## PROPERTY ENHANCED NATURAL FIBER COMPOSITE MATERIALS BASED ON CHEMICAL MODIFICATION

Roger M. Rowell

USDA Forest Service, Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53705-2366 and Department of Biological Systems Engineering, University of Wisconsin, Madison, WI 63706

#### INTRODUCTION

Agro-based resources, also referrered to as lignocellulosics, are resources that contain cellulose, hemicelluloses, and lignin. Lignocellulosics include wood, agricultural residues, water plants, grasses, and other plant substances. When considering lignocellulosics as possible engineering materials, there are several very basic concepts that must be considered. First, lignocellulosics are hygroscopic resources that were designed to perform, in nature, in a wet environment. Secondly, nature is programmed to recycle lignocellulosics in a timely way through biological, thermal, aqueous, photochemical, chemical, and mechanical degradations. In simple terms, nature builds a lignocellulosic from carbon dioxide and water and has all the tools to recycle it back to the starting

Biological Degradation

Enzymatic Reactions
Chemical Reactions
Mechanical

Fire Degradation
Pyrolysis Reactions
Pyrolysis Reactions

Wester Perpendiction

- Fungi, Bacteria, Insects, Termites
- Oxidation, Hydrolysis, Reduction
- Chewing
- Lightning, Sun,
- Dehydration, Hydrolysis, Oxidation
- Dehydration, Hydrolysis, Oxidation

Water Degradation

Water Interactions

Weather Degradation

Charginal Populations

- Rain, Sea, Ice, Acid Rain, Dew
- Swelling, Shrinking, Freezing, Cracking
- Ultraviolet radiation, Water, Heat, Wind

Ovidetion, Hydrolynia

Chemical Reactions - Oxidation, Hydrolysis Mechanical - Erosion

Chemical Degradation - Acids, Bases, Salts

Chemical Reactions - Oxidation, Reduction, Dehydration, Hydrolysis

Mechanical Degradation - Dust, Wind, Hail, Snow, Sand - Stress, Cracks, Fracture, Abrasion

**Figure 1.** Degradation reactions which occur when lignocellulosics are exposed to nature.

chemicals. We harvest a green lignocellulosic (for example, a tree) and convert it into dry products, and nature, with its arsenal of degrading reactions, starts to reclaim it at its first opportunity (Figure 1).

In order to produce lignocellulosic-based composite materials with a long service life, it is necessary to interfere with the natural degradation processes for as long as possible. This can be done in several ways. Traditional methods for decay resistance and fire

retardancy, for example, are based on treating the product with toxic or corrosive chemicals which are effective in providing decay and fire resistance but can result in environmental concerns. There is another approach which is based on the premise that the properties of any resource are a result of the chemistry of components of that resource. In the case of lignocellulosics, cell wall polymers, extractives, and inorganics are the components that, if modified, would change the properties of the resource.

In order to make property changes, you must first understand the chemistry of the components and the contributions each play in the properties of the resource. Following this understanding, you must then devise a way to modify what needs to be changed to get the,

desired change in property.

Properties of lignocellulosics, such as dimensional instability, flammability, biodegradability, and degradation caused by acids, bases, and ultraviolet radiation are all a result of chemical degradation reactions which can be prevented or, at least, slowed down if the cell wall chemistry is altered [Rowell 1975, Rowell and Youngs 1981, Rowell 1983, Rowell and Konkol 1987. Rowell et all 1988a. Hon 1992, Rowell 1992, Kumar 1994, Banks and Lawther 1994].

#### FEATURES OF LIGNOCELLULOSICS

Lignocellulosics are three-dimensional, polymeric composites made up primarily of cellulose, hemicelluloses, and lignin. While all types of lignocellulosic fibers differ **in** chemical composition, within certain limits, all lignocellulosics have very similar properties. That is, they all swell and shrink as the moisture content of the cell wall changes, they burn, they decay, and they are degraded by acids, bases and ultraviolet radiation. Because, as a general class, all lignocellulosics have similar mechanisms of environmental degradation, it might be expected that all types of natural fibers would respond to the same types of chemical treatments to overcome these degradation reactions.

To improve the resistance to the degradation forces acting on lignocellulosics, it is first important to understand the mechanisms of degradation, which components in the cell wall are responsible for these effects, and what can be done to slow down or stop the degradation forces.

#### DEGRADATION OF LIGNOCELLULOSICS

Figure 2 shows the cell wall polymers involved in each fiber property as we understand it today [Rowell 1990]. Lignocellulosics change dimensions with changing moisture content because the cell wall polymers contain hydroxyl and other oxygencontaining groups that attract moisture through hydrogen bonding [Stamm 1964, Rowell and Banks 1985]. The hemicelluloses are mainly responsible for moisture sorption, but the accessible cellulose, noncrystalline cellulose, lignin, and surface of crystalline cellulose also play major roles. Moisture swells the cell wall, and the fiber expands until the cell wall is

**Figure** 2. Cell wall polymers responsible for the properties of lignoellulosics.

saturated with water (fiber saturation point, FSP). Beyond this saturation point, moisture exists as free water in the void structure and does not contribute to further expansion. This process is reversible, and the fiber shrinks as it loses moisture below the FSP.

Lignocellulosics are degraded biologically because organisms recognize the carbohydrate polymers (mainly the hemicelluloses) in the cell wall and have very specific enzyme systems capable of hydrolyzing these polymers into digestible units. Biodegradation of the high molecular weight cellulose weakens the fiber cell wall because crystalline cellulose is primarily responsible for the strength of the cell wall [Rowell et al 1988b]. Strength is lost as the cellulose polymer undergoes degradation through oxidation, hydrolysis, and dehydration reactions. The same types of reactions take place in the presence of acids and bases.

