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Abstract

ABSTRACT

This report develops a method that uses a quality-adjusted cost index to estimate expected
returns to investments in new technologies. The index method addresses the problem of
measuring social benefits from innovations in inputs in the service sector, where real output is
not directly observable. The study forecasts consumer benefit gains from two innovations in
digital data storage that were funded in part by the Advanced Technology Program (ATP):
one innovation pioneers the use of optical tape, and the other replaces helical with linear
scanning of magnetic tape. The estimated consumer benefit gain for the optical tape
technology exceeds $1 billion, and for the linear scanning technology, $2 billion, taken over a
five year period, when compared to the existing trend in current technologies. The model’s
probabilistic parameters reflect uncertainty about prospective outcomes and also in the
hedonic estimates of shadow values for selected product attributes. While applied here to new
technologies funded by ATP, the cost index method can be adopted readily by other R&D
managers in industry and government to estimate the benefits of technological advances.

Key Words: quality-adjusted cost index, consumer surplus, innovation
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Executive Summary

EXECUTIVE SUMMARY

A Model for Estimating Consumer Benefit Gains

Measuring or forecasting consumer benefits is an important part of any R&D program. In
many cases, however, and particularly with high technology, the innovations are intermediate
inputs in the provision of services. Final consumer demand for services, and thus derived
demand for the innovation, depends on service quality, which is not readily observable and is
difficult to measure quantitatively. This complicates efforts to estimate consumer benefits,
that is, “consumer welfare gains”, from the innovation.

Bresnahan (1986) solves this problem by developing a cost-of-living index that, under
certain general assumptions, eliminates unobservable quantities from the welfare expression.
The index compares observed price and performance for an innovated product against
hypothetical, best-available price and performance had the technical advance not occurred.
Since prices of other goods and services in consumers’ choice sets cancel out, the index is a
function only of observed and hypothetical technology product prices (adjusted for quality
differences), and expenditures as a share of total personal consumption expenditures.

Our approach extends Bresnahan’s methodology in two directions to make it useable for
the important case of evaluating the R&D investment decision. Bresnahan retrospectively
estimates consumer welfare gains from innovation. Our first extension is to adapt the cost
index to a prospective setting. This permits the evaluation of expected consumer welfare gains
from proposed R&D projects.! We allow for the gradual diffusion of the new technology, and
we express the model’s parameters as probability density functions to reflect uncertainties
over future or estimated parameter values. A second extension is to use a hedonic analysis to
adjust for consumers’ preferences for differentiated product characteristics, which provide
benefits that may not be fully reflected in product prices.

The result is a theoretically grounded economic model of future consumer demand for a
product, embedded within a cost-index simulation model with quality-adjusted prices and
dynamically changing product characteristics. The model produces empirical probability
density estimates of consumers’ welfare gains from the introduction of a new technology, and
thus provides a rigorous, transparent approach to forecasting future benefits. The cost-index
model can be used to assemble R&D portfolios from a selection of disparate, competing
projects. Thus it has potential utility to both allocation of private-sector R&D resources and
government R&D investment, as well as for evaluation per se.

I This kind of analysis would satisfy the requirements of the 1993 Government Performance and Results Act for
federal government programs.
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Executive Summary

Applying the Model to Two ATP-Funded Projects

We illustrate the model by estimating expected consumer welfare gains from a pair of
private-sector innovations in digital data storage (DDS) that have received public support in
the form of R&D grants from the federal Advanced Technology Program (ATP). These new
technologies are expected to offer faster writing and retrieval of digital data, and one would
offer a large increase in storage capacity as well. One innovation would pioneer the use of

optical tape, and the other would replace helical with linear scanning of magnetic tape.* Both
technologies promise superior price/performance characteristics compared to existing tape
drives. We estimate how much better off consumers will be with the innovations, relative to

the new technologies not being introduced.?

We parameterize our model with information on expected new product characteristics, as
provided by the innovators and others familiar with these technologies. The information
includes expectations about likely ranges of price, performance, and rate of adoption. We
estimate consumer shadow values for different product characteristics using recent data on
prices and attributes (e.g., file access times) of digital tape data-storage devices. Given our
data sources, we adopt conservative parameter assumptions with respect to price and
performance of the innovations, their rates of adoption, and the size of the market. We also
provide qualitative conclusions based on our model’s 5™ -percentile forecasts. We are
conservative to balance out any tendency for the innovators to be overly optimistic.

The cost index is defined relative to an aggressive baseline scenario where we assume that
best available performance, though in most dimensions lagging that of the would-be
innovations, improves at the same rate as the new technologies after their introduction. We
adjust nominal prices for anticipated quality differences in three key performance attributes of
data storage devices: capacity, data transfer rate, and file access time. The adjustments reflect
our estimates of consumer valuations for these attributes, based on hedonic analysis of the
retail prices of recent tape data-storage products. The index indicates the relative amount
consumers would be willing to pay for the innovations in a counterfactual, no-ATP-
investment world. Applied to total expenditures on DDS devices, the index estimates
consumer welfare gains—net of purchase price but gross of the R&D subsidy—from the
introduction of the new tape drives.

Results of Estimation
Our analysis shows that these first generation technologies, if successfully introduced,

should generate over five years consumer welfare gains of approximately $2.2 billion (linear
scanning) and $1.5 billion (optical tape), relative to the best existing technologies, even

* See Appendix for project profiles.

2A long-standing rationale for public subsidies to support private research and development depends on the
expectations that private returns from the innovation will be difficult to appropriate and that consumer benefits
will be sufficiently large.

Estimating Future Consumer Benefit from ATP-Funded Innovations / 2



Executive Summary

assuming the existing technologies improve at faster than historical rates. These estimates are
medians of probability distributions; the corresponding 5t -percentile estimates are $1.3B and
$1.1B. On a per-unit basis, these values represent in excess of $2,400 in surplus value for each
linear scanning device sold, and more than $20,800 per optical tape unit. With expected unit
prices of $10,000 and $40,000, respectively, per-unit welfare gains would be considerable.3

The model’s estimates are surprisingly precise considering its many degrees of freedom
and the dynamically increasing uncertainties of its parameters. Sensitivity analyses, in which
we shift parameter locations, further demonstrate the robustness of the basic conclusions.
Where greater precision is desirable, model simulations can reveal the most important sources
of uncertainty in the final benefit estimates, suggesting where additional research on the true
values of individual parameters might be most cost-effective.

3 Two caveats in applying this approach to ATP investments are that (1) our findings are not an assessment of
the ATP’s entire portfolio of DDS investments, as several projects failed; and (2) we do not estimate future
consumer benefits that may arise from knowledge spillovers to other innovators.
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1. A Cost-Index Approach to Measuring Consumer Benefits

I. A COST INDEX APPROACH TO MEASURING CONSUMER BENEFITS

Bresnahan (1986) shows that a Tornqvist cost index (Caves, et al. (1982)), can be used to
measure consumer benefits, or “consumer surplus”, from innovation. Measuring the gain is
straightforward if the demand curve can be econometrically estimated; however, this is
difficult to do in service sectors, where real output is not readily observed (yet where much of
the demand for high technology is located).# These considerations make the cost index
approach attractive, because it does not require estimating a demand curve. To paraphrase
Bresnahan, the method substitutes economic theory for (unobservable) data.

The validity of the cost index estimates depends on the assumption that the downstream
(technology-buying) market is competitive. Demand for DDS arises largely from firms using
it as an input to the production of services that require the storage of large amounts of data
(e.g., the insurance, banking, and retail sectors; increasingly, local-area-networks at business
facilities across the economic spectrum also rely on tape-based DDS for redundant storage). If
these downstream markets are competitive, derived demand for DDS accurately reflects
consumer demand, and the cost index will correctly estimate the welfare gain.> If there is
downstream market power, the cost index will give a lower bound estimate of consumer gain.
Therefore, while we do not believe downstream market power is a significant issue in our
analysis, omitting consideration of it is in fact consistent with a conservative estimate of
consumer benefit gains.

Figure 1 illustrates the expected gain in consumer surplus from an outward shift in the
supply curve (e.g., due to innovation). Period 0 supply S,”" is the pre-innovation baseline,
where only a defender technology DT is available. The ATP-sponsored innovation occurs at
period 1, shifting the supply curve out to S;"’” (see graph on right) due to a combination of
cost reductions and quality improvements. Continuous improvement in the defender
technology means the baseline supply curve has shifted out to S,””. The shaded area
represents the consumer welfare gain at a point in time, due to the innovation. It is measured

with respect to the hypothetical, future S;”" curve rather than the observed S, . As long as

S lies to the right of S", the innovation offers an improvement over the defender

technology. In this case the cost index is greater than unity, meaning costs are higher under
the baseline scenario and consumers will be better off (gross of R&D costs) if the innovation
occurs.

4 Government statistics treat inputs to production as proxies for real outputs in these sectors. Bresnahan (1986)
and Griliches (1979) both point out that it is in service sectors that the benefits from technological advances (e.g.
in computers and related equipment) tend to accrue.

5 Following Bresnahan, no assumptions are needed concerning the structure of the DDS-producing market. If
there is market power—or if the DDS innovations create market power—the gain in consumer welfare will be
less than if the upstream market is competitive. In either case, the cost index provide a correct measure of
consumer gains.
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1. A Cost-Index Approach to Measuring Consumer Benefits
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11. Model

II. MODEL

As Bresnahan points out, assuming the DDS-using markets are competitive allows us to
treat the cost index as an index of consumers’ cost of living and of producing DDS-using
services.® The index is an estimate of the change in the cost of living (and of producing those
services) under the innovation scenario, relative to the baseline. In our application, the index is
a function of consumer demand for DDS over time, the market’s rate of adoption of the
innovation, and consumer preferences for improvements in DDS performance. Adjustments to
the off-the-shelf prices of the devices reflect these preferences.

