
A Holistic Management Framework for Software Acquisition

55

TUTORIAL

A HOLISTIC MANAGEMENT FRAMEWORK
FOR SOFTWARE ACQUISITION

Yacov Y. Haimes, Richard M. Schooff, and Clyde G. Chittister

In the face of the federal government’s recent downsizing effort and the
increasing pressure to reduce government expenditures and improve oversight
of the use of public funds, reform of government acquisition policies and
practices has been a major initiative. While software acquisition is increasingly
included in the discussion of acquisition reform, the concept of software
acquisition is in fact a misnomer (even though it is included in the title of this
paper). Our government acquires systems, not exclusive software per se; these
systems increasingly include a major software component.

Software’s critical impact on system reliability and performance makes effective
software acquisition policies and strategies essential. This article considers
software acquisition issues being addressed in an ongoing project conducted
by the Center for Risk Management of Engineering Systems at the University
of Virginia, and the Software Engineering Institute, Carnegie Mellon University.

Because preventive action is the key to successful risk management, one
must plan how to avoid software system risk early in the system life cycle—
before the software is purchased. The federal government’s expenditures for
software products and services are tremendous, and government acquisition
procedures, regulations, and results are readily available for public review.
This article focuses on government mission-critical software acquisition, and
particularly software acquisition efforts of the Department of Defense (DoD).
The results of this study will be useful to other government agencies as well as
to the private sector.

ffective management of modern,
complex processes such as software
acquisition requires capable, mature

direction. Good management of techno-
logical systems must address the holistic
nature of the system in terms of its hierar-
chical, organizational, and functional de-
cision making structure; various time ho-

rizons; the multiple decision makers,
stakeholders, and users of the system; and
the host of technical, institutional, legal,
and other socioeconomic conditions that
require consideration. Good management
also implies the ability to identify program
risks, evaluate their potential adverse im-
pact, and effectively incorporate risk con-

E




Acquisition Review Quarterly—Winter 1997

56

siderations in the decision making man-
agement framework.

The fundamental goal of this article is
to describe the development of a quanti-
tative risk management framework for
software acquisition, centered on hierar-
chical holographic modeling (HHM)
(Haimes, 1981). This management frame-
work can then be generalized for applica-
tion to other emerging large-scale systems
and processes.

Here we build on current knowledge
and experience in software acquisition,
software engineering, management, and
decision making, and in risk analysis, and
incorporate this knowledge with the prin-
ciples that guide systems engineering. The
proposed holistic vision of the software
acquisition process and the proposed
methodological framework for the man-
agement of this process are ultimately
aimed at controlling the risk of projects’
cost overruns and completion schedule
delays. For a discussion of managing soft-
ware technical risk, see Chittister and
Haimes (1994a).

THE APPROACH

Recognizing that software is only one
component of a larger system (and that
software is, itself, a system made up of
multiple components, elements, and enti-
ties), one must manage software acquisi-
tion by considering the larger picture and
take a systemic approach to resolving the
complex interconnections of the multiple
participants, activities, events, risks, and
other process elements. With the ever-in-
creasing importance and complexity of the
software component of modern systems,
it is essential that software acquisition be
addressed in terms of its overall system.

We will not explicitly address the mul-
tiple aspects associated with the software
acquisition process. Our objective is in-
stead to develop a modeling framework
that will enable the consideration of such
complexities and interconnectedness, and
then outline the approach as it applies to
particular subcomponents of software ac-
quisition: the process vision, composed of
its multiple stages of activities; the pro-

Dr. Yacov Y. Haimes earned his PhD. degree in Systems Engineering from the University of
California, Los Angeles. He holds the Lawrence R. Quarles professorship in the School of En-
gineering and Applied Science at the University of Virginia, and is a member of the Systems
Engineering and Civil Engineering faculties. He is the Founding Director (1987) of the Univer-
sity-wide Center for Risk Management of Engineering Systems at the University of Virginia. On
the faculty of Case Western Reserve University for 17 years, he was Chair of the Systems
Engineering Department, and Director of the School-wide Center for Large-Scale Systems and
Policy Analysis.

MAJ Richard M. Schooff is an assistant professor of mathematical sciences at the United
States Air Force Academy, Colorado. He received a Ph.D. in systems engineering from the
University of Virginia. He is a member of the Institute for Operations Research and the Manage-
ment Sciences (INFORMS) and the International Council on Systems Engineering (INCOSE).

Clyde G. Chittister earned his BS degree in Computer Science from Pennsylvania State Uni-
versity and has over 29 years experience in software and systems engineering. At the Software
Engineering Institute, he recently managed and led technical development of their Risk Man-
agement Program.



A Holistic Management Framework for Software Acquisition

57

gram consequence vision, which includes
technical performance, cost, and schedule;
and the community maturity vision, which
includes user, customer, contractor, and
technology.

This work draws on a holistic represen-
tation of such complex systems and pro-
cesses termed hierarchical holographic
modeling (HHM). Fundamentally, HHM
is grounded on the premise that complex
systems and processes, such as the soft-
ware acquisition process, should be stud-
ied using more than one single model,
view, or perspective. HHM possesses a
dual nature: it is holistic, investigative
paradigm, and a mathematically sound, hi-
erarchical, multiple-objective decision
making methodology. Exploiting the in-
herent synergy of HHM’s duality provides
the necessary theoretical, methodological,
and practical foundation for a risk assess-
ment and management framework for the
software acquisition (and other large-
scale) process. The approach of this work
(see Figure 1) is to represent software ac-
quisition by an HHM model, enhance and
extend HHM’s investigative capabilities
for exploring and modeling the various
decompositions and submodels, and then
extend the quantitative capabilities of
HHM for resolving the conflict and over-
lap associated with the objectives of the
various submodels.

HHM FOR SOFTWARE ACQUISITION
Figure 2 depicts an HHM model for

software acquisition. The six decomposi-
tions, or perspectives, of the software ac-
quisition HHM indicate the multiple di-
mensions associated with software acqui-
sition. The acquisition process requires the
participation of numerous organizations
and individuals with specific functions and

responsibilities as well as requirements to
coordinate their activities with the other
parties. These organizations have their
own goals and objectives, which are of-
ten in competition with each other. Risks
and uncertainties inherent to the software
acquisition process complicate the several
key decisions that, in turn, affect the ulti-
mate software product. Only by explor-
ing the dimensions and perspectives of the
overall systems acquisition and properly
coordinating the objectives and require-
ments from each model perspective can
one effectively manage the software ac-
quisition process.

Software Acquisition Submodels.
Software acquisition capability maturity
implies the existence of, and adherence to,
a specified, documented, and repeatable
software acquisition process that is man-
aged through quantitative strategies
(Sherer and Cooper (draft) 1994). There-
fore, prerequisite to a mature software
acquisition customer community is the
establishment, analysis, and acceptance of
a software acquisition process as well as
an appropriate quantitative management
framework.

The multiple views the HHM provides
are represented by the various hierarchi-
cal holographic submodels (HHSs), where
each HHS addresses the system from one
particular perspective, or dimension. As
each perspective may have its own unique
representation of issues, limitations, and
factors, this diversity would likely lead to
HHSs of different modeling topology, na-
ture, or structure (e.g., analytical vs. de-
scriptive models) (see Figure 3). For in-
stance, the process view of the software
acquisition HHM represents a progression
of events or a sequence of decisions in the



Acquisition Review Quarterly—Winter 1997

58

software acquisition process that may be
analyzed through process modeling
(Blum, 1992), and then quantified by one
of many appropriate tools, such as deci-
sion tree methods or multiple-objective
decision tree methods (Haimes et al.,
1990a). The cost element of the program
consequences decomposition could be
modeled by probability distribution analy-

sis, supported by analytical software cost
estimation models (e.g., constructive cost
model (COCOMO) (Boehm, 1981)). The
software technical element of the program
consequence view may be quantified in
terms of one of several measurable objec-
tives (e.g., reliability, availability, main-
tainability) and may use fault tree analy-
sis or Markov process models in its solu-

Figure 1. Quantitative Management Framework

User: Customer: Contractor:

Max Tech Performance Max Tech Performance Max Profit
Min Development Time Max Customer–Contractor Relation Max Future Earnings Potential

Min Development Time
Min Schedule Deviation



A Holistic Management Framework for Software Acquisition

59

Figure 2. Hierarchical Holographic Model for Software Acquisition

Figure 3. Demonstration of Analytic Methods for HHS Solution



Acquisition Review Quarterly—Winter 1997

60

tion (Johnson, 1989). Similarly, the sched-
ule perspective may be analyzed through
program evaluation review technique
(PERT) or related methods (Boehm,
1981). While each HHS can then be solved
independently, a coordinated solution to
the overall problem must be resolved at
the highest level of the HHM.

