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Multiscale simulations of ion channel 
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A hybrid calculation combining techniques of computational chemistry and 
computational electronics to understanding permeation in a protein ion 
channel—A joint project of the Computational Biology Group, UIUC/NCSA 
and the Computational Electronics Group, UIUC/Beckman Institute 
Visualizations below illustrate molecular dynamics to calculate ion mobilities, 
electrostatics to calculate ionization state of titratable groups, drift-diffusion to 
calculate permeant ion distributions, and resultant current-voltage curves.



Science mini-story 
Water structure in Carbon nanotubes

Jay Mashl and Sony Joseph



System Setup
Carbon nanotube (fixed)

8 sizes of nanotubes ranging 5.4 - 16.3 Å dia.,
armchair (5,5) - (12,12).
Length ~40 Å.

Bilayer mimetic (hcp CH2's, fixed)

SPC/E water (T = 300 K)

Electrostatics: PME
Nose-Hoover coupling 

Pressure piston (Pz = 1 bar)

2qH = -qO = 0.8476 e 

Runs of ~2 ns each using GROMACS
( See www. gromacs.org)

• Simulations done on NCSA IA32 and IA64 
Linux superclusters



Relative Diffusion coefficients
Water in Nanotube vs. bulk(=1)
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Snapshots of Water Configurations

(6,6) (12,12)(9,9)

Critical size for order Bulk water properties 
not yet achieved 

T = 300 K (water), fixed tube & slab

2-D hydrogen bonding1-D hydrogen 
bonding

Single file



Snapshot from end of “critical-diameter” nanotube of 
water structure, showing configuration similar to hex ice 

at 300K, (basis of snowflake symmetry) (Snowflake 
pictures by Susan Rasmussen)

http://www.its.caltech.edu/~atomic/snowcrystals/photos/pp01.htm
http://www.its.caltech.edu/~atomic/snowcrystals/photos/pp03.htm
http://www.its.caltech.edu/~atomic/snowcrystals/photos/pp04.htm
http://www.its.caltech.edu/~atomic/snowcrystals/photos/pp06.htm


Take home lessons and questions

• Confinement can change fluid structure 
dramatically

• Near phase boundaries, subtle changes in 
simulation parameters can have dramatic 
effects.

• Could confinement-induced phase change 
be used as a switching mechanism in nano-
scale semiconductors?



Take home lessons

• Understanding ion channel (and all 
macromolecular) function is a multi-scale 
problem.

• Physical chemists, nanoscientists, 
molecular biophysicists, and materials 
scientists are all working on the same 
problem.



The Computational Nanoscience 
Challenge

Develop a computer-aided design system for 
nanodevices; be able to design molecules to 
functional specifications.
(An eminent protein simulation expert, when 
presented with this challenge at a recent 
meeting, said, “That’s not science, that’s 
engineering!”)



Take Home Lessons and 
Questions 

• It is computationally feasible to do a self-
consistent solution for the protonation states of 
electrostatically interacting titratable residues.

• For accurate calculations, it is NECESSARY to do 
a self-consistent solution for the protonation states 
of electrostatically interacting titratable residues.

• How much of the oft-remarked-on deficiencies in 
atom-scale force fields is due to a failure to assign 
the correct protonation states to titratable sites? 



Now wearing the NIH hat (but speaking only for myself) and 
asking: What are the high-performance computing challenges 
in molecular physical science that could have big payoff for 

the NIH mission?
• Immediately: Being able to do accurate in silico screening of lead 

compounds for drugs.
• Immediately: Being able to do high quality homology modeling of 

proteins.
• Intermediate term: Being able to do accurate computer-aided design 

of nanodevices.
• Intermediate term: Being able to do reliable computer-aided design 

of biomaterials.
• Longer term (At least 5 years or so): Accurate dynamical modeling 

of cells.  (The limitation is having the data to put in to the models, 
but that is being resolved by high-throughput experiments and 
getting enough complete genomes sequenced that comparative 
genomics analysis will be effective in characterizing reaction 
networks.) 



Science Story #2
Protonation states of electrostatically 

interacting titratable residues
Sameer Varma and See-Wing Chiu



Protonation states

• Problem: Titratable states interact with each other, 
thus need a self-consistent solution of Poisson-
Boltzmann equation.

• Solution: Link iterated solutions together until 
convergence is achieved.

• Test Case: OmpF
• Result: Protonation states computed in this fashion 

retain crystal structure, other choices do not.
• Publication:  Varma and Jakobsson, Biophysical 

Journal 2004 (for electrostatics) and in preparation 
(for molecular dynamics.)



OmpF trimer – Outer Membrane Porin F

Cytoplasmic Side

View from the 
Periplasmic sidePeriplasmic Side



• Monomer - 340 residues long

• Loop 3 (shown in yellow) folds 
inside the barrel and narrows 
the pore giving it an hourglass-
like appearance

• Loop 2 (shown in orange) 
connect one monomer to its 
neighbor



Like the ones shown, there are 
over 50 titratable residues facing 
the permeation pathway of the 
channel

Residues involved in a 
H-bond network that 
tethers the loop to the 

β-barrel
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The x-ray structure is drawn in orange and the average structure of the last 
2ns trajectory is drawn in green. The structures were aligned using a PSV 
algorithm.



A large reduction in the Cross-Sectional SASA 

A result of 
movement of 
Loop 3 into the 
permeation 
pathway

Taken From: Im & Roux, JMB 2002

X-ray structure 
Area = 27 A2

Monomer 2 
Area = 19 A2

Variations in Cross-Sectional SASA 
A result of side chain 

fluctuations

Monomer 1 
Area = 32 A2



Effect of assigning a protonation state to D127 on the distribution of Ions

Deprotonating D127 
increases the density 
of K+ ions in the 
channel

A 5ns snapshot of monomer 
M1 of OmpF simulated with 
with deprotonated D127. 



Final take-home question: Should 
all of these be attacked under the 
aegis of an Integrated Molecular 

Science Initiative, that would 
embrace nanoscience, 
biomolecular physics, 

biomaterials, and computational 
stat. mech?
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