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1. INTRODUCTION

Cancer rate comparisons around the world suggest clear geographic
differences that have only recently been appreciated and evaluated by statistical
methods.  The goal of this chapter is to briefly review the progression of the
spatial analysis of disease from simple dot maps and crude rate comparisons to
the complex hierarchical spatial models used today. After providing a historical
background and necessary epidemiologic fundamentals, we summarize
available methods for the exploration, hypothesis testing, and modeling of
spatial data. Although the focus here is on methods appropriate for cancer
research, other related methods will be mentioned.

2. HISTORY OF THE SPATIAL ANALYSIS OF
DISEASE, WITH AN EMPHASIS ON CANCER

2.1 An Early History of Mapping

The earliest maps of disease were produced over two hundred years ago.
Although John Snow’s dot maps of cholera cases in London, first published in
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1855  (Snow 1855), are the most well known, research has uncovered a “spot
map” of yellow fever in New York published by Seaman in 1798 and an
unpublished disease map of the world produced by Finke in 1792  (Barrett
2000).

These first disease maps identified the locations of the residences of cases
by either a dot or a small bar, e.g., a version of Snow’s map has a small stacked
bar graphic at each street address representing the number of cholera victims
at that house (McLeod 2000). Patterns were discerned by visual inspection and
the case locations were compared to those of suspected risk factors, such as the
locations of London water pumps during the cholera epidemic.  Differential
shading was used to indicate  levels of cholera mortality in 1852  (Peterman
1852).  The first maps of cancer appeared in 1875  (Haviland 1875), notable
because of the use of color, although  the use of red for low rates and blue for
high rates is the reverse of today’s convention.  For more details of this
fascinating history, the reader is referred to a review by Howe  (Howe 1989).

2.2 Beginnings of Disease Pattern Analysis

Spatial analysis through the early twentieth century was hampered not only
by a lack of appropriate statistical methods, but by a lack of data. Identification
of cases for the early maps described above was made by individual physicians,
and rates could not be calculated in the absence of area-wide population
enumeration. Stocks first adjusted cancer rates for 1921-23 by age, sex, and
urban distribution in English counties and later showed standardized mortality
ratios on choropleth maps  (Stocks 1928; Stocks 1936). When health outcomes
data became available on a national level, e.g., required certification of each
death in the U.S. beginning in 1933 and the start of the National Health Service
in the U.K. in 1948, statistical methods for their analysis soon followed.

The following decade saw the development of statistical methods to
evaluate clustering  (Moran 1948; Geary 1954), to measure disease-risk
associations (e.g.,  Bross 1954) and their asymptotic variances (e.g., (Woolf
1955)), the development of the logistic model (reviewed in  Cox 1970), the
application of the relative risk concept to case-control data (Cornfield 1951),
and the definition of the Poisson cluster process (Neyman and Scott 1958). This
early work was extended to the detection of disease clustering  (Mantel 1967)
and space-time interactions  (Knox 1964) and the logistic model was extended
to more complex studies (Walker and Duncan 1967).
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2.3 Cancer Atlases

The modern-day atlas began with Howe’s National Atlas of Disease
Mortality in the United Kingdom (Howe 1963).  The first cancer atlases in the
U.S. mapped 34 types of cancer at the small area level  (Mason et al. 1975).
Burbank tested U.S. state rates for space-time clustering  (Burbank 1972) and
several later atlases also included a measure of spatial clustering  (Ohno and
Aoki 1981; Kemp et al. 1985; Le et al. 1996). The second generation of cancer
atlases included results of model-based procedures, such as a time trends map
based on a straightforward Poisson regression model  (Pickle et al. 1987; Pickle
et al. 1990) and an atlas which mapped empirical Bayes estimates  (Riggan et
al. 1987). An injury atlas presented rates predicted by a constrained empirical
Bayes procedure developed to improve the fit of the model to the observed rates
 (Devine et al. 1991). All of the U.S. atlases have presented age-adjusted rates
but a recent atlas of the leading causes of death in the U.S. also included
predicted age-specific maps and regional rates resulting from a mixed effects
model (Pickle et al. 1996a). The most recent cancer atlas focused on the
presentation of observed rates (Devesa et al. 1999).

With a few exceptions noted above, the early atlases had relied upon the
readers’ perception of visual patterns to identify salient features on the maps.
Only recently has attention turned to the evaluation of map design features
(Pickle and Herrmann 1995), but clearly the characteristics of a map, such as
color and cutpoint choices, can have an important impact on its apparent
patterns.  Thus reliance on maps alone could lead to different interpretations of
the same data, depending on the presentation method. A review of data
visualization methods is beyond the scope of this chapter, but the reader should
be aware of the potential impact of a map’s design on perceived spatial patterns.

2.4 Epidemiologic Studies of Geographic Patterns

2.4.1 Ecologic Studies

Because the first U.S. atlas showed surprising concentrations of high cancer
rates in certain regions of the country, it was followed by a series of ecologic
regression studies that identified associations between cancer death rates and
various sociodemographic and occupational factors. Although these studies
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found plausible associations between cancer and purported risk factors, such as
certain manufacturing industries, etiologic field studies often found other
explanations for the high cancer rates. For example, lung cancer death rates
among white men were high during 1950-69 in scattered cities along the south
Atlantic and Gulf coasts  (Mason et al. 1975). A correlation study showed an
association with the paper, chemical, petroleum and transportation industries
(Blot and Fraumeni Jr. 1976), but several case-control interview studies also
found an association with the shipbuilding/ship repair industry. In addition to
cigarette smoking patterns, employment in this industry during World War II
was a major risk factor for lung cancer in these port cities, most likely because
of the workers’ asbestos exposure  (Blot et al. 1978). The war had occurred
between censuses of U.S. manufacturers, and so data available for the
correlation studies did not record the high shipyard employment in these cities.
Thus the failure of many of the correlational studies to pinpoint the causes of
the high cancer rates may have been due in part not only to the ecological
fallacy, i.e., where associations between disease and risk factor exposure differ
among individuals  compared to those among aggregated groups, but also to
unmeasured risk factors for small geographic areas.

