
ARGONNE NATIONAL LABORATORY 
Intense Pulsed Neutron Source 

The Data Acquisition Team (December 2001)
 

John Hammonds, DAS Manager 
Alok Chatterjee, DAS Software 

Rodney Porter, DAS Hardware, Ancillary Equipment 
Richard Como, DAS Hardware, Ancillary Equipment 

Chris Piatak, DAS Hardware, Ancillary Equipment 
 

The research is sponsored by the U.S. Department of Energy under contract no. W-31-109-ENG-38. 
 

Argonne National Laboratory 
9700 South Cass Ave• Building 360 

Phone 630-252-8755 • Fax 630-252-4163 

  IPNS Run File
Scripting Manual



Chapter 1 
 

GETTING STARTED 
 

1.1 Introduction 
1.2 Software requirements and setup 
 

 
Chapter 2 

 
RUN FILE SETUP USING SCRIPTS  

 
2.1 Scripting overview and levels 
 2.1.1 User level script example 
 2.1.2 Scientist level script example 
 2.1.3 DAS level script example 
2.2 Parameter setting order 
2.3 Viewing parameters set in a new Run 
 2.3.1 Header file output 
 2.3.2 Time field output 
 
  
 
 



Chapter 1 
 

GETTING STARTED 
 
1.1 Introduction 
 

The manual describes a procedure for the IPNS software package to handle data 
acquisition functions like setting-up the control parameters, the necessary tables for 
histogramming, the timefields etc. 
 
Several concepts are fundamental to the use of this software. These include the 
concepts of ‘Runs’ and ‘Run Files’, ‘histograms’, detector ‘Ids’, ‘grouping’ of 
detectors, and ‘time-focusing’ of detectors.  These concepts will be discussed in 
more detail in Appendix B.  
 
Central to the IPNS software package is the concept of an individual ‘Run’. A ‘Run’ 
is defined as a data acquisition operation of the system with a single distinct set of 
instrument parameters. Each separate Run is assigned a ‘Run number’. All the 
parameters used to set up a Run (sample and instrument parameters, start and stop 
times for data acquisition, run title, user name, etc.), and the raw histogram data 
collected during that Run are all gathered into one ‘Run File’ identified with that Run 
number. 
 
 
1.2 Software requirements and setup 
 
The IPNS package and the Command package (part of the ISAW software) are the 
minimum software requirements for setting up new IPNS Runs using ‘scripts’. In 
addition, a java virtual machine (JDK 1.3, for example) needs to be installed on the 
system. These ‘scripts’ are ascii text files that make calls to java operators in the 
IPNS package and set various input parameters for a new Run. These scripts can be 
run using the ScriptOperator class present in the Command package by one of the 
following commands on a command (MS-DOS prompt or xterm) window: 

 
java Command.CommandPane 
or 
java Command.ScriptOperator “name_of_script_file” 
The ‘scripts’ can only be run using the above commands if they are present in certain 
locations on the system. Typically, one would need a simple text file called 
IsawProps.dat in the userhome directory that contains name-value pairs. One of the 
entries in this file could be the GROUP_HOME and a defining path for it, for 
example, 
 
GROUP_HOME  /IPNShome/hrmcs/pnssystem 
or  
GROUP_HOME  /usr/local/ipnsjava 



 
Other directories can also contain scripts and can be defined as GROUP1_HOME, 
GROUP2_HOME, etc. in the IsawProps.dat file. The search order for scripts starts 
with the userhome directory, and then the group directories.   
 
In summary, the set up would require the following packages installed on the system, 
1. The IPNS package 
2. The Command package 
3. JDK 1.3 from www.java.sun.com 
4. IsawProps.dat text file in the userhome directory  that has at least a 

GROUP_HOME attribute and its value (path to a directory where the scripts are 
kept). 

 

http://www.java.sun.com/


Chapter 2 
 

RUN FILE SETUP USING SCRIPTS 
 
2.1 Scripting overview and levels 

 
‘Scripts’ can be classified into three levels: ‘user’, ‘scientist’, and ‘DAS’ level scripts. The 

‘user’ scripts would allow the user to modify some specific information in the run file that 
changes frequently from run to run. A scientist could change the ‘scientist’ level scripts on a 
less frequent basis and the ‘DAS’ level scripts will probably be maintained by the DAS group.  

