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Formal specification languages have
been thoroughly investigated during

the past three decades. They have been
considered primarily for verification and
validation purposes using techniques com-
monly known as formal methods. Most
formal methods have suffered from limit-
ed commercial success due to several lim-
iting factors such as their prohibitive com-
putational complexity and the high level of
mathematical skills needed to be used
effectively.

Recent research has focused on exe-
cutable specifications, a new class of applica-
tions of formal specifications whereby
specification rules are executed on a com-
puter much like any high-level program-
ming language. This class of techniques
and associated tools harnesses the linguis-
tic power of formal specification lan-
guages yet is simple and does not suffer
from the complexity limitations of formal
verification methods. In addition, exe-
cutable specifications enable new applica-
tion domains in addition to classical verifi-
cation such as online temporal reasoning
in security applications.

In this article, we focus on temporal
logic that is a particular and prominent
formal specification language. We begin
with background information about logic
and formal methods and then describe
temporal logic in greater detail. Next, we
describe executable specification methods
and tools followed by a description of a
successful verification effort using exe-
cutable specification. Lastly, we describe
security rule-checking using executable
specifications.

Background
Formal specification languages are
designed to capture requirements (what a
system should do) in a formal way, i.e.,
using mathematics. In contrast, design and
programming languages capture the
implementation (how a system implemen-

tation does what it is supposed to do).
Using mathematical notation to cap-

ture specifications removes potential
ambiguity and, when coupled with mathe-
matical proof techniques, enables pro-
gram correctness proofs. These proofs
provide indisputable statements about the
absolute absence of errors in the imple-
mentation. This contrasts with testing
techniques where only incomplete evi-
dence is provided. The body of knowl-
edge involving formal specifications and
formal correctness techniques is com-

monly referred to as formal methods.
Clearly, there is an inherent trade-off

between investing in the education and
tools of formal methods versus the poten-
tial benefit of assuring bug-free software.
For example, a low-end Web site owner
might be willing to take the risk of having
program errors on the site rather than
invest in costly verification methods. On
the other hand, the cost of a single bug in
the software onboard a multimillion dollar
space mission justifies the investment in
robust verification techniques such as for-
mal methods.

The most popular mathematical
domain used by formal specification lan-
guages is logic. In its simplest form,
Boolean propositional logic1 is the kind of
logic found in every modern program-
ming language such as the C/Java expres-
sion (x>0) && (y==1). However, propo-
sitional logic is not powerful enough to
elegantly capture temporal and aggrega-
tional aspects of the system. For example,
propositional logic cannot explicitly state
that (x>0) must be true now and (y==1) must
be true sometime within the next 5 seconds.

First Order Logic (FOL) extends
propositional logic with two quantifiers:
the universal quantifier (∀ read as for all),
and the existential quantifier (∃ read as
there exists). These quantifiers range over a
known set, i.e., the set of all cars registered
in California. Hence, a statement such as a
California registered minivan must be at most 10
feet long can be stated in a single expression:
∀car: minivan → (length≤10ft.).

In contrast, using propositional logic
would require that you explicitly state –
for every car in the set – the above state-
ment. Also, using programming tech-
niques to achieve the desired aggregate
effect defeats the whole purpose of spec-
ification, i.e., to make a clear statement
about what the system should do without
dealing with the how it does so.

Linear-Time Temporal Logic (LTL),
the formal specification language
described later in this article in the section
“REM Tools: Code Generators and
Monitors,” extends propositional logic
with four temporal operators. LTL has an
advantage over FOL in that it removes
mathematical clutter and enables specifi-
cations in a form that is close to natural
language. It is mostly suitable for reactive
systems, i.e., systems that constantly interact
with their environment such as control
software in a cruise missile.

Two primary classes of formal cor-
rectness proof techniques are theorem
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provers and model checkers. Theorem
provers use logic proof methods to prove
that a program conforms to a given spec-
ification. Theorem provers support only a
subset of LTL, and typically require a
highly skilled human driver. Model check-
ers, on the other hand, are automatic and
support full-blown LTL specifications
(though typically with little support for
real-time constraint validation). However,
due to their prohibitive computational
complexity, model checkers tend to work
well only for small programs.

