	18,356	28.4	2.1 ***	15.6	2.3 ***	45.1	3.3 ***
Number of children							
Three or more	7,856	19.6	2.3 **	12.8	2.5 ***	33.3	3.8 ***
Two	10,277	25.0	1.7 *	15.6	1.4 **	40.1	4.7 ***
One	14,061	28.8	2.4 ***	18.2	2.1 ***	45.9	2.2 **
Age of youngest child			\dagger		\dagger		
Under 6	18,207	22.9	1.4 **	16.0	1.1 **	37.2	2.5 ***
6 or older	13,748	28.2	3.4 ***	16.0	3.2 ***	45.7	4.4 ***
Gender							
Female	29,981	24.2	2.2 ***	15.3	2.2 ***	40.0	3.5 ***
Male	1,995	40.7	2.1	25.6	-0.7	55.2	0.0

Table C. 6 (continued)
SOURCES: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, and Baseline Information Forms.
NOTES: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: $*=10$ percent; $* *=5$ percent; and $* * *=1$ percent.
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger=5$ percent; and $\dagger \dagger \dagger=1$ percent.
${ }^{\text {a }}$ Sample members were classified as new applicants if they had never received welfare in the past. Sample members were classified as short term recipients if they had received welfare before on their own case or their spouses' case but had received it for a total of less than two years. They were classified as long term recipients if they had received welfare for two years or more prior to random assignment.
Table C. 7

Prosemanas Suspopp		coin		ond		${ }^{\text {comema }}$	
Prectere for oox							
			$c20414$	(10,			
$\substack{\text { Weotren } \\ \text { corl } \\ \text { Low }}$		$\underset{\substack{153 \\ 20.6}}{ }$	${ }_{1,}^{1,6}$	${ }_{126}^{126}$	1.19	${ }_{\substack{312 \\ 40.2}}$	
	$\underset{4}{4,765}$	${ }_{2}^{167}$	${ }_{21}^{14}$	${ }_{1118}^{11.8}$	${ }_{20}^{29}$	$\underbrace{\substack{\text { a }}}_{\substack{348 \\ 408}}$	${ }_{\substack{26 \\ 38 \\ \hline \\ \hline}}$
		$\underset{\substack{2.1 \\ 11.8 \\ 197}}{ }$	$\stackrel{.07}{\substack{41, \ldots}}$	126 1115 115	¢	$\underset{\substack { 408 \\ \begin{subarray}{c}{\text { and } \\ \text { c8 }{ 4 0 8 \\ \begin{subarray} { c } { \text { and } \\ \text { c8 } } }\end{subarray}}{ }$	(
cos		${ }^{166}$	${ }_{20}^{10}$.	${ }_{1120}^{190}$	${ }_{1,5}^{1,5}$	(342	${ }^{106}$
come		128 223	20	${ }_{121}^{12.6}$	1.90	${ }_{\substack{385 \\ 882}}$	${ }_{23}^{23^{\circ}}$
	$\xrightarrow{2}$	$\substack{148 \\ 21.6}_{1}$	${ }_{4}^{4.1}$	${ }_{11,}^{120}$		$\underbrace{}_{\substack{312 \\ 422}}$	

Table C. 7 (Continued)
SOURCES: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, and Baseline Information Forms.
NOTES: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated
as: $*=10$ percent; ** $=5$ percent; and $* *=1$ percent.
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$
percent; and $\dagger \dagger=1$ percent.
"Sample members in the "yes" category on this measure could have had a health or emotional problem themselves at random assignment or one of
their family members could have had such a problem.
Table C. 8
Pooled Across Programs with Earnings Supplements
by Selected Characteristics at the Time of Random Assignm

$\underline{\text { Program and Subgroup }}$	SampleSize	Off AFDC in 9 of 12Quarters (\%)		Off AFDC in Year 1 and6 of 8 Subsequent Quarters (\%)		$\begin{gathered} \text { Off AFDC in } 4 \\ \text { Consecutive Quarters (\%) } \\ \hline \end{gathered}$	
		Control Group	Impact	Control Group	Impact	Control Group	Impact
Full sample	35,107	29.3	-4.2 ***	14.2	-1.3 ***	41.0	0.9
Total earnings in past 12 months							
No earnings	17,915	23.2	-3.0 ***	18.0	-2.2 ***	35.8	1.3
\$5,000 or less	9,971	25.2	-2.7 ***	10.4	-0.8	40.5	2.5 **
More than \$5,000	7,221	47.6	-5.5 ***	10.5	-0.6	56.8	-1.0
Welfare history ${ }^{\text {a }}$			\dagger				
Long-term recipient	15,768	19.2	-2.5 ***	9.6	-0.5	32.9	0.6
Short-term recipient	6,529	31.7	-4.3 ***	16.0	-1.9 **	47.4	-1.5
New applicant	11,971	39.8	-5.8 ***	17.8	-1.0	50.1	1.5
Education credential receipt			\dagger				
No high school diploma/GED	9,305	20.9	-2.4***	14.4	-0.8	31.4	0.5
High school diploma/GED	25,802	32.1	-4.6 ***	14.1	-1.4 ***	44.8	1.0
Number of children							
Three or more	6,409	24.6	-5.0 ***	13.5	-1.7 *	35.6	1.2
Two	12,860	28.7	-3.6 ***	13.4	-0.4	41.8	-0.1
One	15,582	31.2	-4.2 ***	14.9	-1.8 ***	42.6	1.4
Age of youngest child							
Under 6	17,542	26.5	-4.3 ***	13.7	-1.6 ***	38.9	0.8
6 or older	11,836	31.0	-3.9 ***	13.9	-0.7	42.7	1.7
Gender							
Female	32,099	27.8	-4.1 ***	13.4	-1.2 ***	40.1	0.9
Male	2,474	44.3	-4.0 *	22.2	-2.1	53.8	1.1

Table C. 8 (continued)
SOURCES: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, and Baseline Information Forms.
NOTES: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: $*=10$ percent; $* *=5$ percent; and $* * *=1$ percent.
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger=5$ percent; and $\dagger \dagger \dagger=1$ percent.
${ }^{\text {a }}$ Sample members were classified as new applicants if they had never received welfare in the past. Sample members were classified as short term recipients if they had received welfare before on their own case or their spouses' case but had received it for a total of less than two years. They were classified as long term recipients if they had received welfare for two years or more prior to random assignment.
Table C. 9 Impacts on Stable Welfare Exits
Pooled Across Programs with Earnings Supplements with a POS
by Selected Characteristics at the Time of Random Assignment

Program and Subgroup	$\begin{array}{r} \text { Sample } \\ \text { Size } \end{array}$	Off AFDC in 9 of 12 Quarters (\%)		Off AFDC in Year 1 and6 of 8 Subsequent Quarters (\%)		$\begin{gathered} \text { Off AFDC in } 4 \\ \text { Consecutive Quarters (\%) } \\ \hline \end{gathered}$	
		Control Group	Impact	Control Group	Impact	Control Group	Impact
Preference for work							
Low	5,109	24.8	-4.0 ***	12.1	-1.4	40.5	-3.9 **
Moderate	6,003	31.3	-6.0 ***	13.9	-1.1	44.4	-2.6 *
High	2,598	43.3	-8.1 ***	15.7	0.9	54.6	-6.3 **
Work-Related Parental Concerns scale							
High	3,119	22.9	-3.0 *	15.8	-2.1	36.0	-2.1
Low	10,840	33.1	-6.0 ***	13.0	-0.6	46.8	-3.8 ***
Mastery scale							
Low	7,300	20.7	-1.6	10.2	0.7	32.5	-0.8
High	11,668	28.1	-2.3 ***	12.3	-0.9	41.4	0.1
Risk of depression							
High	510	7.5	10.0 ***	6.0	0.2	18.3	7.1 *
Moderate	933	7.3	5.2 ***	5.0	0.0	15.6	9.3 ***
Low	3,506	10.8	8.1 ***	5.3	1.6 *	23.3	9.6 ***
Barriers to work or participation							
Health or emotional problem ${ }^{\text {a }}$							
Yes	3,613	26.8	-4.7 ***	15.5	-1.0	41.2	-3.0
No	10,248	32.4	-5.7 ***	13.0	-0.8	45.6	-3.3 ***
Cannot afford/arrange for child care							
Yes	5,085	26.2	-4.9 ***	14.8	-1.9 *	40.6	-4.0 **
No	8,753	33.9	-6.0 ***	13.0	-0.3	47.1	-3.3 **
Transportation problem			\dagger				
Yes	5,015	22.3	-3.4***	15.1	-2.0 *	37.6	-4.1 ***
No	8,827	35.4	-6.3 ***	12.7	-0.2	48.3	-2.9 **

Table C. 9 (Continued)
SOURCES: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, and Baseline Information Forms.
NOTES: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated
as: $*=10$ percent; ** $=5$ percent; and $* *=1$ percent.
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$
percent; and $\dagger \dagger=1$ percent.
"Sample members in the "yes" category on this measure could have had a health or emotional problem themselves at random assignment or one of
their family members could have had such a problem.
Table C. 10 (continued)