Quality Adjustments

These adjustments to nominal unit prices reflect consumer tastes for faster data transfer
rates, larger capacities, and faster file access times. We adjust prices in the following manner.
Let dim,(y) represent technology y’s performance on product dimension x, ye&{defender
technology (DT), Innovation (1)}, and Adim, represent the absolute value of the difference in
performance between innovation and defender, i.e.,

Adim, = |dim, (/) - dim,(DT)

3

where xe&{Capacity (CAP), Transfer Rate (TR), File Access Time (FAT)}. We estimate
shadow values £, in a hedonic regression,” and then add (3, -(Adim)) to the price of the
technology that is inferior in dimension x. We assume that consumers prefer higher capacities

and transfer rates and lower file access times. With W? standing for the quality-adjusted price
of technology vy, p its expected, off-the-shelf (nominal) price, and bracketed terms being

indicator variables, our quality adjustments to price of defender DT and the innovation / are:8

6 Competition in these markets leads to a level of services production—and demand for DDS—that is the same
as if consumers were producing those services themselves, since without market power, production is at
consumers’ optimal level.

7 See appendix for a description of the hedonic data and analysis.

8 See, for instance, Berndt, et al. (1995). A discussion of quality-adjustment methods employed by the Bureau of
Labor Statistics in their construction of the consumer price index (CPI) can be found in Moulton & Moses, 1997.
See in particular p. 332 under “direct quality adjustment,” where the method we employ here is described.

Estimating Future Consumer Benefit from ATP-Funded Innovations / 7



1. A Cost-Index Approach to Measuring Consumer Benefits

W' =p"" + B.,,(ACAP)-[ACAP > 0]+ B,,(ATR) -[ATR > 0] - f3,.,, (AFAT) - [AFAT < 0]

W' =p' + B.,, (ACAP)-[ACAP < 0]+ f3,,(ATR)-[ATR < 0] - B,.,, (AFAT) - [AFAT > 0].

We assume shadow values decline over time,? reflecting consumers’ declining marginal
utilities: an extra gigabyte of storage capacity is more valuable to consumers the greater a
fraction of their total capacity it represents. Therefore the value of a given increase in capacity
(or other attribute) will decline over time if performance improves over time.

In our application, it is almost always the defender technologies whose prices we adjust.
Their (usually) lower capacities and transfer rates, and longer file access times, impose real
user costs relative to the innovations. The price adjustments equal consumers’ willingness to
pay to achieve the superior performance of the innovations relative to the given baseline.

Cost Index Formula

We construct a Térnqvist cost index to measure the change in the cost of services due to
DDS innovations. The index is the geometric mean of a Laspeyres index—measuring
consumer willingness to accept compensation to give up the gains from the innovation—and a
Paasche index, measuring their willingness to pay to receive the gains from innovation. Both
are measured relative to the baseline, and neither is theoretically superior to the other. The
Toérnqvist index is an equally-weighted geometric average of the two.10

Following Caves et al. (1982), we assume digital data storage devices are separable from
other consumption in the consumer’s utility function,!! so that the quality-adjusted prices W
in consumers’ expenditure functions can be distinguished from the general prices P of other
goods and services. C*"" in Equation (1) is then the cost of achieving utility "7, which is
optimal in the baseline scenario, relative to the cost of u”’ given the ATP innovation, where

WP" and W are baseline prices and post-innovation prices for DDS services. Similarly, C"is

9 Time subscripts have been suppressed in this expression.

10 See Varian (1992) for details. As is well known from the theory of index numbers, no single index satisfies
all “desirable” properties or tests (e.g., tests related to scalability, transitivity, symmetry, proportionality). The
Tornqvist index satisfies many of the tests (see Diewert and Nakamura,1993).

11 Marginal rates of substitution for other consumption goods are unchanged at different levels of DDS
consumption.

Estimating Future Consumer Benefit from ATP-Funded Innovations / 8



the cost of achieving optimal utility «’ under the innovation scenario, relative to cost of ' in
the baseline case:

* DT DT DT * 1 DT DT
e SEW P W) o JE WP W) o
E (u™,P,W") E (u,P,W")

Because we assume an innovation is adopted gradually, the quality-adjusted DDS prices faced
by post-innovation consumers is not #”, the price of the new technology. Instead, on average
the post-innovation price for DDS is W'=pW'+(1-p)W"’, where p is the adoption rate of the
innovation.12 Prices P of other commodities can change over time, but we assume that they
are unaffected by innovation in DDS, so P”"=P" at all times.

Figure 2 depicts the relationship between expenditure function E, utility u, and the two
cost indexes C°" and C” . A welfare-enhancing innovation lowers consumers’ costs of
achieving a given level of utility, shifting the expenditure function downward from E*(u, ")
to E*(u,W"). The vertical distance between the two curves depends on DDS’s share of total
consumption expenditures; their ratio is given by the curve C* Given a welfare-enhancing
innovation 7, the consumer’s optimal utility rises to u*>u*"". With separable utility and other
prices unaffected, increased utility implies greater consumption of, in our application, DDS.
That, in turn, means that the relative cost to achieve u* with higher baseline prices
versus reduced, post-innovation prices W exceeds the relative cost to achieve u*°’. This
means that here the Paasche willingness-to-pay index C* exceeds the Laspeyres willingness-
to-accept measure C*’, which fixes DDS consumption at a lower level.

12 we suppress time subscripts in this formulation. Here our approach departs from Bresnahan (1986), where
the innovation’s market share is 100% (general-purpose computers comprising a new product category).

Estimating Future Consumer Benefit from ATP-Funded Innovations / 9



1. A Cost-Index Approach to Measuring Consumer Benefits

Figure 2. Relationship Between Expenditure Function and Cost Index 13
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We assume, following Caves, et al. (1982) that the consumer expenditure function £ " can
be represented by a translog functional form. Thus, the Térnqvist index reduces to!4:

% ln(C *DT 0l ) — (% R E 111( VVVVZ[ )] ) 2)

The terms s”” and s’ give, respectively, DDS expenditures as a share of personal consumption
expenditures (PCE) under the baseline and innovation scenarios.!> We forecast values for the

13 10 simplify figure labeling, prices P have been omitted from the expenditure functions.

14 See Caves, er al. (1982) for derivation. The translog, a flexible functional form, approximates well many
production and expenditure functions.

15 Gee appendix for description of the expenditure-share parameter. PCE data are from “Personal Income and
Outlays,” Bureau of Economic Analysis. We assume the additional DDS expenditures in the innovation scenario
do not affect PCE (as DDS is a tiny fraction of PCE, there would be very little displaced consumption).
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cost index, Equation (2), for the years 2000 to 2005, predicting PCE and DDS expenditures
on the basis of past data, and making assumptions about the rate at which DDS prices will
change over time. The monetary value to consumers of the innovation is just the product of
their predicted PCE times the exponent of the cost index.1¢ This corresponds to the area of the
shaded rectangle in Figure 1.

Unlike the familiar Consumer Price Index which compares prices over time, Equation (2)
compares prices in a single period—expected, future prices given the innovation versus
hypothetical, future prices assuming no innovation. Because prices and expenditure shares of
non-DDS consumption, and prices of other inputs in the adopting sectors, are assumed to be
unchanged by innovation in DDS, separability of the consumer utility function assures that
these parameters cancel out in Equation (2).

Changes in relative DDS prices will affect the mix of inputs used in production. However,
no assumptions about input substitutions are necessary because the translog function places
no restrictions on the elasticities of technical substitution between inputs.!7 The translog
function also does not restrict the income and price elasticities of demand for DDS-using
services. DDS innovation may affect equilibrium prices for these services, implying
movement along their respective demand curves. The translog expenditure function also
permits arbitrary shifts in these demand curves—say due to innovation in complements to
these services. As long as consumers’ elasticities of substitution among all goods and services
are unaffected by DDS innovation—and this is an implication of the separable utility
assumption—the translog function can accommodate taste-driven changes in demand for
DDS, as for computer technologies generally.!8 This assumption on consumers’ elasticities
of substitution is a restriction on changes in consumers’ tastes for DDS-using services relative
to other consumption. Because our forecasting window is relatively short, this is not an overly
restrictive assumption.

16 Equation (2) is actually the percentage change in consumer surplus from DDS innovation, which takes values near
zero because DDS is a very small portion of the cost of living. To calculate the cost index in absolute terms, Equation
(2) must be exponentiated. Note that an information-processing equipment cost index can also be calculated, using
DDS expenditures as a share of information processing and related equipment expenditures (National Income
Product Account tables, U.S. Bureau of Economic Analysis).

17 We have introduced expenditure functions with respect to consumers. Here it is appropriate to discuss the
production of information services, because our assumption of a competitive market structure implies that
producer profit maximization and consumer expenditure minimization are equivalent.

18 These features of translog functions are noted in Bresnahan (1986), p. 751.

Estimating Future Consumer Benefit from ATP-Funded Innovations / 11



IIl. Data and Estimation

I1II. DATA AND ESTIMATION

The cost index is a function of estimated total DDS expenditures as a share of total
personal consumption expenditures (PCE); off-the-shelf DDS prices; differences in the
technical attributes of the defender technologies and the innovations; marginal consumer
valuations of those differences; quality-adjusted prices reflecting those valuations; and market
rate of adoption of the innovation. The index also incorporates expectations about the values of
all of these parameters over the relevant time horizon.

The cost index itself is simply the ratio of quality-adjusted DDS prices, scaled by the
average share of PCE devoted to DDS in the baseline and innovation scenarios. The price
ratio indicates relative “real” prices of the competing technologies, while the expenditure
shares adjust for levels of demand. A superior new DDS technology might generate a large
quality-adjusted price ratio, but since DDS expenditures are small relative to PCE,
consumers’ cost of living will not be much affected. Benefits per unit of DDS, however, will
be large.