A description of ‘scripts’ that can be used to set up a new IPNS Run is given here. 
Various “parameters” in the run file can be set with appropriate values by using the methods 
in the IPNS.RunfileBuilder.java class (listed in Appendix A). 
In any script that sets up a new Run, a RunfileBuilder object needs to be constructed first.  
This is done by the command, 
 
v[0] = RFBWrapper(infileName) 
 
in the script where infileName is the desired Run file name, for example, hrcs1942 or 
test0001.  The RFBWrapper returns an IPNS.RunfileBuilder object that is stored as the first 
element v[0] of an array v. Once the RunfileBuilder object, v[0], has been created we can set 
various attributes by the command 
 
RFBSetter(v[0], "iName", iname ) 
 
where RFBSetter uses the RunfileBuilder object v[0] to set the iName attribute with the value 
iname. 
Any parameter used in the script can be prompted for through a dialog box if a $ sign is the 
first letter in the line followed by the parameter name, its data type and a string prompt 
message. As an example, the username can be prompted by doing 
 
$ username   String(Your Name)   Enter Username 
 
This would display a dialog box with a text area having the words “Your Name” 
next to a prompt “Enter UserName”. 
 
Comment lines can be put in the script by starting the line with a # sign. It is possible to call a 
script from within another script. This is typically done by passing the original RunfileBuilder 
object, v[0], to the next script as an argument. An example,  
 
Inst(v) 
 
is a call to another script that uses the original RunfileBuilder object, v[0], to set other 
attributes.  
 
 



2.1.1 ‘User’ level script example 
Fig 2-1 shows one ‘user’ level script that sets up a new run file. It show that it is 

possible to call scripts from within scripts as shown in the line ‘Inst(v)’ as discussed earlier. In 
this “makerunfile.iss” script a number of parameters like the run number (runNum), 
instrument name (iName), user name(UserName), run title (RunTitle) and the energy in (Ein) 
for the new run are being set by the RFBSetter method in the RunfileBuilder class. In addition, 
another script ‘Inst(v)’ is being invoked to set a different level of parameters and finally the 
ancillary control parameters are set from a file (lakeshore330.dat) using the 
RFBAddAncillaryEquipment class and the RFBWriter writes all these inputs into a new Run. 

 

Figure 2-1.  “makerunfile.iss”. A ‘user’ level  script. 

 
 
2.1.2 ‘Scientist’ level script example 

 
  In this ‘scientist’ level script, Fig 2-2, the start date for the run is first set. Next a call to 
a  ‘DAS’ level script, Base.iss, see Fig 2-3 is made. A new TimeField is added to the Run file 
using RFBNormalTF and RFBAddFocusedTF.  

 



 

Figure 2-2.  An Instrument Scientist settable script that call the “DAS level” script, Base(v). 

The grouping for the detectors is set using RFBGroupAllSeparate. This makes a 
separate subgroup for all detector elements. The first integer ‘1’ in the parameter is the time 
Field to be associated with all detectors. The LPSD’s can have their segments grouped based 
on a segment map by using RFBGroupIDsBySegmentMap. The end date and time for the run 
is put in using RFBSetEndDateTime. 

2.1.3 DAS level script example 

 In the ‘DAS’ level script parameters from an instrument parameter file can be set 
using RFBSetFromParams (RunfileBuilder rfb, String filename). The absolute filepath needs 
to be present in the filename. It is also possible to provide empty string “” and the default 
instrument parameter file is located and read in. To have this work the instrument name should 
be set first by using RFBSetter(rfb, “iName”, “xxxx”), where xxxx is the instrument prefix. 
 



 

        Figure 2-3.  A “DAS level” script. 

 
Next parameters from a detector calibration table can be set using 

RFBSetFromCalib(RunfileBuilder rfb, String filename). The absolute filepath needs to be 
present in the filename. It is also possible to provide empty string “” and the “default 
instrument calibration file is located and read in. To have this work the instrument name 
should be set first by using RFBSetter(rfb, “iName”, “xxxx”), where xxxx is the instrument 
prefix. 
 