In this article, we focus on the process
perspective of software acquisition, devel-
oping a modeling framework that de-
scribes the participants, inputs, activities,
decisions, and interrelations of the vari-
ous elements of software acquisition.

Multiple Objective Resolution. The
full value of structuring the software ac-
quisition analysis in this manner is real-
ized by using a multiple-objective con-
struct. Consider, for example, an over-sim-
plification of the objectives of the end-
user in a software acquisition effort. The
user wants a system that achieves a high
level of technical performance, and gen-
erally prefers that the system be developed
and delivered as soon as possible. These
statements can be formalized as F1; maxi-
mize technical performance, and F2; mini-
mize development time, where F

i
 repre-

sents a specific objective. As Figure 1
shows, in addition to the user’s multiple
objectives, similar multiple statements can

be expressed for the other participants in
the software acquisition process.

The multiple-objective approach pro-
vides a context for achieving a “win-win-
win” environment for the user, customer,
and contractor. When associated with each
view of the hierarchical holographic mod-
els, this approach not only provides a
promising structure for resolving compe-
tition among participants, but also helps
decison makers consider system trade offs
such as between performance and cost, or
between schedule and technology.

BACKGROUND: SOFTWARE
ACQUISITION ISSUES

Major issues in software acquisition
today include the criticality of the software
component in modern systems, increasing
pressure for reform initiatives, and the
need for a less adversarial acquisition en-
vironment.

SOFTWARE’S CRITICALITY
As computer use has become central to

organizational activities and engineering
system design, the software component of
these systems has become increasingly
important. That criticality is well docu-

Figure 4. Hierarchical Holographic Model for Software Acquisition



A Holistic Management Framework for Software Acquisition

61

mented and universally accepted (Boehm,
1984; Haimes and Chittister, 1993; Blum,
1992; GAO, 1990). Chittister and Haimes
(1994a) document a shift in importance
from hardware to software within mod-
ern systems. Software has become the
principal system design component, as
well as the principal factor affecting sys-
tem quality. In fact, software has been
described as the “Achilles’ heel” of mod-
ern weapon systems because it is a key
determinant of development schedules and
because key functions such as navigation,
enemy detection, and fire control depend
on it (GAO, 1992b). Examples of system
failures whose root was failure of the soft-
ware have been well publicized (e.g.,
GAO, 1992a). Due to the continued ex-
pansion of software’s commanding role in
modern systems (and the budget for such
systems), the ability to effectively acquire
and integrate software into these systems
will be increasingly important.

PARTICIPANTS IN THE SOFTWARE

ACQUISITION PROCESS
The three principal participants, or

groups of participants, in an acquisition
endeavor are the user, the customer, and
the contractor. In government acquisition,
these groups rarely constitute single indi-
viduals, but each often comprises one or
more organizations and their representa-
tives. Under current practice the user and
contractor communities generally commu-
nicate through the customer community
(Figure 4). Re-engineering reform initia-
tives of the acquisition process would en-
courage more direct user-contractor com-
munication.

In DoD acquisition activities, the user
community may be a major Command
from one of the services, a Unified or Joint

Command, one of the military depart-
ments, or even DoD itself. Difficulties in
directly identifying a single user or group
of users are evident. Quite often, a repre-
sentative user is designated to act on be-
half of the larger user organization. In gen-
eral, users are responsible for identifying
and specifying operational needs, validat-
ing the criticality of those needs, and re-
ceiving the completed system.

The customer, which in DoD terms re-
fers to the acquisition authority, and more
specifically the acquisition managers and
program managers, is the purchasing agent
acting on behalf of the user. The customer
is responsible for accurately translating the
user’s needs into the contractual language
of systems requirements, writing the con-
tract documents, selecting the best quali-
fied contractor(s), monitoring system de-
velopment, accomplishing contract man-
agement and negotiation functions, and
conducting system testing and acceptance.

The contractor must develop a system
that meets the requirements, guidelines,
and limits stated in the contract. The abil-
ity of each participant to complete its task
and effectively coordinate activities with
the other participants is central to a suc-
cessful acquisition program.

SOFTWARE ACQUISITION RESEARCH
Software Development. Over the past

three decades, software development prac-
tices and processes have been much stud-
ied. Early efforts to apply and extend the
practices and principles of engineering to
software led to the development of a new
discipline: software engineering. More re-
cent development of software life cycle
models (Boehm, 1981) and software pro-
cess development models (Feiler &
Humphrey, 1992), have helped to bring a



Acquisition Review Quarterly—Winter 1997

62

degree of standardization and process im-
provement to the software development
community.

Much research has focused on improv-
ing the software development process (e.g.,
Humphrey & Kellner, 1989; Kellner, 1991;
Heineman et al., 1994). Business realities
such as strong competition, pressure for in-
creased profits, and external regulations
have spurred the momentum for an im-
proved software development process
(Austin & Paulish, 1993). Improving the
software development capabilities of soft-
ware vendors by improving their software
development process maturity is the fo-
cus of the Software Engineering Institute’s

Capability Maturity Model (CMM)
(Paulk, Weber, Garcia, Chrissis & Bush,
1993). This tool “provides software or-
ganizations with guidance on how to
gain control of their process for devel-
oping and maintaining software and
how to evolve toward a culture of soft-
ware engineering excellence” (Paulk et
al., 1992). Other related research includ-
ing software process assessment, soft-
ware metrics, CASE tools, software en-
gineering, software quality, concurrent
engineering, and software reliability en-
gineering have been accomplished pre-
dominately on behalf of the software
contractor, to aid in the actual develop-

LEVEL FOCUS KEY PROCESS AREAS RESULT

5 Process Continuous Process Improvement Productivity
Optimizing Optimization Technology Insertion & Quality

Process Management
4 Quantitative Software Quality Management

Controlled Management Defect Prevention
Asset Management

Software Project Planning & Mgmt
Process Focus

Integrated Software Risk Management
3 Project Project Team Coordination

Defined Management Software Engineering Monitoring
Process Assurance
Training

Software Contracting Preparations
Software Contract Initiation

2 Contract Requirements Management
Organized Management Software Contract Tracking

Software Contract Oversight
Acceptance, Transition, & Support

1 Product and Risk
Initial Resources

Table 1. Initial Software Acquisition Maturity Model (SAMM),
based on Sherer & Cooper (1994)



A Holistic Management Framework for Software Acquisition

63

ment of software and to provide visibil-
ity, through metrics, to the customer.

Software Acquisition Research. Un-
fortunately, when compared to software
development research, relatively little has
been studied and written for the cus-
tomer’s benefit, i.e., the development of
guidelines and instruction of how to ef-
fectively acquire a software product and
manage the acquisition effort. Recent,
original work by Sherer and Cooper
(1994) and parallel research (Baker, Coo-
per, Corson, & Stevens, 1994) have led to
initial versions of a software acquisition
maturity model (SAMM) for maturing the
acquisition capabilities of the customer
community. While the development of a
SAMM is still in its infancy, and revisions
of draft models are to be expected, the ini-
tial results appear promising. As with the
CMM, the SAMM is both an evaluative
tool as well as a way to increase a
community’s capability. An initial version
of the SAMM (Table 1) proposes a struc-
ture of five progressive levels of maturity
for software acquisition capability, along
with key process areas for each level. In-
creasing the acquisition capability of the
customer community improves productiv-
ity and program quality while reducing
risk.

The maturity progression is intended as
an upward flow: satisfying the require-
ments of one level leads to higher level
functions. While a lower level organiza-
tion may be practicing elements of a
higher maturity level, full progression to
the next higher level is contingent on all
key process areas being fulfilled (Sherer
& Cooper, 1994). Maturity in software ac-
quisition capability implies a verified, re-
peatable, effective process and a quanti-

tative management framework for govern-
ing that process. At Level 3 maturity, the
customer employs an integrated project
management, risk management, and pro-
cess management strategy (Figure 5).
Level 4, quantitative management, re-
quires the customer to set and monitor
quantitative quality goals for processes
and products (Sherer & Cooper, 1994).
The quantitative management framework
described here establishes the necessary
vision and practices required for the cus-
tomer community’s acquisition matura-
tion.