Lignocellulosics exposed outdoors undergo photochemical degradation caused by ultraviolet radiation. This degradation takes place primarily in the lignin component, which is responsible for the characteristic color changes [Rowell 1984]. The lignin acts as an adhesive in the cell walls, holding the cellulose fibers together. The surface becomes richer in cellulose content as the lignin degrades. In comparison to lignin, cellulose is much less susceptible to ultraviolet light degradation. After the lignin has been degraded, the poorly bonded carbohydrate-rich fibers erode easily from the surface, which exposes new lignin to further degradative reactions. In time, this "weathering" process causes the surface of the composite to become rough and can account for a significant loss in surface fibers.

Lignocellulosics bum because the cell wall polymers undergo pyrolysis reactions with increasing temperature to give off volatile, flammable gasses. The hemicellulose and cellulose polymers are degraded by heat much before the lignin [Rowell 1984]. The lignin component contributes to char formation, and the charred layer helps insulate the composite

from further thermal degradation.

#### CHEMICAL MODIFICATION SYSTEMS

For this discussion, chemical modification will be defined as a chemical reaction between some reactive part of a lignocellulosic and a simple single chemical reagent, with or without catalyst, to form a covalent bond between the two. This excludes all simple chemical impregnation treatments which do not form covalent bonds, monomer impregnation that polymerize *in situ* but do not bond with the cell wall, polymer inclusions, coatings, heat treatments, etc.

There are several approaches to chemically modifying the lignocellulosic cell wall polymers. The most abundant single site for reactivity in these polymers is the hydroxyl group and most reaction schemes have been based on the reaction of hydroxyl groups. Sites of unsaturation in the lignin structure can also be used as a point of reactivity as well as free radical additions and grafting. However, the most studied class of chemical reactions are those involving hydroxyl substitutions.

In modifying a lignocellulosic for property improvement, there are several basic principles that must be considered in selecting a reagent and a reaction system [Rowell 1975]. Of the thousands of chemicals available, either commercially or by synthetic means, most can be eliminated because they fail to meet the requirements or properties listed below.

If hydroxyl reactivity is selected as the preferred modification site, the chemical must contain functional groups which will react with the hydroxyl groups of the lignocellulosic components. This may seem obvious but there are several failed reaction systems in the literature using a chemical that could not react with a hydroxyl group.

The overall toxicity of the chemicals must be carefully considered. The chemicals must not be toxic or carcinogenic to humans in the finished product, and should be as nontoxic as possible in the treating stage. The chemical should be as noncorrosive as possible to eliminate the need for special stainless steel or glass-lined treating equipment.

In considering the ease with which excess reagents can be removed after treatment, a liquid treating chemical with a low boiling point is advantangous. Likewise, if the boiling point of a liquid reagent is too high, it will be very difficult to remove the chemical after treatment. It is generally true that the lowest member of a homologous series is the most reactive and will have the lowest boiling point. The boiling point range for liquids to be considered is 90-150C. It is also possible to treat fibers with a gas system, however, there may be processing challenges in handling a pressurized gas in a continuous reactor.

Accessibility of the reagent to the reactive chemical sites is a major consideration. To increase accessibility to the reaction site, the chemical must swell the lignocellulosic

structure. If the reagents do not swell the structure, then another chemical or co-solvent can be added to meet this requirement. Accessibility to the reactive site is a major consideration

in a gas system unless there is a condensation step in the procedure.

Almost all chemical reactions require a catalyst. With lignocellulosics as the reacting substrate, strong acid or base catalysts cannot be used as they cause extensive degradation. The most favorable catalyst from the standpoint of lignocellulosic degradation is a weakly alkaline one. The alkaline medium is also favored as in many cases these chemicals swell the cell wall matrix structure and give better penetration. The properties of the parallel those of reagents, i.e., low boiling point liquid, nontoxic, effective at low temperatures, etc. In most cases, the organic tertiary amines or weak organic acids are best suited.

The experimental reaction conditions which must be met in order for a given to go is another important consideration. The temperature required for complete reaction must be low enough so there is little or no fiber degradation, i.e., less than 150C. The reaction must also have a relatively fast rate of reaction with the cell wall components. It is important to get as fast a reaction as possible at the lowest temperature without lignocellulosic degradation.

The moisture present in the lignocellulosic is another consideration in the reaction conditions. It is costly to dry lignocellulosics to less than 1 percent moisture, but it must be remembered that the -OH group in water is more reactive than the -OH group available in the lignocellulosic components, i.e., hydrolysis is, faster than substitution. The most favorable condition is a reaction which requires a trace of moisture and the rate of hydrolysis is

relatively slow.

Another consideration in this area is to keep the reaction system as simple as possible. Multicomponent systems will require complex separation after reaction for chemical recovery. The optimum would be a reactive chemical that swells the lignocellulosic structure and acts as the solvent as well.

If possible, avoid byproducts during the reaction that have to be removed. If there is not a 100 percent reagent skeleton add-on, then the chemical cost is higher and will require

recovery of the byproduct for economic and evnironmental reasons.

The chemical bond formed between the reagent and the lignocellulosic components is of major importance. For permanence, this bond should have great stability to withstand weathering. In order of stability, the types of covalent chemical bonds that may be formed are: ethers > acetals > esters. The ether bond is the most desirable covalent carbon-oxygen bond that can be formed. These bonds are more stable than the glycosidic bonds between sugar units in the lignocellulosic polysaccharides so the polymers would degrade before the grafted ether. It may be desired, however, to have the bonded chemical released by hydrolysis or enzyme action in the final product so that an unstable bond may be required from the modification.

The hydrophobic nature of the reagent needs to be considered. The chemical added to the lignocellulosic should not increase the hydrophilic nature of the lignocellulosic

components unless that is a desired property.

If the hydrophilicity is increased, the susceptibility to micro-organism attack increases. The more hydrophobic the component can be made, the better the moisture exclusion properties

of the substituted lignocellulosic will be.

Single site substitution versus polymer formation is another consideration. For the most part, a single reagent molecule that reacts with a single hydroxyl group is the most desirable. Crosslinking can occur when the reagent contains more than one reactive group or results in a group which can further react with a hydroxyl group. Crosslinking can cause the lignocellulosic to become more brittle. Polymer formation within the cell wall after initial reaction with the hydroxyl groups of the lignocellulosic components gives, through bulking action, dimensional stabilization. The disadvantage of polymer formation is that a higher level of chemical add-on is required for biological resistance than is required in the single site reactions.