$\underline{\text { Program and Subgroup }}$	$\begin{array}{r} \text { Sample } \\ \text { Size } \\ \hline \end{array}$	Off Welfare in 9 of 12Quarters (\%)			Off Welfare in Year 1 and 6 of 8 Quarters in Years 2-3 (\%) Control Group	Impact	Off Welfare 4 Consecutive Quarters (\%)		Impact	
		Control Group	Impact					Control Group		
Education-focused mixed activities										
Alameda GAIN										
Most disadvantaged	1,205	10.1	0.7		10.1	1.5		25.2	-0.8	
Moderately disadvantaged	839	10.6	2.8		10.6	3.5		27.2	0.0	
Least disadvantaged	n/a	n/a	n/a		n/a	n/a		n/a	n/a	
Butte GAIN										
Most disadvantaged	n/a	n/a	n/a		n/a	n/a		n/a	n/a	
Moderately disadvantaged	807	31.2	-1.7		31.8	-0.2		50.3	0.6	
Least disadvantaged	243	36.0	-0.2		36.0	1.3		62.0	-0.3	
Los Angeles GAIN										
Most disadvantaged	4,396	10.9	2.6	**	11.3	2.4	**	25.4	2.3	
Moderately disadvantaged	2,074	11.2	3.6	**	11.8	3.3	**	26.5	3.8	*
Least disadvantaged	n/a	n/a	n / a		n/a	n / a		n / a	n/a	
San Diego GAIN										
Most disadvantaged	1,331	12.5	2.4		12.5	2.6		23.0	4.2	
Moderately disadvantaged	5,405	24.8	0.9		25.8	0.7		41.6	4.9	**
Least disadvantaged	1,483	31.2	7.1	**	34.0	5.4		53.6	5.1	
Tulare GAIN										
Most disadvantaged	554	12.4	-0.7		12.4	-0.5		26.5	-0.2	
Moderately disadvantaged	1,423	18.8	0.7		19.4	1.7		37.0	-0.4	
Least disadvantaged	257	41.7	-7.2		46.6	-10.3		54.7	2.4	

Table C. 10 (continued)

Program and Subgroup	SampleSize	Off Welfare in 9 of 12 Quarters (\%)		Off Welfare in Year 1 and 6 of 8 Quarters in Years 2-3 (\%) Control Group	Impact	Off Welfare 4 Consecutive Quarters (\%)		Impact	
		Control Group	Impact				Control Group		
Education first									
Atlanta HCD									
Most disadvantaged	857	6.4	0.9	6.9	0.2		19.0	0.3	
Moderately disadvantaged	2,410	14.4	1.8	15.5	1.8		35.0	3.8	*
Least disadvantaged	563	31.1	2.2	32.9	1.4		57.7	2.2	
Grand Rapids HCD									
Most disadvantaged	450	4.9	7.0 ***	4.9	7.8		22.8	6.6	
Moderately disadvantaged	2,077	16.5	3.1 *	18.6	2.8		40.0	4.5	**
Least disadvantaged	466	30.0	1.4	32.3	1.1		55.8	2.1	
Riverside HCD									
Most disadvantaged	1,094	15.6	2.4	16.7	2.3		32.9	5.5	*
Moderately disadvantaged	1,865	26.6	2.1	28.1	2.0		43.9	4.9	**
Least disadvantaged	n/a	n / a	n / a	n / a	n / a		n / a	n / a	
Columbus Integrated									
Most disadvantaged	899	14.7	4.1 *	14.9	5.4	**	36.4	7.1	**
Moderately disadvantaged	3,134	23.6	4.2 ***	25.0	4.0	**	47.2	4.1	**
Least disadvantaged	613	37.4	5.4	38.5	6.0		65.5	7.5	**
Columbus Traditional			\dagger			\dagger			
Most disadvantaged	888	14.7	0.9	15.0	0.8		36.4	4.7	
Moderately disadvantaged	3,222	23.8	2.8	25.2	2.9	*	47.5	3.2	*
Least disadvantaged	595	37.4	11.2 ***	38.6	11.0	***	65.4	6.1	
Detroit									
Most disadvantaged	1,097	7.2	2.3	7.7	1.9		18.7	5.7	**
Moderately disadvantaged	3,033	10.9	0.8	11.2	1.1		28.3	5.0	***
Least disadvantaged	324	18.0	5.3	18.7	7.6	*	47.4	-2.8	
Oklahoma City									
Most disadvantaged	354	34.5	1.0	33.9	4.0		52.9	0.5	
Moderately disadvantaged	4,797	38.6	1.7	40.4	1.8		56.5	2.1	
Least disadvantaged	1,684	43.9	3.7	45.1	3.6		62.3	4.8	**

Table C. 10 (continued)

Program and Subgroup	Sample Size	Off Welfare in 9 of 12 Quarters (\%)		Off Welfare in Year 1 and 6 of 8 Quarters in Years 2-3 (\%) Control Group	Impact	Off Welfare 4 Consecutive Quarters (\%)		Impact	
		Control Group	Impact				Control Group		
Earnings Supplements									
SSP - British Columbia				\dagger		\dagger			
Most disadvantaged	619	2.6	2.9 *	2.9	4.2	**	9.7	5.8	
Moderately disadvantaged	3,472	11.1	1.8	18.0	1.3		31.6	7.9	
Least disadvantaged	1,652	23.8	-2.3	37.8	-2.8		49.0	9.6	
SSP - New Brunswick			$\dagger \dagger$			$\dagger \dagger$			\dagger
Most disadvantaged	781	4.8	5.2 ***	5.1	6.7		12.3	8.3	***
Moderately disadvantaged	1,539	13.1	15.6 ***	14.3	16.3		30.0	16.3	
Least disadvantaged	104	24.2	24.8 **	25.0	28.9	***	44.1	19.6	*
MFIP Full Services			$\dagger \dagger$			$\dagger \dagger \dagger$			
Most disadvantaged	530	15.3	-4.5	16.9	-5.3		27.4	-6.1	*
Moderately disadvantaged	4,430	25.4	-6.6 ***	26.9	-6.8		45.0	-8.5	
Least disadvantaged	2,383	45.3	-12.9 ***	46.9	-13.4		64.5	-10.1	
MFIP Incentives Only			\dagger			\dagger			
Most disadvantaged	424	14.1	-6.6 **	15.7	-6.9		26.1	-7.8	*
Moderately disadvantaged	3,552	24.2	-7.2 ***	25.7	-7.5		43.9	-10.0	
Least disadvantaged	1,653	45.6	-13.3 ***	47.2	-13.8		64.8	-13.1	
WRP Full Services									
Most disadvantaged	414	12.2	-1.7	15.0	-4.5		32.8	-5.7	
Moderately disadvantaged	4,283	23.3	0.4	24.8	0.3		44.0	1.1	
Least disadvantaged	2,291	42.9	-1.8	44.5	-1.2		61.6	-2.4	
WRP Incentives Only									
Most disadvantaged	201	12.2	-2.6	15.1	-4.3		32.9	-7.2	
Moderately disadvantaged	2,136	23.4	-2.0	24.8	-2.3		44.0	0.4	
Least disadvantaged	1,152	42.9	-2.6	44.5	-2.8		61.5	-2.9	

Table C. 10 (continued)

Program and Subgroup	$\begin{array}{r} \text { Sample } \\ \text { Size } \end{array}$	Off Welfare in 9 of 12 Quarters (\%)		Off Welfare in Year 1 and 6 of 8 Quarters in Years 2-3 (\%)	Off Welfare 4 Consecutive Quarters (\%)		Impact	
		Control Group	Impact	Control Group	Impact	Control Group		
Earnings Supplements (Continued)								
Jobs First			\dagger		\dagger			
Most disadvantaged	796	26.8	-3.8	27.0	-4.3	41.7	7.3	**
Moderately disadvantaged	3,940	37.8	-11.5 ***	39.1	-11.8 ***	55.6	4.5	
Least disadvantaged	1,212	55.1	$-9.7 * * *$	58.2	-12.0 ***	68.8	2.8	
FTP								
Most disadvantaged	436	19.1	3.5	21.5	3.8	41.1	4.0	
Moderately disadvantaged	1,783	37.7	-2.6	40.3	-2.2	60.1	1.2	
Least disadvantaged	515	62.6	-6.0	62.6	-4.1	76.6	3.7	
SOURCE: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, and Baseline Information Forms.								
NOTE: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: $*=10$ percent; ${ }^{* *}=5$ percent; and ${ }^{* * *}=1$ percent.								
An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent; and $\dagger \dagger \dagger=1$ percent.								
$\mathrm{n} / \mathrm{a}=$ not applicable because sample sizes were too small to reliably calculate impacts.								
Individuals were classified as most disadvantaged if they had no earnings in the year prior to random assignment, did not have a high school diploma or GED at random assignment, and had received welfare continuously for two years prior to random assignment. Individuals were classified as least disadvantaged if they had none of these characteristics. All other sample members were classified as moderately disadvantaged.								