Software Risk Research. As in many
fields, software development has experi-
enced its share of project disasters. Risk
assessment and risk management specifi-
cally for software systems is a relatively
recent area of research. Boehm’s
groundbreaking work (1981) introduced
methods of decision making under uncer-
tainty to this field. The Software Engineer-
ing Institute (SEI) of the Carnegie Mellon
University, a federally funded research and
development center with a broad charter
to address software engineering technol-
ogy, is a central participant in current soft-
ware risk research. One of the SEI’s fo-
cus areas is software risk management.
The SEI risk paradigm (see Figure 5) de-
picts risk assessment and risk management
as a process with several phases—identi-
fication, analysis, planning, tracking, and
controlling functions—which parallel the
general concepts of risk identification, risk
quantification, risk analysis, risk manage-
ment, and risk mitigation.

One of SEI’s major functions has been
to develop methodologies for addressing
several of the software risk management
phases. The Risk Taxonomy-Based



Acquisition Review Quarterly—Winter 1997

64

Questionnaire (TBQ) is “a method for sys-
tematic and repeatable identification of risks
associated with the development of a soft-
ware-dependent project” (Carr, Konda,
Monarch, Ulrich, & Walker, 1993). The
Software Risk Evaluation (SRE) method
(Sisti & Joseph, 1994) is a quantification
method for assessing and analyzing risks for
a project. A recent development, Team Risk
Management (TRM) (Higuera et al., 1994),
extends risk management practices to in-
clude team-oriented activities involving the
customer and contractor, where these groups
apply risk management methods together.
TRM is a framework for cooperative risk
management; it relies on strengthened risk
communication between groups and incor-
porates the TBQ and SRE as fundamental
risk analysis and assessment methods.

ACQUISITION REFORM
Acquisition reform is currently a ma-

jor initiative within government. The

administration’s Plan for Economic De-
velopment in the Technology Sector
(Clinton and Gore, 1993) provides a broad
plan to reinvent the federal acquisition sys-
tem. The need for improvement has been
expressed across government sectors. In
a survey of senior executives in the fed-
eral government, a majority stated that
“the procurement process frequently re-
sults in procurement decisions that are
neither cost effective nor in the best inter-
ests of the government” (SAMERT, 1994).
The Secretary of Defense stated that “the
existing DoD acquisition system can be
best characterized as an ‘industrial era bu-
reaucracy in an information age’ ” (Perry,
1994).

Although the defense acquisition sys-
tem provides a structured, highly regulated
process for systems acquisition, the regu-
lations and restrictions imposed on the
process over time have often hampered
efforts toward efficiency and creativity. In

Figure 5. SEI Risk Management Paradigm, from Higuera et al. (1994)



A Holistic Management Framework for Software Acquisition

65

recent testimony before the Senate Com-
mittees on Governmental Affairs and
Armed Services, the Undersecretary of
Defense for Acquisition and Technology
John Deutch, summarized the problem
(1994):

The system is too cumbersome and
takes too long to satisfy customer re-
quirements. In addition, the system
adds cost to the product procured.
DoD has been able to develop and
acquire the best weapon and support
systems, not because of the system,
but in spite of it. And they did so at a
price—both in terms of the sheer
expense to the nation and eroded
public confidence in the DoD acqui-
sition system.

The dilemma facing any government
acquisition reform is how to provide suf-
ficient oversight for the expenditure of
public funds, with the least amount of in-
trusive policy and regulation, yet still ac-
complish the acquisition goal. Acquisition
reform must ensure the continued exist-
ence of important safeguards designed to
ensure the integrity of the acquisition pro-
cess. Reforms that reduce regulatory over-
sight may possibly increase the risk of
mismanagement of public funds. Law-
makers often must balance the risks in-
herent in reducing oversight with the cost
to industry and government to comply
with oversight regulations.

Of particular concern regarding soft-
ware acquisition are some of the key char-
acteristics associated with software acqui-
sition: Software evolves rapidly, it is dif-
ficult to explicitly define and specify, ac-
quisition officials often lack software un-
derstanding, and there is difficulty in esti-

mating project costs and time require-
ments. The current acquisition process
requires an average of 16 years to field a
new weapons system (Pages, 1994), while
software and computer product life cycles
are as short as 1 or 2 years. A software
solution could become obsolete before it
is delivered.

Other ongoing issues of software acqui-
sition include: incentive-based contract-
ing vehicles and their appropriate appli-
cation, relaxation of “mil-spec” require-
ments procurement, and a move to com-
mercial off-the-shelf (COTS) software
purchases. DoD’s acquisition system of
audit activities, which includes the possi-
bility of criminal sanctions for violating
established procedures has cultivated a cli-
mate of adversarial relationships rather
than partnerships between customer and
contractor (Defense Science Board, Sep-
tember 1987). This has also led to a risk-
adverse mentality for the program man-
ager and the customer community; there
is no reward for taking risks and huge pen-
alties for failure. There is a strong need
for a “win-win-win” environment for the
user, customer, and contractor communi-
ties without the institutionalized mistrust
of the current system.

HOLOGRAPHIC MODELING
FOR SOFTWARE ACQUISITION

The dominating attributes of modern,
large-scale systems are their multidimen-
sional nature, hierarchical competing ob-
jectives, multiple participants, a wide ar-
ray of pertinent issues demanding consid-
eration, and inherent uncertainty. The
complexity of the software acquisition
process and the multiplicity of the parties



Acquisition Review Quarterly—Winter 1997

66

involved in that process from planning, to
development, to delivery, and to mainte-
nance defy the success of any attempt to
represent this process by any one single
model, structure, or paradigm. In fact, rep-
resentation within a single model of all the
aspects of a large-scale system is so im-
practicable as never to be seriously at-
tempted. However, the inability to address
this critical attribute of large-scale systems
is a major stumbling block. As Haimes
(1981) originally stated,

To clarify and document not only the
multiple components, objectives,
and constraints of a system but also
its welter of societal aspects (func-
tional, temporal, geographical, eco-
nomic, political, legal, environmen-
tal, sectoral, institutional, etc.) is
quite impossible with a single model
analysis and interpretation. Given
this assumption and the notion that
even present integrated models can-
not adequately cover a system’s as-
pects per se, the concept of hierar-
chical holographic modeling consti-
tutes a comprehensive theoretical
framework for systems modeling.

ACCEPTANCE OF THE HHM
Since its origin in 1981, the HHM has

provided a general framework for address-
ing the modeling of complicated, multiple
objective problems of large scale and
scope. While not receiving an abundance
of direct reference in the literature, nev-
ertheless HHM’s multivisionary ap-
proach to problem definition and risk
identification has been widely, although
often indirectly, accepted. For example,
Yeh et al. (1991) reject the single-
model, step-by-step approach in man-

aging complex software engineering de-
velopment. They state:

In most current practice, decisions
are based on a one-dimensional view
prescribed by waterfall-like models.
This view consists of a single explicit
perspective on a set of activities and
their interdependencies and sched-
ule—which form an activity struc-
ture. In the waterfall model, the ac-
tivities are sequentially scheduled
into phases: requirements analysis,
design, codes, tests, and so on. Other
models suggest adding a second per-
spective, a communication structure
... still models like the spiral model
of software development and en-
hancement and models based on pro-
cess-maturity levels suggest includ-
ing process design and monitoring.

Such an argument, highlighting the
limitations of a single model to capture
the multiple aspects of a complex system,
underscores the contributions of the HHM
approach. Even the title of a recent text,
Software Engineering: A Holistic View
(Blum, 1992), denotes the criticality of
considering the multidimensionality of
complex processes such as software de-
velopment. Throughout his book,
Metasystems Methodology, Hall (1989)
uses HHM to recount the history of sys-
tems methodology, and to distinguish the
varied applied systems methodologies
from each other. He states:

History becomes one model needed
to give a rounded view of our sub-
ject within the philosophy of hierar-
chical holographic modeling, de-
fined as using a family of models at



A Holistic Management Framework for Software Acquisition

67

several levels to seek understanding
of diverse aspects of a subject and
thus comprehend the whole.