The treated lignocellulosic must still possess the desirable properties of lignocellulosics. That is, the fiber strength should not be reduced, no change in color, good electrical insulation properties retained, final product not dangerous to handle, no lingering chemical smells, still gluable and finishable unless one or more of these properties are the object of change in the product.

A final consideration is, of course, the cost of chemicals and processing. In laboratory scale experimental reactions, the high cost of chemicals is not a major factor. For

commercialization of a process, however, the chemical and processing costs are very important factors. Laboratory scale research is generally done using small batch processing, however, rapid, continuous processes should always be studied for scale up. Economy of scale can make an expensive laboratory process economical.

In summary, the chemicals to be laboratory tested must be capable of reacting with lignocellulosic hydroxyls under neutral, mildly alkaline or acid conditions at temperatures below 150C. The chemical system should be simple and capable of swelling the structure to facilitate penetration. The complete molecule should react quickly with lignocellulosic components yielding stable chemical bonds, and the treated lignocellulosic must still possess the desirable properties of untreated lignocellulosics.

#### CHEMICAL MODIFICATION FOR PROPERTY ENHANCEMENT

As was stated before, because the properties of lignocellulosics result from the chemistry of the cell wall components, the basic properties of a fiber can be changed by modifying the basic chemistry of the cell wall polymers. Many chemical reaction systems have been published for the modification of agro-fiber. These chemicals include anhydrides such as, phthalic, succinic, malaic, propionic and butyric anhydride, acid chlorides, ketene carboxylic acids, many different types of isocyanates, formaldehyde, acetaldehyde, difunctional aldehydes, chloral, phthaldehydic acid, dimethyl sulfate, alkyl chlorides, beta-propiolactone, acrylonitrile, epoxides, such as, ethylene, propylene, and butylene oxide, and difunctional epoxides [Rowell 1983, 1991].

By far, the most research has been done on the reaction of acetic anhydride with cell wall polymer hydroxyl groups to give an acetylated fiber. Many different types of lignocellulosic fibers have been acetylated using a variety of procedures including wood [Rowell 1983, Rowell et al 1986], bamboo [Rowell and Norimoto 1987, 1988], bagasse [Rowell and Keany 1991], jute [Callow 1951, Andersson and Tillman 1989, Rowell et al 1991], kenaf [Rowell 1993, Rowell and Harrison 1993], pennywort, and water hyacinth [Rowell and Rowell 1989]. Without a strong catalyst, acetylation using acetic anhydride alone levels off at approximately 20 weight percent gain (WPG) for softwoods, hardwoods, grasses, and water plants. While acetylation is not the only chemical modification procedure that has been shown to improve properties of lignocellulosics, it has been studied the most and will be used as an example in many cases.

#### **Properties of Chemically Modified Fiber**

Moisture sorption. By replacing some of the hydroxyl groups on the cell wall polymers with bonded chemical groups, the hygroscopicity of the lignocellulosic material is reduced Table 1 shows the equilibrium moisture content (EMC) of several types of lignocellulosic fibers which have been reacted with several types of chemicals. Table 1 shows the EMC of pine wood fibers which have been reacted with different chemicals. In all cases, the EMC has been reduced as a result of modification. Both reactions with acetic anhydride and formaldehyde give the best results in lowering the EMC of the treated fiber. Table 2 shows the results of acetylating several different types of fibers on the EMC of the modified fiber. In all cases, as the level of acetyl weight gain increases, the EMC of the resulting fiber goes down. All types of fiber show the same level in the reduction in EMC as a function of level of acetyl weight gain (Rowell et al. 1986)

a function of level of acetyl weight gain (Rowell et al 1986).

If the reductions in EMC at 65% RH of acetylated fiber referenced to unacetylated fiber is plotted as a function of the bonded acetyl content a straight line plot results (Rowell and Rowell 1989). Even though the points represent many different types of lignocellulosic resources, they all tit a common curve. A maximum reduction in EMC is achieved at about 20% bonded acetyl. Extrapolation of the plot to 100% reduction in EMC would occur at about 30% bonded acetyl. This represents a value not too different from the fiber saturation point for water in these fibers. Because the acetate group is larger than the water molecule, not all hygroscopic hydrogen-bonding sites are covered so it would be expected that the acetyl saturation point would be lower than that of water. This finding would indicate that it does not matter which type of lignocellulosic resource is used to acetylate to make composites.

The fact that EMC reduction as a function of acetyl content is the same for many different lignocellulosic resources indicates that reducing moisture sorption and, therefore, achieving cell wall stability are controlled by a common factor. The lignin, hemicellulose,

Table 1. EMC of control and chemically modified pine fiber.

| Chemical                       | Weight<br>Percent | Equilibrium Moisture Content at 27C |             |             |  |
|--------------------------------|-------------------|-------------------------------------|-------------|-------------|--|
|                                | Gain              | 30%RH                               | 65%RH       | 90%RH       |  |
| Control<br>Acetic<br>Anhydride | 0<br>20.4         | 5.8<br>2.4                          | 12.0<br>4.3 | 21.7<br>8.4 |  |
| Formaldehyde                   | 3.9               | 3.0                                 | 4.2         | 6.2         |  |
| Propylene                      | 21.9              | 3.9                                 | 6.1         | 13.1        |  |
| Oxide<br>Butylene<br>Oxide     | 18.7              | 3.5                                 | 5.7         | 10.7        |  |