2.4.2 Etiologic Studies

The etiologic studies that followed avoided the potential ecological bias by
gathering data from individual cancer cases and controls. The analysis of these

data was generally by logistic models, where ,log X' log( )
1

OR
π β

π
  = + − 

where = P(individual was exposed | individual was a case), X is a matrix ofπ
confounding variables,  is a vector of corresponding coefficients, and ORβ
is the odds ratio, an approximation to the relative risk of disease due to this
exposure.  Parameters were estimated by maximum likelihood or the least
squares approach.  In a few of these studies, distance to a suspected
carcinogenic polluting source was calculated, but generally these regression
models did not account for spatial adjacency or nearness.
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2.4.3 Cancer Clusters

The clustering of cancer cases has long been suspected by the public, but
the confirmation and search for causes of such clusters have typically been
disappointing.  For example, a cluster of childhood leukemia cases in Seascale,
U.K., has been widely studied, but no clear cause has been identified  (Draper
et al. 1993).  Statistical power is low to detect these small clusters, unless the
underlying risk is quite high, and relevant historic environmental and personal
exposure measures often are not available  (Najem and Cappadona 1991).
Cancer surveillance around suspected carcinogenic point sources has proven
more fruitful, despite the time and expense involved. For example, followup
studies of the atomic bomb survivors in Japan have yielded extensive
information on radiation carcinogenesis  (Beebe G.W. et al. 1971). Likewise,
health studies of residents near the Chernobyl nuclear power plant have found
an excess of childhood thyroid cancer (Astakhova et al. 1998), but no cancer
clusters were confirmed around the Love Canal, NY, toxic waste site  (Janerich
et al. 1981). In a  study currently underway on Long Island, NY, the first
Congressionally-mandated Geographic Information System will be used in an
attempt to discover the reason for an excess of breast cancer there  (Kulldorff
1997; Varon 1998). Statistical methods for cluster detection will be discussed
in Section 6.

2.5 Related Statistical Methods

Other statistical methods for spatial analysis developed in parallel to those
in epidemiology.  Geostatistical methods arose from the need to interpolate and
predict in the geologic sciences, for example, to produce a surface rendition of
soil content or to predict where oil drilling would be successful. Trend surface
analysis by polynomial regression surfaces and kriging will be discussed in
Section 5. These methods initially were for lattice point data, such as the soil
content from regularly-spaced samples. Extensions allowed application to
irregularly-spaced data. Prediction models were also developed for small area
(e.g., state) estimation from national survey data (for a review of these methods,
see  Ghosh and Rao 1994). The goal of small area estimation is to predict
responses in non-sampled areas, similar to geostatistics, but the method
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includes explanatory covariates in the regression model and ignores any spatial
correlation in the data.

2.6 A Convergence of Methods

The recent dramatic improvements in computational speed have made
possible a merging of features of these methods from epidemiology,
geostatistics, and survey sampling to provide powerful new methods for the
spatial analysis of disease patterns (for example, see  Ghosh et al. 1998). Fully
Bayesian estimation employing Monte Carlo techniques can be used to predict
multi-dimensional disease patterns and to provide more realistic significance
levels of statistical tests. After considering the features and limitations of health
data, the remainder of this chapter will examine statistical methods for the
estimation, exploratory analysis, hypothesis testing and modeling of disease
data.

3. CHARACTERISTICS OF DISEASE DATA

3.1 Data Description

Spatial data may consist of point data, such as the locations of breast cancer
patients, area data, such as the breast cancer rates by county, or line data, such
as locations of roadways. Point data are usually irregularly spaced, but are
sometimes aggregated to a regularly-spaced grid (“binning”) for convenience
or to maintain confidentiality of the data (see section 3.2). Environmental
exposures may be represented as spatially continuous data or as data points at
monitoring locations. Line data are rarely relevant for cancer research. An
obvious analytic problem is how to handle combinations of different types of
data, e.g., point locations of cancer cases, area-level demographic data and
spatially continuous environmental data.  A related problem is spatial mis-
alignment, when variables are available at different geographic scales. Some
interesting work is currently underway regarding how to correct for this, such
as when population data must be measured on the same scale as the number of
cases to permit the calculation of rates  (Zhu and Carlin 2000).
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The ecologic fallacy noted in section 2.4.1 is also a scaling problem, but
where the data are available at geographic units larger than those for which we
wish to make inferences. Typically, we wish to draw inferences about
individuals but only have data about aggregated sets of individuals, such as the
cancer incidence rate for each county. A slightly different scaling problem
occurs when different variables in an analysis are available for different levels
of geographic aggregation. Multilevel models can be constructed that take this
geographic hierarchy into account. This will be discussed in section 7.

The health data of interest here are observational, i.e., no experiments have
been performed to control for the many potential confounding variables related
to human health. Experimental clinical trials are an exception, but spatial
pattern is rarely of interest in these studies. Spatial sampling is a method often
used in the earth sciences to ensure geographic representativeness, but this is
often impractical for human studies. Thus the analyst needs to determine the
representativeness of the health data for inferential purposes. For example, a
sample of hospital patients may not be representative of all residents of an area
but may be acceptable as a sample of all hospital patients. Epidemiologic case-
control studies attempt to match the distribution of important individual
characteristics of controls to cases. Even in these situations, the individuals may
not be spatially representative, so that estimates made for aggregated
geographic units may be biased; this is why we are unable to make direct
inferences from survey data about geographic units that are smaller than those
included in the sample design. For example, the National Health Interview
Survey is a nationwide survey which samples from over two thirds of U.S.
states. Resulting estimates from this survey are only provided for four broad
regions and, in the most recent design, for large metropolitan areas but not for
states.

3.2 Data Limitations

A serious limitation of health data for spatial analyses is the restriction
placed on these data because of confidentiality and privacy concerns. Actual
addresses of patients are often not available for geocoding (assigning a specific
spatial location), so the geographic locations of cases are often known only to
a small administrative unit, such as zip code or census tract. Furthermore, even
aggregated health data may not be released if there is a concern that, because
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of small numbers, the identity of the patient could be determined. For example,
the National Center for Health Statistics will not publish mortality data at the
county level for single years for this reason. Some methods to mask the identity
of the patient while still providing some measure of geographic accuracy are
discussed in the accompanying chapter.

An additional problem is the lack of appropriate covariate data for the
spatial analysis of cancer. Information on lifestyle factors is not available in
hospital records, cancer registries or other common sources of cancer data. The
Behavioral Risk Factor Surveillance System provides information on smoking,
obesity, and other health risk factors at the state level  (Nelson et al. 1998);
recently county-level maps of these data have been developed (Pickle and Su
2001).  Some relevant environmental data are available from monitoring sites
but models of the dispersion of potentially hazardous pollutants through the air,
water, or soil are needed to determine the potential for exposure by individuals
living in a certain area. Even when such models exist, unmeasured personal
habits can negate the exposure, such as the regular use of sunscreen and
protective clothing when exposed to strong sunlight outdoors. A further
problem for cancer studies is that for most types of cancer the lag between
exposure and cancer diagnosis can be decades. Thus we need historic exposure
data for analysis, something not available at a small area level even for the
long-recognized risk factor cigarette smoking.