Table C. 11

Program and Subgroup	SampleSize	Off AFDC in 9 of 12 Quarters in Years 1-3			Off AFDC in Year 1 and 6 of the next 8 Quarters			Off AFDC in 4 ConsecutiveQuarters		
		Control Group	Impact		Control Group	Impact		Control Group	Impact	
SWIM										
No earnings	1,948	20.4	6.2	***	16.9	3.9	**	32.6	7.2	***
\$5,000 or less	768	25.2	5.9	*	18.3	0.0		37.1	10.1	***
More than \$5,000	494	36.1	1.5		15.3	-2.2		43.0	-0.5	
GAIN Evaluation Programs										
Alameda										
No earnings	915	9.3	-0.8		7.6	-0.7		21.6	-0.8	
\$5,000 or less	226	15.0	3.5		8.0	1.8		29.2	-3.5	
More than \$5,000	n/a	n/a	n/a		n / a	n/a		n/a	n/a	
Butte										
No earnings	652	28.5	-1.8		22.3	0.9		37.7	-1.1	
\$5,000 or less	379	25.9	7.1		10.3	9.8	**	45.5	0.6	
More than \$5,000	198	44.2	-16.7	*	22.0	-13.6	*	36.2	2.8	
Los Angeles										
No earnings	3,435	10.5	2.9	**	9.0	2.0	*	21.6	2.5	*
\$5,000 or less	720	12.6	-1.4		5.6	3.5	*	24.3	2.4	
More than \$5,000	241	15.7	4.9		4.8	1.4		35.6	-9.6	
Riverside										
No earnings	3,331	25.9	5.8	***	25.0	1.6		37.7	4.4	**
\$5,000 or less	1,419	30.8	3.2		18.9	0.8		42.4	3.1	
More than \$5,000	758	38.0	8.1	*	18.2	-0.2		40.3	12.5	***

Table C. 11 (continued)

Program and Subgroup	SampleSize	Off AFDC in 9 of 12 Quarters in Years 1-3			Off AFDC in Year 1 and 6 of the next 8 Quarters			Off AFDC in 4 ConsecutiveQuarters		
		Control Group	Impact		Control Group	Impact		Control Group	Impact	
GAIN Evaluation Programs (Continued)										
San Diego										
No earnings	4,615	21.8	1.0		16.8	1.7		33.4	3.9	*
\$5,000 or less	2,109	24.8	0.8		14.5	0.9		39.0	2.9	
More than \$5,000	1,495	30.6	6.7	**	11.7	3.4		41.9	5.5	
Tulare										
No earnings	1,294	17.1	-1.4		14.6	-0.3		26.3	2.0	
\$5,000 or less	613	18.3	2.7		10.6	0.8		32.2	2.4	
More than \$5,000	327	35.1	-5.1		12.4	-2.8		48.5	-8.5	
NEWWS Evaluation Programs										
Atlanta LFA										
No earnings	2,353	11.0	3.7	***	7.9	1.4		25.9	4.2	**
\$5,000 or less	1,120	18.7	3.4		5.9	2.1		37.5	2.0	
More than \$5,000	360	31.3	5.2		7.0	0.4		52.9	4.7	
Atlanta HCD										
No earnings	2,398	11.0	2.3	*	7.9	-0.3		25.9	2.7	
\$5,000 or less	1,115	18.6	0.9		5.9	2.7	*	37.5	3.5	
More than \$5,000	368	31.3	2.0		7.0	-1.0		53.0	-1.6	
Grand Rapids LFA										
No earnings	1,527	14.6	7.8	***	8.8	6.4	***	32.7	4.5	*
\$5,000 or less	1,119	15.5	7.2	***	7.4	3.0	*	36.3	3.0	
More than \$5,000	366	29.2	9.6	*	7.7	4.7		56.4	-7.7	
Grand Rapids HCD										
No earnings	1,489	14.6	2.7		8.7	5.7	***	32.6	5.0	**
\$5,000 or less	1,121	15.5	4.7	**	7.4	1.3		36.4	5.6	*
More than \$5,000	387	29.3	3.2		7.7	0.5		56.3	-5.4	

Table C. 11 (continued)

Program and Subgroup	$\begin{array}{r} \text { Sample } \\ \text { Size } \\ \hline \end{array}$	Off AFDC in 9 of 12 Quarters in Years 1-3			Off AFDC in Year 1 and 6 of the next 8 Quarters			Off AFDC in 4 Consecutive Quarters		
		Control Group	Impact		Control Group	Impact		Control Group	Impact	
NEWWS Evaluation Programs (Continued)										
Riverside LFA										
No earnings	4,010	23.4	5.1		21.0	4.0	***	36.3	4.7	***
\$5,000 or less	1,598	26.9	4.6	**	17.3	5.1	**	37.5	8.5	***
More than \$5,000	1,118	36.6	9.0		15.2	3.2		45.7	3.4	
Riverside HCD										
No earnings	2,065	20.8	1.6		20.0	3.5	*	32.3	4.7	**
\$5,000 or less	687	24.2	1.7		17.0	4.6		34.6	6.0	
More than \$5,000	383	34.4	7.3		11.9	8.4	**	44.5	-0.2	
Columbus Integrated										
No earnings	2,143	20.7	1.8		13.4	0.6		38.9	6.2	***
\$5,000 or less	1,563	21.8	7.4	***	8.4	0.6		44.9	2.2	
More than \$5,000	966	34.0	4.4		5.0	1.1		54.5	3.9	
Columbus Traditional			\dagger			\dagger				
No earnings	2,160	20.7	3.1	*	13.4	0.4		38.9	6.6	***
\$5,000 or less	1,593	21.8	2.0		8.4	-1.0		44.9	-1.2	
More than \$5,000	976	34.0	7.6	**	5.0	2.9	*	54.5	4.7	
Detroit										
No earnings	2,978	9.6	0.1		7.1	0.1		22.1	4.2	***
\$5,000 or less	1,199	11.7	1.9		3.7	0.5		28.1	5.0	*
More than \$5,000	282	17.4	9.9	**	1.1	4.1	**	41.1	3.0	
Oklahoma City				$\dagger \dagger$			\dagger			$\dagger \dagger$
No earnings	2,581	44.0	0.9		42.5	1.9		37.8	-3.8	**
\$5,000 or less	2,353	34.2	1.8		24.7	2.5		35.3	4.3	**
More than \$5,000	927	43.4	-1.5		19.5	6.6	**	36.1	-2.7	

Table C. 11 (continued)

Program and Subgroup	Sample Size	Off AFDC in 9 of 12 Quarters in Years 1-3			Off AFDC in Year 1 and 6 of the next 8 Quarters			Off AFDC in 4 Consecutive Quarters		
		Control Group	Impact		Control Group	Impact		Control Group	Impact	
NEWWS Evaluation Programs (Continued)										
Portland				$\dagger \dagger$			\dagger			$\dagger \dagger$
No earnings	3,214	20.0	10.6	***	15.7	1.0		34.6	14.8	***
\$5,000 or less	1,663	27.3	7.1	***	12.1	3.8	**	44.7	6.7	***
More than \$5,000	670	35.5	14.1	***	11.5	1.6		50.6	-0.5	
SSP										
British Columbia										
No earnings	3,262	9.2	1.1		12.1	-1.0		23.2	8.1	***
\$5,000 or less	932	15.2	2.1		11.5	0.0		29.8	8.6	***
More than \$5,000	1,091	24.9	-1.7		15.2	-2.4		32.9	10.0	***
New Brunswick										
No earnings	1,651	7.2	7.0	***	7.4	1.9		18.0	8.4	***
\$5,000 or less	595	16.8	21.0	***	9.4	1.5		30.8	16.5	***
More than \$5,000	178	26.3	36.4	***	6.2	0.0		45.6	19.0	**
MFIP										
Full Services										
No earnings	2,874	25.5	-6.5	***	19.4	-4.3	***	33.5	-5.0	***
\$5,000 or less	2,483	22.8	-4.8	***	8.1	-0.5		33.5	-2.0	
More than \$5,000	2,179	48.2	-15.7	***	9.9	-2.4	**	44.0	-6.4	***
Incentives Only										
No earnings	2,318	25.2	-11.0	***	19.1	-7.2	***	33.3	-7.2	***
\$5,000 or less	1,942	22.7	-10.9	***	8.1	-1.9		33.4	-9.9	***
More than \$5,000	1,523	49.0	-13.4	***	10.0	-1.4		44.3	-3.9	

Table C. 11 (continued)

Program and Subgroup	Sample Size	Off AFDC in 9 of 12 Quarters in Years 1-3			Off AFDC in Year 1 and 6 of the next 8 Quarters			Off AFDC in 4 ConsecutiveQuarters		
		Control Group	Impact		Control Group	Impact		Control Group	Impact	
WRP										
Full Services										
No earnings	3,564	21.5	0.6		14.2	0.5		35.5	1.4	
\$5,000 or less	2,103	26.7	-0.7		10.7	1.4		41.9	0.7	
More than \$5,000	1,321	51.9	-1.3		11.3	-0.2		40.0	-0.9	
Incentives Only										
No earnings	1,781	21.5	-0.2		14.2	2.0		35.5	0.3	
\$5,000 or less	1,025	26.7	-1.6		10.7	1.5		41.9	-1.0	
More than \$5,000	683	51.9	-6.8	*	11.3	0.2		40.0	1.4	
Jobs First				\dagger						
No earnings	3,136	37.2	-7.6	***	29.7	-4.2	***	33.2	9.6	***
\$5,000 or less	1,860	32.0	-9.0	***	11.3	-1.9		36.0	12.9	***
More than \$5,000	1,462	63.0	-15.5	***	9.9	0.0		35.4	4.4	*
FTP										
No earnings	1,499	35.0	0.1		26.9	-0.1		42.3	0.7	
\$5,000 or less	923	38.8	-8.1	**	19.2	-6.6	***	40.2	4.8	
More than \$5,000	393	57.7	4.8		13.4	0.6		39.7	6.0	

[^27]Table C. 12
Impacts on Stable Welfare Exits by High School Credential by Program