**Table 2.** EMC of fiberboards made from control and acetylated fiber.

| Fiber   | Weight<br>Percent   | Equilibrium Moisture Content at 27C |                          |                           |  |
|---------|---------------------|-------------------------------------|--------------------------|---------------------------|--|
|         | Gain                | 30%RH                               | 65%RH                    | 90%RH                     |  |
| Bagasse | 9.4<br>13.0<br>17.6 | 4.4<br>2.0<br>1.7<br>1.4            | 8.8<br>5.3<br>4.4<br>3.4 | 15.8<br>9.5<br>7.7<br>5.8 |  |
| Kenaf   | 0                   | 4.8                                 | 10.5                     | 24.3                      |  |
|         | 18.4                | 2.6                                 | 5.8                      | 11.3                      |  |
| Bamboo  | 0                   | 4.5                                 | 8.9                      | 14.7                      |  |
|         | 10.8                | 3.1                                 | 5.3                      | 9.4                       |  |
|         | 17.0                | 2.0                                 | 3.7                      | 6.8                       |  |
| Jute    | 0                   | 5.8                                 | 9.3                      | 18.3                      |  |
|         | 16.2                | 2.0                                 | 4.1                      | 7.8                       |  |
| Pine    | 0                   | 5.6                                 | 12.1                     | 22.6                      |  |
|         | 6.3                 | 4.5                                 | 10.2                     | 19.5                      |  |
|         | 13.8                | 2.7                                 | 6.8                      | 13.2                      |  |
|         | 18.2                | 2.1                                 | 5.1                      | 9.9                       |  |
| Aspen   | 0                   | 4.9                                 | 11.1                     | 21.5                      |  |
|         | 8.7                 | 3.1                                 | 7.7                      | 14.9                      |  |
|         | 13.0                | 2.0                                 | 5.9                      | 11.8                      |  |
|         | 17.6                | 1.6                                 | 4.8                      | 9.4                       |  |

and cellulose contents of all the materials are different. Earlier results showed that the bonded acetate was mainly in the lignin and hemicelluloses [Rowell 1982] and that isolated wood cellulose does not react with uncatalyzed acetic anhydride [Rowell et al 1994b].

wood cellulose does not react with uncatalyzed acetic anhydride [Rowell et al 1994b].

Because these materials vary widely in their lignin, hemicellulose, and cellulose content, because acetate is found mainly in the lignin and hemicellulose polymer, and because isolated cellulose does not acetylate by the procedure used, acetylation may be controlling the moisture sensitivity due to the lignin and hemicellulose polymers in the cell wall but not reducing the sorption of moisture in the cellulose polymer.

**Pyrolysis properties.** Chemical modification of agro-based fibers has some effect on the pyrolysis properties of lignocellulosics. In thermogravametric analysis, control

**Table 3.** Pyrolysis properties of control and chemically modified pine fiber.

| Chemical                    | Weight<br>Percent<br>Gain | Temperature of Maximum Weight Loss C | Heat of<br>Combustion<br>KCal/g | Rate of<br>Oxygen<br>Consumption<br>MM/g sec |
|-----------------------------|---------------------------|--------------------------------------|---------------------------------|----------------------------------------------|
| None<br>Acetic<br>Anhydride | 0<br>21.1                 | 335/375<br>338/375                   | 2.9<br>3.1                      | 0.06/0.13<br>0.08/0.14                       |
| Methyl<br>Isocyanate        | 24.0                      | 315/375                              | 2.6                             | 0.07/0.12                                    |
| Propylene<br>Oxide          | 32.0                      | 380                                  | 4.3                             | 0.23                                         |
| Butylene<br>Oxide           | 22.0                      | 385                                  | 4.1                             | 0.24                                         |

and chemically modified pine fibers pyrolyze at about the same temperature and rate (Table 3) [Rowell et al 1984]. Fibers reacted with propylene or butylene oxide have a slightly higher temperature of maximum weight loss. Fiber that was reacted with acetic anhydride or methyl isocyanate showed two peaks in the maximum weight loss data while both propylene and butylene oxides resulted in only one peak. Since the smaller, lower temperature peak represents the hemicellulose fraction in the fiber, the epoxide modified hemicelluloses seem to pyrolyze in the temperature range of the cellulose fraction. The heat of combustion and rate of oxygen consumption are higher for the epoxide modified fiber as compared to the control, acetic anhydride and methyl isocyanate modified fibers. This data would indicate that reacting fiber with acetic anhydride or methyl isocyanate is adding approximately the same carbon, hydrogen and oxygen content as the cell wall polymers. Reactive fire retardants could be bonded to the cell wall hydroxyl groups in reactions similar to this technology. The effect would be an improvement in dimensional stability, biological resistance as well as fire retardancy.

### PROPERTIES OF COMPOSITES MADE WITH CHEMICALLY MODIFIED FIBER

#### **Dimensional Stability**

Changes in dimensions, especially in thickness and in linear expansion, are a great problem in lignocellulosic composites because they not only undergo normal swelling

**Table 4.** Equilibrium moisture content (EMC) and thickness swelling (TS) of fiberboards made from control and acetylated fiber.

