
Enterprise architects pride themselves on
their ability to make stakeholder require-

ments trade-offs, yet experience shows that
there comes a point when the size and com-
plexity of enterprise requirements, especially
in nontechnical areas, necessitate extending
traditional enterprise system framework
approaches (e.g., Department of Defense
architecture framework [1], Federal Enter-
prise Architecture Framework [2], The Open
Group Architecture Documentation [3], and
Zachman Framework [4]). This article iden-
tifies the areas where current enterprise
architecture approaches are too rigid or brit-
tle to deal with certain nontechnical and
nonfunctional architecture issues associated
with architecting (or re-architecting) any
large-scale enterprise.

In particular, this article focuses on
enterprises with funding, staffing, or political
constraints that require new technology/ser-
vices that replace or must be added to those
found in an existing set of applications. This
article introduces the term enterprise composi-
tion to describe a collection of agile process-
es, metrics, and design patterns that have
demonstrated applicability in dealing with
these issues.

Gap Analysis: Enterprise IT
Lessons Learned
There is an ever-expanding body of knowl-
edge dealing with enterprise architecture
frameworks [1, 2, 3, 4] as well as architecture
description [5, 6]. Experience has shown that
current approaches to enterprise architecture
dealing with large-scale enterprises can do
the following:
• Lead to unnecessarily rigid designs.
• Require wholesale technology upgrades

(i.e., a big bang).
• Focus on information technology (IT)

cost savings versus process cost savings.
• Result in local optimizations of systems,

leading to suboptimal overall enterprise
system performance.

• Become bogged down in stakeholder

political and cultural considerations.
• Rely on traditional metrics such as source

lines of code to determine progress.
Table 1 summarizes how enterprise com-

position addresses some of the shortcom-
ings associated with current approaches to
enterprise architecture with respect to large-
scale enterprise IT (EIT) systems. The sec-
tions that follow will elaborate on lessons
learned.

Enterprise Composition
Processes
The following sections describe enterprise
composition extensions to (1) EIT decision
making, (2) EIT framework boundary defin-
ition, (3) EIT product selection, and (4)
strategic enterprise metric definition.

EIT Decision-Making Process
Martin Fowler [5] recognized that most
architecture definitions consist of two ele-
ments: (1) breaking the system into parts,
and (2) decisions that are hard to change.
While it is often the case that enterprise

architects consider their architectural deci-
sions to be carved in stone for posterity,
when dealing with large enterprise systems,
the advice of Gen. George Patton may be
more applicable: “A good plan violently exe-
cuted today is better than a perfect plan exe-
cuted tomorrow.” That is, the composer,
while acknowledging that key decisions in
structure and policy need to be made, recog-
nizes that making every decision critical,
absolute, and perfect, results in bigger risk
and higher expense than having a (marginal-
ly) less-than-perfect architecture.

From an enterprise composition per-
spective, composers should apply a cus-
tomer-centric view following a seven-step
process:
1. Define customer goals.
2. Determine how to measure achievement

of those goals.
3. Compose a strategic target state that

accomplishes those goals.
4. Define the next tactical state on the path

to the strategic (i.e., final) state.
5. Assess which of customer’s goals will be

met in that next incremental implemen-

Enterprise Composition©

John Wunder
Lockheed Martin Systems Integration

Enterprise information system (EIS) architecture is a system of EISs composed to meet strategic enterprise goals. This com-
position requires the application of a different set of processes, design patterns, and metrics than those used for stand-alone
system architectures. For most enterprise architects, creating EIS architectures can be complicated and fraught with pitfalls,
detours, and dead ends. These problems generally are not related to technology but rather caused by misperceptions and cul-
ture clash. This article defines a new, agile, incremental approach to EIS architectures and enterprise composition, and shows
how it supports the creation and evolution of large EIS architectures such as the Air Force’s Global Combat Support System.

August 2004 www.stsc.hill.af.mil 27

© Lockheed Martin, 2004.