Program and Subgroup	Sample	Off AFDC in 9 of 12 Quarters in Years 1-3			Off AFDC in Year 1 and 6 of the next 8 Quarters			Off AFDC in 4 Consecutive Quarters		
	Size	Control Group	Impact		Control Group	Impact		Control Group	Impact	
SWIM										
No high school diploma/GED	1,408	19.7	3.6		15.6	2.1		31.8	6.3	**
High school diploma/GED	1,802	27.6	6.4	***	18.0	2.0		38.1	6.9	***
GAIN Evaluation Programs										
Alameda										
No high school diploma/GED	444	10.1	-3.5		7.3	1.1		22.0	-3.0	
High school diploma/GED	761	10.1	3.2		7.3	-0.4		23.9	-0.2	
Butte										
No high school diploma/GED	517	25.5	2.7		16.7	6.2		36.3	1.6	
High school diploma/GED	712	33.3	-4.1		19.9	-2.2		42.6	-1.2	
Los Angeles										
No high school diploma/GED	2,873	10.8	1.5		8.3	2.1	*	22.8	-0.2	
High school diploma/GED	1,523	11.1	4.5	**	7.3	3.5	**	23.7	4.6	*
Riverside										
No high school diploma/GED	2,613	25.5	6.5	***	22.9	3.1		37.6	2.5	
High school diploma/GED	2,895	31.8	4.7	**	22.1	-0.5		41.0	7.5	***
GAIN Evaluation Programs (Continued)										
San Diego										
No high school diploma/GED	3,520	18.7	2.8		13.5	3.6	**	30.2	3.1	
High school diploma/GED	4,699	28.0	1.7		16.4	0.7		40.6	5.0	**
Tulare										
No high school diploma/GED	1,224	14.4	2.6		13.0	1.0		27.2	0.5	
High school diploma/GED	1,010	26.8	-4.8		12.6	-0.8		35.4	1.4	

Table C. 12 (continued)

Program and Subgroup	SampleSize	Off AFDC in 9 of 12 Quarters in Years 1-3			Off AFDC in Year 1 and 6 of the next 8 Quarters			Off AFDC in 4 ConsecutiveQuarters		
		Control Group	Impac		Control Group	Impact		Control Group	Impact	
NEWWS Evaluation Programs										
Atlanta LFA										
No high school diploma/GED	1,454	10.4	2.4		7.3	-0.5		25.6	0.9	
High school diploma/GED	2,379	17.9	4.7	**	7.2	2.7	**	35.6	5.5	***
Atlanta HCD										
No high school diploma/GED	1,488	10.5	1.1		7.3	0.1		25.6	0.2	
High school diploma/GED	2,393	17.9	2.5		7.2	0.7		35.6	4.1	**
Grand Rapids LFA										
No high school diploma/GED	1,246	11.0	9.6	***	8.6	5.8	***	28.8	3.7	
High school diploma/GED	1,766	20.8	6.5	***	7.8	4.3	***	42.6	1.6	
Grand Rapids HCD										
No high school diploma/GED	1,204	10.9	5.1	***	8.5	4.9	***	28.8	4.7	*
High school diploma/GED	1,793	20.8	2.5		7.8	2.3	*	42.6	3.4	
Riverside LFA										
No high school diploma/GED	2,398	22.6	6.2	***	18.7	4.9	***	32.8	5.3	***
High school diploma/GED	4,328	28.6	5.3	***	19.4	3.7	***	41.0	5.4	***
Riverside HCD										
No high school diploma/GED	2,423	22.6	3.0	*	18.7	3.7	**	32.9	6.0	***
High school diploma/GED	712	24.6	1.4		17.2	6.1	*	38.5	-0.1	
Columbus Integrated										
No high school diploma/GED	1,951	18.4	7.3	***	10.8	0.3		38.3	5.2	**
High school diploma/GED	2,721	27.6	2.1		9.5	0.9		48.3	3.9	**
Columbus Traditional										
No high school diploma/GED	1,967	18.4	3.5	*	10.8	0.0		38.3	3.9	*
High school diploma/GED	2,762	27.6	3.8	**	9.5	0.6		48.3	3.4	*

Table C. 12 (continued)

Program and Subgroup	SampleSize	Off AFDC in 9 of 12 Quarters in Years 1-3			Off AFDC in Year 1 and 6 of the next 8 Quarters			Off AFDC in 4 ConsecutiveQuarters		
		Control Group	Impact		Control Group	Impact		Control Group	Impact	
NEWWS Evaluation Programs (Continued)										
Detroit										
No high school diploma/GED	1,897	8.9	0.8		6.0	0.3		19.5	3.9	**
High school diploma/GED	2,562	11.8	1.9		5.7	0.5		28.7	5.2	***
Oklahoma City										
No high school diploma/GED	2,569	34.3	-1.3		32.8	-0.2		34.8	-2.0	
High school diploma/GED	3,292	44.2	2.9	*	30.9	5.3	***	37.8	0.8	
Portland										
No high school diploma/GED	1,839	21.3	4.5	**	17.2	-1.8		36.6	7.0	***
High school diploma/GED	3,708	27.0	10.3	***	13.4	2.5	**	42.8	9.5	***
SSP										
British Columbia										
No high school diploma/GED	1,015	4.2	4.8	***	4.0	1.8		12.0	5.5	**
High school diploma/GED	4,270	15.6	0.0		14.5	-1.7	*	29.4	9.6	***
New Brunswick										
No high school diploma/GED	1,146	7.1	8.5	***	8.1	1.2		15.6	10.0	***
High school diploma/GED	1,278	14.9	15.2	***	7.5	2.0		30.3	11.4	***
MFIP										
Full Services										
No high school diploma/GED	1,931	21.9	-6.6	***	14.3	-2.7	,	29.3	-5.3	***
High school diploma/GED	5,605	34.3	-9.1	***	12.4	-2.3	***	39.0	-4.0	***
Incentives Only										
No high school diploma/GED	1,514	21.0	-7.1	***	13.9	-2.9	*	29.0	-8.7	***
High school diploma/GED	4,269	32.9	-9.7	***	12.1	-2.2	**	38.6	-6.3	***

Table C. 12 (continued)

Program and Subgroup	Sample Size	Off AFDC in 9 of 12 Quarters in Years 1-3			Off AFDC in Year 1 and 6 of the next 8 Quarters			Off AFDC in 4 Consecutive Quarters		
		Control Group	Impact		Control Group	Impact		Control Group	Impact	
WRP										
Full Services										
No high school diploma/GED	1,303	19.4	2.2		12.5	1.1		35.3	-0.6	
High school diploma/GED	5,685	31.1	-0.8		12.6	0.5		38.9	1.1	
Incentives Only										
No high school diploma/GED	623	19.6	-3.8		12.4	2.2		35.4	-3.6	
High school diploma/GED	2,866	31.1	-1.5		12.7	1.3		38.9	0.8	
Jobs First										
No high school diploma/GED	2,031	32.3	-8.2	***	20.5	-2.1		29.9	10.7	***
High school diploma/GED	4,427	46.0	-11.1	***	19.3	-2.1	*	36.6	8.8	***
FTP										
No high school diploma/GED	1,076	30.2	-0.1		22.9	1.1		36.5	1.8	
High school diploma/GED	1,739	44.9	-2.7		22.5	-4.6	**	44.1	3.8	

Table C. 13
Impacts on Stable Welfare Exits by Welfare Status Prior to Random Assignment by Program

Program and Subgroup	SampleSize	Off AFDC in 9 of 12 Quarters in Years 1-3			Off AFDC in Year 1 and 6 of the next 8 Quarters			Off AFDC in 4 ConsecutiveQuarters		
		Control Group	Impact		Control Group	Impact		Control Group	Impact	
SWIM										
Long Term Recipient	2,202	17.2	6.1	***	12.7	3.1	**	31.2	6.6	***
Short Term Recipient	648	37.7	4.5		27.0	-1.2		44.8	6.8	*
New Applicant	360	42.9	-1.4		25.3	0.5		43.7	5.9	
GAIN Evaluation Programs										
Alameda										
Long Term Recipient	1,205	10.1	0.7		7.3	0.2		23.2	-1.3	
Short Term Recipient	n / a	n/a	n/a		n/a	n/a		n/a	n/a	
New Applicant	n / a	n / a	n/a		n/a	n/a		n/a	n/a	
Butte										
Long Term Recipient	558	20.7	-0.8		13.2	-0.4		34.9	-1.3	
Short Term Recipient	285	27.0	-2.7		15.8	2.1		42.9	-0.1	
New Applicant	386	45.9	-1.1		28.4	3.0		44.6	2.2	
Los Angeles										
Long Term Recipient	4,396	10.9	2.6	**	8.0	2.6	***	23.1	1.5	
Short Term Recipient	n / a	n/a	n/a		n/a	n/a		n/a	n / a	
New Applicant	n / a	n / a	n/a		n/a	n/a		n/a	n/a	
Riverside										
Long Term Recipient	2,661	24.7	3.0		19.3	0.6		35.1	4.6	*
Short Term Recipient	1,979	26.3	9.9	***	20.7	3.5		40.7	5.7	**
New Applicant	868	46.2	4.7		35.3	-1.3		48.5	6.4	

Table C. 13 (continued)