Many current risk identification meth-
ods, evaluation techniques, and issue in-
vestigation schemes build on the general
principles embodied by the HHM. For
example, careful examination of the SEI
taxonomy (Carr et al., 1993), its purpose,
and methodology indicate a vision that is
harmonious with HHM: the taxonomy is
hierarchical in structure, is constituted by
progressive levels of detail and abstrac-
tion, provides a way to address the mul-
tiple dimensions of a problem, and serves
to identify areas of concern in a software
acquisition endeavor. Recognizing the kin-
ship of these methods to the HHM
strengthens the parent methodology, and
further demonstrates the efficacy, appro-
priateness, and desirability of the HHM
as a framework for analyzing software
acquisition and other large-scale prob-
lems.

HHM FOR SOFTWARE ACQUISITION
The role of models is to represent the

intrinsic and indispensable properties that
serve to characterize the system: that is,
good models must capture the essence of
the system. Clearly, the multidimension-
ality of the acquisition process, and the
large number of groups, organizations, and
people of many disciplines that are en-
gaged in this process defy the capability
of any single model to represent the es-
sence of the acquisition process. To over-
come the shortfalls of single planar mod-
els and to identify all sources of risk asso-
ciated with the software acquisition pro-
cess, an HHM framework will be adopted
here. HHM assumes an iterative approach

to providing the structure for identifying
all risks. If one fails to identify a risk
source with the current views of the HHM,
then expansion of the model to include a
new decomposition is possible. This pro-
cess, itself, will eventually capture all risk
sources.

The HHM developed here constitutes
the six subdivisions or perspectives shown
in Figure 2. Note that each subdivision is
represented within the HHM framework
by a separate submodel. This also implies
that, when modeled, each of the six sub-
divisions and the corresponding sub-sub-
divisions will be represented by a set of
objective functions; constraints; and de-
cision, state, exogenous, and random vari-
ables. Obviously there will be common
goals and objectives, as well as separate
and possibly conflicting and competing
objectives.

For notational purposes, the model of a
subdivision will be termed hierarchical ho-
lographic submodel (HHS); thus, there are
six HHSs in the HHM of the acquisition
process. Here we do not delve into the
theoretical and methodological grounding
of the HHM as a decision making tool (see
Haimes, 1981, Haimes, Tarvainen, Shima,
& Thadathil, 1990); rather, we focus on
the utility of the HHM framework as a
mechanism for the assessment of risk asso-
ciated with the software acquisition process.

HHM FOR SOFTWARE ACQUISITION

RISK IDENTIFICATION
HHM has been used successfully for

risk identification in a wide variety of ap-
plications (Haimes et al., 1994). Using the
software acquisition HHM model (Figure
2), a systemic exploration of the software
acquisition risk can be conducted through
the multiple visions of the model. As an



Acquisition Review Quarterly—Winter 1997

68

example, from the program consequence
perspective, the software acquisition pro-
cess may be divided into three conse-
quence areas: technical, cost, and sched-
ule.

1. Technical. In a software context,
software technical consequences are
concerned with the quality, preci-
sion, accuracy, and performance
over time of the software.

2. Cost. Refers to the programmed and
unexpected expenditures for procur-
ing the software system, along with
labor, capital, and other non-mon-
etary costs.

3. Schedule. Concerns the establish-
ment of, adherence to, and changes
of a temporal development plan
from which systems integration
schedules and operational deploy-
ment schedules are based.

Figure 6 depicts one such representa-
tion from the perspective of program con-
sequence HHS, focusing on the cost risks
of the software acquisition effort—in par-
ticular, the cost risks associated with each
community (user, customer, contractor,
and technology).

Using the program consequence per-
spective as the primary vision, one may
then examine all such consequences that
emerge from the participant communities
(e.g., What effects will the customer com-
munity have on the schedule?). Robust ap-
plication of the HHM involves a thorough
examination from multiple combinations
of perspectives the consequences and fac-
tors associated with the software acquisi-
tion effort. Such a comprehensive analy-
sis produces a wealth of understanding of
the strengths and weaknesses associated
with an acquisition effort, provides a
framework for devising a management
plan to deal with the identified shortcom-
ings, and maintains the holistic perspec-
tive critical to program success.

Figure 6. Program Consequence Submodel: Cost Focus



A Holistic Management Framework for Software Acquisition

69

SOFTWARE ACQUISITION PROCESS MODELS

Each decomposition of the HHM de-
picted in Figure 2 provides a unique per-
spective for evaluating and describing
software acquisition. In this section, we
consider the process decomposition of the
software acquisition HHM. Developing
the process HHS allows one to focus on
identifying, understanding, and modeling
the progression of activities and interre-
lations associated with the software acqui-
sition process.

SOFTWARE PROCESS MODELING
Discussion of the software process in

the literature focuses primarily on soft-
ware development processes and on the
contractor’s role in those processes. Of-
ten referred to as the software life cycle,
the software development process is the
collection of activities that begins with the
identification of a need and concludes with
the retirement of the software product that
satisfies the need. Traditionally, the soft-
ware process has been described in terms
of the “waterfall model” (Boehm, 1976).
In this model (which is an adaptation from
the hardware development process model)
there is a basic forward flow, or progres-
sion of activities and events. While the
model presents a logical, organized ap-
proach, its inflexibility in adapting to the
unique requirements of modern software
development has led many to believe that
this model is discredited (Blum, 1992).
More recent representations of the soft-
ware development process have included
iterative, prototyping activities. For ex-
ample, Boehm’s spiral model (1988) con-
sists of a series of learning cycles, with
each iteration including the phases of iden-

tification, evaluation, planning, and test-
ing. With each successive iteration, greater
insight is gained, and system development
is improved.

Most current software acquisition pro-
cesses still follow a waterfall approach.
One major initiative associated with cur-
rent acquisition reform initiatives is modi-
fying the existing process to better meet
the unique requirements of software de-
velopment. Improvements allowing for
adaptive design, prototyping, and other
iterative development approaches are be-
ing recommended (Scientific Advisory
Board, 1994).

As software acquisition encompasses a
range of activities and concerns far beyond
that of merely developing a product, ex-
isting process models are inadequate for
fully describing the software acquisition
process. The process models developed in
this section are descriptive in nature: they
indicate the basic activities, events, inter-
relations, and functions of the software
acquisition process as currently practiced
(or as intended to be practiced). Realiz-
ing that analyses of the process and pro-
cess improvement, alone, are not sufficient
to accomplish the larger goal of improv-
ing software acquisition (Feiler, 1994),
these models constitute an initial vehicle
for examining the multiplicity of elements
associated with software acquisition.

Software acquisition process models
provide a representation of the progres-
sion of interrelated activities, the interac-
tions of the participant communities, the
functions that each participant accom-
plishes, and the means for analyzing the
impact of these actions on the actual soft-
ware acquisition effort. Each stage of the
model consists of several elements or ac-
tivities that define the principal contribu-



Acquisition Review Quarterly—Winter 1997

70

tion of that phase to the overall process.
Before developing a fully detailed model,
we first examine the essential elements
and activities of the software acquisition
process. Once these fundamental elements
have been identified, we add complexity
and detail to the model. Again, the intent
is to describe the current process and to
work within that context, not to prescribe
an ideal process.

ESSENTIAL SOFTWARE ACQUISITION

PROCESS MODEL
Essence refers to the object of concern,

or inherent nature of an activity (Brooks,
1987). Using this definition, the essence
of the software acquisition process is find-
ing a solution that meets the stated need.
By initially focusing on the essence of this
process, we will have a context from
which to address the more detailed issues
that complicate the process’ effectiveness.

Abstraction of the software acquisition
process leads to the simplified model
shown in Figure 7. This model takes the
user’s perceived real-world need as input
and produces a solution to meet that need.
The model contains three translation ac-

tivities, which together represent a trans-
formation from a stated need to a solu-
tion:

1. From the user’s real-world state-
ment of need to a requirements
statement that details an intended
solution for the need.

2. From the requirements specification
statement to a development and
specification statement. This state-
ment includes the details of design,
process, and evaluation along with
the method of selecting a contrac-
tor to implement the development
plan.