Run-time Execution and Monitoring
(REM) is an effective and efficient hybrid
between formal methods and convention-
al execution or simulation-based testing
techniques. REM uses LTL-based specifi-
cations augmented with real-time con-
straint specifications. REM is a method of
automatically comparing the behavior of
an underlying application such as an
embedded system to its formal specifica-
tion. This is done by executing the specifi-
cation in tandem with the application.

While REM uses formal specifications,
it is not a pure mathematical proof tech-
nique; test-based verification and corre-
sponding test suites are still required.
Nevertheless, REM is simple to use and
automates the verification process. In
addition, REM tools described in the
sequel are capable of detecting real-time
requirement violations while executing on
an embedded target. Interestingly, REM is
also useful for non-verification applica-
tions such as security checking, as
described in the “Security Applications”
section of this article.

Formalism and Language
Lessons
LTL is an extension of propositional logic
that deals with time and order. As early as
1977, LTL was proposed as a way to for-
mally specify multithreaded programs [1,
22]. Since then – and especially during the
last decade – researchers have expanded
its theoretical and practical power using it,
for example, to specify protocols and
hardware. LTL is a simple and intuitive
extension of propositional logic that is
closer to natural language than most other
specification languages. For those reasons,
LTL is the formal specification language
used by most formal methods and is also
the specification language of choice for
REM methods and tools.

The syntax of LTL adds eight opera-
tors to the AND, OR, IMPLIES, XOR,
and NOT of propositional logic. Four of
the operators deal with the future: Always
in the future, Eventually (sometime in the

future), Until, and Next cycle; additionally,
four dual operators address the past:
Always in the past, Sometime in the past,
Since, and Previous cycle.

Metric Temporal Logic (MTL) en-
hances LTL’s capabilities [3]. With it, you
can define upper and lower time con-
straints as well as time ranges for the LTL
operators. By imposing relative and real-
time constraints on LTL statements, MTL
lets you use LTL to verify real-time sys-
tems. The following is an example showing
a relative-time upper boundary in MTL:

Always<10(readySignal Implies Next
ackSignal)

which reads,

Always, within the next 10 cycles,
readySignal equals 1 implies that
one cycle later ackSignal equals 1.

The text inside the parentheses is a
propositional logic expression, and a cycle
is an LTL time unit, which is a user-con-
trolled quantity. The time constraint is rel-
ative in that it is counted in clock cycles.

Another example is as follows:

Always timer1[5,10](readySignal Implies
Eventually timer2>= 20 ackSignal)

which reads,

Always, between 5 and 10 timer1
real-time units in the future,
readySignal equals 1 implies that
eventually, at least 20 timer2 real-
time units further in the future,
ackSignal equals 1.

Here, two real-time constraints are
specified using timer1 and timer2 clocks.
A separate statement maps these timers to
system calls, system clocks, or another
counting device.

One reason for the prominence of
LTL as a specification language is the sim-
ple way in which it relates to natural lan-
guage. For example, consider the natural
language requirement for a traffic light
controller (TLC): whenever light is red, light
should turn green within two minutes. The fol-
lowing conversion steps convert the
requirement into an MTL requirement.
1. Always when light is red then light

should turn green within two minutes.
2. Always (if light is red, then light

should turn green within two minutes)
3. Always (light is red implies that even-

tually light should turn green within
two minutes)

4. Always (LightColor==RED Implies
Eventually seconds<120 LightColor ==
GREEN)

REM Tools: Code Generators
and Monitors
The two primary categories of executable
specification tools are code generators and
REM tools (monitors). Code generators
generate source code in a programming
language such as a Java, C or C++, from
formal, LTL specifications. While a con-
ventional program can handle proposi-
tional logic, it cannot deal with higher
forms of logic such as FOL, LTL, or
MTL. For example, writing LTL inside a C
program will result in compilation errors.
Therefore, an often-used solution embeds
high-level specification requirements
inside program comments.

For example, the following C program
contains an embedded MTL assertion for
a TLC (written with syntax from [4])
asserting that for 100 milliseconds, whenever
light is red, camera should be on:

void tlc(int Color_Main, boolean 
CameraOn) {

… /* Traffic Light Controller 
functionality */

/* TRBegin
TRClock{C1=getTimeInMillis()} // 

get time from the OS
TRAssert{ Always({Color_Main == 

RED} Implies Eventually_ C1 
<1000_{CameraOn == 1}) 
} => 

// Customizable user actions
{printf(“SUCCESS\n”);printf(“FAIL\n”);

printf(“DONE!\n”);}
TREnd */
} /* end of tlc */

An executable specifications code gen-
erator generates code that replaces the
embedded LTL/MTL assertion with real
C code, which executes in process with the
rest of the TLC, i.e., as part of the under-
lying TLC application. The generated
code can also be used for formal specifi-
cation-based exception handling [5].