Program and Subgroup	SampleSize	Off AFDC in 9 of 12 Quarters in Years 1-3			Off AFDC in Year 1 and 6 of the next 8 Quarters			Off AFDC in 4 ConsecutiveQuarters		
		Control Group	Impact		Control Group	Impact		Control Group	Impact	
GAIN Evaluation Programs (Continued)										
San Diego										
Long Term Recipient	3,948	16.8	2.1		10.3	2.2		29.8	3.6	*
Short Term Recipient	3,079	28.5	0.3		18.7	0.7		40.5	3.4	
New Applicant	1,192	34.9	8.8	**	20.5	6.2	*	45.5	8.9	**
Tulare										
Long Term Recipient	1,397	15.7	-2.4		11.6	-1.5		25.6	0.8	
Short Term Recipient	691	26.0	2.3		15.3	2.1		41.3	-2.5	
New Applicant	146	34.9	-2.8		18.6	-0.2		39.5	10.0	
NEWWS Evaluation Programs										
Atlanta LFA										
Long Term Recipient	2,495	9.4	4.6	***	10.3	1.5		23.9	3.9	**
Short Term Recipient	1,288	26.3	1.5		-0.7	1.4		46.8	2.5	
New Applicant	n / a	n / a	n/a		n / a	n/a		n/a	n/a	
Atlanta HCD										
Long Term Recipient	2,543	26.2	1.8		5.6	0.9		24.0	2.5	
Short Term Recipient	1,275	-0.9	1.7		10.4	-0.6		46.8	2.2	
New Applicant	n/a	n / a	n/a		n/a	n/a		n/a	n/a	
Grand Rapids LFA										
Long Term Recipient	1,791	25.4	7.4	***	11.9	4.0	***	42.4	2.9	
Short Term Recipient	1,219	46.0	7.8	***	-3.2	6.2	***	99.3	1.4	
New Applicant	n/a	n / a	n/a		n/a	n/a		n/a	n/a	
Grand Rapids HCD										
Long Term Recipient	1,775	11.1	5.1	***	9.9	3.9	***	43.6	3.7	
Short Term Recipient	1,215	25.2	1.0		-1.2	2.3		97.7	4.5	
New Applicant	n / a	n/a	n/a		n/a	n / a		n/a	n / a	

Table C. 13 (continued)

Program and Subgroup	$\begin{array}{r} \text { Sample } \\ \text { Size } \end{array}$	Off AFDC in 9 of 12 Quarters in Years 1-3			Off AFDC in Year 1 and 6 of the next 8 Quarters			Off AFDC in 4 Consecutive Quarters		
		Control Group	Impact		Control Group	Impact		Control Group	Impact	
NEWWS Evaluation Programs (Continued)										
Riverside LFA										
Long Term Recipient	3,510	19.8	6.2	***	17.1	3.3	**	32.0	6.7	***
Short Term Recipient	3,101	33.4	5.2	***	21.3	5.0	***	44.4	4.8	***
New Applicant	n/a	n / a	n / a		n / a	n /a		n / a	n /a	
Riverside HCD										
Long Term Recipient	1,841	18.2	0.4		17.3	1.1		29.8	4.0	*
Short Term Recipient	1,238	30.0	5.6	**	20.0	8.3	***	39.9	5.6	**
New Applicant	n/a	n / a	n / a		n / a	n / a		n/a	n /a	
Columbus Integrated										
Long Term Recipient	3,392	18.7	4.2	***	8.6	0.0		38.9	4.5	***
Short Term Recipient	806	35.8	5.5		12.1	4.5	*	59.3	1.2	
New Applicant	448	39.9	3.0		16.9	-0.3		56.1	9.5	**
Columbus Traditional										
Long Term Recipient	3,415	18.7	2.4	*	8.6	-0.1		38.9	3.6	**
Short Term Recipient	793	35.7	5.6		12.0	3.4		59.2	-1.3	
New Applicant	497	40.0	7.4	*	16.9	-1.8		56.5	9.7	**
Detroit										
Long Term Recipient	3,313	8.7	2.8	***	4.2	1.9	**	22.5	6.5	***
Short Term Recipient	1,015	15.4	-2.3		10.1	-3.7	**	32.6	-0.4	
New Applicant	n / a	n / a	n / a		n / a	n / a		n / a	n / a	
Oklahoma City				$\dagger \dagger$			$\dagger \dagger$			$\dagger \dagger$
Long Term Recipient	1,419	31.4	2.1		26.6	1.6		35.0	6.3	**
Short Term Recipient	1,858	37.6	2.0		28.2	4.6	**	37.7	-0.7	
New Applicant	2,530	46.0	0.1		36.9	2.8		36.8	-4.3	**

Table C. 13 (continued)

Program and Subgroup	Sample Size	Off AFDC in 9 of 12 Quarters in Years 1-3			Off AFDC in Year 1 and 6 of the next 8 Quarters			Off AFDC in 4 Consecutive Quarters		
		Control Group	Impact		Control Group	Impact		Control Group	Impact	
NEWWS Evaluation Programs (Continued)										
Portland										
Long Term Recipient	3,423	18.1	9.1	***	12.2	1.5		34.4	12.6	***
Short Term Recipient	1,999	33.3	11.9	***	17.7	2.1		48.6	7.0	***
New Applicant	63	50.3	-6.8		6.9	16.6	*	46.0	2.5	
SSP										
British Columbia										
Long Term Recipient	1,804	5.8	5.1	***	3.7	2.6	***	15.0	6.8	***
Short Term Recipient	733	14.6	1.0		7.4	-1.3		26.0	7.4	**
New Applicant	2,748	17.9	-1.5		18.7	-2.8	**	32.2	11.1	***
New Brunswick										
Long Term Recipient	1,967	9.9	11.7	***	6.2	1.7		20.8	11.8	***
Short Term Recipient	457	17.2	12.9	***	14.4	1.9		34.7	5.5	
New Applicant	n / a	n / a	n/a		n / a	n / a		n / a	n / a	
MFIP										
Full Services				$\dagger \dagger$		\dagger	\dagger			\dagger
Long Term Recipient	3,048	18.2	-6.2	***	9.3	-1.5		32.2	-7.7	***
Short Term Recipient	1,344	33.6	-10.4	***	14.6	-3.5	*	43.6	-6.9	***
New Applicant	2,951	43.6	-10.5	***	15.9	-3.2	**	37.9	0.2	
Incentives Only				\dagger		\dagger				
Long Term Recipient	2,587	17.7	-7.9	***	9.1	-2.3	**	31.6	-9.1	***
Short Term Recipient	1,027	33.6	-14.0	***	14.6	-3.3		43.6	-12.4	***
New Applicant	2,015	44.5	-12.1	***	16.1	-2.3		38.1	-2.3	

Table C. 13 (continued)

Program and Subgroup	Sample Size	Off AFDC in 9 of 12 Quarters in Years 1-3			Off AFDC in Year 1 and 6 of the next 8 Quarters			Off AFDC in 4 Consecutive Quarters		
		Control Group	Impac		Control Group	Impact		Control Group	Impact	
WRP										
Full Services										
Long Term Recipient	2,650	16.8	-1.0		6.9	0.0		35.3	-0.3	
Short Term Recipient	1,038	20.0	1.2		12.4	0.3		42.4	-2.3	
New Applicant	3,300	41.3	0.1		17.3	1.1		39.3	2.6	
Incentives Only										
Long Term Recipient	1,302	16.8	-0.4		6.8	1.1		35.3	-0.1	
Short Term Recipient	530	20.0	1.1		12.5	3.0		42.2	-6.3	
New Applicant	1,657	41.3	-3.7		17.3	1.1		39.4	2.3	
Jobs First										
Long Term Recipient	3,234	31.8	-9.0	***	15.5	-1.4		32.7	9.4	***
Short Term Recipient	1,394	42.9	-11.8	***	21.9	-6.0	***	39.8	10.6	***
New Applicant	1,320	56.5	-10.7	***	22.8	0.4		35.8	10.5	***
FTP										
Long Term Recipient	1,444	26.6	-3.5		17.0	-2.1		39.5	1.5	
Short Term Recipient	956	47.9	-1.2		25.4	-2.7		47.1	3.7	
New Applicant	334	71.9	-2.4		35.9	-1.8		35.3	3.6	

[^28]Table C. 14

Program and Subgroup	$\begin{array}{r} \text { Sample } \\ \text { Size } \end{array}$	Off AFDC in 9 of 12Quarters (\%)			Off AFDC in Year 1 and 6 of the Next 8 Quarters (\%)			Off AFDC in FourConsecutive Quarters (\%)		
		$\begin{gathered} \hline \text { Control } \\ \text { Group } \\ \hline \end{gathered}$	Impact		$\begin{gathered} \text { Control } \\ \text { Group } \\ \hline \end{gathered}$	Impact		$\begin{gathered} \text { Control } \\ \text { Group } \\ \hline \end{gathered}$	Impact	
SWIM										
White	877	10.2	9.5	***	7.2	2.6		15.7	10.1	***
Black	1,361	6.9	4.6	**	5.0	3.2		12.2	6.6	**
Hispanic	814	7.4	1.1		5.2	-1.0		11.7	6.2	*
Other	n/a	n/a	n / a		n/a	n/a		n/a	n/a	
GAIN Evaluation Programs										
Alameda				\dagger						
White	216	6.1	-5.9		2.7	3.1		9.9	2.2	
Black	844	2.4	3.8	*	2.1	0.4		7.6	-3.7	
Hispanic	n/a	n/a	n / a		n/a	n/a		n/a	n/a	
Other	n / a	n/a	n / a		n/a	n/a		n/a	n/a	
Butte							\dagger			
White	1,061	10.4	-2.1		6.4	0.7		15.5	-2.2	
Black	n / a	n/a	n/a		n/a	n/a		n/a	n/a	
Hispanic	n/a	n/a	n/a		n/a	n/a		n/a	n/a	
Other	n / a	n/a	n / a		n/a	n/a		n/a	n/a	
Los Angeles				\dagger						
White	512	4.6	6.5	*	2.2	6.7	**	9.7	6.7	
Black	1,987	2.7	4.8	***	2.3	3.2	**	6.8	3.0	
Hispanic	1,408	4.8	-1.2		3.0	1.4		8.8	0.2	
Other	489	3.5	0.1		3.4	-1.2		8.5	-3.6	
Riverside										
White	2,847	10.1	6.8	***	8.4	0.5		16.1	6.5	***
Black	862	8.7	3.9		6.6	-0.1		12.3	10.5	**
Hispanic	1,510	8.4	4.4		5.1	2.9		13.5	1.8	
Other	289	13.8	3.4		12.4	5.7		14.2	2.9	