| ight EMO | EMC and TS at 27C                                                   |                                                           |                                                                                                      |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|---------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| cent 30% | RH                                                                  | 65% I                                                     | RH                                                                                                   | 90% F                                                                                                                                                                                                                                                                                                                    | HS                                                                                                                                                                                                                                                                                                                                                                                                                 |
| in EMO   | TS                                                                  |                                                           |                                                                                                      | <b>EMC</b>                                                                                                                                                                                                                                                                                                               | TS                                                                                                                                                                                                                                                                                                                                                                                                                 |
| •••••    |                                                                     | • • • • • • • • •                                         |                                                                                                      |                                                                                                                                                                                                                                                                                                                          | >                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4.5      | 3.6                                                                 | 9.4                                                       | 6.6                                                                                                  | 19.7                                                                                                                                                                                                                                                                                                                     | 29.2                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6 1.8    | 0.4                                                                 | 4.1                                                       | 1.1                                                                                                  | 8.3                                                                                                                                                                                                                                                                                                                      | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.8      |                                                                     | 7.6                                                       |                                                                                                      | 17.1                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6 1.8    |                                                                     | 4.0                                                       |                                                                                                      | 7.9                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4.8      | 3.0                                                                 | 10.5                                                      | 9.6                                                                                                  | 26.7                                                                                                                                                                                                                                                                                                                     | 33.0                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4 2.6    | 0.8                                                                 | 5.8                                                       | 2.4                                                                                                  | 19.3                                                                                                                                                                                                                                                                                                                     | 10.0                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.2      |                                                                     | 6.6                                                       |                                                                                                      | 12.3                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0 1.6    |                                                                     | 4.1                                                       |                                                                                                      | 7.9                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3.3      | 1.0                                                                 | 7.2                                                       | 3.1                                                                                                  | 19.8                                                                                                                                                                                                                                                                                                                     | 11.2                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5 1.6    | 0.2                                                                 | 3.9                                                       | 1.7                                                                                                  | 9.3                                                                                                                                                                                                                                                                                                                      | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 4.5<br>6 1.8<br>3.8<br>6 1.8<br>4.8<br>4 2.6<br>3.2<br>0 1.6<br>3.3 | 4.5 3.6 6 1.8 0.4 3.8 4.8 3.0 4 2.6 0.8 3.2 0 1.6 3.3 1.0 | 4.5 3.6 9.4 6 1.8 0.4 4.1 3.8 7.6 6 1.8 4.0 4.8 3.0 10.5 4 2.6 0.8 5.8 3.2 6.6 0 1.6 4.1 3.3 1.0 7.2 | Cent in     30% RH EMC     65% RH EMC       4.5     3.6     9.4     6.6       6     1.8     0.4     4.1     1.1       3.8      7.6        6     1.8      4.0        4.8     3.0     10.5     9.6       4     2.6     0.8     5.8     2.4       3.2      6.6        0     1.6      4.1        3.3     1.0     7.2     3.1 | Cent in     30% RH EMC     65% RH EMC     90% FMC       4.5     3.6     9.4     6.6     19.7       6     1.8     0.4     4.1     1.1     8.3       3.8      7.6      17.1       6     1.8      4.0      7.9       4.8     3.0     10.5     9.6     26.7       4     2.6     0.8     5.8     2.4     19.3       3.2      6.6      12.3       0     1.6      4.1      7.9       3.3     1.0     7.2     3.1     19.8 |

(reversible swelling) but also swelling caused by the release of residual compressive stresses imparted to the board during the composite pressing process (irreversible swelling). Water sorption causes both reversible and irreversible swelling with some of the reversible

shrinkage occurring when the board dries. Dimensional instability of lignocelulosic composites has been the major reason for their restricted use.

The EMC of different types of control and acetylated fibers are given in Table 2 The EMC and thickness swelling at three relative humidities for boards made from these fibers is shown in Table 4. Comparing the data in the two tables, it can be seen that the EMC for boards is slightly higher than for the fiber alone. The adhesive is more hydrophilic than the acetylated fiber.

Thickness swelling at the three levels of relative humidity is greatly reduced as a result of acetylation. Linear expansion is also greatly reduced as a result of acetylation

(Krzysik et al 1992, 1993).

The rate and extent of thickness swelling in liquid water of fiberboards made from control and acetylated fiber is shown in Table 5. Both the rate and extent of swelling are

**Table 5.** Rate and extent of thickness swelling in liquid water of fiberboards made from control and acetylated fiber and a phenolic resin [Resin content of boards: Kenaf - 8%, Bagasse - 5%, Bamboo - 6%, Hemlock - 8%. Pine - 8%]