The index is calculated in a simulation model containing eighteen parameters, all but two
of which are drawn from estimated probability distributions. We directly observe current
prices and performance of the defender technologies, but still must forecast their initial values
because the innovations, as of late 1999, had not yet been introduced.!® The model’s price
and performance forecasts for the new products reflect the innovators’ targets, both at
introduction and two to five years ahead. We assume these reflect some “pioneer project
bias”—a tendency for innovators to be overoptimistic about their projects.20 We make
allowances for this by putting extra weight on the “disappointing” outcomes. These specific
parameters are expected growth in market size, adoption rates, prices, and performance of the
innovations.

Lognormal density functions have long upper tails and might be used to model this pioneer
bias. But since we have only one or two point estimates per product—from interviews with
innovators—there is no empirical basis for choosing one family of curves over another. We
therefore use triangular functions to model the asymmetrical distributions: they are easy to use
because their tails can be read directly from the specifications of the curves.

In contrast to this conservative treatment of the innovations, we use symmetric functions to
model parameter distributions for the existing products. We make our forecasts of these
parameters on the basis of recent trends in leading DDS devices. We assume, conservatively,

19 The model’s initial period is linked to the introduction of a new product.

20 gee Quirk and Terasawa (1986). A more careful approach to assessing a pioneer-project bias might be based
on how well the innovators satisfied their price/performance targets on earlier products. Such data are not readily
available.
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that prices of the existing products will decline—and their performances improve—at the same
rate as for the innovations.2!

The only parameters for which we have distributional data are the consumer shadow
values. We estimate the shadow values by hedonic regression analysis of recent retail prices
and performance characteristics. These regressions also produce estimated standard errors,
which we use to construct the initial-period probability distributions for the shadow values. For
the other parameters, we must use ad hoc rules of thumb for the uncertainties. In each period
we assume standard deviations ranging from 5% to 30% of the means, or modes in the case of
the triangular distributions. We assume less uncertainty for the existing-product parameters
than for innovations, even in the later years. We use 30% standard deviations for the upper tails
of the asymmetric distributions of the innovations.

The randomness in the model’s parameters derive from three primary sources: variability in
manufacturing and market conditions; imperfectly observed data; and, most significantly,
uncertainty about future outcomes. As with all of the model’s parameters, we assume
uncertainty increases over time. While the use of some arbitrary assumptions is unavoidable
given the data, the resulting model is very transparent, and alternative assumptions can be
explored. Sensitivity tests reveal the extent to which it is necessary to consider alternatives, and
allow us to bound the expected benefits in a meaningful way.22

Because price and performance are functionally equivalent here, we can model the effect
of innovation on consumer welfare either by fixing prices and continually improving the
performance parameters, or by holding performance constant and modeling prices as
continually declining. In our model, it is easier to change one price than it is to manipulate
three performance parameters, so we hold performance fixed and model technological change
by having prices decline over time. To the extent the actual rate of innovation outpaces the
rate of price decline in our model, our forecasts of consumer welfare gains will be
conservative.

In the appendix, we report specific details about our data sources and parameter
assumptions.

21 These are conservative assumptions because it is likely that easy economies (learning by doing, product
performance improvement) are exploited earliest in a product’s life, and that for the existing technologies many
of these probably have already been achieved.

22 1 addition to making conservative forecasts, our analysis ignores benefits from second-generation products,
and any benefits accruing to the innovator or to other manufacturers via knowledge spillovers. Potential to create
knowledge spillovers is one of ATP’s key selection criteria.
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IV. RESULTS

We calculate an index to compare costs at a single point in time, with and without the
DDS innovations. Since DDS expenditures comprise a tiny fraction of total consumption
expenditures, the value of the index is only slightly greater than one. On a per-unit basis,
however, both of the innovations are predicted to generate significant consumer benefits.23
The performance specifications for the new technologies are clearly superior to those of
existing products, and their target prices are similar, so welfare gains are expected. The
purpose of this analysis is to estimate their magnitude, and to see how uncertainties about
parameters propagate through the model to affect the benefit estimate.

In present-value terms, we find that the median estimate for consumer welfare gains over
five years is $2.2 billion for the linear scanning technology, and $1.5 billion for optical tape,
discounting at a 5% annual rate. Compared to current DDS trends, the innovations would
create approximately $2,400 in additional consumer welfare per linear scanning device sold—
about 23% of the expected unit price—and $20,800 per optical tape device—about 50% of the
unit price.24 These relative gains reflect marked downward trends in consumer shadow values
and steadily declining prices for a/l DDS devices.

Initial per-unit gains should be higher still, but initial total welfare gains will be lower due
to minimal early market penetration. By the 5t year, we assume rates of adoption for linear
scanning and optical tape devices will reach 40% and 30% of new medium- and high-capacity
unit sales, respectively. Knowledge spillovers and follow-on improvements are not estimated
here. If knowledge spillovers occur, our benefit estimates may be low. If, on the other hand,
disk drive arrays continue to make inroads into traditional tape storage markets, actual
benefits will be lower than expected. The statistical variation in our estimates implicitly
allows for these possibilities, provided our assumptions about market shares and price
changes (or equivalently, technological improvements) are accurate.

Table 1, and Figures 3 and 4, report our basic set of benefits estimates. As our sensitivity
analysis will show, these results are robust to large changes in assumptions. Even with
generous allowances for uncertainty and biases in our data, 5t -percentile estimate of benefits
are driven to zero only by large changes in specific parameter assumptions.

23 Our estimates are gross of R&D costs; benefits are likely to dominate those costs, however. Note that our
estimates also depend on the assumption that the prices of other goods and services in consumers’ market basket
are unaffected by DDS innovation. This seems innocuous because digital data storage comprises a very small
part of the economy.

24 The mean model forecast for unit sales in (2004, Q4) is approximately 133,790 linear scanning devices, and
10,670 optical tape units. Innovators of the linear-scanning technology report cost and price expectations; based
on this, their producer surplus in the 5"-year would be approximately 30% of expected price.
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Table 1: DDS Innovations, Net Present Value of Consumer Welfare Gains

Over Five Years (3 billions, 2000)

LINEAR OPTICAL
Percentile SCANNING TAPE
5™ 1.25 1.05
25™ 1.79 1.30
Median 2.16 1.45
75™ 2.53 1.62
95™ 3.17 1.88

Figures 3 and 4 show how gains are expected to accumulate over time. The shapes of
these curves are determined principally by our assumptions about rates of adoption, growth in
demand for DDS devices, and changes in price. Our five-year forecasting window is a
compromise between forecasting into the indefinite future—which is to assume the ATP has
pushed DDS technology permanently to a higher level—and making no forecast at all, which
would be to assume the innovations would have been achieved anyway with no change in

timing.

Figure 3. Consumer Benefit Given Successful Introduction:
Linear Scanning Innovation vs. Defending Products
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Figure 4. Consumer Benefit Given Successful Introduction:
Optical Tape Innovation vs. Defending Products
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Sensitivity Analysis

We perform three types of sensitivity analysis. First, we ask how sensitive our results are
to parameters whose values are informed by the innovators. We shift by +/-50% our
assumptions about performance, rates of adoption, and price, while making proportional
changes in the uncertainty parameters. Second, we consider the effects of parameters that
affect both defender and innovation. Here, we focus on shadow values and market size. It is
important to test shadow value sensitivities, because in the model we are applying estimates
of marginal valuations to large changes in quality. Finally, aside from parameters that affect
the level of benefits, we also identify the drivers of uncertainty in the forecasts. We ask which
parameter uncertainties are most highly correlated with variation in benefits.

As we show in the appendix, benefits estimates are relatively insensitive to the
performance parameters; price and rate of adoption are more influential, particularly the latter.
The elasticity of benefits with respect to adoption rate is slightly greater than one. Raising the
price of the innovation, and lowering the rate of adoption and the rate of change in price, by
50% reduces forecasted benefits by fully 80%. However, such large changes are well outside
the expected range for these parameters, especially for the two price parameters. In particular,
innovation prices should drop faster, not more slowly, than the defender prices.
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The market and consumer valuation parameters affect both innovation and defender alike.
We find that the shadow values are not very influential, in part because innovation price
uncertainty swamps the effects of changes in these parameters. This is also why benefits are
not very sensitive to the performance parameters. For the current model configuration, then,
applying marginal shadow valuations to large changes in performance does not pose
problems. The key market parameter is market size. The elasticity of benefits is roughly unity
with respect to this parameter, since it factors out of the cost index and acts as a scaling factor.
The market growth parameter contributes much less to benefits; if both the market size and
market growth assumptions were lowered by 50%, forecasted innovation benefits to
consumers would decrease by 54%.

Uncertainty in the two market parameters is most highly correlated with uncertainty in the
benefits forecast. Thus, the most efficient way to reduce uncertainty in the forecast is to
acquire more precise data on market size and past growth rates. Obviously, though, market
growth forecasts resulting from the new data may prove no more accurate than what is already
in the model.

In summary, in our model, market size for DDS tape technology and the adoption rate for
the innovations are the most important factors for estimated consumer benefits.25 Lowering
both parameters simultaneously by 50% reduces estimated benefits by 75%. To drive 5t
percentile benefits to zero, parameters affecting the relative benefits of the innovations must
be changed. For instance, shadow values must be reduced 85-90%, or innovation prices must
be fixed at introductory levels while defender prices drop as originally assumed (linear-
scanning), or twice as fast as assumed (optical tape).

Details of our sensitivity analysis can be found in the Appendix.

25 of course, these market parameters are partially endogenous to the performance characteristics of the
innovations, though we do not model that process. Recall that neither of the market parameters affects the sign of
the benefits estimates, which are driven solely by the relative performances and prices of the innovations.
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V. CONCLUSIONS

Our analysis has shown that consumer welfare gains from ATP investments in digital data
storage are likely to be substantial. The median estimate for expected benefits of innovation,
given successful completion of these projects, is equivalent to approximately 23% of the
target price of the linear scanning device, and 50% of the price for the optical tape drive. We
compare the anticipated innovations to a hypothesized scenario that assumes current
technological trajectories continue as before. The estimated welfare gains are relative to
consumer surplus already produced by the baseline tape-drive technologies; with the
innovations, total consumer surplus, which we do not estimate, would be the sum of existing
and incremental benefits. If the new technologies achieve expected sales, the median estimate
of total consumer welfare gains from these innovations would be several billion dollars each.