3. From the development statement to
an actual system that satisfies the
user’s real-world need.

The model highlights the understand-
ing each participant community must have
of its role in the process. As requirements
are developed from input originating in
the user’s domain, the customer must un-
derstand the user’s domain and then be

Figure 7. Essential Software Acquisition Process Model,
adapted from Blum (1987)



A Holistic Management Framework for Software Acquisition

71

able to generate system requirements that
are usable by the contractor. These require-
ments, however, are not specific enough
to provide sufficient detail to fully define
the intended system. Therefore, require-
ments must be translated into more for-
mal, detailed system design and develop-
ment statements. The contractor’s under-
standing of software tools and environ-
ments must also extend to an understand-
ing of the implementation domain—that
domain in which the developed system
will operate.

The essential model explains why the
software acquisition process is so compli-
cated: It requires the coordinated activi-
ties of several participant communities,
necessitates experience in several do-
mains, and depends on a series of diffi-
cult translation activities. As software con-

tinues to assume a greater role in modern
systems, the difficulties of software acqui-
sition become the overriding difficulties
in systems acquisition. Technology is
changing so rapidly, and communication
between the three communities is getting
increasingly complicated, especially be-
cause of DoD’s demanding operational
needs that precipitate the requirement for
state-of-the-art systems. These facts con-
stitute the driving force of the software
acquisition process.

DETAILED SOFTWARE ACQUISITION
PROCESS MODEL

Expanding the level of detail included
in the essential model leads to the model
depicted in Figure 8. The seven stages of
the detailed model parallel that depicted

Figure 8. Detailed Software Acquisition Process Model



Acquisition Review Quarterly—Winter 1997

72

in Figure 7. Stage 0 corresponds to the in-
put to the model, the need developed by
the user; stage 1 parallels requirements
specification; stages 2, 3 and 4 are an ex-
panded treatment of the development ac-
tivity; and stages 5 and 6 constitute the
system phase of the previous model.

In Figure 8, boxes represent an activity
or function to be accomplished. Circles
indicate current information, state of
events, or other contributing factors that
cannot be manipulated by decisions made
in the acquisition effort. Octagons indi-
cate output results that require monitor-
ing and managing and are affected by de-
cisions made by the participants in the
acquisition effort. The three arrows indi-
cate the three translation activities. The
curved arrows above each stage’s bound-
ary indicate the possibility for iteration in
the process. While not institutionalized in
the current process, reform initiatives and
reengineering activities indicate a grow-
ing support for an iterative path through
the acquisition process.

Stage 0: Initial Stage. This stage is a
precursor to the actual acquisition activi-
ties; however, the initial actions and abili-
ties that proceed from this stage affect the
balance of the acquisition effort. Although
this stage involves both the user and cus-
tomer communities, their actions at this
point are independent of one another. The
user, based on operational experience and
training, develops an operational need,
provides a review process to formalize,
validate, and prioritize the need, and for-
wards this need to the appropriate acqui-
sition liaison agency.

Stage 0 also comprises the baseline lev-
els for two key elements: state-of-the-art
software technology, and customer matu-

rity. Recent investigation has shown that
“application-knowledgeable, technically
skilled leaders are the military’s limiting
resource in acquiring today’s computer
technology” (SAMERT, 1994).

The continued downsizing of the fed-
eral government, and the DoD in particu-
lar, further exacerbates this problem.
Many highly qualified acquisition officials
are taking advantage of incentives for
early retirement, realizing that their skills
are in great demand outside of government
service. Where will DoD’s needed tech-
nical experience and expertise come from?
The essential key to an acquisition
program’s success is the technical matu-
rity of the customer community: their
knowledge of software and software ac-
quisition, the ability to understand and
translate user needs, establish require-
ments, develop and manage contracts, se-
lect and monitor appropriate metrics, and
select the proper contractor. Hence the
need for continued development of a soft-
ware acquisition maturity model (SAMM)
(Sherer & Cooper, 1994) aimed at evalu-
ating a customer organization’s maturity
level and providing a road map for im-
proving its capability.

Stage 1. Customer Actions. Follow-
ing the user’s development and validation
of an operational need, the customer
agency then begins the task of managing
the acquisition of a software solution. The
first translation activity, transforming the
operationally-based language of the user’s
need to the contractual language of sys-
tems requirements, is completed at this
point.

A requirement is a “function or charac-
teristic of a system that is necessary; the
quantifiable and verifiable behaviors that



A Holistic Management Framework for Software Acquisition

73

a system must possess and constraints that
a system must work within” (Christel &
Kang, 1992). Requirements generally
specify “what” the system requires in
terms of functions and data, and “how
well” the system must perform relative to
the goals and objectives of the system
(Ashworth, 1989).

The output of the requirements identi-
fication activity is a formal statement that
captures the full intent of the user
community’s need and communicates this
in appropriate language to the contractor
community (in DoD, the result is called a
request for proposal [RFP]). In this light,
requirements analysis is the bridge be-
tween user needs and system specifica-
tions from which a solution can be devel-
oped (Przemieniecki, 1993). Errors in re-
quirements definition can pass through un-
detected to later stages of the acquisition
process, possibly not realized until a defi-
ciency arises at system implementation.
Greater discussion of the art and process
of requirements elicitation and development
can be found elsewhere (Christel & Kang,
1992; Southwell et al., 1987; Rzepka, 1989;
and Fickas & Nagarajan, 1988).

Stage 2. Contractor Actions. While
some contractor involvement may be so-
licited during requirements generation,
this stage marks the formal introduction
of the contractor to the acquisition pro-
cess. Candidate contractors conduct the
second translation activity associated with
the acquisition effort by responding to the
requirements specification with their de-
tailed development plan. This plan typi-
cally includes a description of the design
for the intended system, its size, structure,
complexity, and other descriptor informa-
tion. Statements of technology require-

ments, development environment, devel-
opment tools, personnel, management,
and other organizational and technical is-
sues are also included along with cost and
schedule figures.

While the user and customer may have
spent considerable time in accomplishing
stages 0 and 1, quite often the contractor
completes stage 2 in a matter of weeks.
Such a time constraint raises important
questions concerning the reliability of the
contractor’s estimates. For instance, how
accurate are a contractor’s estimates con-
cerning a project that will require technol-
ogy beyond current capabilities, relying
on the development of yet-to-be technol-
ogy. Other important questions (Haimes
& Chittister, 1993) are: do developers with
little experience overestimate or underes-
timate cost and schedule, and do devel-
opers with experience overestimate or un-
derestimate cost and schedule?

Stage 3. Acquiring Stage. Some time
before proposals are received, the cus-
tomer determines the evaluation standards
upon which all proposals will be scruti-
nized and evaluated. Organizational capa-
bilities, performance history, cost estimate
practices, as well as metrics for evaluat-
ing other performance criteria are consid-
ered. Other key areas of interest include
the contractor’s statements regarding tech-
nologies, development processes, and ca-
pabilities.

Generally, during contractor selection,
the customer is faced with a wealth of in-
formation—some pertinent, some not.
What is needed is a method for determin-
ing what the customer needs to know, a
process to synthesize and filter the data,
and a structured process for using the in-
formation to choose the contractor.



Acquisition Review Quarterly—Winter 1997

74

Stage 4. System Development. In this
stage, the selected contractor implements
the development plan and actually pro-
duces the software system. Most likely,
instead of a single contractor, a contrac-
tor consortium of teams of major compa-
nies collaborate in the development of a
system. The majority of software acquisi-
tion and development research has focused
on the activities of this stage. The well-
known waterfall models of the software
development life cycle (Royce, 1970;
Boehm, 1981) are models of the activi-
ties of this stage. More recent research on
software development are also principally
concerned with this stage’s events
(Boehm, 1988; Sage, 1992; Feiler &
Humphrey, 1992; Heineman et al., 1994).

Stage 5. Integration. As system devel-
opment progresses to an initial operating
capability, the contractor, customer, and
user coordinate the acceptance testing of
the system. The success of this stage
hinges on the combined work and deci-
sions that stem from previous stages. Sys-
tems integration is the dominant activity
here; the components are integrated with
other system elements. Increasingly, soft-
ware is the vehicle for accomplishing sys-
tems integration and assuring system suc-
cess (Chittister & Haimes, 1994b).

At this stage, previously identified tech-
nical and nontechnical risks have the
greatest likelihood of materializing. These
risks may have existed all along, and come
to the surface during the activities of sys-
tem integration. In order to most effectively
plan for and manage the systems integra-
tion activity and the risks that may arise, the
customer organization must make critical
trade offs between costs, benefits, and risks
associated with each policy option.