Table C. 14 (continued)

$\underline{\text { Program and Subgroup }}$	Sample Size	Off AFDC in 9 of 12 Quarters (\%)			Off AFDC in Year 1 and 6 of the Next 8 Quarters (\%)			Off AFDC in FourConsecutive Quarters (\%)		
		Control Group	Impact		$\begin{gathered} \hline \text { Control } \\ \text { Group } \\ \hline \end{gathered}$	Impact		Control Group	Impact	
San Diego										
White	3,478	10.4	0.2		6.7	-0.6		14.5	7.6	***
Black	1,865	6.6	3.9		4.3	3.4		12.3	3.4	
Hispanic	2,094	6.6	1.6		3.5	4.6	**	11.4	1.2	
Other	782	4.2	8.3	**	3.5	4.0		10.2	2.6	
Tulare										
White	1,165	7.6	-2.0		5.1	-1.1		12.4	2.2	
Black	n/a	n/a	n/a		n/a	n/a		n/a	n/a	
Hispanic	871	5.2	1.9		3.1	1.2		9.5	-1.8	
Other	n/a	n/a	n /a		n / a	n / a		n / a	n / a	
NEWWS Evaluation Programs										
Atlanta LFA										
White	n / a	n / a	n / a		n / a	n/a		n / a	n / a	
Black	3,624	5.0	3.3	***	2.3	1.6	*	10.9	4.5	***
Hispanic	n / a	n/a	n / a		n / a	n/a		n / a	n / a	
Other	n / a	n / a	n / a		n / a	n/a		n / a	n / a	
Atlanta HCD										
White	n / a	n/a	n / a		n / a	n / a		n / a	n / a	
Black	3,669	5.0	2.0	*	2.3	0.8		10.9	2.8	*
Hispanic	n / a	n / a	n / a		n / a	n / a		n / a	n / a	
Other	n / a	n / a	n / a		n / a	n / a		n / a	n / a	
Grand Rapids LFA										
White	1,470	7.3	7.5	***	2.6	6.4	***	15.5	4.8	*
Black	1,214	3.6	6.7	***	2.6	2.5		9.6	3.3	
Hispanic	244	4.8	13.4	***	3.7	6.4		13.2	1.1	
Other	n/a	n / a	n / a		n / a	n / a		n / a	n / a	

Program and Subgroup	$\begin{array}{r} \text { Sample } \\ \text { Size } \\ \hline \end{array}$	Off AFDC in 9 of 12 Quarters (\%)			Off AFDC in Year 1 and 6 of the Next 8 Quarters (\%)			Off AFDC in Four Consecutive Quarters (\%)		
		Control Group	Impact		Control Group	Impact		Control Group	Impact	
Grand Rapids HCD										
White	1,515	7.3	2.0		2.7	3.1	**	15.5	4.7	*
Black	1,158	3.5	4.2	**	2.6	1.8		9.6	3.7	
Hispanic	249	4.8	8.5	*	3.7	11.1	**	13.2	4.6	
Other	n/a	n / a	n/a		n /a	n / a		n / a	n / a	
Riverside LFA										
White	3,464	9.6	5.3	***	7.1	3.8	***	15.2	6.9	***
Black	1,121	7.2	8.1	***	4.9	6.4	***	12.9	1.3	
Hispanic	1,858	8.0	4.7	**	5.5	3.7	**	11.9	7.8	***
Other	255	11.6	-1.6		9.8	-0.5		14.8	3.6	
Riverside HCD										
White	1,208	8.0	5.7	**	6.5	8.3	***	13.8	4.6	
Black	510	7.2	0.4		4.9	3.9		11.6	2.8	
Hispanic	1,240	7.2	1.2		5.7	1.8		10.9	7.8	***
Other	n / a	n /a	n / a		n/a	n / a		n /a	n / a	
Columbus Integrated							\dagger			$\dagger \dagger$
White	2,161	9.4	5.0	**	4.2	2.3		17.0	6.7	***
Black	2,414	6.6	3.4	**	2.6	-0.8		13.9	3.8	*
Hispanic	n / a	n / a	n / a		n/a	n / a		n / a	n / a	
Other	n / a	n/a	n/a		n/a	n / a		n/a	n / a	
Columbus Traditional										
White	2,204	9.4	3.3	*	4.2	0.9		17.1	3.2	
Black	2,431	6.6	3.6	**	2.6	-0.3		13.9	4.6	**
Hispanic	n/a	n/a	n/a		n/a	n / a		n/a	n / a	
Other	n/a	n / a	n / a		n / a	n / a		n / a	n / a	

Table C. 14 (continued)

Program and Subgroup	$\begin{array}{r} \text { Sample } \\ \text { Size } \\ \hline \end{array}$	Off AFDC in 9 of 12Quarters (\%)			Off AFDC in Year 1 and 6 of the Next 8 Quarters (\%)			Off AFDC in FourConsecutive Quarters (\%)		
		Control Group	Impact		Control Group	Impact		Control Group	Impact	
Detroit										
White	481	4.4	2.1		2.7	2.8		10.7	11.6	***
Black	3,836	3.4	1.5		1.8	0.4		8.1	4.2	***
Hispanic	n/a	n/a	n/a		n/a	n/a		n/a	n / a	
Other	n/a	n/a	n/a		n/a	n/a		n/a	n/a	
Oklahoma City										
White	4,095	14.8	-0.2		11.6	2.9	*	18.2	-0.2	
Black	1,996	10.6	3.2		8.2	1.5		14.2	6.1	**
Hispanic	298	14.0	9.4		12.4	5.5		18.2	1.7	
Other	478	12.0	6.5		11.3	3.4		16.9	6.4	
Portland				\dagger						\dagger
White	3,795	8.6	9.8	***	5.0	1.2		15.0	12.5	***
Black	1,099	7.4	2.3		4.2	-0.1		13.4	2.4	
Hispanic	226	7.4	14.9	**	3.3	8.3	*	17.4	5.8	
Other	335	8.1	14.3	***	5.0	5.4		12.9	16.3	**
SSP										
British Columbia										
White	3,762	4.7	1.0		3.7	-0.6		10.8	10.0	***
Black	n/a	n / a	n / a		n / a	n/a		n/a	n / a	
Hispanic	n/a	n/a	n/a		n/a	n/a		n/a	n/a	
Other	1,216	3.7	0.1		3.2	-1.9		8.6	6.9	***
New Brunswick										
White	2,135	3.8	12.1	***	3.4	0.7		7.9	11.8	***
Black	n/a	n/a	n/a		n/a	n/a		n/a	n/a	
Hispanic	n/a	n/a	n/a		n/a	n/a		n/a	n/a	
Other	245	4.1	7.5		-0.8	5.0		8.0	15.1	**

$\xrightarrow{\text { Program and Subgroup }}$	$\begin{array}{r} \text { Sample } \\ \text { Size } \\ \hline \end{array}$	Off AFDC in 9 of 12Quarters (\%)			Off AFDC in Year 1 and6 of the Next 8 Quarters (\%)			Off AFDC in FourConsecutive Quarters (\%)		
		Control Group	Impact		Control Group	Impact		Control Group	Impact	
Vermont										
Full Service										
White	6,661	9.2	0.2		4.1	0.6		14.7	0.1	
Black	n / a	n/a	n / a		n/a	n/a		n / a	n / a	
Hispanic	n / a	n / a	n / a		n / a	n/a		n / a	n / a	
Other	n/a	n/a	n / a		n/a	n/a		n/a	n / a	
Incentives Only				\dagger			\dagger			$\dagger \dagger$
White	3,319	9.2	-0.8		4.1	1.6		14.7	-0.7	
Black	n / a	n/a	n / a		n / a	n/a		n / a	n/a	
Hispanic	n/a	n/a	n / a		n/a	n/a		n / a	n / a	
Other	n/a	n/a	n / a		n/a	n/a		n/a	n/a	
MFIP										
Full Service										
White	4,622	11.4	-10.1	***	3.6	-2.0	**	15.7	-7.9	***
Black	1,877	9.0	-5.6	***	6.0	-3.1	*	13.2	-8.1	***
Hispanic	n/a	n/a	n/a		n/a	n/a		n/a	n/a	
Other	666	7.3	-7.4	***	3.6	-2.9		11.6	-5.9	
Incentives Only							\dagger			
White	3,286	11.3	-10.4	***	3.6	-2.4	**	15.6	-11.9	***
Black	1,676	8.2	-8.3	***	5.6	-5.3	***	12.4	-9.3	***
Hispanic	n/a	n/a	n / a		n/a	n/a		n / a	n / a	
Other	526	7.0	-1.9		3.4	4.5		11.4	-3.6	
Connecticut										
White	2,321	15.2	-13.2	***	6.9	-4.9	***	18.3	7.5	***
Black	2,215	11.8	-8.4	***	4.8	0.2		13.3	6.6	***
Hispanic	1,382	13.6	-9.8	***	8.1	-2.5		15.5	8.0	***
Other	n / a	n / a	n / a		n / a	n/a		n / a	n / a	

References

Ashworth, Karl, Andreas Cebulla, David Greenberg, and Robert Walker. 2002. "MetaEvaluation: Discovering What Works Best?" unpublished manuscript, University of Nottingham.