Enterprise Architecture Problems Enterprise Composition Solutions

•

• Requires mandated modernization efforts
just to comply with architecture.

•

•

•
capabilities. Modernizations are driven
by improved operational processes.

Focuses on integrating existing

Establishes a minimum set of flexible
interfaces between existing enterprise
components.

Imposes a rigid abstract specification on
all aspects of design.

• Primarily justified by cost savings through
information technology efficiencies
such as enterprise licenses and reduced
life-cycle costs.

Primarily justified by improved
higher-level mission processes with
IT efficiencies also applicable.

• Is technology-centric with either an
Enterprise Resource Planning or a
particular commerical off-the-shelf vendor
product set as the Silver Bullet.

• Is mission-centric and focused above the
technology infrastructure.

• Results in agonizingly slow decisions
focused on making the right choice
followed by possible holy wars demanding
endless justification of every decision.

• Results in customer-centric decisions
based on what works.

• Measures compliance and technology
efficiencies through reduction of resources
(e.g., systems turned off, reduced
operations staff, consolidated hardware
and software).

• Measures delivered capabilities and
mission efficiencies tied to enterprise
metrics (e.g., cost/flying hour, mission
capability, kill chain cycle time).

1

Table 1: Comparison of Enterprise Architecture and Enterprise Composition

28 CROSSTALK The Journal of Defense Software Engineering August 2004

Software Engineering Technology

tation of the architecture.
6. Determine how customer goal metrics

(to be discussed further in a section that
follows) will improve.

7. Commit to those improvements.
While the first three steps are often the

easiest, step four is the most important and
typically one that many enterprise architects
overlook. That is, determining how the
enterprise and its existing resources get from
their current state to the strategic state (i.e.,
determining what the most efficient and
timely path is to incrementally achieve this [a
road map to the] final state, and establishing
a process to determine what the next step
should be in that direction given the current
state and other requirements that have
evolved since the last incremental change in
the whole EIT). This determination involves
steps four through seven.

In this way, when the next increment is
fielded, its success will be judged not on
meeting a date but by measuring how well
customer’s goals are met. This establishes
consistency in the direction of enterprise
improvement from increment to increment
and through leadership changes.

EIT Framework Boundary Definition
Process
As stated previously, composers break the
enterprise system architecture into parts.
These parts often are organized into a
framework within which components pro-
viding certain services reside. The Global
Combat Support System-Air Force (GCSS-
AF) in Figure 1 shows an example of the
boundaries in an EIT framework. Enterprise
composition guides the composer to mini-
mize the enterprise boundary points to nat-
ural boundaries and enforce those minimum
boundaries rigorously. This insight is the
result of the composer following these
process steps:
1. Study the problem and solution domain.
2. Correlate the solution domain’s technical

architecture with existing standards,
products, and practices.

3. Define natural boundaries that cleanly

separate the EIT into services (see exam-
ples in Figure 1).

4. Define objective criteria for boundary
implementation.

5. Communicate all boundary information
to all enterprise architecture stakeholders.
The GCSS-AF enterprise information

system (EIS) [7] shown in Figure 1 has two
layered boundaries: the Application Frame-
work and the Integration Framework. The
natural dividing line between these layers is
the natural separation between Air Force mis-
sion information and commercial IT. All Air
Force mission-specific information is in the
Application Framework, and all generic IT
enablers are in the Integration Framework.

Within the GCSS-AF frameworks [8]
there are further sub-boundaries or layers. In
the Application Framework, the Open
Application Group (OAG) Interface Spec-
ification [9] provides a natural boundary (or
interface) for services upon which compo-
nents supporting the GCSS-AF Air Force
Doctrine 2-4 [10] can be structured. The
doctrine creates organizational and informa-
tion stewardship responsibilities mapped to
the OAG standard components such as
Inventory, Warehouse, General Ledger, or
Budget. In addition, the OAG Interface
Specification provides a set of extensible,
coarse-grained component boundaries sup-
ported by National Institute of Standards
and Technology content and syntax tests.