| Fiber                                                                                                                            |                                                               |                                                               |                                           | elling at-                                                    |                                                               | TT                                                     |      |                                            |      |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|------|--------------------------------------------|------|
|                                                                                                                                  | < Mi                                                          | 30                                                            | ><<br>45                                  | 1                                                             | 2                                                             | - Hours                                                | 4    | 5                                          | 6    |
| Kenaf                                                                                                                            |                                                               |                                                               |                                           |                                                               |                                                               |                                                        |      |                                            |      |
| Control                                                                                                                          | 15.5                                                          | 17.1                                                          | 21.1                                      | 22.6                                                          | 24.7                                                          | 26.8                                                   | 31.1 | 32.6                                       | 34.0 |
| 18.4 WPG                                                                                                                         | 6.7                                                           | 6.8                                                           | 6.8                                       | 7.0                                                           | 7.0                                                           | 7.0                                                    | 8.0  | 8.1                                        | 8.3  |
| Bagasse                                                                                                                          |                                                               |                                                               |                                           |                                                               |                                                               |                                                        |      |                                            |      |
| Control                                                                                                                          | 19.2                                                          | 20.2                                                          | 21.0                                      | 21.6                                                          | 22.0                                                          | 22.7                                                   | 23.0 | 23.6                                       | 24.0 |
| 17.6 WPG                                                                                                                         | 1.8                                                           | 2.0                                                           | 2.2                                       | 2.3                                                           | 2.7                                                           | 2.9                                                    | 3.3  | 3.5                                        | 3.8  |
| Bamboo                                                                                                                           |                                                               |                                                               |                                           |                                                               |                                                               |                                                        |      |                                            |      |
| Control                                                                                                                          | 4.0                                                           | 7.3                                                           | 8.4                                       | 10.2                                                          | 12.6                                                          | 13.8                                                   | 14.0 | 14.8                                       | 15.0 |
| 18.0 WPG                                                                                                                         | 1.5                                                           | 1.7                                                           | 1.9                                       | 2.3                                                           | 2.3                                                           | 2.3                                                    | 2.4  | 2.4                                        | 2.4  |
| Hemlock                                                                                                                          |                                                               |                                                               |                                           |                                                               |                                                               |                                                        |      |                                            |      |
| Control                                                                                                                          | 11.2                                                          | 11.8                                                          | 12.3                                      | 12.5                                                          | 14.1                                                          | 15.2                                                   | 16.2 | 16.8                                       | 17.0 |
| 22.5 WPG                                                                                                                         | 2.6                                                           | 3.3                                                           | 3.7                                       | 3.8                                                           | 3.9                                                           | 4.0                                                    | 4.0  | 4.1                                        | 4.2  |
| Pine                                                                                                                             |                                                               |                                                               |                                           |                                                               |                                                               |                                                        |      |                                            |      |
| Control                                                                                                                          | 25.7                                                          | 29.8                                                          | 30.7                                      | 31.6                                                          | 32.9                                                          | 33.5                                                   | 33.8 | 33.9                                       | 34.0 |
| 21.6 WPG                                                                                                                         | 0.6                                                           | 0.9                                                           | 1.1                                       | 1.2                                                           | 1.6                                                           | 1.9                                                    | 2.1  | 2.2                                        | 2.5  |
|                                                                                                                                  |                                                               |                                                               |                                           |                                                               |                                                               |                                                        |      |                                            |      |
|                                                                                                                                  |                                                               | _                                                             |                                           |                                                               |                                                               | Oven                                                   |      | Veight los                                 | s    |
|                                                                                                                                  | <                                                             | Days                                                          |                                           |                                                               | >                                                             | Oven<br>drying                                         |      | Veight los<br>fter test                    | ss   |
|                                                                                                                                  |                                                               |                                                               | %                                         |                                                               |                                                               |                                                        |      |                                            | ss   |
| V. a. e. f.                                                                                                                      | <<br>1                                                        | Days                                                          | <br>%                                     | 4                                                             | ><br>5                                                        |                                                        |      |                                            | ss   |
| Kenaf                                                                                                                            | 1                                                             | 2                                                             | %<br>3                                    | 4                                                             | 5                                                             | drying                                                 |      | fter test                                  | ss   |
| Control                                                                                                                          | 1<br>37.7                                                     | 2 41.5                                                        | %<br>3<br>42.6                            | 4 43.5                                                        | 5 44.5                                                        | drying                                                 |      | fter test                                  | ss   |
| Control<br>18.4 WPG                                                                                                              | 1                                                             | 2                                                             | %<br>3                                    | 4                                                             | 5                                                             | drying                                                 |      | fter test                                  | ss   |
| Control<br>18.4 WPG<br>Bagasse                                                                                                   | 1<br>37.7<br>8.5                                              | 2<br>41.5<br>8.5                                              | 42.6<br>8.7                               | 4<br>43.5<br>8.8                                              | 5<br>44.5<br>9.0                                              | drying<br>19.0<br>0.7                                  |      | 2.0<br>2.8                                 | ss   |
| Control<br>18.4 WPG<br>Bagasse<br>Control                                                                                        | 37.7<br>8.5<br>25.0                                           | 2<br>41.5<br>8.5<br>25.2                                      | 42.6<br>8.7<br>25.3                       | 4<br>43.5<br>8.8<br>25.4                                      | 5<br>44.5<br>9.0<br>25.5                                      | 19.0<br>0.7<br>16.0                                    |      | 2.0<br>2.8<br>1.2                          | s    |
| Control<br>18.4 WPG<br>Bagasse<br>Control<br>17.6 WPG                                                                            | 1<br>37.7<br>8.5                                              | 2<br>41.5<br>8.5                                              | 42.6<br>8.7                               | 4<br>43.5<br>8.8                                              | 5<br>44.5<br>9.0                                              | drying<br>19.0<br>0.7                                  |      | 2.0<br>2.8                                 | s    |
| Control<br>18.4 WPG<br>Bagasse<br>Control<br>17.6 WPG<br>Bamboo                                                                  | 37.7<br>8.5<br>25.0<br>5.0                                    | 2<br>41.5<br>8.5<br>25.2<br>5.0                               | 42.6<br>8.7<br>25.3<br>5.1                | 4<br>43.5<br>8.8<br>25.4<br>5.2                               | 5<br>44.5<br>9.0<br>25.5<br>5.2                               | 19.0<br>0.7<br>16.0<br>1.5                             |      | 2.0<br>2.8<br>1.2                          | s    |
| Control<br>18.4 WPG<br>Bagasse<br>Control<br>17.6 WPG<br>Bamboo<br>Control                                                       | 37.7<br>8.5<br>25.0<br>5.0                                    | 2<br>41.5<br>8.5<br>25.2<br>5.0<br>16.5                       | 42.6<br>8.7<br>25.3<br>5.1<br>17.9        | 4<br>43.5<br>8.8<br>25.4<br>5.2                               | 5<br>44.5<br>9.0<br>25.5<br>5.2<br>18.2                       | 19.0<br>0.7<br>16.0<br>1.5                             |      | 2.0<br>2.8<br>1.2<br>1.4                   | s    |
| Control<br>18.4 WPG<br>Bagasse<br>Control<br>17.6 WPG<br>Bamboo<br>Control<br>18.0 WPG                                           | 37.7<br>8.5<br>25.0<br>5.0                                    | 2<br>41.5<br>8.5<br>25.2<br>5.0                               | 42.6<br>8.7<br>25.3<br>5.1                | 4<br>43.5<br>8.8<br>25.4<br>5.2                               | 5<br>44.5<br>9.0<br>25.5<br>5.2                               | 19.0<br>0.7<br>16.0<br>1.5                             |      | 2.0<br>2.8<br>1.2                          | s    |
| Control<br>18.4 WPG<br>Bagasse<br>Control<br>17.6 WPG<br>Bamboo<br>Control<br>18.0 WPG<br>Hemlock                                | 37.7<br>8.5<br>25.0<br>5.0<br>16.1<br>2.5                     | 2<br>41.5<br>8.5<br>25.2<br>5.0<br>16.5<br>3.1                | 42.6<br>8.7<br>25.3<br>5.1<br>17.9<br>3.2 | 4<br>43.5<br>8.8<br>25.4<br>5.2<br>18.1<br>3.2                | 5<br>44.5<br>9.0<br>25.5<br>5.2<br>18.2<br>3.3                | 19.0<br>0.7<br>16.0<br>1.5<br>8.3<br>2.2               |      | 2.0<br>2.8<br>1.2<br>1.4                   | s    |
| Control<br>18.4 WPG<br>Bagasse<br>Control<br>17.6 WPG<br>Bamboo<br>Control<br>18.0 WPG<br>Hemlock<br>Control                     | 37.7<br>8.5<br>25.0<br>5.0<br>16.1<br>2.5<br>17.3             | 2<br>41.5<br>8.5<br>25.2<br>5.0<br>16.5<br>3.1<br>17.5        | 25.3<br>5.1<br>17.9<br>3.2                | 4<br>43.5<br>8.8<br>25.4<br>5.2<br>18.1<br>3.2<br>17.9        | 5<br>44.5<br>9.0<br>25.5<br>5.2<br>18.2<br>3.3<br>18.1        | 19.0<br>0.7<br>16.0<br>1.5<br>8.3<br>2.2               |      | 2.0<br>2.8<br>1.2<br>1.4                   | s    |
| Control<br>18.4 WPG<br>Bagasse<br>Control<br>17.6 WPG<br>Bamboo<br>Control<br>18.0 WPG<br>Hemlock<br>Control<br>22.5 WPG         | 37.7<br>8.5<br>25.0<br>5.0<br>16.1<br>2.5                     | 2<br>41.5<br>8.5<br>25.2<br>5.0<br>16.5<br>3.1                | 42.6<br>8.7<br>25.3<br>5.1<br>17.9<br>3.2 | 4<br>43.5<br>8.8<br>25.4<br>5.2<br>18.1<br>3.2                | 5<br>44.5<br>9.0<br>25.5<br>5.2<br>18.2<br>3.3                | 19.0<br>0.7<br>16.0<br>1.5<br>8.3<br>2.2               |      | 2.0<br>2.8<br>1.2<br>1.4                   | s    |
| Control<br>18.4 WPG<br>Bagasse<br>Control<br>17.6 WPG<br>Bamboo<br>Control<br>18.0 WPG<br>Hemlock<br>Control<br>22.5 WPG<br>Pine | 1<br>37.7<br>8.5<br>25.0<br>5.0<br>16.1<br>2.5<br>17.3<br>5.2 | 2<br>41.5<br>8.5<br>25.2<br>5.0<br>16.5<br>3.1<br>17.5<br>5.6 | 25.3<br>5.1<br>17.9<br>3.2<br>17.8<br>5.8 | 4<br>43.5<br>8.8<br>25.4<br>5.2<br>18.1<br>3.2<br>17.9<br>6.0 | 5<br>44.5<br>9.0<br>25.5<br>5.2<br>18.2<br>3.3<br>18.1<br>6.6 | 19.0<br>0.7<br>16.0<br>1.5<br>8.3<br>2.2<br>7.8<br>1.7 |      | 2.0<br>2.8<br>1.2<br>1.4<br><br>2.9<br>1.9 | s    |
| Control<br>18.4 WPG<br>Bagasse<br>Control<br>17.6 WPG<br>Bamboo<br>Control<br>18.0 WPG<br>Hemlock<br>Control<br>22.5 WPG         | 37.7<br>8.5<br>25.0<br>5.0<br>16.1<br>2.5<br>17.3             | 2<br>41.5<br>8.5<br>25.2<br>5.0<br>16.5<br>3.1<br>17.5        | 25.3<br>5.1<br>17.9<br>3.2                | 4<br>43.5<br>8.8<br>25.4<br>5.2<br>18.1<br>3.2<br>17.9        | 5<br>44.5<br>9.0<br>25.5<br>5.2<br>18.2<br>3.3<br>18.1        | 19.0<br>0.7<br>16.0<br>1.5<br>8.3<br>2.2               |      | 2.0<br>2.8<br>1.2<br>1.4                   | s    |