A full assessment of the ATP’s DDS investments would also consider other, failed DDS
investments the ATP has made, as well as the opportunity costs of all of these investments.
However, we note that just one success on the scale of the forecasts in this paper would far
outweigh the ATP’s total annual investments in all areas of technology.

The “total” consumer welfare gains we estimate of course depend on the choice of the
appropriate simulation window. We chose five years to match the innovators’ apparent time
horizons. Our results, as illustrated in Figures 3 and 4, suggest that the incremental benefits
from ATP’s investments would continue to grow beyond five years. This begs the issue of
whether the ATP has put the DDS trajectory on a permanently higher course, or accelerated
developments that would have occurred eventually. While we do not address that issue, we
clearly assume that the new DDS technologies would not have been developed within five
years without ATP assistance. Accommodating a differing view would simply mean
shortening the window to some other agreed-upon length.

The results are clearly no stronger than the assumptions underlying the model. The
probabilistic parameters allow for unforeseen technological developments, however, and one
of the model’s strengths is that it incorporates all relevant information and varies all of the
parameters simultaneously. The implications of changes to any subset of parameter
assumptions can be explored within a unified framework. As a result, we have been able to
show that significant welfare gains from two highlighted investments in DDS technologies are
very likely, and that this qualitative conclusion is robust to very large changes in the
assumptions of the model. Finally, while our paper discusses the details of the model in its
application to one new area of technology, we think this cost-index approach is a
straightforward and potentially useful resource allocation tool for R&D managers in both the
private and public sectors.

Estimating Future Consumer Benefit from ATP-Funded Innovations / 18



VI. References

VI. REFERENCES

Berndt, Ernst R. 1991. The Practice of Econometrics: Classic and Contemporary, (Reading,
Mass.: Addison-Wesley Publishing Company).

Berndt, Ernst R., Zvi Griliches, Neal J. Rappaport, 1995, “Econometric Estimates of Price
Indexes for Personal Computers in the 1990s”, Journal of Econometrics 68, 243-268.

Bresnahan, Tim. 1986. “Measuring the Spillovers from Technical Advance: Mainframe
Computers in Financial Services,” American Economic Review vol. 76, no. 4
(September), pp. 742-755.

Caves, Douglas W., Laurits R. Christensen, and W. Erwin Diewert. 1982. “The Economic
Theory of Index Numbers and the Measurement of Input, Output, and Productivity,”
Econometrica, vol. 50, no. 6 (November), pp. 1393-1414.

Chambers, Robert G. 1988. Applied Production Analysis: The Dual Approach (Cambridge,
UK: Cambridge University Press).

Computer Shopper. Multiple Years. Ziff-Davis Publishing Company, Boulder, Colorado.

Diewert, W. Erwin and Alice O. Nakamura, eds. 1993. Essays in Index Number Theory,
Volume 1 (Amsterdam: North-Holland).

Gordon, Robert J. 1990. The Measurement of Durable Goods Prices (Chicago: University of
Chicago Press).

Griliches, Zvi. 1979. “Issues in Assessing the Contribution of R&D to Productivity Growth,”
Bell Journal of Economics vol. 10 (Spring), pp. 92-116.

Hausman, Jerry. 1997. “Cellular Telephone, New Products and the CPL,” NBER Working
Paper 5982, National Bureau of Economic Research, Cambridge, Mass.

Moulton, Brent R., and Karin E. Moses. 1997. “Addressing the Quality Change Issue in the
Consumer Price Index”, Brookings Papers on Economic Activity 1: pp. 305-366.

Estimating Future Consumer Benefit from ATP-Funded Innovations / 19



VI. References

Quirk, James and Katsuaki Terasawa. 1982. “Divergent Expectations and R&D
Expenditures,” in James Quirk, Katsuaki Terasawa, and David Whipple, eds., Coal
Models and Their Use in Government Planning (New Y ork: Praeger).

Quirk, James and Katsuaki Terasawa. 1986. “Sample Selection and Cost Underestimation
Bias in Pioneer Projects,” Land Economics, vol. 62, no. 2 (May), pp. 192-200.

Sarsfield, Liam. 1998. “The Cosmos on a Shoestring,” RAND Ceritical Technologies Institute,
Washington, D.C.

Terasawa, Katsuaki, James Quirk, and Keith Womer. 1989. “Turbulence, Cost Escalation and
Capital Intensity Bias in Defense Contracting,” in Institute of Cost Analysis, National
Conference, Cost Analysis Applications of Economics and Operations Research
(Springer-Verlag).

Trajtenberg, Manuel. 1990. Economic Analysis of Product Innovation: The Case of CT
Scanners (Cambridge, Mass.: Harvard University Press).

Wertz, James R. and Wiley J. Larson, eds. 1996. “Reducing Space Mission Cost,” (Torrance,
Calif.: Microcosm Press).

Varian, Hal R. 1992. Microeconomic Analysis (New York, N.Y.: W.W. Norton & Company).

Estimating Future Consumer Benefit from ATP-Funded Innovations / 20



Appendix A: Data and Methods

APPENDIX A: Data and Methods

Data

Our data on the ATP supported innovations—and on technologies considered to be future
competitor technologies—come from structured interviews we conducted in the Spring of 1998
with the leaders of the innovating teams.26 The interviews concerned specific details about the
proposed technologies and the market conditions they are expected to face. We asked
respondents to compare their actual progress to date against the project’s original goals. We
sought information not only on current projected transfer rates, capacities, and access times, but
also about advances in competing technologies.2” In addition to items relating to price and
performance, we also elicited their forecasts of market conditions, particularly the expected rate
of adoption of their innovation, and the size of the market.28 Using the innovators’ responses
about the identities, price, and performance of competing products, we collected precise data
directly from the manufacturers of those products for use in the simulation model. Finally, we
subjected our fully-specified model to a careful review by several engineers familiar with data
storage theory and practice.29

As Table A-1 indicates, the interviews elicit beliefs about “most likely” outcomes
(assuming successful innovation). The latter responses inform some of the parameter
uncertainties in our model, in ways we make precise below. While there are in principle three
sources of uncertainty that can affect the parameters of the model—variability in
manufacturing and market conditions; imperfectly observed data; uncertainty about future
outcomes—we believe the third source dominates. In our analysis, we assume uncertainty
increases over time.

26 Our access to project leaders and their information was gained through the assistance of the Advanced
Technology Program. The program must report annually to Congtress as stipulated by the Government Performance
and Results Act (GPRA). The forecasts produced by the model we present here are one kind of information the
ATP may wish to report in fulfillment of the GPRA.

27 Although we asked about other performance characteristics, the interview subjects were unanimous in
identifying capacity, transfer rate, and access time as the relevant dimensions.

28 The DDS market is apparently segmented according to capacity. We divide the market into expensive, high-
capacity drives and more affordable, low-capacity drives. The two matches we have assigned to the optical
innovation come from the former segment, and for the digital-linear scanning technology the latter segment.

29 The technical experts we consulted are employees of NIST’s National Measurement and Standards
Laboratory. They suggested a number of changes in our assumptions, which we implemented.
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Table A-1—Structured Interview

TECHNOLOGY

1. What are the most important technical innovations (attributes or characteristics) of your project?

2. According to ATP documents, at the start of your project, your goals were to achieve X, ¥, Z among the key
characteristics. Can you confirm or update these capabilities?

i. Optical tape: megabytes per second; terabyte capacity;, meters/sec tape speed

ii. Digital linear scanning: megabytes per second; terabyte capacity; meters/sec tape speed

3. At the start of your project, the best available technologies were capable of:

File access time: secs. Your project was initially expected to achieve XX secs, a YY% gain in average
access time over the then current best available technology (BAT). Is this information still correct?
What is now the best currently available file access time?

Storage capacity: gigabytes. Your project was expected to achieve XX gigabytes, a Y'Y% gain in capacity
over the current BAT.
Is this still correct? What is now the best currently available capacity?

Data transfer rate: AB/sec. Your project was expected to achieve XX MB/sec, a YY% improvement over
the then-current BAT.
Is this still correct? What is now the best currently available transfer rate?

4.Has the pace of your own R&D achievements been as expected in these dimensions?
In other dimensions?

5.Have R&D developments among your competitors been as expected?
(List specific dimensions of product performance.)

6. Have we failed to ask you about any important dimensions of your new product’s performance? What units
are they measured in, and what improvements do they promise with respect to the BAT?

MARKET

1. What is the innovation’s primary market, or markets?

2. What is the expected size of this market, in terms of units shipped?

3. When do you expect to reach market?

4. What is your expected adoption rate over 2-5 years (with uncertainty bounds)?

5. At what price do you expect to sell the product embodying the new technology?

6.How do you expect this price to trend over the first two years? Five years?
(As driven by continued R&D or learning-by-doing, as well as anticipated market dynamics.)

7. What are your most important market-related hurdles?
» Is it critical to be first to market?
» How likely is it that improvements in the defender technology would render yours uncompetitive?
* Does the success of your innovation depend on new applications arising for digital data storage?
» Will it be necessary for users to adopt complementary technologies to take advantage of yours?

8. What is the “off-the-shelf” price of the defender technology?
[This item probes respondent’s familiarity with or identification of its competitors. The model uses
manufacturer data.]

9. What rates of change in defender price and performance do you expect over the next 2 years, 5 years?
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10. Do you expect the defender to compete on price with your innovation?