The Application Framework compo-
nents rely on services provided by the
Integration Framework, which relies on
standards such as Kerberos, Lightweight
Directory Access Protocol V3, Java
Authentication and Authorization Service,
Public Key Infrastructure, eXtensible
Markup Language, HyperText Transfer
Protocol, HyperText Markup Language,
Web services, Structured Query Language,
Portable Operating Systems Interface,
Transmission Control Protocol/Internet
Protocol, Simple Object Access Protocol,
Java 2 Enterprise Edition, or network to cre-
ate natural security, view, persistence, and
messaging boundaries. Objective tests are
based on reference implementations of the
pertinent standards.

By communicating these boundaries
effectively throughout the enterprise, the
composer enables the rapid delivery (i.e.,
composition) of capabilities. This allows
implementers to focus within their bounded
areas of concern and eliminates the need to
address areas outside their particular area of
concern. This approach results in a reduc-
tion of overall life-cycle cost through reuse
of existing services in the GCSS-AF EIT.

EIT Product Selection Process
When enterprise architects address the selec-

tion of commercial off-the-shelf products to
implement the technical architecture of an
enterprise system, they usually start by focus-
ing on each product’s capabilities and cost
(initial and life-cycle). They conduct exten-
sive trade studies documenting the require-
ments, weighing the requirements, and
assessing the products against those weights.

Often it is the case that, at the end of the
evaluation process, the difference between
the top products is not statistically signifi-
cant. Furthermore, a month later the results
could change because a new version is
released, the chosen product has problems
during implementation, or the architect
comes to the conclusion that most of the
top products could have done the job in the
first place. Enterprise composition guide-
lines help the composer improve the product
selection process by focusing on a more cus-
tomer-centric approach rather than a tech-
nology-centric approach. This agile and
incremental process consists of the follow-
ing steps:
1. Define the minimum set of mandatory

features the customer requires in the
product.

2. Determine what existing customer enter-
prise assets satisfy any of the mandatory
features, and allocate them to those
assets.

3. Perform high-level, paper, and trade
studies on the remaining unsatisfied fea-
tures using assessments by industry ana-
lysts like Gartner, Giga, or Forester to
enable a down select to a few products.

4. Instead of taking a technology-centric
approach, ask each vendor to provide
product compliance levels against the
remaining mandatory features. The next
step reflects the customer-centric enter-
prise composition view, as the composer
would now ask each vendor to provide at
least two reference accounts where exist-
ing vendor customers are already using
the product in a similar context.

5. Create a survey of the pertinent ques-
tions to ask these customer-reference
accounts.

6. Set up calls to those customers.
7. Collate the survey results to be used as

the prime input to the final selection.
8. Look at the leading candidate product

and compare it to the existing personnel
skills in the enterprise.

9. If there is a major disconnect between
the skill set required to implement the
product and the existing skills in the
enterprise, then consider the next candi-
date. The result may be that a less desir-
able product is preferable because it
could be implemented by the enterprise
at less cost and risk.
Following this customer-centric, enter-

Enterprise Architecture Problems Enterprise Composition Solutions

mandated modernization efforts
with architecture.

•

•

Processes

Information
Services

Technical Services

Infrastructure

Integration Services

{
{

Application

Framework

Integration

Framework

•
capabilities. Modernizations are driven
by improved operational processes.

Focuses on integrating existing

Establishes a minimum set of flexible
interfaces between existing enterprise
components.

I abstract specification on
a design.

• ustified by cost savings through
chnology efficiencies
rise licenses and reduced

l

Primarily justified by improved
higher-level mission processes with
IT efficiencies also applicable.

• entric with either an
E Resource Planning or a
p ommerical off-the-shelf vendor
p the Silver Bullet.

• Is mission-centric and focused above the
technology infrastructure.