Barnow, Burt. 2000. "Exploring the Relationship between Performance Management and Program Impact: A Case Study of the Job Training Partnership Act." Journal of Policy Analysis and Management. 19(1): 118-141.

Berlin, Gordon. 2000. Encouraging Work, Reducing Poverty: The Impact of Work Incentive Programs. New York: MDRC.

Bloom, Dan, James J. Kemple, and Robin Rogers-Dillon. 1997. The Family Transition Program: Implementation and Early Impacts of Florida's Time-Limited Welfare Program. New York: MDRC.

Bloom, Dan and Charles Michalopoulos. 2001. How Welfare and Work Policies Affect Employment and Income: A Synthesis of Research. New York: MDRC.

Bloom, Dan, Susan Scrivener, Charles Michalopoulos, Pamela Morris, Richard Hendra, Diana Adams-Ciardullo, and Johanna Walter. 2002. Final Report on Connecticut's Welfare Reform Initiative. New York: MDRC.

Bloom, Howard S., Carolyn J. Hill, and James Riccio. 2001. Modeling the Performance of Welfare-to-Work Programs: The Effects of Program Management and Services, Economic Environment, and Client Characteristics. New York: MDRC.

Brock, Thomas, Claudia Coulton, Andrew London, Denise Polit, Lashawn RichburgHayes, Ellen Scott, and Nandita Verma. 2002. Welfare Reform in Cleveland: Implementation, Effects, and Experiences of Poor Families and Neighborhoods. New York: MDRC.

Burghardt, John and Peter Z. Schochet. 2001. National Job Corps Study: Impacts by Center Characteristics. Princeton: Mathematica Policy Research, Inc.

Corcoran, Mary, and Susanna Loeb. 1999. "Will Wages Grow With Experience for Welfare Mothers? Focus. 20(2):20-21.

Gladden, Tricia, and Christopher Taber. 1999. "Wage Progression Among Less-Skilled Workers." Chicago: Joint Center for Poverty Research Working Paper 72.

Freedman, Stephen. 2000. Four-Year Impacts on Employment Stability and Earnings Growth. U.S. Department of Health and Human Services, Administration for Children and Families, Office of the Assistant Secretary for Planning and Evalua-
tion. U.S. Department of Education, Office of the Under Secretary, Office of Vocational and Adult Education.

Freedman, Stephen, Daniel Friedlander, Gayle Hamilton, JoAnn Rock, Marisa Mitchell, Jodi Nudelman, Amanda Schweder, and Laura Storto. 2000. Evaluating Alternative Welfare-to-Work Approaches: Two-Year Impacts for Eleven Programs. Washington, DC: U.S. Department of Health and Human Services, Administration for Children and Families and Office of the Assistant Secretary for Planning and Evaluation; and U.S. Department of Education, Office of the Under Secretary and Office of Vocational and Adult Education.

Friedlander, Daniel. 1988. Subgroup Impacts and Performance Indicators for Selected Welfare Employment Programs. New York: MDRC.

Friedlander, Daniel, and Gary Burtless. 1995. Five Years After: The Long-Term Effects of Welfare-to-Work Programs. New York: Russell Sage Foundation.

Gueron, Judith M., and Edward Pauly. 1991. From Welfare to Work. New York: Russell Sage Foundation.

Hamilton, Gayle, and Thomas Brock. 1994. The JOBS Evaluation: Early Lessons from Seven Sites. Washington, DC: U.S. Department of Health and Human Services and U.S. Department of Education.

Hamilton, Gayle, and Daniel Friedlander. 1989. Final Report on the Saturation Work Initiative Model in San Diego. New York: MDRC.

Hamilton, Gayle, Stephen Freedman, Lisa A. Gennetian, Charles Michalopoulos, Johanna Walter, Diana Adams-Ciardullo, Anna Gassman-Pines, Sharon McGroder, Martha Zaslow, Jennifer Brooks, and Surjeet Ahluwalia. 2001. How Effective Are Different Welfare-to-Work Approaches? Five-Year Adult and Child Impacts for Eleven Programs. Washington: U.S. Department of Health and Human Services, Office of the Assistant Secretary for Planning and Evaluation and Administration for Children and Families, and U.S. Department of Education.

Heckman, James J., Carolyn Heinrich, and Jeffrey Smith. 2002. "The Performance of Performance Standards." NBER Working Paper W9002.

Michalopoulos, Charles. 2001. "Sustained Employment and Earnings Growth: New Experimental Evidence on Earnings Supplements and PreEmployment Services." In Richard Kazis and Marc S. Miller (ed) Low Wage Workers in the New Economy. Washington, DC: The Urban Institute Press.

Michalopoulos, Charles, Philip K. Robins, and David Card. Forthcoming. "When Financial Work Incentives Pay for Themselves: Early Findings from the SelfSufficiency Project's Applicant Study." Journal of Public Economics.

Michalopoulos, Charles and Christine Schwartz. 2000. What Works Best for Whom: Impacts of 20 Welfare-to-Work Programs by Subgroup. Washington: U.S. Department of Health and Human Services, Office of the Assistant Secretary for Planning and Evaluation and Administration for Children and Families, and U.S. Department of Education.

Michalopoulos, Charles Doug Tattrie, Cynthia Miller, Philip K. Robins, Pamela Morris, David Gyarmati, Cindy Redcross, Kelly Foley, and Reuben Ford. 2002. Making Work Pay: Final Report on the Self-Sufficiency Project for Long-Term Welfare Recipients. Ottawa: Social Research and Demonstration Corporation.

Miller, Cynthia, Virginia Knox, Patricia Auspos, Jo Anna Hunter-Manns, and Alan Orenstein. 1997. Making Welfare Work and Work Pay: Implementation and 18-Month Impacts of the Minnesota Family Investment Program. New York: MDRC.

Raudenbush, Stephen W. 1994. "Random Effects Models." Chapter 20 in Cooper, Harris N. and Larry V. Hedges, eds., The Handbook of Research Synthesis, New York, Russell Sage Foundation, pp. 301-321.

Riccio, James, Daniel Friedlander, and Stephen Freedman. 1994. GAIN: Benefits, Costs, and Three-Year Impacts of a Welfare-to-Work Program. New York: MDRC.

Scrivener, Susan Richard Hendra, Cindy Redcross, Dan Bloom, Charles Michalopoulos, and Johanna Walter. 2002. Final Report on Vermont's Welfare Restructuring Project. New York: MDRC.

Zornitsky, Jeffrey and Mary Rubin. 1988. Establishing a Performance Management System for Targeted Welfare Programs Washington: National Commission for Employment Policy

[^0]: ${ }^{1}$ All 26 programs have three years or more of information on outcomes for sample members after random assignment. Two other programs studied since 1990 by MDRC - Florida's Project Independence and Los Angeles's Jobs First GAIN - did not have three years of follow-up data when this report was written.

[^1]: ${ }^{2}$ For a more detailed discussion of the SWIM program, see Hamilton and Friedlander (1989).
 ${ }^{3}$ For a more complete description of the GAIN program design, see Riccio, Friedlander, and Freedman (1994), particularly Chapters 1 and 2.
 ${ }^{4}$ Although GAIN began before the Family Support Act was implemented, it met the provisions of the legislation and later became California's JOBS program.
 ${ }^{5}$ For more information on the Family Support Act and the JOBS program, see Hamilton and Brock (1994), Chapter 1.

[^2]: ${ }^{6}$ Descriptions included here are adapted from Freedman et al. (2000), Chapter 3.
 ${ }^{7}$ In Atlanta and Grand Rapids, people were randomly assigned to the control group, the HCD program group, or the LFA program group. In Riverside, those in need of basic education according to the GAIN criteria described above were randomly assigned to one of these three groups, but those not in need of basic education were randomly assigned to either the control group or the LFA program group.
 ${ }^{8}$ In Columbus, people were randomly assigned to the control group, a traditional case management group (in which one caseworker verified eligibility for welfare and a second managed program participation), or an integrated case management group (in which one caseworker both verified eligibility and managed program participation).
 ${ }^{9}$ For more details on the MFIP program, see Miller et al. (1997), Chapter 1. MFIP is also the name of Minnesota's TANF program, which is a modified version of the MFIP program described here.
 ${ }^{10}$ The description of the FTP program is adapted from Bloom, Kemple, and Rogers-Dillon (1997), Chapter 1; information on implementation of the program is from Chapter 3.

[^3]: ${ }^{11}$ A person was given a 36 -month time limit if she had received welfare for at least 36 of the 60 months prior to random assignment or if she was a high school dropout under age 24 with little or no recent work history.
 ${ }^{12}$ Bloom et al. (2002).
 ${ }^{13}$ For more details on the WRP program, see Scrivener, et al. (2002).
 ${ }^{14}$ For more details on SSP, see Michalopoulos et al. (2002) and Michalopoulos, Robins, and Card (Forthcoming).

[^4]: ${ }^{15}$ Because food stamp amounts were not collected for the evaluation of SWIM, public assistance amounts for SWIM include only cash assistance payments. In MFIP, food stamps and General Assistance were included in the cash assistance welfare check for members of the program group. As a result, public assistance amounts in MFIP for both the control and program groups represent the sum of cash welfare payments, General Assistance, and the cash value of food stamps.

[^5]: ${ }^{16}$ Although it is not reported on the table, a statistical test was performed to determine whether impacts across the five program models were significantly different for each subgroup. For each of the six outcomes shown on Table 2.1, impacts were significantly different across the program models at the 1 percent significance level (or better) for each of the three subgroups.