Data availability and quality are usually the limiting factors in a health data
analysis. The quality of data is important for any study, but historical exposure
data, if available at all, may be derived from administrative databases (e.g.,
hospital patient records) that were not designed for accurate collection of these
data. Even the most direct sources of some data, the patients themselves or their
next of kin, may not remember or report the necessary information accurately,
or may refuse to provide it at all. New techniques utilizing satellite imagery,
dispersion models for environmental pollutants, and Geographic Information
Systems may soon offer a method to estimate individuals’ environmental
exposures, information heretofore unknown to them  (Xiang et al. 2000).
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3.3 Potential Analytic Problems

3.3.1 Stationarity and Isotropy

In order to draw valid statistical inferences, we must make certain
assumptions about the spatial structure of the data. If the data-generating spatial
process can vary at each data point, we have no repeated measurements from
which to make inferences. In addition, the random variables in a spatial process
are spatially correlated, at least locally, and so cannot be assumed to be
independent. These difficulties may be avoided if stationarity can be assumed,
i.e., that the process has a constant mean across the space and the covariance
between random variables at two locations depends on their relative, not
absolute, locations. Specifically, spatial structure may be described in terms of
first and second order effects, or large-scale and small-scale effects,

respectively:   where  represents the mean value at( ) ( ) ( )s Z s sµ ε= + ( )sµ

location s. If the large-scale effect  is not a constant across the entire space,( )Z s

then the data may first be detrended by subtracting the large scale effect so that

the resulting differences have a constant mean Under the( ( ) ( ) ).s Z sµ α− =

stationarity assumption, the observed data are replicates of the same spatial
process, and so can be used for statistical inference.  The local effects (residuals

from the mean process), are usually correlated because of the influence( ),sε
of common factors in a small neighborhood around s. This correlation structure
is assumed, under stationarity, to be a function only of the distance and
direction between two points, s and s’, not of their actual locations, that is

where C is some covariance function. Note thatcov( ( ), ( ')) ( ')Y s Y s C s s= −
a Gaussian spatial process is completely specified by these assumptions. A
weaker form of stationarity, intrinsic stationarity, is defined as a spatial process

with constant mean where is again a function onlyVar( ( ), ( ')) 2 ( ')Y s Y s s sγ= −

of the relative locations of the two points.  The semi-variogram, ,( ')s sγ −
may be modeled to provide an estimate of the covariance structure  (Cressie
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1993).  If in addition to these stationarity conditions, the covariance is not
dependent on the direction between the two points, the process is said to be
isotropic. In some situations, anisotropy can be corrected by a data
transformation, in others the dependence on direction can be built into the
covariance model.

3.3.2 Effects of Topography

In defining spatial neighbors, trends, distances and correlations, we usually
ignore the real topography of the region.  For example, is it correct to call
Mississippi and Arkansas adjacent neighbors when the Mississippi River
separates them? Should distances in mountainous areas be computed “as the
crow flies” or along the more circuitous roadways? For airborne exposures, the
former is probably best, but for measuring access to medical care, the latter
seems more reasonable. There is no universal answer, but the analyst must
consider these questions for each study.

Another problem in defining neighbors arises at the edge of the study area
or at a coastline - no neighbors exist in one or more directions. Some non-
parametric smoothing algorithms extrapolate data so as to create neighbors
where there are none, but some of these algorithms are more adversely affected
by edge effects than others  (Kafadar 1994). These algorithms will be discussed
further in section 5.

4. BASIC EPIDEMIOLOGIC ANALYSIS

4.1 Notation

In this section, notation and basic statistical measures for cancer rates and
risks are described. Exploring patterns in point data will be discussed in section
6. For illustration of areal data, we consider cancer incidence, although the

same methods pertain for mortality. Let represent the number of new cancerijd

cases in place i, i=1,2,...,I, age group j, j=1,2,...,J, and let represent theijn

corresponding population at risk. Then the observed age-place-specific cancer
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incidence rate is . The crude place-specific rate, ignoring age, is/ij ij ijr d n=

 where the period (.) denotes summation over that subscript.  . . ./i i ir d n=

4.2 Adjusted rates and risks

The crude cancer rate, , is highly dependent on the age distribution of the.ir

population because most types of cancer occur predominantly in the elderly. A
comparison of crude cancer rates for Utah and Florida would be meaningless
because more cancer cases would be expected in Florida’s older population. An
age-adjusted rate is preferred to put the rates for different places on the same
scale for proper comparison. The actual value of any standardized rate is only
meaningful in comparison to other rates that have been standardized in the same
way. The two methods most often used to adjust epidemiologic rates are the
direct and indirect methods  (Fleiss 1981).

The directly adjusted rate is where is the proportion of( )dir i j ij
j

R u r=∑ ju

the standard population that is in the jth age group. Various standards are used,
e.g., the total U.S. population in 1970 or a constructed world population. A
relative measure, termed the Comparative Mortality (or Morbidity) Ratio, may
be derived by dividing the directly adjusted rate by the standard’s rate.

An alternative method for age adjustment is indirect standardization,

where , where the age-specific rates in the standard population( )ind i j ij
j

R c n=∑

( ) are applied to the area-specific populations. From this, the Standardizedjc

Mortality (or Morbidity) Ratio (SMR) is calculated as ,( ) /i ind i sSMR R R=

where Rs is the rate in the standard population. The SMR may be interpreted as
the ratio of observed to expected numbers of cases, where the expected number
is determined from the standard population. SMRs for two places are directly

comparable only if the proportionality condition holds , i.e., ,ij j ir α θ=

otherwise, the SMRs are standardized to different populations (  and )ijn 'i jn

(Pickle and White 1995a).
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The advantage of the indirect method is that it may be used for sparsely
populated areas which would have age-specific rates too unreliable for the
direct method of standardization. However, as illustrated in the table below, the
direct standardization method retains the rank order and the proportional
differences of the age-specific rates between places. In this example, the age-
specific rates for place B are three times those of place A for every age group.
The ratio of the directly adjusted rates (B:A) is 3, as one would expect. The
SMR calculations show that place B has a 50% excess of cases over what
would be expected, whereas place A has no excess. This comparative inference
is correct but it would not be correct to say that place B has a 50% greater risk
than place A, as implied by the SMRs, when there is a threefold ratio of age-
specific rates.