Stage 6. Delivery. Only when at full
operating capacity and beyond can the
value of risk mitigation and risk preven-
tion efforts be fully realized. Often, selec-
tion of a risk mitigation strategy is based
on prevention versus correction—that is,
a proactive approach versus a “wait and
see” approach: “Early defect fixes are typi-
cally two orders of magnitude cheaper
than late defect fixes, and the early re-
quirements and design defects typically
have more serious operational conse-
quences” (DoD, 1991).

Maintenance and modification initia-
tives with their associated costs and im-
pact on operational capabilities are prin-
cipal concerns of this stage. This stage is
also the link for returning to stage 0 in the
next acquisition effort. If the customer (or
user, or contractor) captures the knowl-
edge gained through this acquisition ex-
perience and uses it to increase the abili-
ties of their organization (e.g., via train-
ing or documentation), then this
community’s maturity level is increased.
They will be better prepared for dealing
with the next acquisition effort.

ANALYSIS AND EXTENSION

THROUGH PROCESS MODELS
The process models developed in this

section provide a framework for a more
detailed understanding of the interrelations
and activities associated with the current
software acquisition process. Each phase
of the process can be explored in greater
depth using the HHM model (Figure 2).
The process models also provide the con-
struct from which an iterative software
acquisition process could be modeled.
These models are an effective vehicle for
understanding the required interconnec-
tions, mechanisms, information, and ac-



A Holistic Management Framework for Software Acquisition

75

tivities that must be included in such an
innovative paradigm.

EXTENDED HHM FOR COORDINATED
SUBMODEL SOLUTION

This section describes two additional
software acquisition hierarchical holo-
graphic submodels, program conse-
quence, and community maturity, and pre-
sents an approach to resolving the inher-
ent conflict in the analytic modeling as-
sociated with these submodels.

PROGRAM CONSEQUENCE HHS
The program consequence HHS of the

software acquisition HHM addresses the
need to synthesize vast amounts of infor-
mation concerning the suitability of a pro-
posed system for meeting an operational
need. This includes analysis of the pro-
posed system design, estimates of the
design’s technical performance, develop-
ment cost, and schedule estimates, and

other relevant factors. The trade offs be-
tween performance, cost, schedule, and
the risks in each area are considered in this
activity.

The multiple factors associated with the
program consequence HHS (Figure 9)
may be viewed as submodels of this HHS.
Each sub-submodel may be quantified and
analyzed by way of an appropriate model
(analytic or descriptive), with the require-
ment for an overall resolution at the HHS
level.

Software technical performance may be
quantified in terms of one of several mea-
surable objectives (e.g., reliability, avail-
ability, maintainability) and is best ana-
lyzed through fault tree modeling or
Markov process modeling (Johnson, 1989;
Kanoun et al., 1993; Tai et al., 1993).
While several software cost estimation
models exist (e.g., Boehm, 1981; Charette,
1989; Pressman, 1987), each generally
produces a single-point estimate of the
projected development cost. The cost risk-
mitigation approach of Haimes and

Figure 9. Program Consequence HHS Sub-submodels



Acquisition Review Quarterly—Winter 1997

76

Chittister (1993) is an improved approach,
employing a probabilistic, extreme event
cost analysis methodology that allows in-
corporation of cost estimation model re-
sults. Software project scheduling, most
often modeled through PERT (Project
Evaluation and Review Technique) or
CPM (Critical Path Method) models
(Charette, 1989), also has probabilistic
extensions (Abdel-Hamid & Madnick
1983; Haimes et al., 1994). While each of
the three sub-submodels can be analyzed
and solved independently, overlapping
objectives and constraints require that a
managed, coordinated solution to the over-
all problem be resolved at the HHS level.

COMMUNITY MATURITY HHS
The community maturity HHS captures

the competing, yet overlapping objectives
of the three participant groups. This HHS
can, in some ways, be viewed as an ex-
tension of the program consequence HHS.
Each participant community is further rep-
resented by its own sub-HHS, with only
those consequences applicable to each

participant group considered in the
submodels.

In an acquisition effort the user’s pri-
mary objective is to meet all of the opera-
tional needs. This objective could be stated
as acquiring a system that maximizes tech-
nical performance. Generally, this is not
the only objective for the user. Getting the
system as soon as possible—minimizing
development time—may also be impor-
tant. The customer has a similar, but dif-
ferent multiple-objective problem: to
minimize cost, maximize technical perfor-
mance, enforce a contractual time sched-
ule, and maximize contractor–customer
communication. The contractor also has
a multiple-objective problem: maximize
profit and maximize potential for future
earnings (additional contracts). An ex-
ample of these multiple objectives, at least
one for each of the acquisition process par-
ticipants, is represented in Table 2.

Obviously, some of these objectives are
competing both within a participant’s indi-
vidual problem (maximize technical perfor-
mance versus minimize cost) and between
participants (maximize contractor’s profit

PARTICIPANT OBJECTIVE

USER MAXIMIZE TECHNICAL PERFORMANCE
MINIMIZE DEVELOPMENT TIME

CUSTOMER MAXIMIZE TECHNICAL PERFORMANCE
MAXIMIZE CUSTOMER–CONTRACTOR RELATION
MINIMIZE COST
MINIMIZE DEVIATION FROM TIME SCHEDULE

CONTRACTOR MAXIMIZE PROFIT
MAXIMIZE FUTURE EARNINGS POTENTIAL

Table 2. Multiple Objectives of Acquisition Process Participants



A Holistic Management Framework for Software Acquisition

77

versus minimize customer’s cost). A com-
mon DoD contracting practice is to fix
profit margin; under such restrictions, the
only way for a contractor to increase earn-
ings is by spending more, thereby increas-
ing the overall program cost. A contractor
can also earn more with each deviation and
modification to the contract. The more de-
viation, the greater the contractor’s earn-
ings. These realities are in direct compe-
tition to the customer’s goals of minimiz-
ing cost and contract deviations. There are
overlaps between the objectives of the
three participants, yet there are certain ob-
jectives unique to each individual prob-
lem. Adequate coordination of these
multiobjective problems is the key to a
mutually agreeable solution.

As Figure 10 shows, analytic method-
ologies appropriate for analyzing each of
the submodel objectives may not neces-
sarily assume the same form. At least one

objective, the customer’s desire for good
relations with the contractor, may be
unrepresentable mathematically. Some
indication concerning this objective, how-
ever, may be analyzed through a classifi-
cation model based on HHM analysis of
the characteristics and capabilities of the
particular contractor. Each sub-HHS
model is itself a multiple objective model,
and the result of the three participant com-
munity solutions must be resolved at the
overall HHS level.

Similar multiobjective problems can be
derived for each HHS of the HHM. For
instance, maximizing technical perfor-
mance may include the subobjectives of
maximizing reliability, number of compu-
tations per second, system availability, or
some other system performance feature.
To a certain extent, each of these
subobjectives is in conflict with the oth-
ers—for example, a system designed for

Figure 10. Community Maturity HHS



Acquisition Review Quarterly—Winter 1997

78

computational speed may not be ex-
tremely reliable. Including cost minimi-
zation as a subobjective may introduce
additional conflicts (e.g., a highly reliable
system is generally not the low-cost op-
tion). The practical reality of software ac-
quisition demonstrates that it must be de-
scribed in terms of multiple, multiob-
jective problems that are conflicting, pos-
sible overlapping, and exhibit a hierarchi-
cal structure.

HHM: MODEL MANAGEMENT FOR
SUBMODEL CONFLICT RESOLUTION

The quantitative framework described
in this paper is founded on the synergistic
coupling of the HHM and process mod-
els, and the incorporation of other appro-
priate models, methods, and tools to ef-
fectively analyze and support decision
making throughout the acquisition pro-
cess. Figure 1 shows a representation of
this framework. While each of the many
methods and tools has been designed for
its own unique purpose, each may give a
greater contribution when coordinated
with the results of other methods. A holis-
tic vision ensures that methodologies are
not employed for their own sake (sublevel
optimization), but that each contributes to
the overall system goals and objectives.
In this manner, we achieve analytic pro-
gression through the complex acquisition
process.