In contrast to code generators, REM
monitors (e.g., [6, 7]) monitor assertions in
a stand-alone process often on a remote
machine. It uses Hyper Text Transfer
Protocol (HTTP), sockets, or serial com-
munication to interface with the client
application. To monitor, these tools either
generate special, out-of-process source
code using a code generator or use math-
ematical tools such as rewriting systems.
The following list describes desired prop-
erties of remote monitors:
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1. Monitoring online, namely, no
post-mortem processing is used. A
counter example would be to store all
events in a database and use a struc-
tured query language (SQL)-based
method to query those tables at a later
time. The motivation for this require-
ment is that no expected termination
time for the underlying application
(e.g., security application) should be
assumed. With no expected termina-
tion time, the size of the stored histo-
ry trace information will be monoton-
ically increasing and unbounded,
which is unacceptable in most cases.

2. Low impact. It is desirable for a REM
tool to not actively interrogate the
client application (e.g., the banking sys-
tem in the R2 example in the “Security
Applications” section). Rather, it
should passively listen to an event
stream pertaining to basic propositions
such as deposit-occurred or balance<0,
which is sent to the REM tool from
the client application. Having a low-
impact REM tool increases the likeli-
hood of acceptance by commercial
and security-related organizations. For
example, a bank is typically unwilling
to be actively interrogated by a third-
party tool but might agree to voluntar-
ily, on its own terms and conditions,
send out limited information to a third
party such as a REM monitor.

3. Powerful and flexible rules lan-
guage. Formal specifications need to
capture real-life patterns and concerns
such as real-time constraints while
being syntactically close to natural lan-
guage. The LTL satisfies these require-
ments; a large body of research points
to its expressiveness and usefulness as
a specification language. The MTL
adds real-time constraints to LTL
specifications. Time series constraints
are also supported [8].

Run-Time Monitoring of
Safety Critical Systems at NASA
NASA’s Jet Propulsion Laboratory has
used REM to verify the fault protection
subsystem of the Deep-Impact spacecraft
[9]. The level of fault protection provided
by this system is single-fail-operational
(the system has the capability to recover
from a single fault and continue its mis-
sion). Multiple faults are handled sequen-
tially where only one response is active at
a time.

The fault protection provides moni-
toring and system-level responses to faults
detected onboard the spacecraft. Other
missions that have used this level of fault

protection include Galileo, Mars Path-
finder, and DS1. Deep-Impact continues
with this legacy but has incorporated a
core reusable portion called the Fault
Protection (FP) engine. The FP engine is
responsible for accepting all input symp-
toms from various monitors and generat-
ing the appropriate system level response.
These responses may vary from a single
command (reset a hardware device) to a
long running sequence (orient the space-
craft to a safe altitude).

The FP engine handles faults by prior-
ity-based input queues. The FP engine
ensures that responses are handled in an
orderly fashion and are not run unneces-
sarily (triggered by an overly sensitive
monitor). After each response is run
through to completion, the FP engine
clears the fault and sends a cleanup signal
back to the offending monitor.

REM was used to validate the FP
engine software while in the development
phase in executable form although not
mature and robust; this led to the possibil-
ity of uncovering latent bugs in the soft-
ware. Many aspects of the FP application
exist that lend themselves well to a run-
time verification approach. For example,
during runtime the developer/tester may
be unaware of inconsistencies within the
internal state of the FP engine. Faults may
be locked into a state where they are
unable to trigger a response. Due to the
nature of the application, there are hun-
dreds of possible symptoms that may be
reported to the FP engine, and dozens of
possible faults that can trigger responses.
It would be difficult for a test engineer to
be constantly checking internal state con-
sistency. Using the runtime verification
approach, the REM monitor executed in
parallel with the application, alerting the
user to any violation of pre-defined cor-
rectness properties.