Table 1. Illustration of directly and indirectly standardized rates

Populations Rates Observed #
of cases

age A B standard A B standard A B

1 10,000 40,000 250,000 0.001 0.003 0.005 10 120

2 20,000 30,000 200,000 0.002 0.006 0.004 40 180

3 30,000 20,000 150,000 0.003 0.009 0.003 90 180

4 40,000 10,000 50,000 0.004 0.012 0.002 160 120

Total: 100,000 100,000  650,000 300 600

    directly adjusted rates:              200          600  

    (Per 100,000 population)

    indirectly adjusted rates (SMR):             1.0          1.5

 The relative risk is the measure of disease risk due to a particular exposure,

i.e., . The relative risk
P(disease in place  | exposure in place )

P(disease in place  | no exposure in place )i

i i

i i
θ =

may be estimated directly from prospective studies, where persons who were
and others who were not exposed to some risk factor are followed for some
period of time to determine the probability that they will become diseased. For
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case-control studies, where study subjects are chosen on the basis of their
disease status, the odds ratio is used as an approximation to the relative risk
when the disease is rare (see section 2.4.2). The relative risk or odds ratio is
typically estimated from logistic regression models which adjust for potential
confounders, i.e., variables that alter the association between disease and the
risk factor of interest.

4.3 Overdispersion

Assume that the number of cases is a Poisson random variable withijd

mean . Poisson regression may be used to model the effect ofij ijnλ

explanatory variables on the rates, i.e.,  and homogeneity( )log X 'ij ij ijλ β=

of rates over age and/or place may be modeled by a suitably reduced parameter

vector. Overdispersion of the is common and can result, for example, fromijd

rate heterogeneity, spatial correlation, or other clustering in the underlying
population. Under an assumption that the data result from clusters and that the

cluster size k is fixed, McCullagh and Nelder have shown that the areijd

approximately binomially distributed. The degree of overdispersion can then

be estimated by ,  where p is the number of~ ( ( ))

( )( $)
σ

λ
2

21

1
=

−
−

−
∑

IJ p

d E d

E d
ij ij

ij
ij

parameters estimated in the model (McCullagh and Nelder 1983) p.127). 

Because cancer rates are relatively low in the general population , ( $ )1 1− =λ ij

so that  reduces to the familiar form of a goodness-of-fit statistic for Poisson2~σ
counts. This estimator may be used to scale the likelihood function and to
adjust for overdispersion in hypothesis tests.
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5 EXPLORATORY ANALYSIS

5.1 Basic Tools

As a first step in the analysis, plots and maps of disease data can show
differences across the geographic units. For example, boxplots of small area
rates by region can point to a broad spatial trend or differences in variation by
region. Maps can be tied directly to plots, e.g., to show the rank of state cancer
rates and their spatial distribution in a single graphic  (Carr and Pierson 1996).
Maps conditioning on potential risk factors and confounders can suggest the
need for interactions in subsequent models. Now that mapping software has
become commonplace, such plots and maps of the data can be quickly
generated. In the remainder of this section, a number of smoothing methods are
described that can highlight the large scale patterns in the data.

5.2 General Smoothing Methods

The primary purpose of two-dimensional smoothing algorithms is to
remove background noise from the data so that the underlying spatial pattern
can be seen. These methods can also be used to identify outliers, sometimes
called “hot spots”, by subtraction of the smoothed surface from the original
map, although this differencing method highlights random extreme points as
well as truly unusual clusters. Nonparametric methods for estimating spatial
trend were developed for point data, but these methods have also been applied
to areal data by assigning the area’s value to its centroid and proceeding as if
the random variable occurred at that point. In general, smoothing methods
borrow information from neighboring places to improve the estimated value for
each point.

A problem common to most smoothing methods is how to define spatial
neighbors. Defining a neighbor is straight forward in a unidimensional problem,
such as a time series, because there is a clear ordering of points to one side or
the other of the point to be smoothed. In two dimensions, neighbors can be
defined in a number of ways, such as those areas having centroids within a
specified distance of the center or those that share a border with the area to be
smoothed. These subjective neighborhood definitions can impact the analysis,
particularly when areas vary greatly in size and shape.
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The methods described in this section smooth values from a single random
variable; none account for possible explanatory variables. Most do not permit
inverse variance weights, making them inappropriate for rate and count data
except perhaps as a crude first look at the patterns or for areas such as census
tracts where population sizes are roughly equal. We review both linear and non-
linear two-dimensional smoothers that are commonly recommended for spatial
data.

5.3      Linear Smoothers

The simplest two-dimensional smoother is an average of all values within
a distance h of each data point, repeated in turn for every point in the entire
space.  A similar disk averaging method that includes inverse distance weights,
i.e., weights equal to the inverse of the distance  hij (or squared distance)
between two points i and j, provides a more gradual decline in weights with
distance than the simple unweighted disk average method. Squared distance
weights have been recommended for data with little structure because of the
more rapidly declining weights, but this method trades off increased bias for
decreased prediction variance  (Kafadar 1994; (Cressie 1993), p.189). Another
commonly-used method is LOESS, locally weighted linear regression, with
weights constructed from a cubic function of distance  (Cleveland and Devlin
1988). The proportion of points to be included as neighbors is a tuning constant
set by the analyst for any of these methods.

5.4 Non-linear Smoothers

5.4.1 Response Surface Analysis

In contrast to the local smoothers described above, the purpose of response
surface analysis is to model the entire spatial area as a continuous surface. This
can be used for interpolation and prediction of non-sampled locations, for
example to provide values of explanatory environmental variables for a
regression model of disease rates. Given measurements at sampled points {Yij,
where i and j identify the spatial location}, assume that the three-dimensional

surface can be represented as where A is a vector of locationA' +eY β=
coordinates and e is the prediction error. Polynomial and spline functions (two-
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dimensional piece-wise polynomials with a smoothing penalty) of the
coordinates have been proposed to fit the trend surface, usually by ordinary
least squares. The error covariance matrix V may be specified so that
stationarity is not required for inference, but usually Y is assumed to be a
multivariate normal random variable generated by a stationary, but not
necessarily isotropic, spatial process (see section 3.3.1). The number of
parameters required to fit the data well using these methods can be high,
resulting in an ill-conditioned problem, particularly if the observed data points
are not well spaced throughout the area to be modeled. For more details on
these methods, see Haining  (Haining 1990).