• onizingly slow decisions
king the right choice

ossible holy wars demanding
ation of every decision.

• Results in customer-centric decisions
based on what works.

• pliance and technology
rough reduction of resources

(turned off, reduced
o staff, consolidated hardware

• Measures delivered capabilities and
mission efficiencies tied to enterprise
metrics (e.g., cost/flying hour, mission
capability, kill chain cycle time).

1

(Business Object Interfaces/
Reusable Business Components)

Figure 1: GCSS-AF EIS Framework
Boundaries

Enterprise Composition

August 2004 www.stsc.hill.af.mil 29

prise composition-based selection process is
usually less expensive than a rigorous, tech-
nical, architecture trade-study approach and
leads to a product proven to work with built-
in expertise from the reference account.

Enterprise Metrics
Architecture metrics have always been a dif-
ficult topic to quantify because of their mul-
tidimensional nature and lack of good mod-
eling tools. Often these metrics are technolo-
gy-focused and deal with the performance
attributes of the system such as throughput,
up time, or even implementation cost. From
an enterprise-composition perspective, enter-
prise architecture metrics measure strategic
enterprise goals. In the case of the U.S. Air
Force., a set of enterprise productivity mea-
sures could include mission capability (aggre-
gate status of the force) and sortie genera-
tion capacity. From an enterprise-composi-
tion perspective, the metrics chosen are used
to show how each increment of the EIT (the
addition of new technology/services or mis-
sion capabilities) has moved the enterprise
closer to the strategic enterprise goals.

Incremental Enterprise Architecture
Development Process
Most enterprise architects use the Unified
Modeling Language as the design notation to
document their architectures [6]. The Uni-
fied Software Development Process (USDP)
[11] provides a sound, repeatable process
model for software development and can be
used by enterprise architects to establish the
minimum, mandatory artifacts for each
increment of the enterprise architecture (e.g.,
an analysis, tactical, and strategic collabora-
tion diagram would be used to document the
goal state and each incremental step).

From an enterprise composition per-
spective, USDP needs to be extended at
both ends of the life cycle. For example on
GCSS-AF, the requirements definition phase
is proceeded by a business model specifica-
tion using activity diagrams and use-case dia-
grams, and the deployment/production
phase is extended by using a component
repository of XML metadata to facilitate
message routing and integration of services.

Enterprise Composition
Patterns
The role architecture and design patterns
[12] play in enterprise architecture is well rec-
ognized [5]. The underlying premise of a
design pattern is that,

... each pattern describes a problem
that occurs over and over again in
our environment, and then describes
the core of the solution to that prob-

lem, in such a way that you can use
this solution a million times over,
without ever doing it the same way
twice. [13]

From an enterprise composition per-
spective, the key patterns that are most use-
ful to the enterprise architect can be labeled
as boundary patterns in that they help orga-
nize the components and their interfaces so
that they form natural boundaries and hide
some of the dependencies that otherwise
would complicate these interfaces. Following
are the boundary patterns discussed in the
next sections (sections 2, 3, and 4 are applic-
able within application framework):
1. Layers Pattern.
2. Canonical/Domain Model Pattern.
3. Model/View/Controller Pattern.
4. Façade Pattern.

Layers Pattern
Usually the Layers pattern is used to define
the highest-level boundaries of an EIS. One
of the earliest and most widely known exam-
ples of the Layers pattern is the seven-layer
International Organization for Standardiza-
tion Reference Model (i.e., Application,
Presentation, Session, Transport, Network,
Data-Link, and Physical layers). Fowler states
that the purpose of layering is “to break
apart a complicated software system,” [5]
giving an architect the following:
1. Intellectual control and understanding

within layers.
2. Flexibility to substitute appropriate capa-

bilities at layers.
The number of layers varies according to

the area of focus. Fowler advocates three
layers [5] (Presentation, Domain, and Data
Source). Within GCSS-AF, the EIS is divid-
ed into two main layers, or frameworks,
which are subdivided into five sub-layers (see
Figure 1).