11. What is the going market price for a unit of capacity (per MB), access time (per second), transfer rate (KB
per second)?
[This item sought innovator opinion on shadow values, especially for the latter two. The typical responses
were sharply at odds with market data, with our hedonic analysis, and with opinions of disinterested
experts. We conclude that the innovators do not have a clear idea of how much consumer surplus they may
generate, as our results suggest, their pricing will not extract much of the consumer surplus that the
innovations will create. ]

12. Do you expect your innovation will drastically change any of these [shadow prices]?

13. Have we omitted any important market issues?

Shadow Values

Compared to existing products, the DDS innovations promise improved performance at
comparable prices. If they are successfully introduced, it is likely the innovations will enhance
consumer welfare. The interesting question is therefore not whether, but by how much welfare
would increase. We measure this by estimating consumers’ willingness to pay for
improvements in the data transfer rate, storage capacity, and file access time of a tape-based
data storage device.

We compare new and existing devices on the basis of differences in their performance
attributes. We translate these differences into monetary terms using our willingness-to-pay
estimates, and adjust the list prices of the machines accordingly. These quality-adjusted prices
reflect relative differences in the values consumers will realize from the devices. As we
explain below, we make upward adjustments to the prices of inferior technologies, reflecting
the relative “user costs” that their slower speeds and smaller capacities effectively impose.

We estimate consumers’ marginal valuations of DDS quality changes using a hedonic
regression model of DDS drive attributes. We estimate a simple, linear model to explain
variation in DDS retail prices, using product attributes and other control variables as
independent variables. The data for this procedure come from current manufacturers’ web

sites, and from “Dirt Cheap Drives” advertisements in issues of Computer Shopper30 dating
from 1994-1998.

The model we estimate is:

p'=o+pi(data rate)+ Ba(access time)+Ps(capacity)+ Py(time)
+ squared terms + interactions + dummies + &,

30 Ziff-Davis
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where the intercept term « and the coefficients f, are parameters to be estimated, and ¢ is a
mean-zero, normally-distributed error term. The fitted coefficients Bx are estimates of

consumers’ shadow values, the amount they are willing to pay for marginal changes in the
corresponding attributes. Data rate is measured in megabytes/sec, capacity in gigabytes,
access time in seconds,3! and time in quarters since (1994, Q1). We use indicator variables to
control for the identities of the leading manufacturers; whether the tape medium is 4mm (the
size of DAT cassettes); whether the product is a (multi-drive) library system; and whether it is
an internal drive. We interact the quality attributes with the time variable to estimate how
consumers’ marginal utilities change over time. Finally, we include squared terms to capture
non-linear aspects of consumer valuations.

Our results contain no big surprises. The signs of the coefficients on the quality terms are
positive, meaning consumers are willing to pay more for better performance.32 The
interaction terms indicate that the marginal utility of additional quality declines over time—as
a result, no doubt, of the rising level of quality in DDS devices that is captured in the data.
The value of an extra gigabyte of storage is greater when average device capacity is closer to
1 GB than when it is 100GB.33 The squared terms, which allow for curvature in the rates of
decline, are small and not statistically significant.

Table A-1 reports our estimates of the initial shadow values in the simulation model.
These have dropped considerably over time—our regression equation estimates they were 2-3
times higher in 1995 than they will be in 2000. As might be expected, the current cost of a
gigabyte of storage on disk, about $100 in 1999, is higher than our estimated shadow value of
tape storage capacity, though the cost of disk storage is dropping by up to 40% per year.34
Our estimate’s relative similarity to this value is reassuring; as with our other assumptions,
however, we check the sensitivity of our results to changes of +/-50% in the shadow values.

31 The average time required to queue up a file on a tape is measured by a device’s spool speed multiplied by
half the length of the tape.

32 The coefficient on Access Time is negative, as expected for the same reason.

33 As a possible exception, the marginal utility of faster file access times may increase over some range, as that
second saved on the margin represents an increasing fraction of total remaining access time.

34 NIST technical expert, personal communication.
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Table A-2: Shadow Value Forecasts3>

Shadow Value (std. dev.)
Attribute Estimate: 2000 Forecast: 2005
Data Transfer Rate $791 /MB/sec ($208) $433 /MB/sec
Storage Capacity $39 /GB ($9.88) $13 /GB
File Access Time36 $49 /sec ($12.25) $40 /sec

These values should apply only to marginal improvements in quality. As the innovations
may introduce quite large changes, these initial shadow values may overestimate the resulting
welfare gains. In our model, however, the shadow values decline over time and, as sales of the
innovations increase over time, most of the large quality differences that are expected will be
valued at significantly lower levels than suggested by the figures in Table A-2. By the last
period of the simulation, we estimate that the shadow values for the attributes will have
declined by 50%, 75%, and 20%, respectively, as we describe.

The data do not yet support the derivation of a statistically significant shadow value
estimate for file access time in a hedonic regression. Until only very recently, slow file access
times have not been considered a significant constraint on the utility of DDS drives. As a
result, shadow values for differences in file access times have apparently been small. The
relative past unimportance of access times may be because DDS storage capacities and
transfer rates have only recently reach levels at which file access times are a significant
bottleneck in DDS performance. Larger capacities are probably correlated with slower access
times, and with transfer rates increasing, the slower access may have only recently become a
nuisance. The position of data-storage experts is that, whereas capacity and transfer rate have
each been, in turn, the most significant performance bottleneck for DDS performance, access
times is now the most important constrain—particularly as new, data-intensive applications
continue to develop and the demand for new forms of storage—for instance in “near-line”
storage to relieve congestion in network hard-drive storage systems—continues to grow.37
See Figure A-1.

35 Our interview subjects suggested marginal valuations that are sharply at odds with our estimates. These
included $5,000/MB/second for data rate; $4,300/GB of capacity; and $1,000/second for file access time. These
guesses appear to be quite optimistic; given their price targets the manufacturers clearly have no intention of
extracting this prospective consumer surplus. The third guess for file access time is somewhat more plausible, as
we will discuss.

36 Estimated shadow value of reduction in access time is based on a heuristic argument. Hedonic methods did
not work well for this attribute, as we explain below.

37 See “Tape Opportunities for the ‘90s and Beyond”, Michael Peterson, Strategic Research Corporation;
February, 1997. Large arrays of hard drives can successfully compete with tape for some applications, and offer
extremely fast file access times. However, we believe a consistent market for tapes exists where a permanent,
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Figure A-1: Technological Constraints in Digital Data Storage38

To estimate the shadow value of file access time, we perform a simple calculation based
on heuristic arguments that depend on conservative assumptions about a machine’s average
service life, intensity of usage, and the average value of users’ time on the job. We then
calculate what a consuming firm should be willing to pay for each second of file access time
saved per file request relative to the slower technology. This value is given by:

(file requests/day)*(service days/year)*(years of service life)*(value of worker time/second).

We assume a DDS device will receive read/write requests 235 days per year, the
equivalent of 47 work weeks per year, and will have a useful service life of five years. We
estimate the value of worker time at $15 per hour, the approximate national hourly wage in
2000.3% Finally, we assume the device will receive 10 read/write requests per working day.

The first two assumptions are intended to be a little conservative; for white-collar
professionals, who are the typical users of DDS, $15 may be a very conservative estimate of
the value of their time, unless they are productive at other tasks while they wait for a file. Our
assumption about the number of file requests is arbitrary; Table A-3 shows the shadow values
that would be implied by other levels of usage. In the model we assume 10 requests because it
is on the low side of what we believe are reasonable levels of usage to expect in the face of

portable record is required—as with archival functions—and file access times are expected to become an
important limiting factor in the utility of those systems.

38 Figure taken from “Tape Opportunities for the ‘90s and Beyond”, op. cit.

39 This figure is based on the Bureau of Labor Statistics estimate for 1999. The 2000 estimate will be somewhat
higher, another reason to believe ours is a conservative estimate.
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data storage demands sufficient to induce the purchase of a DDS device. We conservatively
assume average usage of a device does not grow over time.

Table A-3: File Access Shadow Values by Expected Intensity of Use
Shadow Value of 1 second
Faster Avg. Access Time

Anticipated Daily Requests

1 $ 5
10 $ 49
50 $ 245
500 $2,448

At ten file transfers per day, an average DDS purchaser would be willing to pay an extra
$49 for each second of reduction in file access time. If one device queues up a file an average
of 30 seconds faster than another device, the additional value would be $1,470 (=30$49) over
the life of the machine.

Rates of Change in Consumer Valuations

The time-interaction terms in the hedonic analysis yield linear estimates of the rates of
change in capacity and transfer rate shadow values as 5.6% and 3.0%, respectively, per
quarter. For file access time, we assume shadow values will decline at a 1% rate. We specify
shadow values to decline according to an exponential function, so as to prevent forecasting of
negative shadow values by 2005. So shadow values are specified as:

ﬂ,\',l = ﬂ,\',O : e(rx.[) )

where [, is the estimated shadow value for quality attribute x in the initial period, r, is the
estimated coefficient of interaction term (x*#) in the hedonic regression, and ¢ is time in
quarters, from (2000, Q1) to (2005, Q1). These functions yield rates of decline which appear
nearly linear in the initial years, and which begin to level out toward 2004.

As with the shadow values themselves, the hedonic regression does not usefully estimate a
rate of decline for access-time shadow values. If access time is increasingly to become a
bottleneck for DDS, as industry experts believe, shadow values should initially increase. We
conservatively assume they will not increase, but will decline at a slower rate than for the
shadow values of capacity and transfer rate.

The simulation model’s probability distributions for shadow values and their rates of
decrease are tabulated below.
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Parameter Assumptions

For expositional simplicity, rather than compare the new technologies against each of
several leading, existing products, we instead average the characteristics of the two strongest
defending technologies (comprising, in both the high- and medium-capacity segments of the
DDS market, significant fractions of total sales) and compare the new technologies against
these “virtual” defenders. We calculate weighted averages of the prices and performance of
each pair of defenders, using as weights each defender’s estimated share of the total unit sales
between them, immediately prior to the expected introduction of the innovations. Simulations
based on individual product comparisons produce qualitatively similar results.