[^6]: ${ }^{17}$ Hamilton, et al, 2001 for NEWWS; Riccio et al., 1994, for GAIN.

[^7]: ${ }^{18}$ Income for SSP and the San Diego SWIM program does not include food stamps benefits since data on food stamps were not collected for SWIM, and Canada does not have a Food Stamps Program. In addition, income in SSP includes earnings supplement payments.
 ${ }^{19}$ Impacts for earnings, cash assistance payments, and income (from earnings, cash assistance, and food stamps benefits) are shown in Appendix Table A.10, along with significance levels of impacts and differences across subgroups for each program.

[^8]: ${ }^{20}$ Statistical tests confirm what the figure apparently shows. Differences across programs within a program model were not statistically significant at the 10 percent level for the mixed-activities employment-focused programs (p -value of .243), for the mixed-activity education-focused programs (p-value of .545), or for the education-first programs (p value of .354). However, differences were statistically significant among the job-search-first programs (p-value of .056) and the earnings supplement programs (p -value of .017).
 ${ }^{21}$ A third program that fits into this category is Florida's Project Independence (PI) program, which was not used in this report because only two years of follow-up information are available. As shown in Bloom and Michalopoulos (2001), PI had much smaller effects than the Riverside GAIN and Portland JOBS programs, although the program's relative lack of effectiveness is probably due to how it was implemented.
 ${ }^{22}$ For the moderately disadvantaged, differences across programs within a program model were not statistically significant at the 10 percent level for the job-search-first programs (p -value of .178), the employment-focused mixedactivity programs (p -value of .911), or for the education-focused mixed-activity programs (p -value of .312). Differences were statistically significant among the education-first programs (p-value of .083) and the earnings supplement programs (p -value less than .001).

[^9]: ${ }^{23}$ For the least disadvantaged, differences across programs within a program model were not statistically significant at the 10 percent level for the job-search-first programs (p -value of .192), the education-first programs (p -value of .443), or the education-first programs (p -value of .666). Differences were statistically significant among the employmentfocused mixed-activity programs (p -value of .023) and the earnings supplement programs (p -value of .041).

[^10]: ${ }^{24}$ The statistical model underlying this analysis is sometimes referred to as a random effects model, which is estimated using a method described by Raudenbush (1994).
 ${ }^{25}$ The GAIN evaluation did not estimate the impact of the Butte program on participation in job search or education. Therefore, Butte is not included in the analysis described in this section. In NEWWS and GAIN, impacts for vocational training were not separated from impacts on post-secondary education. In SWIM, impacts were presented for all educational activities combined, so the impacts on education was divided equally into basic education and vocational training for purposes of this meta-analysis.

[^11]: ${ }^{26}$ Hamilton et al, 2001; Riccio et al, 1994; Bloom and Michalopoulos, 2001.
 ${ }^{27}$ Berlin, 2000; Bloom and Michalopoulos, 2001.

[^12]: ${ }^{28}$ Corcoran and Loeb (1999); Gladden and Taber (1999).
 ${ }^{29}$ Freedman (2000).
 ${ }^{30}$ An exception is SSP, where employment was measured through follow-up interviews.

[^13]: ${ }^{31}$ Impacts by program are shown in Table B. 10.
 ${ }^{32}$ The p-values of q-statistics of homogeneity were 0.156 for job-search-first programs, .105 for education-first programs, .220 for employment-focused mixed-activity programs, .848 for education-focused mixed-activity programs, and .142 for earnings supplement programs.

[^14]: ${ }^{33}$ The p-values of q-statistics of homogeneity were .753 for job-search-first programs, .291 for education-first programs, .164 for employment-focused mixed-activity programs, .371 for education-focused mixed-activity programs, and less than .001 for earnings supplement programs.
 ${ }^{34}$ The p -values of q -statistics of homogeneity were .278 for job-search-first programs, .252 for education-first programs, .246 for employment-focused mixed-activity programs, .850 for education-focused mixed-activity programs, and less than .236 for earnings supplement programs.

[^15]: ${ }^{35}$ Appendix B also contains pooled results and results for psychosocial subgroups defined using Private Opinion Surveys that were administered in 19 of the 26 programs. Differences in impacts across these subgroups were generally small.

[^16]: SOURCE: MDRC calculations from unemployment insurance (UI) earnings records, information colleted at baseline, and (for SSP) follow-up surveys with sample members.

 NOTE: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: $*=10$ percent; ${ }^{* *}=5$ percent; and ${ }^{* * *}=1$ percent. An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent; and $\dagger \dagger \dagger=1$ percent.

[^17]: NOTE: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: $*=10$ percent; ${ }^{* *}=5$ percent; and $* * *=1$ percent.

 An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent; and $\dagger \dagger \dagger=1$ percent.

[^18]: ${ }^{36}$ The p-values of q-statistics of homogeneity for the most disadvantaged were .740 for job-search-first programs, .475 for education-first programs, .526 for employment-focused mixed-activities programs, .594 for education-focused mixed-activities programs, and .less than .001 for earnings supplement programs.

[^19]: ${ }^{37}$ The p -values of q -statistics of homogeneity for the moderately disadvantaged were .309 for job-search-first programs, .777 for education-first programs, .051 for employment-focused mixed-activities programs, .276 for educationfocused mixed-activities programs, and less than .001 for earnings supplement programs.
 ${ }^{38}$ The p -values of q -statistics of homogeneity for the least disadvantaged were .938 for job-search-first programs, .627 for education-first programs, .286 for employment-focused mixed-activities programs, .781 for education-focused mixed-activities programs, and less than .001 for earnings supplement programs.

[^20]: ${ }^{39}$ Appendix C also contains pooled results and results for psychosocial subgroups defined using Private Opinion Surveys that were administered in 19 of the 26 programs. Differences in impacts across these subgroups were generally small.
 ${ }^{40}$ As described in Chapter 3, risk of depression was assessed using sample members' responses to four items from the 20 -item Center for Epidemiological Studies Depression (CES-D) Scale. Each respondent was asked how often in the prior week she felt sad, how often she felt depressed, how often she felt lonely, and how often she had trouble shaking the blues. For more details on how the subgroups were defined, see Appendix A of Michalopoulos and Schwarz (2000).

[^21]: NOTES: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: $*=10$ percent; ${ }^{* *}=5$ percent; and $* * *=1$ percent.

 An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent; and $\dagger \dagger \dagger=1$ percent.

[^22]: ${ }^{\text {a }}$ Sample members in the "yes" category on this measure could have had a health or emotional problem themselves at random assignment or one of their family members could have had such a problem.

[^23]: SOURCE: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, and Baseline Information Forms.
 NOTE: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: $*=10$ percent; $* *=5$ percent; and $* * *=1$ percent.

 An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent; and $\dagger \dagger \dagger=1$ percent.
 $\mathrm{n} / \mathrm{a}=$ not applicable because sample sizes were too small to reliably calculate impacts.
 Individuals were classified based on earnings reported to state UI systems in the four quarters prior to random assignment.

[^24]: SOURCE: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, and Baseline Information Forms.
 NOTE: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: $*=10$ percent; $* *=5$ percent; and $* * *=1$ percent.

 An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent; and $\dagger \dagger$ † $=1$ percent.
 $\mathrm{n} / \mathrm{a}=$ not applicable because sample sizes were too small to reliably calculate impacts.

[^25]: SOURCE: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, and Baseline Information Forms.
 NOTE: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: $*=10$ percent; $* *=5$ percent; and $* * *=1$ percent. An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent; and $\dagger \dagger$ † $=1$ percent.
 $\mathrm{n} / \mathrm{a}=$ not applicable because sample sizes were too small to reliably calculate impacts.

[^26]: SOURCE: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, and Baseline Information Forms.
 NOTE: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are
 An F-test was applied to differences among subgroups for each characteristic. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent; and $\dagger \dagger \dagger=1$ percent.
 $\mathrm{n} / \mathrm{a}=$ not applicable because sample sizes were too small to reliably calculate impacts.
 Sample members were classified as new applicants if they responded on the BIF that they had never received welfare in the past. Sample members were classified as short term recipients if they had received welfare before on their own case or their spouses' case but had received it for a total of less than two years. They were classified as long term recipients if they had received welfare for two years or more prior to random

[^27]: SOURCE: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, and Baseline Information Forms.
 NOTE: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: $*=$ 10 percent; $* *=5$ percent; and $* * *=1$ percent.

 An F-test was applied to differences among subgroups. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent; and $\dagger \dagger \dagger=1$ percent. $\mathrm{n} / \mathrm{a}=$ not applicable because sample sizes were too small to reliably calculate impacts.

[^28]: SOURCE: MDRC calculations from unemployment insurance (UI) earnings records, AFDC records, and Baseline Information Forms.
 NOTE: A two-tailed t-test was applied to differences between outcomes for the program and control groups. Statistical significance levels are indicated as: $*=$ 10 percent; ${ }^{* *}=5$ percent; and $* * *=1$ percent.

 An F-test was applied to differences among subgroups. Statistical significance levels are indicated as $\dagger=10$ percent; $\dagger \dagger=5$ percent; and $\dagger \dagger \dagger=1$ percent. $\mathrm{n} / \mathrm{a}=$ not applicable because sample sizes were too small to reliably calculate impacts.

 Sample members were classified as new applicants if they responded on the BIF that they had never received welfare in the past. Sample members were classified as short term recipients if they had received welfare before on their own case or their spouses' case but had received it for a total of less than two years. They were classified as long term recipients if they had received welfare for two years or more prior to random assignment.