Canonical/Domain Model Pattern
From an enterprise composition perspective,
the Canonical/Domain Model pattern can
be used to reduce the number of point-to-
point interfaces. This allows the architect to
select the best tools for his or her job, know
the primary interfaces, and only support
interfacing to the canonical model decou-
pling the point-to-point interfaces.

Model/View/Controller Pattern
The Model/View/Controller (MVC) pattern

is another long-standing technique used by
system designers and architects to separate
(via boundary layers) the functionality (the
model) from the presentation (the view)
through an intermediary interface boundary
(the controller) that communicates between
component’s model and the view.

A derivative of the MVC pattern is the
Document View pattern. In this case, the
view is dictated by the graphical user inter-
face development tools that link graphical
forms with a relational database. The separa-
tion of concerns is still maintained between
the document/model and the view but the
controller function is subsumed within the
view function. This is a good pattern for
reports and is well supported by Microsoft’s
Toolset keeping the view synchronized with
the record set that typically provides the doc-
ument or model.

Façade Pattern
The Façade pattern is used to wrap a com-
ponent in order to simplify its interfaces. A
façade can be as simple as an extended script
Language Translation script for an XML
message or as complicated as an Enterprise
Application Integration Extract/Translate/
Load tool for a complex, proprietary system
interface.

Enterprise Maturity Levels
From an enterprise composition perspective,
enterprises that employ EIT mature in a pat-
tern similar to the levels described by the
Software Engineering Institute’s Capability
Maturity Model®. Large, enduring enterpris-
es follow a pattern as they mature. In that
pattern, an enterprise determines what gov-
ernance will provide the most effective sup-
port in evolving the EIS. Furthermore,
enterprises evolve over long periods of time,
and the type and amount of legacy system
technology can determine their maturity as
well. Using Moore’s law as the driving force
in the IT industry, the timeline in Figure 2
summarizes the technology shift compared
to the number of processors per person.

You should note that most enterprise
processes were automated in the 1960s and
1970s when there was little engineering guid-
ance and some severe technology con-
straints. The client/server era started the
shift from mainframe mindset in that most
functional areas felt the central enterprise
staff was slow and unresponsive, and the
central staff felt that the functional depart-

1

1946 1960 -70

Mainframe

1981 1990

ENIAC PC Client/Server Web

1995 2003
+

Pervasive

1/Millions 1/Thousands 1/Tens
++

/One1
+
/One1/One 10

Figure 2: Timeline of Technology Shift Compared to Processors Per Person

Software Engineering Technology

ments did not understand the complexities
of what they were asking. It was at this point
in time that the functional departments took
control of their own destiny and within their
own control and budgets built the tools that
allowed them to respond to mission
demands.

These two sets of systems continued to
devolve apart along their own paths. The
central systems held onto the enterprise
applications – such as payroll – while the
departments grew department-centric
processes starting with simple analysis tools
and reports but growing into sophisticated
mission critical systems. Soon, with the Web
and office tools collecting information from
the abundance of individually designed
applications, it became clear that the indus-
try had lost control of the information.
Today, enterprises are consolidating and try-
ing to get control of their information
resources.

Assessment EIT Maturity and
Appropriate Governance
Enterprises are trying to regain control of
their information flow without restricting
the benefits gained from distributed compo-
sition. Table 2 details the maturity levels that
an enterprise evolves through, and the
respective decision characteristics, artifacts
delivered, measurements taken, and rewards
criteria for success.

Summary
Enterprise composition extends the range of
an enterprise architect to allow him or her to
address complex, evolving enterprise system

architectures. This article has described the
processes, metrics, and architectural design
patterns that have demonstrated applicabili-
ty in dealing with these unique challenges.◆

References
1. Command, Control, Communications,

Computers, Intelligence, Surveillance,
and Reconnaissance Architecture Frame-
work, v.2.0. 18 Dec. 1997 <www. afcea.
org/education/courses/archfwk2.pdf>.