We compare the digital-linear scanning technology against the Sony GY2120 and the
Quantum DLT 7000 tape drives, both of which employ conventional helical scanning
technology. In the market for these medium-capacity tape storage units, the DLT 7000 is the
most popular drive by a fairly wide margin, though the GY2120 currently commands a
significant share of that market as well.

The optical tape technology is compared against the Ampex DST 412 and IBM 3590 high-
capacity storage units, both of which employ conventional, magnetic tape technology. The
Ampex is truly a niche product, albeit one with an enormous storage capacity. The IBM drive
is by far the most popular in the high-capacity segment of the tape-storage market, and in what
follows the “optical defenders” distributions are therefore quite similar to those for the 3590

drive alone.40

Our assumptions for the probability distributions of the following parameters are
discussed here:

Off-the-shelf (nominal) prices

Quarterly rates of change in nominal prices

Quality differences (data transfer rates, storage capacities, file access times)
Market sizes

Adoption rates

Personal Consumption Expenditures (PCE)

Shadow values and rates of decline

40 Quantum markets a high-capacity unit based on the DLT7000 drive, the PowerStor L500. However, this unit
simply adds robotics and tape cartridges to the basic drive. We exclude that product on the grounds that the
optical drive could also be paired with robotics.
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Off-the-Shelf Unit Prices

Drive

Nominal Price,
$000

Notes

Linear Scanning
Innovation

Triangular (9,10,12)

$10k price target. We assume (—10%,+20%) dispersion.

Virtual Defender
(helical scanning)

Normal (6.9, 0.2)

Quantum ($5.7k), Sony ($3 1k). Prices as of Autumn 1998.
We assume prices fall over time (see later table). By May
1999, Quantum’s price was $4.8k, but this is similar to our
model’s projection for that time. We assume 2.5% standard
deviation.

Optical Tape Tri (38,40,48) $40Kk price target. We assume (-5%,+20%) dispersion.
Innovation
Virtual Defender N(63.3, 1.6) IBM ($47.3k), Ampex ($115k); 2.5% standard deviation.

(magnetic tape)

These assumptions yield the empirical densities depicted in Figure A-2.
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Figure A-2:

Nominal Price Distributions For Defender Technologies and Innovations

Quarterly Rate of Change in Nominal Prices

We assume that nominal prices decay exponentially according to p, = p, -e”, where p,

is the initial off-the-shelf price and p is the rate of decline per quarter ¢. For each innovation,
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we solve for the rate p such that the expected price for the 20™ quarter equals the innovator’s
year-5 forecast. For all of these products, the resulting o becomes the mode of a triangular
distribution, with bounds determined as noted below. We conservatively assume the defender
prices will drop as quickly as for the innovators, though the defender should already have
exploited the more accessible learning-by-doing and scale economies. We implicitly assume
innovators and defenders invest in R&D to continually improve all of their products.

Drive

Quarterly Price
Trend

Notes

Linear Scanning

Tri (-0.06,-0.0578,-0.018)

Initial price of $10k, $5k after two years. Upper tail of this

Innovation distribution is consistent with price of $7k after five years.
Lower tail gives nominally faster decline.
Virtual Defender Tri (-0.06,-0.0578,-0.018) Assumed distribution set equal to the innovation.

(helical scanning)

Optical Tape Tri (-0.03,-0.024,-0.014) Initial price of $40k, $25k by year 5. Upper tail yields $30k by
Innovation year 5, lower tail a nominally lower $22k.
Virtual Defender Tri (-0.03,-0.024,-0.014) Assumed distribution set equal to the innovation.

(magnetic tape)

Figure A-3 illustrates our assumptions about rates of price decline p. We assume a much
wider and more skewed distribution for the digital linear-scanning device to accommodate
proponents’ expectation of faster decreases in price than for the optical tape drive, and our
conservative assumption that price may decline no faster than for the other technology.

Probability Density

200

100

Linear Innovation
and Defenders

Optical Innovation
and Defenders

-0.06 -0.05 -0.04

-0.03 -0.02 -0.01

Annual Pct Change in Price (%)

Figure A-3: Rates of Exponential Price Decay

We introduce a modest error into the price forecast, so that uncertainty grows over time.
The error is normally distributed with mean zero, standard deviation 0.015, meaning that half
of the density lies between -1.0% and +1.0%, and nine-tenths of the density lies between
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-2.46% and +2.46%. Prices are perturbed according to Pe.(t)=P(t)*(1+perturbation*t), where t
is time in quarters.

Quality Differences

Data transfer rate is the maximum sustained rate at which data can be written to the tape.

Drive

Transfer Rate
(MB/sec)

Notes

Linear Scanning

Tri(18, 25, 30)

Expected range 20-30 MB/sec. While we hold quality

Innovation fixed (changing only price), innovators report expectation
of faster rates by 2000.
Virtual Defender N(5.8, 0.145) Market weighted average transfer rate; 2.5% std. dev.

(helical scanning)

Optical Tape
Innovation

Tri (23, 25, 26)

Expected 25 MB/sec. We assume (—10%, +5%) dispersion.

Virtual Defender
(magnetic tape)

N(14.3, 0.3575)

Market weighted average transfer rate; 2.5% std. dev.
Best current transfer rate is 15 MB/sec (Ampex DST312).

These assumptions yield the density functions in Figure A-4 for the simulation model:
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Figure A-4:

Current transfer rate — Innovations and Defender Technologies

Capacity is the maximum quantity of data which can be stored on the unit as configured.
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Drive

Capacity
(Gigabytes)

Notes

Linear Scanning

Tri(14.7,16,16.66)

Confident expectation 16 GB. Lower and upper bound set at 5™

Innovation percentile of N(16,8) and 95™ percentile of N(16,4) distribution,
respectively.
Virtual Defender N(36, 0.90) Mean reflects figures reported in current product literature.

(helical scanning)

Standard deviation is 2.5% of mean.

Optical Tape Tri(918,1000,1041) Confident expectation 1000 GB. Lower and upper bound set at 5™

Innovation percentile of N(1000,50) and 95™ percentile of N(1000,25)
distribution, respectively.

Virtual Defender N(233.5, 5.84) Mean reflects figures reported in current product literature.

(magnetic tape)

Standard deviation is 2.5% of mean.

The implications of these assumptions are depicted in Figure A-5.
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Figure A-5: Storage Capacities: Innovations and Defender Technologies

File access time is the time required to spool to the beginning of the average file,
measured as spool speed times half the length of the tape. Although tape length might easily
be adjustable, the innovators have indicated the length they are choosing as their standard.
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Drive

Access Time
(seconds)

Notes

Linear Scanning

Tri (7.2, 7.5, 10)

Expected 10-second access time as of 1997; expected 7.5 by

Innovation 2000. Upper assumes no progress after 1997, Lower bound is
analogous to lower bound for optical innovation (below).
Virtual Defender |N(61.2, 1.53) Mean reflects figures reported in current product literature.

(helical scanning)

Standard deviation assumed to be 2.5% of mean.

Optical Tape Tri (11.5, 12, 13.25) Expected range 20-25 seconds spool time. We assume 24
Innovation seconds +2.5 / -1.0; access time is half of spool time.
Virtual Defender |N(38.6, 0.965) Mean reflects figures reported in current product literature.

(magnetic tape)

Ampex offers access time comparable to the innovation.
IBM’s plans to introduce longer tape some time in 1999 are not
reflected here. 2.5% standard deviation is assumed.

Figures A-6 illustrates these assumptions.
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Figure A-6: File Access Times for Innovators and Defenders
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Market Size

Market Segment Unit Sales (000s) Notes

Our model (described below) predicts year 2000
sales as: 27,000 units of Sony GY2120;
206,000 units of Quantum DLT 7000.

Total is 233,000 for medium-capacity market
segment.

Bounds reflect 15% variation around this value.

Medium-capacity drives Uniform (198.05,267.95)
(Digital, Linear Scanning
Innovation & Defenders)

Our model (described below) predicts year 2000

High-capacity drives Uniform (20.71, 28.03) sales as:
(Optical Tape Innovation C .
& Defenders) 18,600 units of IBM 3590;

5,700 units of Ampex DST 412.
Total is 24,300 for high-capacity market segment.
Bounds reflect 15% variation around this value.

We intend these estimates to be somewhat conservative. We ignore smaller
manufacturers. Since we believe that the defender technologies have substantial shares of
their market segments, our data probably represent a large fraction of total sales. We derive
our admittedly crude estimates by fitting a straight line through the price/quantity pairs (in
logarithms) provided by our interviews. This yields a linear inverse-demand curve of
log(Q) = 22.5 - 1.2*log(P), which seems to fit the data quite well (R* = 0.93). We use this
formula as the basis for predicting quantities sold in year 2000 as a function of expected
price. The ratio of the standard error to the coefficient of the log(P) term is about 1/6 in this
regression. This provides our rationale—albeit not a strong one—for choosing 15% bounds
on the market size parameters.

Future DDS demand may be affected by the innovations’ potential stimulation of the
development of new, storage-intensive services such as in medical imaging or virtual real-
estate marketing applications. However, there is a countervailing risk that some of this
demand growth will be satisfied by large hard-drive arrays or other competing technologies,
as some expect their prices and performance may eventually overshadow current
developments in tape technologies.#! We have attempted to model neither possibility, about
which we are agnostic. We note that our model can easily accommodate a wide variety of
assumptions about market size or any other parameter.

41 NIST technical expert, personal communication.
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Expected Growth in Market Size

Quarterly
Scenario Growth Rate Notes
Baseline N (1.5%, 0.225) Linear growth assumed:
(No public funding for Mkt-Size(t)=Mkt-Size(t-1)*(1+(t*Growth Rate).
DDS innovation) See text.
Innovation N (1.8%, 0.540) Exponential growth assumed:
(Public funding support Mkt-Size(t)=Mkt-Size(t-1)*Exp(t*Growth Rate)
results in Linear Scanning See text.
and Optical innovations)

The U.S. Bureau of Economic Analysis expects growth in “information services and
products, less telephonics” to be linear at a rate of 1.5% per quarter.42 As we expect growth in
the demand for medium- and high-capacity DDS drives more or less to keep pace with growth
in information services, we use the BEA’s forecast as the mean growth level in our baseline
(no innovation) simulation scenario. We assume growth is normally distributed with standard
deviation equal to 15% of the mean.