greatly reduced as a result of acetylation. At the end of 5 days of water soaking, control boards swelled from 18 to 45% whereas boards made from acetylated fiber swelled from 3 to 10%. Drying all boards after the water soaking test shows the amount of irreversible swelling that has resulted from water swelling. Control boards show a greater degree of irreversible swelling as compared to boards made from acetylated fiber.

The results of both water vapor and liquid water tests show that acetylation of lignocellulosic fibers greatly improve dimensional stability of composites made from these resources.

#### **Biological Resistance**

Particleboards and flakeboards made from acetylated flakes have been tested for resistance to several different types of organisms. In a 2-week termite test using *Reticulitermes flavipes* (subterranean termites), boards acetylated at 16 to 17 WPG were very resistant to attack, but not completely so (Table 6) [Rowell et al 1979, 1988a]. This may be attributed to the severity of the test. However, since termites can live on acetic acid and decompose cellulose to mainly acetic acid, perhaps it is not surprising that acetylated wood is not completely resistant to termite attack.

Chemically modified composites have been tested with decay fungi in several ways. Control and chemically modified particleboards were exposed to a 12 week soil block test using the brown rot fungus *Gloeophyllum trabeum* and the white rot fungus *Trametes versicolor* (Table 7). All boards were made using a phenolic resin [Nilsson et al 1988,

**Table** 6 Weight loss in chemically modified southern pine after 2 weeks exposure to *Reticulitermes flavipes* 

| Chemical         | Weight  | Wood Weight |
|------------------|---------|-------------|
|                  | Percent | Loss        |
|                  | Gain    |             |
|                  | < %     | >           |
| Control          | 0       | 31          |
| Propylene oxide  | 9       | 21          |
| • • •            | 17      | 14          |
|                  | 34      | 6           |
| Butylene oxide   | 27      | 4           |
| •                | 34      | 3           |
| Acetic anhydride | 10.4    | 9           |
| •                | 17.8    | 6           |
|                  | 21.6    | 5           |