2. Federal Enterprise Architecture Frame-
work, v.1.1. Sept. 1999 <www.cio.gov/
documents/fedarch1%2Epdf>.

3. The Open Group Architecture Frame-
work <www.opengroup.org/products/
publications/catalog/ar.htm>.

4. Zachman Framework <www.zifa.com>.
5. Fowler, Martin. Patterns of Enterprise

Application Architecture. Boston, MA:
Pearson Education Inc., Mar. 2003.

6. Clements, Paul, et al. Documenting
Software Architectures: Views and
Beyond. Addison-Wesley, 2003.

7. U.S. Air Force. Global Combat Support
System-Air Force UML Model, 2003
<www.gcss-af.com/cfs/uml>.

8. Global Combat Support System-Air
Force <www.gcss-af.com>.

9. Open Applications Group Inc. Open
Applications Group Interface Specifi-
cation v.8. OAGI, 2002 <www.open
applications.org>.

10. Cresta, Lt. Col. James. U.S. Air Force,
Combat Support Air Force Doctrine
Doc. 2-4. U.S. Air Force, 22 Nov. 1999
<www.dtic.mil/doctrine/jel/service
_pubs/afd2_4. pdf>.

11. Jacobson, Ivar, Grady Booch, and James
Rumbaugh. The Unified Software
Development Process. Addison Wesley
Longman, Inc. 1999.

12. Gamma, Eric, Richard Helm, Ralph
Johnson, and John Vlissides. Design Pat-
terns Elements of Reusable Object-Or-
iented Software. Addison-Wesley, 1995.

13. Alexander, Christopher, et al. A Pattern
Language. New York: Oxford University
Press, 1977.

30 CROSSTALK The Journal of Defense Software Engineering August 2004

2

Maturity Level/
Attributes

Chaotic Dictatorial Capability Optimized

Decision = Sub-optimal, focused on
specific need.

= Vendor/Technical criteria.
= Looking for silver bullet.

-= Sub optimal, focused on
specific need.

= Mandated standards.
= ERP focus.

= Optimum product
selections considering all
costs.

= Customer-centric
approaches.

= Core competencies
identified and emphasized.

= Business case analysis of
mandates.

= Driven by optimum
enterprise growth.

 = Members of key industry
leadership groups.

= Core competencies target
predator capabilities.

Artifacts = Closely coupled
throughout.

= Holistic deliverables all
required capabilities every
deliverable.

= No separation of layers.

 = Layering framework.
= Infrastructure

administration efficiencies.
 = Enterprise licenses.

 = Everything from Dictatorial.
 = Canonical Model.

= Enterprise Value Chains.

 rriors = Information wa
creating own weapons
against Canonical Model.

= In process measurements
mission performance
models for continuous
improvement.

Metrics = Meet delivery date. = IT efficiencies.
= Percent Earned Value

measurements.

= IT efficiencies.
= Earned Value based on

complete deliveries work
products.

 = Enterprise Mission
Measures.

-in to = Metric capture built
Enterprise Value Chains.

= Direct measurement of
each enterprise
contribution.

Rewards = Subjective assessment. = Subjective assessment. = Rewards tied to measured
capability delivery.

 Re= wards tied to measured
capability delivery.

Table 2: Enterprise Maturity Levels

About the Author

John Wunder is a certi-
fied Lockheed Martin
architect and has been
the lead system archi-
tect/composer on the
Global Combat Support

System-Air Force since 1999, and was
lead architect for the Dow Chemical
Process Control and software architect
for the U.S. Army battlefield digitization
project. Wunder has been involved in
information technology for more than 20
years.

Lockheed Martin
Systems Integration
1801 State RTE 17C
MD 0605
Owego, NY 13827
Phone: (607) 751-6096
Fax: (607) 751-2538
E-mail: john.wunder@lmco.com