If either innovation is successful, we assume additional stimulated demand beyond the
BEA linear forecast. To reflect our expectation that demand growth may be greater given
public-sector funding support, for the innovation scenario we assume that growth will be
exponential with a quarterly rate of 1.8% and standard deviation equal to 30% of this amount,
under a normal distribution.

Initially, the average innovation-scenario prediction is similar to the baseline market size
forecast; after about the 8™ quarter, however, the two predictions begin to diverge
significantly, until in the 20" quarter the innovation scenario predicts 10% greater sales on
average than in the baseline scenario.

In the upper tails of the growth-rate probability densities, the innovation scenario yields
significantly faster growth rates. In the innovation scenario, the 95th-percentile growth rate is
2.7%, which is still less than some of our interviewees’ much more optimistic expectations.
We address impact on estimates due to variation in expectations in our sensitivity analysis.

42 National Income and Product Accounts tables. U.S. Bureau of Economic Analysis, Department of Commerce.
Recent purchases of “Computers and Peripheral Equipment” have grown at approximately 2.5% per quarter
(Survey of Current Business NIPA table 5.8 (August, 1998) for years 1994-1997). This series may be less
relevant to forecasting demand in DDS, which we believe is closely associated with the demand for information
services. It is also consistent with our conservative approach to use the smaller, information services forecast.
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Adoption Rates
Innovation Adoption Rate Notes
Digital, Linear Scanning | A=0.035, y=2.2 Lambda and gamma assumed constant.
See text for interpretation.
Optical 2=0.03, y=2.2 Lambda and gamma assumed constant.

We assume that the innovation will partially displace sales of defender technologies and
partially expand the market. In the model, innovation market shares increase monotonically with

time according to the following Weibull process:

F(t) = I—exp(-At)

Here ¢ is time in quarters, A is a scale parameter, 0<A<I, having the interpretation of a
hazard rate (which is therefore assumed to be constant), and y>0 is a shape parameter. It is
difficult to associate A and 7y directly with specific curve shapes; experimentation was
necessary to achieve the desired curves. We chose Weibull curves that reflect the lower range
of our respondents’ expectations about their future market shares.#3 Figure A-7 shows a detail
of the Weibull functions showing our assumed market shares over time for the two innovations,
given they are successfully introduced.44

43 Lambda affects the curvature of the function, with larger values implying faster adoption rates. As gamma
increases, the curve’s inflection points are “delayed”. The Weibull curves are quite sensitive to A and y,
requiring us to treat them as predetermined constants in our simulation model.

44 The complete graphs show S-shaped, cumulative distribution functions that cross 90% at about 10 and 12

years, respectively.
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Weibull Adoption Rates:
F(t)=1-exp{-(At)*y)
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Figure A-7: Weibull Adoption Rate Curves: Percent of Current Sales

Future Private Consumption Expenditures

Data on U.S. personal consumption expenditures (PCE) are available from the National
Income Product Account tables produced by the U.S. Bureau of Economic Analysis. PCE
serves as the denominator of the factor share calculations in the cost index, as well as the
factor by which the index is multiplied to produce the model’s estimate of benefits net of
baseline.

The model requires a forecast of PCE out to 2005. We build our forecast by regressing
annual PCE against time for the years 1982 through 1998. With time expressed in quarters
since (1982, Q1), the resulting equation is PCE = 449,228 - 227.7*QTR, and the model fits
the data very well (R?=0.997). We assume future expenditures are normally distributed with
means equal to the predictions of this expression, and initial standard deviation equal to
2.759% of the mean in (2000, Q1).45 We assume uncertainty in PCE increases by an
additional 0.25% per quarter thereafter.

45 This is the ratio of the difference between high and low estimates—produced by respectively adding and
subtracting one standard error from the intercept and time coefficient in the fitted model—to the mean
prediction.
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Shadow Values

Attribute Shadow Value Rate of Change (Quarterly)
Transfer Rate N (791.3,207.8) N (-0.030, 0.002)
Storage Capacity N (39.0,9.9) N (-0.056, 0.003)
File-Access Time N (49, 12.25) N (-0.01, 0.005)

(5% standard deviations assumed for rates of change)

See Table A-2 and the earlier discussion of estimated shadow values and rates of change
of shadow values. We base our assumptions for variance of shadow value estimates on the
estimated standard errors from the fitted hedonic regression model. Because our estimate for
file access time is based on heuristics rather than data, we assume the file-access-time shadow
value has larger variance than the other two shadow values. We assume the access-time
shadow value has standard deviation equal to 25% of the mean.

Sensitivity Analysis

The tests presented in this section are divided into those affecting innovations, those
affecting both innovations and defenders (these are the shadow valuation and market size
parameters), and value-of-information tests that examine correlations in uncertainties.
Innovation Parameters

Here we ask how sensitive our results are to parameters whose values are informed by
information provided by the innovators. The parameters examined here concern performance
attributes of the innovations, along with their off-the-shelf prices initially and over time, and
rates of adoption.

Table A-4 indicates that benefits are more sensitive to assumptions about the innovations’
rate of adoption and initial price than to their performance characteristics.46 For the linear
scanning innovation, benefits are also somewhat sensitive to the data transfer rate attribute,
because that category provides most of its advantage over the products that we compare it to.
For both new technologies, benefits are also slightly sensitive to rate of change in price.

46 Recall that we hold performance fixed in our model, but that lowering the price has the same effect,
mathematically, as improving performance. To be conservative, in our base analysis, we assume that defender
prices and innovation prices decline at the same rate.
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Table A-4: Effects of Changing Selected Innovation Parameter Values by +/-50%; Medians

What if: Access Capacity | Transfer | Rate of Off-the- | Rate of | Adoption,
time rate Adoption | Shelf change Price, and
price in price Change in

H t

Changed by: price

LINEAR SCANNING (median present discounted value: $2.15 billion)*

+50% $2.13B |2.16B 252B |3.46B 1.51B |[236B |4.60B

-50% $2.16 B |2.13 B 1.26 B (1.00B 282B |1.76B |0.39B
OPTICAL TAPE (median present discounted value: $1.46 billion)*

+50% $145B |[1.6B 1.57B |2.21B 081B |1.64B |3.48B

-50% $146B |1.26B 1.31B |0.72B 212B |122B |0.24B

* Median values differ slightly from those in Table I due to statistical variability.

1 Rate of adoption, initial price, and rate of change in price all made better (or worse) simultaneously for the
innovation technology. Rate of adoption and rate of price decline increased (decreased) while initial price
decreased (increased).

Price and adoption rate are influential because total benefits equal per-unit benefits—
which depend directly on price—times total unit sales, which is a direct function of the
adoption rate. The elasticity of benefits with respect to rate of adoption is slightly greater than
one because unit sales vary non-linearly with the rate of adoption, and this just cancels the

effect of declining per-unit benefits over time.47

The last column of the table reports the effects of changing the rate of adoption and both
price parameters simultaneously. On a priori grounds, we expect these variables will be
correlated: a higher price, or a slower rate of price decline, should slow a new product’s rate
of adoption. When we change all of these parameters, the effect on benefits is considerable. A
50% deterioration in the parameters (for the innovation technology) reduces estimated
benefits by more than 80%. The effect is the same for the opposite changes. For the initial
price parameter, we consider such large changes to be unlikely: a 50% increase in
introductory price is far outside even the wide bounds we set in our model. We also expect
innovation prices should fall faster, not more slowly, than defender prices—for reasons stated
carlier.48

47 Per-unit benefits decline over time because consumer shadow values for quality differences decline as
technologies improve.

48 5 percentile benefits of the linear scanning innovation are negative (-$0.27 B); equivalent optical tape
benefits are ($0.02 B), for this simultaneous sensitivity test.
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Shadow Value and Market Size Parameters

Next, we consider the effects of parameters affecting both defender and innovation. Here,
we focus on shadow values and market size. It is particularly important that we test shadow
value sensitivities, because in the model we are applying estimates of marginal valuations to
large changes in quality. This may overstate benefits, although the bias may be offset by the
consistently conservative approach we have taken with our other parameter assumptions.

In Table A-5, only the market size parameters has a strong effect on benefits (though 5t
percentile forecasts are still well above zero). The elasticity of benefits with respect to market
size is about one: market size acts as a scaling factor and can be factored out of the cost
index.4® For the same reason, the market size parameters has no effect on the sign of the
benefits forecast.

Table A-5: Effects of Changing Selected Parameter Values by +/-50%; Medians

What if: Market Market Market | Shadow | Shadow | Shadow [ All
size growth size and | value: value: value: shadow
growth transfer capacity access values
Changed by: rate time
LINEAR SCANNING (median present discounted value: $2.18 billion)*
+50% $3.27B 244B 347B |2.50B 2.16B 228B |252B
-50% $1.09B 194B 1.00B |1.58B 219B 206B |142B
OPTICAL TAPE (median present discounted value: $1.46 billion)*
+50% $2.19B 164B 231B |151B 1.58B 147B |1.62B
-50% $0.73B 130B 0.68B |]1.40B 1.32B 145B |1.22B

* Median values differ slightly from those in Table I due to statistical variability.