Security Applications3

Consider the following two airline securi-

ty-related temporal pattern rules, both
concerned with detecting a foreign nation-
al male passenger with a student visa fly-
ing to the Harrisburg International
Airport near the Three Mile Island nuclear
power plant:
• R1. Detect such a passenger if he has

traveled to the Middle East at least
once within a year of obtaining his stu-
dent visa.

• R2. Detect such a passenger if he has
traveled to the Middle East at least
once within a year of obtaining his stu-
dent visa and he received two or more
direct deposits from non-US banks
within the last year.
Both rules describe temporal patterns

that contain potentially discernable ele-
ments from an airline security system
operating automatically and in real-time.
The two primary methods for performing
such temporal pattern detection are offline
and online, as described in the sequel.

The Federal Aviation Administration
has an automated profiling system origi-
nally termed Computer Assisted Passen-
ger Screening (CAPS) [10] that relies upon
the data in each Passenger Name Record.
This profiling system is being upgraded to
access a more extensive range of data.
The upgrade, CAPPSII, will profile airline
passengers based on secret criteria to iden-
tify potential terrorists. Personal informa-
tion about passengers may additionally
include that from the Immigration and
Naturalization Service (INS, now U.S.
Immigration and Customs Enforcement),
law enforcement, and customs. Having
such history information stored in the sys-
tem, or in constituent subsystems, enables
SQL-based implementation of a temporal
pattern rule such as R1. We call such an
implementation offline because it relies on
storing and querying historical informa-
tion. An offline solution induces the fol-
lowing three impact consequences:
1. Temporal historical information is

stored within the system (e.g., within
CAPPSII and/or its constituent sub-
systems).

2. Temporal and non-temporal pattern
detection is initiated by the security-
related query, querying the constituent
resources at will. We regard this as a
high-impact solution because a tempo-
ral query is initiated from outside the
original scope of the queried system,
thereby impacting the performance of
the queried system. For example, a
potential INS subsystem of CAPPSII
is impacted by repeated external
queries from CAPPSII proper which,
sooner or later, will degrade the INS
system performance. Performance

“Formal specifications
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constraints while being
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degradation will occur because of the
actual query processing forced on the
INS subsystem and because of the fact
that as time progresses, temporal
queries might query monotonically
increasing data-sets of historical data.

3. In addition to performance issues,
CAPPSII and its constituent subsys-
tems need to agree on a shared data
representation for merging query
results from multiple subsystems (e.g.,
merging INS and law enforcement
query results).
This article is concerned with low-

impact, online temporal pattern detection. It
uses REM to detect temporal patterns
without using historical data (i.e., it is
online), and without querying the underly-
ing application (i.e., it is low-impact). The
only communicated information it
requires from the underlying application
(e.g., CAPPSII constituent subsystems)
are Boolean messages for basic proposi-
tions such as deposit of more than $1,000 was
made to account of SSN=222 11 2222.

While pattern rule R1 described earlier
is programmable within the suggested
CAPPSII framework, R2 requires exten-
sion, which includes banking information.
Such an extension however will not lend
itself to offline temporal pattern detection
methods for the following reasons:
1. The banking data systems only store

historical/temporal information for a
limited duration (e.g., three months).
The industry is unlikely to make any
significant change to this policy.

2. Banking data systems are not likely to
permit high-impact, CAPPSII-initiated
queries because of the performance
consequences discussed earlier as well
as their own security need to be in full
control over any content query.
In contrast, a REM temporal pattern

detection method, being online and low-
impact, can be used in tandem with
CAPPSII while supporting extensions that
support rules such as R2.

Conclusion 
Executable specification methods have
been effectively used to verify safety-criti-
cal systems at NASA. They enjoy the
power and accuracy of formal specifica-
tions, yet are easy to use. They also enable
requirement simulation prior to imple-
mentation. In addition, these appealing
properties of executable specification
methods lend themselves to non-verifica-
tion applications such as monitoring tem-
poral rules within security applications.◆
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Note
1. Propositional logic is a mathematical

model that allows us to reason about
the truth or falsehood of logical
expressions.

2. Professor Amir Pnueli, a longtime
advocate of temporal logic, is the 1996
Turing award winner for his “seminal
work introducing temporal logic into
computing science and for outstanding
contributions to program and system
verification.”

3. Published in [11].
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