5.4.2 Kriging

Historically, the most commonly used global smoother, or trend surface
analysis,  has been kriging, which arose from a need to smooth geologic data
for mining applications. Hence, kriging falls into a class of methods referred to
as “geostatistics”.  Following the notation from the previous section, “simple”
kriging assumes that E(e)=0 with known covariance matrix V and computes the

weighted least squares estimate ; i.e., this is also a weighted average type ofβ̂
smoother, with weights chosen to  minimize the mean square error. This
prediction is unbiased under the normal assumption, but is biased and sensitive
to outliers if this assumption is violated  (Haining 1990).
These are the theoretical underpinnings of kriging, but the covariance matrix
is rarely known, so simple kriging is of little use. Simplifying assumptions must
be made in order to estimate the covariance matrix and then fit the surface.

“Ordinary” kriging assumes that Y has a constant mean ( ) and aA'β µ=

stationary spatial process (see section 3.3.1).  “Universal” kriging allows a
spatial trend in the data or ordinary kriging may be used after “detrending” the
data by subtracting the mean values and then kriging the residuals.

5.4.3 An Illustration of Variogram Modeling

Even though the assumptions required for kriging are usually violated by
health data, empirical variogram modeling may prove useful in exploring (a)
data transformations that would reduce non-stationarity and anisotropy, (b)
appropriate covariance structures for more complex modeling, and (c) the
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spatial correlation that remains in model residuals (illustrated in the next
chapter). We provide a simple example examining the stationarity assumption
here; a more  difficult problem is illustrated in the next chapter. For a more
detailed discussion of kriging and variogram modeling, see Cressie  (Cressie
1993). 

As noted in section 3.3.1, the semi-variogram may be modeled to provide
an estimate of the covariance matrix V. Models that are frequently used include
the power, exponential, Gaussian, linear, sine wave, spherical and log-linear
functions of distance. For illustration, we calculated the empirical semi-
variogram for the rates of mortality due to all cancer, age-adjusted to the 1940
U.S. population, for white males, 1988-92  (Pickle et al. 1996a; Pickle et al.
1996b). All of the above models were fit to these data, up to a maximum of

1250 miles, weighting by  as Cressie suggests  (Cressie 1993), where nˆn γ
is the number of observations in that distance bin. The variogram of the original

data (Figure 1, top) shows a linearly increasing with increasing distance,γ
strongly indicative of non-stationary data. After crudely removing the spatial
trend in the data by using a generalized additive model of smoothed (LOESS)
functions of latitude and longitude (Kaluzny et al. 1998), the log-linear distance

function fit the data well (r2=92%),  i.e.,    for( ; ) 91.8 43.5{log( )}h hγ ϕ = +
distance h>0 (Figure 1, bottom). Because of the continuing increase of variance
with increasing distance, this plot indicates slight non-stationarity, but is much
improved over the original data plot. The spherical (stationary) function fit the
data reasonably well overall (r2=75%), but provided a poor fit to points for
distances over 750 miles. 

5.5 Other Non-linear Smoothers

Whereas the goal of response surface analysis is to fit an entire surface by
a single parametric function, median polish and headbanging are two
nonparametric methods proposed by Tukey for locally smoothing spatial data.
For median polish, a grid is placed over the map and the values on the map are
assigned to a grid cell, averaging if there are multiple values per cell (Cressie
and Read 1989; Tukey 1977). Assuming independence of row and column
effects, the smoothed value is the sum of the overall mean, row and column
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Figure 1. Empirical variogram of death rates due to all cancer among white
men, 1988-92, before (top) and after (bottom) detrending the data. Note gamma
scaling differences.

effects. This method, like the linear LOESS method described above, can be
sensitive to the orientation of the map  (Kafadar 1994).

Headbanging is a median-based smoothing algorithm where for every point
a set of “triples” is identified consisting of that point plus two neighbors that are
constrained to be nearly linear with the center point. The value of the center
point is compared to the median of the lower-valued neighbors and the median
of the higher-valued neighbors, and is changed (“smoothed”) if it falls outside
this range (Tukey and Tukey 1981; Hansen 1991).

5.6 Comparison of Smoothing Methods

Kafadar  (Kafadar 1994) compared the performance of several of these
linear and non-linear local smoothing algorithms. The simple weighted average
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methods generally recovered the patterns in simulated data well, but the non-
linear smoothers performed at least as well for data with ridge, peak and
depression patterns and were less likely to falsely identify data structure
(Kafadar 1994). Headbanging has also been shown to retain edge effects better
than a linear method  (Hansen 1991).

None of these smoothers, as originally published, account for hetero-
skedasticity of the random variable to be smoothed. That is, the variance of both
the number of cases and the disease rate in each place varies as a function of the

population . For this reason these methods are inappropriate for smoothing
.in

disease counts or rates unless, as previously noted, populations are roughly
equal for all areas. Mungiole et al.  (Mungiole et al. 1999) added weights to the
headbanging algorithm to overcome this deficiency. 

Figure 2 illustrates both the effects of smoothing and the importance of
including inverse variance weights when applicable. Figure 2a is a map of the
observed age-adjusted rates of death due to HIV infection among white men
during 1988-92 for 805 Health Service Areas (Pickle et al. 1996a; Pickle et al.
1996b). Counties are shaded according to quintiles of their rates on each map.
High rates are scattered throughout coastal states and the midwest. After
applying an unweighted headbanging algorithm, smoothing each area (centroid)
using up to 30 nearest neighbors, rates are high in the urban northeast, along the
Gulf coast, and in the southwest (Figure 2b). Figure 2c shows the weighting
effect on smoothing, where the weights are approximately inversely
proportional to the variance of the rates. Although the general pattern is similar
to that of the unweighted map, the relative level of rates in several areas, e.g.,
Texas, differs according to whether weights are included.

High rates in urban places are particularly affected; after weighted
smoothing, these rates remain high because they are considered reliable, while
high rates in sparsely populated areas are smoothed toward those of neighboring
areas. Considering rates in Minnesota as an example, the observed rate in
Minneapolis-St. Paul was in the highest rate class but the unweighted algorithm
smoothed it into the lowest class, similar to the rest of the state (Figures 2a, 2b).
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Figure 2. Age-adjusted mortality rates due to HIV infection among white males, 1988-92. (a)
original data, (b) smoothed without weights, (c) smoothed with weights.