Interestingly, the shadow value assumptions have relatively little effect on benefits. The
reason relates to how shadow values enter the model, in order to provide valuation of
differences in quality between products. The resulting valuations are added to the prices of the
under-performing products. These price adjustments may be small, however, compared to the
original price differences themselves, and their effects certainly pale in comparison to the
effects of changing the numbers of units sold. In particular, the shadow value of access time,

49 To see this, let @ represent the expression in Equation (2). Note that consumer benefits gain is (e”-1)*PCE;
since @ takes values very close to zero, @~(e®-1). The expression represented by @ contains factor shares s,
whose numerators are DDS expenditures, i.e., the product of DDS market size and average DDS price. Thus,
@ can roughly be factored as:

(DDS market size)*(Avg. DDS price)*(2*PCEY " *In(W"" /W)
(the factoring is not exact because DDS expenditures differ slightly in the two simulation scenarios). Note that
average DDS price across all units sold is as influential as the market size parameter, but because it is more
accurately observed, we do not conduct sensitivity analysis on it. The analytical result would obviously be the
same as for DDS market size.
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which we derived heuristically, barely changes the benefits forecast even when we assume $5
instead of $49—corresponding to one file request per day rather than ten (see Table A-3).
Changing to the lower value drives median benefits down only to $1.9 B and $1.4 B,
respectively, for the linear scanning and optical tape innovations.

Benefits would be more sensitive to shadow values if less uncertainty were assumed about
innovation prices. We assume the price of the optical tape innovation lies between $38,000
and $50,000. At the lower end of this range, the difference between innovation and defender
prices is almost twice that at the high end, and this variability simply dominates the quality
adjustments.0

Other Sensitivity Tests

We test other effects of changes in our demand-growth assumptions. Lowering the
exponential rate assumed for the innovation scenario from 1.8% to 1.5%, to match the (linear)
rate in the baseline scenario, lowers forecasted benefits are slightly, to $2.11 B and $1.42 B
for linear scanning and optical tape, respectively. When we assume innovation-scenario
demand growth is linear at 1.5%, estimated benefits only decline to $2.08 B and $1.40 B,
respectively. Our baseline growth assumption is conservative in light of expectations the
actual rate could be as high as 2.5%.5! Increasing the baseline growth rate to 2.5%, and the
innovation-scenario rate to 3.0% to keep their ratio constant, makes median benefits $ 2.50 B
and $1.68 B, respectively—about the same as our 75th-percentile default forecasts.

Exploring parameter shifts that drive Sth-percentile benefits estimates to zero, we find that
it is necessary to reduce all shadow values by 85% (linear scanning) or 90% (optical tape) to
accomplish this. If we assume that new technology prices remain fixed for five years, while
defender prices fall as originally assumed, 5™-percentile linear scanning benefits are slightly
less than zero (with a median estimate at $1.1 B); for optical tape, however, defender prices
would have to drop more than twice as fast as we assume to eliminate innovation benefits.52
In fact, we expect that new technology prices should drop more quickly than defender prices,
due to learning economies and other sources of inexpensive cost savings that are likely to
have already been exploited for existing products.

Finally, as expected, we find that the rafe at which we assume shadow values will fall has
little effect on forecasted benefits. Rates must be increased more than three and a half times to
drive 5™-percentile linear scanning benefits to zero, and even a quadrupling does not push 5"-
percentile optical tape benefits to zero. This result is predictable because the shadow values
themselves do not have sensitive impact on benefit estimates.

50 Benefits are, similarly, not very sensitive to our assumptions about shadow value rates of change.
51 “Computers and Peripheral Equipment”; Survey of Current Business NIPA table (August, 1998), U.S. BEA.

52 With optical prices fixed, and defender prices falling as originally assumed, median forecasted benefits are
$0.95 B, and 5" percentile benefits are $0.57 B.

Estimating Future Consumer Benefit from ATP-Funded Innovations / 41



Appendix A: Data and Methods

Value of Information

Aside from parameters that affect the level of benefits, we also look at the determinants of
uncertainty in our forecasts. That is, variation in which parameters is most highly correlated
with variation in the benefits? We find that there are only two parameters whose uncertainty is
highly correlated with uncertainty in the benefits estimate. These are the DDS market-size
parameter, and its rate of change over time. Recall that our assumptions about DDS market
size are not based on direct market research, but on responses elicited in interviews. Because
we have not identified market data with which to corroborate that information, we have
assumed significant uncertainty for these parameters. Better market-size data would produce
correspondingly more precise benefits estimates, and this analysis suggests that additional
research on parameter assumptions would most cost-effectively improve precision if
expended on these two parameters.
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APPENDIX B: Project Profiles

1. High-Performance, Variable-Data-Rate, Multimedia Magnetic Tape Recorder

Develop the underlying technology for a tape-based storage medium and recorder system
that can accommodate the high data capacity and data transmission and acquisition rates
needed for digital formats ranging from satellite-based TV, to teleconferencing over phone
lines, to terrestrial cable and broadcast television.

Sponsor: Imation Corporation
1 Imation Place
Oakdale, MN 55128-3414

¢ Project duration: 10/01/1995 — 09/30/2000
e Total project (est.): $21,094,896.00
e Requested ATP funds: $10,441,972.00

An emerging irony in the information society is that ever more information is becoming
available to individuals, yet it takes ever longer to acquire it. A major bottleneck rests in data
storage technology, which affects over $240 billion worth of U.S. industry. A joint venture
assembled by the 3M Company, and continued by 3M spin-off Imation Corporation, proposes
to address this dilemma by developing the technologies required for a small, reliable,
affordable tape recording and cartridge system. In the proposed system, data will be
recordable at rates greater than 30 megabytes per second with an ultimate goal of 100
megabytes per second. Moreover, the envisioned system would be capable of operating at the
different data rates associated with satellite, cable, fiber-optic, and other digital data formats.
The first major goal is to develop the technology for a linear tape drive that, at one-tenth the
cost, can match and may exceed the performance and capacity of high-end helical-scan
systems, a competing technology led by off-shore competitors. The second major goal is to
build a flexible framework that can accommodate many different data rates and digital
formats, resulting in a very versatile and flexible recording system. Some of the specific
challenges include developing next-generation, thin-film, magnetoresistive read/write heads;
new tape media that can withstand faster operating speeds; new electronics for processing
data at the higher bit rates and for controlling future systems so they can accommodate
multiple data formats; and new software and algorithms for integrating data from 16 or more
tape channels. Members of the joint venture include Peregrine Recording Technology (St.
Paul, MN), Seagate Technology, Inc. (Costa Mesa, CA) and Advanced Research Corp.
(Minneapolis, MN).
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Appendix B: Project Profiles

2. Digital Data Storage Technology via Ultrahigh-Performance Optical Tape Drive
Using a Short-Wavelength Laser

Develop an optical tape storage technology in which up to 180 tracks can be
simultaneously written and read with multiple, independently controllable laser beams that
could lead to data systems for rapidly storing, retrieving, and transferring I trillion bypes of
information.

Sponsor: LOTS Technology, Inc.
1274 Geneva Drive
Sunnyvale, CA 94089-1122

e Project duration: 09/01/1995 — 08/31/1997
e Total project (est.): $2,850,000.00
e Requested ATP funds: $1,950,000.00

As the technology of the Information Age continues to develop and diffuse throughout
society, there is a need for increasingly greater speed and capacity for storing and retrieving
data. LOTS Technology, Inc., proposes to develop an optical tape read/write technology
capable of storing 1 trillion bytes (a terabyte) and capable of transferring that data at a rate of
at least 100 million bytes (100 megabytes) per second. This will represent a 1,200-fold
increase in capacity compared to the prevalent industry standard and a 100-fold increase
compared to the next generation of cartridge storage tape drives being introduced. The key to
the technology is the development of a holographic element that splits a single laser beam into
180 individually controllable beams that concurrently access an equal number of parallel
tracks on the surface of the optical tape. If the project is successful, the first application of the
technology will be an "IBM-3480"-style cartridge. Because this cartridge is a standard widely
used throughout industry, integration into existing computing systems should be smooth. The
high transfer rate is made possible by the parallelism created with the holographic element.
The high capacity may be increased even further with the development of thinner and longer
optical tape that would fit within the same cartridge housing. The greater capability of this
storage technology ought to help a wide variety of industries and applications, including
computer backup and archival storage; video recording; image storage; scientific computing
and data acquisition; records from government, finance and business; and information
services such as electronic libraries and video-on-demand.
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About the Advanced Technology Program

The Advanced Technology Program (ATP) is a partnership between government and private
industry to conduct high-risk research to develop enabling technologies that promise significant commercial
payoffs and widespread benefits for the economy. The ATP provides a mechanism for industry to extend its
technological reach and push the envelope beyond what it otherwise would attempt.

Promising future technologies are the domain of the ATP:

¢ Enabling technologies that are essential to the development of future new and substantially

improved projects, processes, and services across diverse application areas;

e Technologies for which there are challenging technical issues standing in the way of success;

o Technologies whose development often involves complex “systems” problems requiring a

collaborative effort by multiple organizations;

e Technologies which will go undeveloped and/or proceed too slowly to be competitive in global

markets without the ATP.

The ATP funds technical research, but it does not fund product development. That is the domain of
the company partners. The ATP is industry driven, and that keeps it grounded in real-world needs. For-
profit companies conceive, propose, co-fund, and execute all of the projects cost-shared by the ATP.

Smaller companies working on single-firm projects pay a minimum of all the indirect costs
associated with the project. Large, "Fortune-500" companies participating as a single firm pay at least 60
percent of total project costs. Joint ventures pay at least half of total project costs. Single-firm projects can
last up to three years; joint ventures can last as long as five years. Companies of all sizes participate in
ATP-funded projects. To date, more than half of the ATP awards have gone to individual small businesses
or to joint ventures led by a small business.

Each project has specific goals, funding allocations, and completion dates established at the
outset. Projects are monitored and can be terminated for cause before completion. All projects are
selected in rigorous competitions which use peer-review to identify those that score highest against
technical and economic criteria.

Contact the ATP for more information:

e On the World Wide Web: http://www.atp.nist.gov;;

e By e-mail: atp@nist.gov;

e By phone: 1-800-ATP-FUND (1-800-287-3863);

e By writing: Advanced Technology Program, National Institute of Standards and
Technology, 100 Bureau Drive, Stop 4701, Gaithersburg, MD 20899-4701.
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