Finally, the discriminator values from a file can be set using 
RFBSetFromDisc(RunfileBuilder rfb, String filename). The absolute filepath needs to be 
present in the filename. It is also possible to provide empty string “” and the default instrument 
discriminator file is located and read in. To have this work the instrument name should be set 
first by using RFBSetter(rfb, “iName”, “xxxx”), where xxxx is the instrument prefix. 

 
 
 
2.2 Parameter setting order 
 

Generally different attributes can be set in any order in the run file except for a few 
exceptions. For instance, the  call to the RFBWrapper is always the first, followed by 
RFBSetter (v[0], “iName”, inameValue). The iName attribute needs to be set before the 
Parameter, DetectorCalibration and discriminator files are read in through 
RFBSetFromParams(v[0],”filename”), RFBSetFromCalib(v[0],”filename”), and 
RFBSetFromDisc(v[0],”filename”) calls. The “numOfHistograms”, RFBSetter ( v[0], 
"numOfHistograms", 1) needs to be set before the TimeFields, for instance, 
RFBAddNormalTF(v[0], 100.0, 2000.0, 5.0, 1),  RFBAddFocusedTF(v[0], 100.0, 5000.0, 2.0, 
2), and the detector groupings, RFBGroupAllSeparate(v[0],1 ,1), are set. Ancillary equipment 
settings can be read in from a file by RFBAddAncillaryEquipment(v[0],  “filename”). The last 
call should be to the RFBWritter(v[0]). 

 
 
 

 



2.3  Viewing parameters set in a new Run 
  
 It is possible to view the parameter values that have been set using scripts. Once again, 
the following command on a command (MS-DOS prompt or xterm) window, 

java IPNS.Runfile.Header C:\IPNS\Test0001.RUN 

will display the values stored in the header of a Run file. 
To view the time field information use the command 

 
java IPNS.Runfile.TimeField C:\IPNS\Test0001.RUN 
 
 

2.3.1 Header file output 
 

Fig 2-4 and Fig 2-5 show the header information from the Test0001.run file that 
makerunfile script has set up. 

 



 

Figure 2-4.  The Header Output after setting up a new Run. 



 

Figure 2-5.  More Header Output. 
  

 



2.3.2 Time field output 
 

Fig 2-6 shows the Time field information that also was set up from the script. 
 

 

       Figure 2-6.  Time field output after a new run has been set up.  

 
 



APPENDIX A 
 
Package description 
The IPNS package contains an Operators directory that has all the java classes that one would 
need to write scripts that set up new runs. A brief description of the purpose and function of 
each of the these operators is described below: 

RFBWrapper (String infileName) 
Creates a wrapper object around the IPNS.Runfile.RunfileBuilder class for use in scripts. It 
returns a RunfileBuilder object that now has access to all public methods in the RunfileBuilder 
class. This class has to be called first in the script. 
 
RFBWrapper2 (String infileName, String iName, int versionNumber,  
 int instrumentType) 
Creates a wrapper object around the IPNS.Runfile.RunfileBuilder class for use in scripts. It 
returns a RunfileBuilder object that now has access to all public methods in the RunfileBuilder 
class. It will set the iName, versionNumber and instrumentType as it creates the new runfile. 
This class has to be called first in the script. To be used instead of RFBWrapper(String 
infileName). 
 
RFBSetStartDateTime (RunfileBuilder rfb) 
Set the start date and time for the run. Makes use of the rfb object provided by the 
RFBWrapper. 
 
RFBSetter (RunfileBuilder rfb, String attr, Object val) 
Set the specified “attribute” attr with the “value” val in the runfile header.  
(List of available attributes will be provided later in the documentation). 
 
RFBSetFromParams (RunfileBuilder rfb, String filename) 
Set in the runfile the parameters from the instrument parameter file, filename.  
The absolute filepath needs to be present in the filename. It is also possible to provide 
empty string “” and the default instrument parameter file is located and read in. To have 
this work the instrument name should be set first by using RFBSetter(rfb, “iName”, 
“xxxx”), where xxxx is the instrument prefix. 
 
RFBSetFromDCalib (RunfileBuilder rfb, String filename) 
Set in the runfile the parameters from the detector calibration table, filename. The absolute 
filepath needs to be present in the filename. It is also possible to provide empty string “” and 
the “default instrument calibration file is located and read in. 
To have this work the instrument name should be set first by using RFBSetter(rfb, “iName”, 
“xxxx”), where xxxx is the instrument prefix. 
 