The inclusion of inverse variance weights, however, leaves the reliable
Minneapolis-St. Paul rate in the highest rate class but smooths the less
populated remainder of the state to the lowest class (Figure 2c). Similar 
improvements using other smoothing algorithms would be expected if their
weights can be modified to include inverse variance as well as distance weights.
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For example, a WEIGHT statement can be added to SAS PROC MIXED to
implement weighted kriging  (Littell et al. 1996a).

The methods described in this section can provide useful initial looks at
both point and area data by removing background noise in order to reveal
underlying large scale patterns. For this purpose, the weighted average methods
and headbanging have been shown to perform well and are easy to implement.
Any smoothing of rates or counts should include appropriate inverse variance
weights to avoid smoothing away highly reliable values.
Response surface analysis seems less useful for health data, except perhaps for
estimating environmental exposures over a space from discrete samples,
although a counterexample is provided in the next chapter. In general, health
outcomes as well as sociodemographic and risk factor data vary by
characteristics of the population and so are better fit by regression models than
by overly simplistic smoothing methods. In addition, the heteroskedasticity of
disease rates and counts is not accommodated by the traditional implementation
of geostatistical methods. However, the variogram plot and its modeling, which
arose as an adjunct to these methods, can be a useful exploratory tool as
illustrated in this chapter and the next.

6. HYPOTHESIS TESTING OF SPATIAL PATTERN

6.1 Introduction

Methods in the previous section can help to clarify the underlying patterns
in the data but do not provide measures of significance of these patterns. Even
simulated random spatial data can appear to be clustered, so visual inspection
of maps must be supplemented by a statistical measure of the strength of
clustering. The identification of clusters is an important tool for cancer
surveillance but the term “cluster” itself is an imprecise term. Clustering has
been variously defined as 

-- the presence of “a geographically bounded group of occurrences of
sufficient size and concentration to be unlikely to have occurred by
chance” (Knox 1989),

-- a non-independence of case locations (Diggle 2000), 
-- the observation of a significantly greater number of cases (or relative

risk) in an area than expected, 
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-- areas with at least 5 cases and relative risks of at least 20 (Neutra
1990), and 

-- “residual spatial variation in risk” (Wakefield et al. 2000) which the
authors note does not imply that cases are close in space.

The identification of clusters does not provide any causal explanation for
the pattern. Clustering of disease is often, but not exclusively, a result of
clustering of host (genetic) susceptibility or environmental (risk) factors.
Spatial clustering of cause-specific mortality, for example, may also occur due
to geographic differences in diagnostic methods, treatment patterns or accuracy
of death certification. More in-depth studies are required to distinguish among
these causes once disease clusters are identified.

There have been hundreds of tests proposed to assess clustering  (Kulldorff
2001). Some attempts have been made to compare methods and to recommend
optimal tests on a theoretical basis (e.g.,  Tango 1999) and in particular
situations  (Zoellner and Schmidtmann 1999) but more work is needed in this
area. In this section we list several of the most popular methods to test for
spatial randomness (or conversely, for clustering) and to identify significant
clusters. For an extensive review of this topic, see chapters 7-12 in Lawson et
al.  (Lawson et al. 1999)or Wakefield et al. (Wakefield et al. 2000).

6.2 Tests of Randomness

6.2.1 For Counts

Tests of complete spatial randomness are often conducted as the first step in
spatial data exploration when there is no point source suspected as a risk factor
a priori. Following the notation of section 4, the simplest test  for count data is

the index of dispersion test: where the observed counts, di,
2

1

( )I
i

i

d d
T

d=

−
=∑

are the number of cases in each sub-area i. If the number of sub-areas is

sufficiently large,  . This quadrat (grid) method is not appropriate forT ~
1 1
2

−χ
disease data when the population varies over the sub-areas. An alternative

method to use is Pearson’s chi-square statistic: , where
2( )i i

i i

d E
T

E

−
=∑
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, the expected number of cases computed by indirecti j ij
j

E c n=∑
standardization, i.e., by applying the stratum j-specific rates in the standard
population (cj) to the stratum j-specific population in area i. If the data are

randomly distributed,  as before. T ~ 1 1
2
−χ

Potthoff and Whittinghill  (Potthoff and Whittinghill 1996) have shown that
the locally most powerful test of random pattern against heterogeneity

(specifically, a gamma-Poisson alternative hypothesis) is: ,.
( 1)i i

i i

d d
T E

E

−
= ∑

where . When the expected counts are all constant and is assumed. i
i

E E=∑ .E

fixed, then this is equivalent to Pearson’s chi-square statistic  (Alexander and
Cuzick 1992, p. 242).

Tango’s method  (Tango 1995) utilizes a measure of “closeness” between

areas: , where A( ) ' ( ) ( )( )ij i i j j i
i j i

T r p A r p a r p r p U
 

= − − = − − = 
 

∑ ∑ ∑

is a matrix of distance or adjacency measures and r and p are vectors of relative
frequencies of observed and expected cases, respectively, in each area i.
Recently, Tango  (Tango 2000) extended this statistic to adjust for cluster size

and multiple comparisons and now suggests the use of as2exp{ 4( / ) }ij ija h λ= −

the distance measure, where hij is the distance between case i and case j and
is the maximum distance between cases that are considered to be in the sameλ

cluster. The values of are varied from near 0 to about half the distance acrossλ
the entire study area, and the significance level is determined by Monte Carlo
methods.

Bonetti  (Bonetti and Pagano 2001) recently extended an earlier interpoint
distance method by Whittemore  (Whittemore et al. 1987) to compare the
cumulative distribution function of distances between cases with that of the
population at risk. This test allows for differing population density across the
region. In a simulation study, its power was at least as good as that of Tango’s
statistic and much better than that of Whittemore.

The Moran autocorrelation statistic may also be used to compare observed
and expected cases (Moran 1948), although it ignores heteroskedasticity due to
varying populations. Let aij be a measure of the closeness of areas i and j as
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above. Then , where  Zi=di  /Ei, the SMR
2

( )( )

( ) ( )
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ij k
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for area i (i=1,...,I), measures the similarity of relative risk in nearby areas;
IMoran ranges from 0 (no clustering) to 1.