The field of model management, a
growing area of study, recognizes that
complex problems rarely can be solved by
a single model encompassing all problem
aspects. Solutions to such problems often
require the integration of multiple mod-
els each addressing a specific aspect of the
problem (Mitra & Dutta, 1994). Model
management methodologies provide ap-

proaches for combining several models
into an integrated model that is sufficient to
solve a given problem (Basu & Blanning,
1994). While several approaches have been
proposed (e.g., database management, arti-
ficial intelligence, conceptual graphs), the
most promising and easily implemented
are those of the graphical approach. These
methods provide a framework for model
composition by identifying models that
may be combined into a composite model
(Muhanna & Pick, 1994). The HHM can
appropriately be considered as a model
management methodology; resolution of
the higher level model requires the coor-
dinated solution of multiple submodels.
HHM’s unique handling of overlapping
objectives and program constraints is par-
ticularly desirable. While the original
HHM assumes that each submodel has a
mathematical programming formulation,
relaxing this requirement provides a
means for resolving the more realistic
problem where submodels have diverse
analytic constructs.

HHM provides the framework for rep-
resenting the software acquisition
submodels in terms of hierarchical
multiobjective decision models (MODM).
The MODM approach provides a context
for a “win-win-win” environment, as a
solution that is mutually acceptable to all
three participants would be found in the
set of nondominated solutions to the co-
ordinated multiobjective problem
(Chankong & Haimes, 1983). The
multiobjective modeling approach also
provides a structure for resolving compe-
tition between issues, such as the trade off
between performance and cost, or between
schedule versus technology.

Formulation of a hierarchical multiob-
jective problem, taken from the frame-



A Holistic Management Framework for Software Acquisition

79

work of the HHM, implies the formal
evaluation of model elements and data
requirements (random variables, decision
variables, state variables, functional rela-
tionships, etc.). Such a comprehensive
effort not only establishes an overall ana-
lytical framework for reaching an agree-
able solution, but also provides greater
insight and understanding as to the inter-
relationships and structure of the software
acquisition process.

When a purely analytic approach for
resolving HHS conflicts is not possible, it
may be necessary to consider conflict reso-
lution strategies (Fraser & Hipel, 1984;
Raiffa, 1982), trade off methodologies
(Chankong & Haimes, 1983), and nego-
tiation strategies (Nierenberg, 1978). The
community maturity and program conse-
quence problems described above are not
ones of simple multiple-objective resolu-
tion due to the overlapping and coordina-
tion inherent in the HHM/HHS struc-
ture—therefore application of conflict
resolution strategies must consider the
unique characteristics of hierarchical,
overlapping, and yet conflicting problems.
Other possible approaches to be explored
include some variation of a weighting
scheme (Chankong & Haimes, 1983),
where each HHS or even each objective
is assigned a weight—directly or by a pair-
wise comparison—to determine prefer-
ence for each objective and submodel. The
analytic hierarchy process (AHP) (Saaty,
1990) may be useful for such an approach.
Other trade off methods, such as the sur-
rogate worth trade off (SWT) method
(Chankong & Haimes, 1983) may also
prove useful.

CONCLUSION

The holistic approach to software ac-
quisition management presented in this
paper provides a theoretical, as well as
methodological approach, for a maturing
software acquisition community. This ap-
proach compliments the maturity progres-
sion described in the SAMM. Figure 11
summarizes the relationship between man-
agement maturity and quantitative risk
management methods. With the SAMM,
progression to higher maturity levels as-
sumes the continuation of all lower level
activities and methods, while adding new
functions and processes. Similarly, with
the quantitative risk management frame-
work, holistic models build on the descrip-
tive foundation of the process models;
used together they provide even greater
information and insight. As with the
SAMM, lower level organizations may
make use of some of the higher level meth-
ods, but have not employed all the func-
tions required to fully progress to that
higher level. The focus of each analytic
method parallels the focus of the related
management level.

Here we’ve detailed a holistic approach
to the analysis of the software acquisi-
tion process and to the development of
a quantitative management framework
needed for the maturing of the software
acquisition customer community. This
framework is founded on the multiple
visions of the HHM and the temporal
progression of activities captured in the
process models. It provides the means
for incorporating appropriate analytic
models and methodologies for a sys-
temic approach to quantitative manage-
ment of software acquisition. The com-
peting interests of the participants, con-



Acquisition Review Quarterly—Winter 1997

80

flicting performance measures, and un-
certain system requirements make a mul-

tiple-objective approach for analyzing and
resolving these conflicts appropriate.

Figure 11. SAMM and Quantitative Management Framework Comparisons

ACKNOWLEDGMENT

We would like to thank Archie Andrews, Lisa Brownsword, Mike DeRiso, Dave Gulch and Fred
Hueber for their valuable comments and suggestions.



A Holistic Management Framework for Software Acquisition

81

REFERENCES

Abdel-Hamid, T. K., & Madnick, S. E.
(1991). Software project dynamics: An
integrated approach. Englewood Cliffs,
NJ: Prentice-Hall.

Ashworth, C. M. (1989). Using SSADM
to specify requirements. IEEE Collo-
quium on Requirements Capture and
Specification for Critical Systems, 138
(November).

Austin, R. D., & Paulish, D. J. (1993). A
survey of commonly applied methods
for software process improvement
(Tech. Rep. CMU/SEI-93-TR-27). Pitts-
burgh, PA: Carnegie Mellon University,
Software Engineering Institute.

Baker, E. R., Cooper, L., Corson, B. A.,
& Stevens, A. E. (1994). Software ac-
quisition management maturity model
(SAM3). Program Manager (July-Au-
gust), 43-49.

Basu, A., & Blanning, R. W. (1994).
Model integration using metagraphs.
Information Systems Research, 5(3),
195-218.

Blum, B. I. (1987). Evaluating alternative
paradigms: A case study. Large Scale
Systems, 12(3), 189-199.

Blum, B. I. (1992). Software engineering:
A holistic view. New York: Oxford Uni-
versity Press.

Boehm, B. W. (YEAR?) Software engi-
neering. IEEE Transactions on Comput-
ers, 25, 1226-1241.

Boehm, B. W. (1981). Software engineer-
ing economics. Englewood Cliffs, NJ:
Prentice-Hall.

Boehm, B. W. (1984). Verifying and vali-
dating software requirements and design
specification. Software, (January), 75-
88.

Boehm, B. W. (1988). A spiral model of
software development and enhance-
ment. Computer, 21(5), 61-72.

Brooks, F. P. Jr. (1987). No silver bullet:
Essence and accidents of software en-
gineering. IEEE Computer, (April), 10-
19.

Carr, M. J., Konda, S.L., Monarch, I.,
Ulrich, F. C., & Walker, C. F. (1993).
Taxonomy-based risk identification
(Tech. Rep. CMU/SEI-93-TR-6). Pitts-
burgh, PA: Carnegie Mellon University,
Software Engineering Institute.

Chankong, V., & Haimes, Y. Y. (1983).
Multiobjective decision making. New
York: North-Holland.

Charette, R. N. (1989). Software engineer-
ing risk analysis and management. New
York: McGraw-Hill.

Chittister, C. & Haimes, Y. Y. (1994). As-
sessment and management of software
technical risk. IEEE Transactions on
Systems, Man, and Cybernetics, SMC-
24(2), (February).



Acquisition Review Quarterly—Winter 1997

82

Chittister, C., & Haimes, Y. Y. (1994, Au-
gust). Systems integration via software
risk management. Oral presentation,
Software Engineering Symposium,
Software Engineering Institute,
Carnegie Mellon University, Pittsburgh,
PA.

Christel, M. G., & Kang, K. C. (1992).
Issues in requirements elicitation (Tech.
Rep. CMU/SEI-92-TR-12). Pittsburgh,
PA: Carnegie Mellon University, Soft-
ware Engineering Institute.

Deutch, J. M. (Feb. 24, 1994). Statement
on the Federal Acquisition Strategy Act
of 1994. Testimony before a Joint Hear-
ing of the Senate Committee on Armed
Services and Senate Committee on Gov-
ernmental Affairs, Washington, DC.

Department of Defense. (1991). Software
technology plan: Volume II plan of ac-
tion. Washington, DC: DoD.

Feiler, P. H., & Humphrey, W. (1992).
Software process development and en-
actment: Concepts and definitions
(Tech. Rep. CMU/SEI-92-TR-4). Pitts-
burgh, PA: Carnegie Mellon University,
Software Engineering Institute.