RFBSetFromDisc (RunfileBuilder rfb, String filename) 
Set the discriminator values from the file, filename. The absolute filepath needs to be present 
in the filename. It is also possible to provide empty string “” and the default instrument 
discriminator file is located and read in. To have this work the instrument name should be set 
first by using RFBSetter(rfb, “iName”, “xxxx”), where xxxx is the instrument prefix. 



 
RFBAddNormalTF (RunfileBuilder rfb, Float min, Float max, Float step, Integer 
TFNum) 
Adds a new TimeField to a Runfile. Here min is the minimum time for the field, max is 
the maximum time for the field, step is the step size for the field and TFNum is the Time 
Field Number. 
 
RFBAddFocusedTF (RunfileBuilder rfb, Float min, Float max, Float step, Integer 
TFNum) 
Adds a new TimeField to a Runfile. Here min is the minimum time for the field, max is 
the maximum time for the field, step is the step size for the field and TFNum is the Time 
Field Number. 
 
RFBAddWavelengthTF (RunfileBuilder rfb, Float min, Float max, Float step, Integer 
TFNum) 
Adds a new TimeField to a Runfile. Here min is the minimum time for the field, max is the 
maximum time for the field, step is the step size for the field and TFNum is the Time Field 
Number. 
 
RFBAddPulseHeightlTF (RunfileBuilder rfb, Float min, Float max, Float step, Integer 
TFNum) 
Adds a new TimeField to a Runfile. Here min is the minimum time for the field, max is the 
maximum time for the field, step is the step size for the field and TFNum is the Time Field 
Number. 
 
RFBGroupAllSeparate (RunfileBuilder rfb, int tf, int hist) 
Set the grouping for the detectors. Makes a separate subgroup for all detector elements. tf 
is the time Field to be associated with all detectors.       
 
RFBGroupIdsSeparate (RunfileBuilder rfb, int tf, int hist, int[] list) 
Set the grouping for the detectors. Makes a separate subgroup for all Ids listed. tf is the 
time field to be associated with all detectors and int[] is the list of detector Ids.       
 
RFBGroupIdsSeparateByAngle (RunfileBuilder rfb, int tf, int hist, float[] lowerValue, 
float[] upperValue) 
Set the grouping for the detectors by angle. Returns an integer array of IDs in a specified 
detector angle range. tf is the time Field to associate with all detectors and hist the 
histogram that the ids will be binned in. lowerValue and upperValue are the lower and 
upper limits of the angles to be considered.   
 
RFBGroupIDsBySegmentMap (RunfileBuilder rfb, int tf, int hist) 
Makes a separate subgroup by segment map. Here tf is the time Field to associate with all 
detectors and hist the histogram that the ids will be binned in. 
 
RFBAddAncillaryEquipment (RunfileBuilder rfb, String filename) 



Set the information about the ancillary control values from the file, filename. The absolute 
filepath needs to be present in the filename.  
 
RFBModifyHeaderElement (RunfileBuilder rfb, String attr, Object val) 
Modify the specified “attribute” attr with the “value” val in the runfile. 
 
RFBSetEndDateTime (RunfileBuilder rfb) 
Set the end date and time for the run. This should the last call before the runfile is written out. 
 
RFBWriter (RunfileBuilder rfb) 
Will write out the runfile. 
 
Instdir (String iname) 
Returns string with InstrumentDirectory for inst string iname. 
 
Datadir (String iname) 
Returns string with DataDirectory for inst string iname. 
 
NextRun (String iname) 
Returns formatted string with run number for next run to be created for inst. 
 
InextRun (String iname) 
Returns integer with run number for next run to be created for inst. 
 
 
IncNextRun (String iname) 
Increments the last run in parameter file 
 
RawDASLoad (String infileName) 
This operator reads data from an ASCII text file and stores the data stored in a DataSet.  The 
data format that is read is basically just x, y pairs in columns with some preliminary 
information lines. 

 
 



APPENDIX B 
 
TimeField Table output 
 
tMin, tMax, tStep, NumOfChannels(), timeFocusBit, emissionDelayBit, 
constantDelayBit, energyBinBit, wavelengthBinBit, pulseHeightBit, Boolean used 


	Package description