6.2.2 Comparing Cases and Controls

Cuzick and Edwards’ test  (Cuzick and Edwards 1990) examines whether
cases are clustered nearer to each other rather than evenly interspersed with

controls:   where  if case j is one of the k nearest neighborsk ij
i j i

T δ
≠

=∑∑ 1ijδ =

of case i. Cuzick and Edwards  (Cuzick and Edwards 1996) suggest an
adjustment for multiple comparisons using several values of k. Diggle  (Diggle
1983) (Diggle 1983) proposed a similar test which is the scaled difference of
the mean number of cases within distance k of an arbitrary case and the similar
mean for controls.

6.3 Tests to Identify Specific Clusters

Individual terms of the global clustering tests, e.g., Pearson’s chi-square,
Potthoff-Whittinghill’s or Tango’s method, have been used to identify specific
areas with an unusually high number of cases. Moving window methods are
most often used to identify individual clusters. 

Besag and Newell  (Besag and Newell 1991) proposed an improvement to
Openshaw’s  (Openshaw et al. 1987) moving average method in which a circle
is centered at each individual case with a radius that includes the k nearest
neighboring cases. The circle defines a cluster if the expected number of cases
in the population at risk in that area is significantly less than k. The circles are
comparable because each contains k cases but the method tends to detect small
rural clusters and the choice of k is arbitrary.  An adjustment for multiple
comparisons can be made if various values of k are tried. The individual circle
statistics can be summed for an overall test of randomness.
Scan statistics improve upon this approach by computing the number of cases
that occur within windows of constant size. Turnbull (Turnbull et al. 1990)
(Turnbull et al. 1990) defined windows to contain a constant population,
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centered on each area centroid, then calculated the maximum number of cases
across windows. Kulldorff  (Kulldorff 1997) defines the circles to contain up
to a pre-specified fraction of the total population in the entire region. The
ma x i mu m l i ke l ihood  r a t i o  s t a t i s t i c  i s  c a l c u l a t e d  a s

where dj and Ej are the observed and

.

j where 
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.
max

j j

j j

d d d

j j
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j j

d d d
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E d E

−

>

   −
=       −   

expected numbers of cases in circle j, respectively, and d. and E. are the
corresponding sums over all the circles and the significance level of T is
determined by Monte Carlo methods. As was the case for the moving window
methods, there are no guidelines for the choice of the maximum fraction of the
population to include in each circle. Although Kulldorff’s test was designed to
identify the single most significant cluster in a region, its exact properties are
not known when multiple clusters are identified (Wakefield et al. 2000).
However,  it can be shown to be a conservative significance test of each
secondary cluster (Kulldorff, personal communication).

6.4 Recommendations

More complete studies comparing these various methods are needed to
provide specific recommendations for general and specific tests of clustering.
However, it is clear that clustering tests should not be used for health data
unless they account for varying population sizes across areas. In addition, some
adjustment for multiple comparisons should be made whenever necessary, such
as when different sized moving windows are tried.  Whenever possible, it seems
that use of a Monte Carlo method to compute the significance level of the test
is to be preferred over asymptotic results based on questionable assumptions.
These tests can provide a useful initial evaluation of clusters in an area, but
should be followed by careful field investigation to verify the existence and
importance of the identified patterns.
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7. SPATIAL MODELING

7.1 Introduction

As noted in section 2.6, a number of methods from epidemiology,
geostatistics and small area modeling have converged to provide powerful new,
but complex, models with which to analyze health data. This section will
describe the background necessary to apply these new methods to cancer
mortality data for illustration. However, only slight modifications are necessary
to apply the same principles to other types of data, such as survival data using
proportional hazards models, late stage versus early stage of cancer detection
using logistic models, and prevalence data (Verdecchia et al. 1989). The next
chapter will illustrate the application of the methods described here. 

Readers interested in details of the historical development of these models
are referred to Lawson et al., chapters 13-16  (Lawson et al. 1999). Briefly,
theoretical developments over the past 25 years have included the consideration
of spatial correlation for lattices, first regularly spaced  (Besag 1974) then
irregularly spaced  (Besag 1975), the application of Bayesian techniques to
health data  (Clayton and Kaldor 1987; Manton et al. 1989), the extension of
regression methods to non-normal data through generalized linear models
(McCullagh and Nelder 1983), and the recognition of overdispersion in disease
rates (summarized in  (Brillinger 1986).  Of course, this work is built upon
earlier developments in regression models and maximum likelihood and
Bayesian estimation methods.

7.2 The Fixed Effects Model

Following the notation in section 4, let represent the number of cancerijd

deaths in place i, i=1,2,...,I, age group j, j=1,2,...,J, and let represent theijn

corresponding population at risk. Assume further that is a Poisson randomijd

variable with mean and that, in the simplest case, the effect of fixedij ijnλ
explanatory covariates on the rates may be modeled as a log-linear

function: . The basic Poisson variance may be generalized to( )ln X 'ij ij ijλ β=
include potential overdispersion: . Var( | ; )ij ij ij ijd n nβ ϕλ=
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As written, this is a saturated model, i.e., IJ parameters to be estimated from
IJ stratified counts, but of greater interest is a reduced model that will allow
inferences across places and/or age groups. U.S. age-specific cancer mortality
rate curves have similar shapes for blacks and whites, males and females; a
cubic spline function of age has been found to fit these data well (Pickle et al.
1996a; Pickle et al. 1996b). One choice might be to assume the same age-

specific rates everywhere: . This does not fit the data well( )ln X 'ij ij jλ β=

because there are geographic differences in rates across the U.S.
The reader should note that this is not the conventional setup for disease

rate models, such as those introduced by Clayton and Kaldor  (Clayton and
Kaldor 1987). A currently popular approach is to first compute the expected
number of cases (Ei) in place i from age-specific rates {r0j} in a standard
population. Then the analysis focuses on the age-adjusted SMRs of the areas,
rather than their age-specific counts. If the proportionality model for age and

place effects holds everywhere, i.e., if  for all i=1,...I, then0 exp( )ij j irλ µ=

and this age-adjusted model is equivalent to the age-E( | ) exp( )i i i id Eµ µ=

specific one given above. If the age-specific data are extremely sparse, it may
be necessary to use this approach. However, the proportional rate assumption
does not always hold  (Pickle and White 1995b), and so we prefer to begin with
the age-specific model. If, in the final reduced model, no terms remain that
depend on both place and age, then these two approaches will yield the same
results. Otherwise there are different age effects by place and epidemiologists
would not advise using any type of age-standardized rate that masks these
effects  (Fleiss 1981).

The models described in this section may be extended to include temporal
trends, spatio-temporal interactions, age-period-cohort effects and others. 