Feiler, P.H. (1994, August). Disciplined
engineering of software intensive sys-
tems. Oral presentation (slides) at the
Software Engineering Symposium,
Software Engineering Institute,
Carnegie Mellon University, Pittsburgh,
PA.

Fickas, S., & Nagarajan, P. (1988). Cri-
tiquing software specifications. IEEE
Software, 5 (November).

Fraser, N., & Hipel, K. W. (1984). Con-
flict analysis models and resolutions.
New York: North Holland.

General Accounting Office. (1990, April).
DoD embedded computers. Washing-
ton, DC: Government Printing Office.

General Accounting Office. (1992, May).
Embedded computer systems: Signifi-
cant software problems on C-17 must
be addressed. Washington, DC: Govern-
ment Printing Office.

General Accounting Office. (1992, De-
cember). Weapons acquisition, a rare
opportunity for lasting change (GAO/
NSIAD-93-15). Washington, DC: Gov-
ernment Printing Office.

Haimes, Y. Y. (1981). Hierarchical holo-
graphic modeling. IEEE Transactions on
Systems, Man, and Cybernetics, SMC-
11(9), 606-617.

Haimes, Y. Y., Li, D., & Tulsiani, V.
(1990). Multiobjective decision-tree
analysis. Risk Analysis, 10(1), 111-129.

Haimes, Y. Y., Tarvainen, K., Shima, T.,
& Thadathil, J. (1990). Hierarchical
multiobjective analysis of large-scale
systems. New York: Hemisphere.

Haimes, Y. Y., & Chittister, C. An acqui-
sition process for the management of
risks of cost overrun and time delay as-
sociated with software development
(Tech. Rep. CMU/SEI-93-TR-28). Pitts-
burgh, PA: Carnegie Mellon University,
Software Engineering Institute.



A Holistic Management Framework for Software Acquisition

83

Haimes, Y. Y., Li, D., Lambert, J. H.,
Schoof, R. M., Eisle, S., & Schneider,
C. (1994). Improving risk management
for the criminal justice information ser-
vices (FBI) (Tech. Rep.). Charlottes-
ville: University of Virginia, Center for
Risk Management of Engineering Sys-
tems.

Hall, A. D. III. (1989). Metasystems meth-
odology; A new synthesis and unifica-
tion. New York: Pergamon Press.

Heineman, G. T., Botsford, J. E., Caldiera,
G., Kaiser, G. E., Kellner, M. I., &
Madhavji, N. H. (1994). Emerging tech-
nologies that support a software process
life cycle. IBM Systems Journal, 33(3),
501-529.

Higuera, R. P., Gluch, D. P., Dorofee, A.
J., Murphy, R., Walker, J. A., & Will-
iams, R. C. (1994). An Introduction to
Team Risk Management (Version 1.0)
[Computer software] (CMU/SEI-94-
SR-1). Pittsburgh, PA: Carnegie Mellon
University, Software Engineering Insti-
tute.

Humphrey, W. S., & Kellner, M. I. (1989,
May). Software process modeling: prin-
ciples of entity process models. Pro-
ceedings of the 11th International Con-
ference on Software Engineering. Wash-
ington, DC: IEEE Computer Society
Press. 175-188.

Johnson, B. W. (1989). Design and analy-
sis of fault tolerant digital systems.
Reading, MA: Addison-Wesley.

Kanoun, K., Kaaniche, M., Beounes, C.,
Laprie, J-C., & Arlat, J. (1993). Reli-
ability growth of fault-tolerant software.
IEEE Trans. on Reliability, 42(2, June),
205-219.

Kellner, M. I. (1991). Software process
modeling support for management plan-
ning and control. In M. Dowson (Ed.),
Proceedings of the 1st International
Conference on the Software Process:
Manufacturing Complex Systems (pp.
8-28). Washington, DC: IEEE Computer
Society Press.

Mitra, S., & Dutta, A. (1994). Integrating
optimization models and human exper-
tise in decision-support tools. Expert
Systems with Applications, 7(1), (Janu-
ary), 93-107.

Muhanna, W. A., & Pick, R. A. (1994).
Metamodeling concepts and tools for
model management. Management Sci-
ence, 40(9), (September), 1093-1123.

Neirenberg, G. (1978). The art of negoti-
ating. New York: Negotiation Institute.

Office of the President of the United States
of America. (1993). Technology for
America’s economic growth, a new di-
rection to build economic strength.
Washington, DC.

Pages, E. R. (1994, March 10). Testimony
before a Joint Hearing of the Senate
Committee on Governmental Affairs.
Washington, DC: Government Printing
Office.



Acquisition Review Quarterly—Winter 1997

84

Paulk, M.C., Curtis, B., Chrissis, M. B.,
Averill, E., Bamberger, J., Kasse, T.,
Konrad, M., Perdue, J., Weber, C., &
Withey, J. (1992). The capability matu-
rity model for software. 1992 SEI tech-
nical review. Pittsburgh, PA: Carnegie
Mellon University, Software Engineer-
ing Institute.

Paulk, M.C., Weber, C. V., Garcia, S. M.,
Chrissis, M. B., & Bush, M. (1993). Key
practices of the capability maturity
model, version 1.1 (Tech. Rep. CMU/
SEI-93-TR-25). Pittsburgh, PA:
Carnegie Mellon University, Software
Engineering Institute.

Perry, W. J. (1994, Feb. 9). Acquisition
reform, a mandate for change. Testi-
mony before a Joint Hearing of the Sen-
ate Committee on Armed Services and
Senate Committee on Governmental
Affairs. Washington, DC: Government
Printing Office.

Pressman, R. S. (1987). Software engi-
neering: A practitioner’s approach (2nd
ed.). New York: McGraw-Hill.

Przemieniecvki, J. S. (1993). Acquisition
of defense systems. Washington, DC:
AIAA.

Raiffa, H. (1982). The art and science of
negotiation. Cambridge, MA: Belknap
Press of Harvard University Press.

Royce, B. W. (1970). Managing the de-
velopment of large software systems.
IEEE WESCON, 1(9).

Rzepka, W. E. (1989). A requirements
engineering testbed: Concepts, status,
and first results. In B. D. Shiver (Ed.)
Proceedings of the 22nd Annual Hawaii
International Conference on System
Sciences, Washington, DC: IEEE Com-
puter Society.

Saaty, T. L. (1990). Multicriteria decision
making—the analytic hierarchy process.
Pittsburgh, PA: RWS Publications.

Scientific Advisory Board, U.S. Air Force.
(1994, February). Information architec-
tures that enhance operational capabil-
ity in peacetime and wartime. Washing-
ton, DC: Department of the Air Force,
AF/SB.

Sage, A. B. (1992). Systems Engineering.
New York: John Wiley.

Software Acquisition Management Edu-
cation Review Team (SAMERT). (1994,
March). Report of the SAMERT. Wash-
ington, DC: U.S. DoD, Office of the
Undersecretary of Defense (Acquisition
Reform).

Sherer, S. W., & Cooper, J. (1994, Sep-
tember). Software acquisition maturity
model (SAMM) draft version 4.0 (Spe-
cial Rep.). Pittsburgh, PA: Carnegie
Mellon University, Software Engineer-
ing Institute.

Sisti, F. J., & Joseph, S. (1994). Software
risk evaluation method (version 0.2)
(Report CMU/SEI-94-SREv0.2). Pitts-
burgh, PA: Carnegie Mellon University,
Software Research Institute.



A Holistic Management Framework for Software Acquisition

85

Southwell, K., Clarke, B. A., Andrews, B.,
Ashworth, C., Norris, M., & Patel, V.
(1987). Requirements definition and
design. The STARTS Guide: Vol. 1 (2nd
ed.). Washington, DC: National Com-
puting Center.

Tai, A. T., Meyer, J. F., & Algirdas, A.
(1993). Performability enhancement of
fault tolerant software. IEEE Trans on
Reliability, 42(2), (June).

Yeh, R. T., Naumann, D. A., Mittermeir,
R. T., Schielmmer, R. A., Gilmore, W.
S., Sumral, G. E., & Lebaron, J. T.
(1991). A commonsense management
model. IEEE Software, 8, 23-33.



Acquisition Review Quarterly—Winter 1997

86