7.3 Adding Random Effects

7.3.1 Rationale

Recognizing that there are many types of models that will yield similar
results, we illustrate the extension from fixed effects to hierarchical models
using the age-specific model defined in the previous section. As noted, a fixed
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effects model that assumes a constant disease rate across all areas is unrealistic
and uninformative. We could try to estimate parameters for smaller areas, such
as regions or states, but at some point the data are too sparse to support
estimation at a smaller area level using the fixed effects approach. By
considering the small area effects to vary randomly within larger areas,
information is “borrowed” from other relevant areas, thus stabilizing the small
area estimates. In addition, this extra source of variation can help to explain the
overdispersion typically seen in disease rate and count data.

7.3.2 Hierarchical Models

To illustrate the principles, consider a simple version of the fixed effects

model of section 7.2: . If we are willing to( ) 0 1ln X ' ageij ij ij i jλ β β β= = +

assume that the age specific curves for the small areas are parallel to but not
necessarily identical to the regional rates, as illustrated in Figure 3a, we could
add a random intercept to the fixed effects model. That is, we would assume

that  with some variance . If the slopes as well as the0 0 0E( | )iβ β β= 2
0σ

intercepts may vary within the region (as in Figure 3b), then we may

substitute  for  above and assume that  and1iβ 1β 1 1 1E( | )iβ β β=

. It is usually acceptable to assume that these log-0 1 0 1Var( , | , )i i Gβ β β β =

linear parameters are normally distributed  (Littell et al. 1996a). Until recent
improvements in estimation algorithms, Bayesians would choose a gamma
distribution as the “conjugate prior” for G so that the posterior distribution
would be of a convenient form. Now a distribution that is consistent with the
data may be chosen without as much regard to the method of estimation. For a
more extensive description of the evolution of hierarchical models, see Waller
(Waller forthcoming)

Other explanatory covariates may be added to the model. The general form
of this “mixed effects” or “hierarchical” model is usually written as

 where  and  are fixed and random effects' 'i i i i ix Zµ β γ= + iβ iγ

parameters, respectively, the conditional variance of is G and the residualiγ
variance is R. Because our underlying model is for counts { }, R  has theijd

appropriate Poisson form although excess heterogeneity of rates can be
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Figure 3. Examples of age-specific log rates with random intercepts (a) and random intercepts and
slopes (b). Heavy line denotes regional rate, standard lines denote small area rates within that
region.

accommodated through a scaling parameter. The goal of the models described
here is to explain the similarities of rates and counts in neighboring places
through the covariate effects, leaving uncorrelated residuals. If residuals from
the final model are spatially correlated, there are important covariates or
interactions missing from the model.

The geographic hierarchy described above can be extended to more levels,
such as models of small area effects within state and state effects within region,
each conditional on the larger unit effects. For example, studies of mortality
data have shown that even after accounting for characteristics of individual 
decedents, there are community effects on the small area death rates  (LeClere
et al. 1998; Cubbin et al. 2000). Often covariate information is available at
different levels of geography, such as demographic data for the small areas but
health risk data only for states. “Multilevel” models refer to those hierarchical
models that include covariates at different geographic scales (Rasbash et al.
2000).

In addition to random effects that describe intra-regional variation,
covariates that are imprecisely measured may also be considered to vary
randomly about a true but unknown mean value. The analysis of these “errors-
in-covariates” models requires some additional information, such as a separate
validation study that provides information about the distribution of the
measurements in relation to the correct values  (Carroll et al. 1995;
Bernardinelli et al. 1997).
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 7.4 Modeling Spatial Dependence

The spatial similarity of the observations is modeled through the covariance
structure of either R or G, the variance matrices of the residuals and random
effects, respectively. Note that for a typical analysis of repeated measures, it is
the residuals that are assumed to be spatially correlated (see section 3.3.1).
However, for disease rates or counts, the residual errors (R) are of the binomial
or Poisson form and the structure of the random effects variance matrix (G)
reflects the spatial similarity of rates in nearby small areas. Spatial
autocorrelation may be modeled in a number of ways, such as an exponential

function of distance between each pair of points, . Other2exp( / )hρ ϕ= −
possible functions are spherical, Gaussian, log linear and power functions
(Littell et al. 1996a; Littell et al. 1996b). “Closeness” may be defined in terms
of distance between point events or centroids of areas or adjacency. Clues as to
the most appropriate covariance function may be gained from examination of
the empirical variogram, as illustrated in section 5.4.3.

The spatial autoregressive structures may be estimated for each random
effect, conditional on the observed values of all the others (the conditionally
autoregressive (CAR) model) or for all of the random effects simultaneously
(the simultaneous autoregressive (SAR) model). The SAR model produces
spatially correlated residuals, resulting in inconsistent least-squares estimators
(for further discussion, see Besag and Kooperberg 1995 and Cressie 1993).

7.5 Parameter Estimation

Models of the complex structure described here may be fit using maximum
likelihood or restricted maximum likelihood, e.g., using SAS or S+ software 
(Littell et al. 1996a; MathSoft 1999)or empirical or full Bayesian methods (see
(Carlin and Louis 2000), e.g., using WinBUGS  (Spiegelhalter et al. 1995).
Except for empirical Bayes methods where the choice of conjugate distribution
yields a simple posterior distribution, all of these methods require iterative
estimation processes such as Markov Chain Monte Carlo (MCMC) methods.

7.6 Model Checking

It is beyond the scope of this chapter to detail methods used to check these
models but a few guidelines will be offered and the next chapter will illustrate
their application. First, prior to fitting the model, stationarity and potential
functions for modeling spatially autoregressive covariance structures  can be
checked by examining the empirical variogram (see section 5.4.3). The
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association of covariates with the log rates or counts should also be verified, as
for any regression analysis, to determine whether a linearizing transformation
or covariate categorization is needed. The proportional rate assumption may be
checked if SMR models are preferred.

After estimation of the model parameters, plots of standardized residuals
are helpful in pointing to covariate strata or geographic areas that are not fit
well.  No simple statistics are available to judge the adequacy of these complex
models; more work on diagnostics for hierarchical models is needed. Because
of the geographic nature of the observations, it is usually helpful to supplement
typical regression diagnostic plots by maps of predicted observations, their
standard errors and standardized residuals.

8. Summary

In this chapter, we have reviewed the history of the spatial analysis of
disease and the statistical methods used for the exploratory analysis, testing and
modeling of spatial patterns. In the next chapter, the principles described here
will be illustrated.
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