**Table 7.** Biological resistance of chemically modified pine against brown- and white-rot fungi

| Chemical        | Weight<br>Percent | Weight Loss After 12 Weeks |                     |  |
|-----------------|-------------------|----------------------------|---------------------|--|
|                 | Gain              | Brown-rot<br>Fungus        | White-rot<br>Fungus |  |
|                 | <                 | %                          | _                   |  |
| None            | 0                 | 68                         | 7                   |  |
| Acetic          | 17                | <2                         | <2                  |  |
| Anhydride       |                   |                            |                     |  |
| Propylene oxide | 25                | <15                        | <2                  |  |
| Butylene oxide  | 22                | <3                         | <1                  |  |
| Methyl          |                   |                            |                     |  |
| Isocyanate      | 20                | <3                         | <1                  |  |
| Formaldehyde    | 5                 | <3                         | <1                  |  |
| Beta            |                   |                            |                     |  |
| Propiolactone   | 25                | <2                         | <2                  |  |
| Acrylonitrile   | 25                | <2                         | <2                  |  |

Rowell et al 1988a]. All of the bonded chemicals at a WPG over about 20 show good resistance to brown- and white-rot fungi except propylene oxide in the brown rot test. Propylene oxide is not effective in preventing attack by brown-rot fungi even though the same number of hydroxyl groups should be modified as were modified by reaction with butylene oxide, methyl isocyanate, acetic anhydride, beta propiolactone or acrylonitrile [Rowell et al 1988b]. This exception of propylene oxide to the protection rule is perhaps the key to understanding the mechanism of the resistance to attack by fungi by chemical modification. As was seen in Table 1, the EMC of propylene oxide modified fiber is higher than any other modified fiber and this may be the reason for the lower biological resistance.

The mechanism of brown-rot fungi attack on lignocellulosics is thought to be as given in Figure 3 [Nilsson 1986]. The first biological attack on a lignocellulosic is an enzymatic reaction that results in a metal/peroxide chemical oxidation system. This oxidation system breaks down the large polymers into smaller pieces which results in an early and rapid strength loss as the degree of polymerization of the cellulose molecule is reduced. During this reaction phase, a second enzymatic system starts working in which carbohydrates and lignin are broken down. It is in this phase that weight loss occurs.

This mechanism is consistent with the data that strength losses occur long before weight losses in brown-rot fungi attacked wood [Rowell et al 1988b]. In this mechanism the key to brown-rot fungi resistance lies in the protection of the hemicellulose polymers. If

that single component is protected, attack can not proceed.

Weight loss resulting from fungal attack is the method most used to determine the effectiveness of a preservative treatment to protect wood composites from decaying. In some cases, especially for brown-rot fungal attack, strength loss may be a more important measure of attack since large strength losses are known to occur in solid wood at very low wood weight loss [Couling 1961]. A dynamic bending-creep test has been developed to determine strength losses when wood composites are exposed to a brown- or white-rot fungus [Imamura and Nishimoto 1985]

fungus [Imamura and Nishimoto 1985].

Using this bending-creep test on aspen flakeboards, control boards made with phenol-formaldehyde adhesive failed in an average of 71 days using the brown-rot fungus *T. palustris* and 212 days using the white-rot fungus *T. versicolor* [Rowell et al 1988b]. At failure, weight losses averaged 7.8% for *T. palustris* and 31.6% for *T. versicolor*. Isocyanate-bonded control flakeboards failed in an average of 20 days with *T. palustris* and 118 days with *T. versicolor*, with an average weight loss at failure of 5.5% and 34.4% respectively [Rowell et al 1988b]. Very little or no weight loss occurred with both fungi in flakeboards made using either phenol-formaldehyde or isocyanate adhesive with acetylated flakes. None of these specimens failed during the 300 day test period.

Mycelium fully covered the surfaces of isocyanate-bonded control flakeboards

Mycelium fully covered the surfaces of isocyanate-bonded control flakeboards within 1 week, but mycelial development was significantly slower in phenol-formaldehyde-bonded control flakeboards. Both isocyanate- and phenol-formaldehyde-bonded acetylated flakeboards showed surface mycelium colonization during the test time, but the fungus did not attack the acetylated flakes so little strength was lost.

In similar bending-creep tests, both control and acetylated pine particleboards made using melamine-urea-formaldehyde adhesive failed because *T. palustris* attacked the adhesive in the glueline [Imamura et al 1988]. Mycelium invaded the inner part of all boards, colonizing in both wood and glueline in control boards but only in the glueline in acetylated boards. These results show that the glue line is also important in protecting composites from biological attack.

```
ENZYMES-->HEMICELLULOSES

[Energy source for generation of chemical oxidation system]----->ACCESSIBLE CELLULOSE

[Strength losses]

[Energy source for generation of beta-glucosidases]----->WEIGHT LOSS
```

Figure 3. Mechanism of brown rot fungus attack on lignocellulosics

**Table 8.** Fungal cellar tests of aspen flakeboards made from control and acetylated flakes [1,2]

| Weight<br>Percent<br>Gain |     |     |     |     |     |     |     |     |
|---------------------------|-----|-----|-----|-----|-----|-----|-----|-----|
|                           | 2   | 3   | 4   | 5   | 6   | 12  | 24  | 36  |
| 0                         | S/2 | S/3 | S/3 | S/3 | S/4 |     |     |     |
| 7.3                       | S/0 | S/1 | S/1 | S/2 | S/3 | S/4 |     |     |
| 11.5                      | 0   | 0   | S/0 | S/1 | S/2 | S/3 | S/4 |     |
| 13.6                      | 0   | 0   | 0   | 0   | S/0 | S/1 | S/2 | S/3 |
| 16.3                      | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| 17.9                      | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |

[1] Nonsterile soil containing brown-, white-, and soft-rot fungi and tunneling bacteria.

[2] Flakeboards bonded with 5% phenol-formaldehyde adhesive.

[3] Rating system: 0 = no attack, 1 = slight attack; 2 = moderate attack; 3 = heavy attack; 4 = destroyed; S = swollen.

After a 16-week exposure to *T. palustris*, the internal bond strength of control aspen flakeboards made with phenol-formaldehyde adhesive was reduced over 90% and that of flakeboards made with isocyanate adhesive was reduced 85% [Imamura et al 1987]. After 6 months of exposure in moist unsterile soil, the same control flakeboards made with phenol-formaldehyde adhesive lost 65% of their internal bond strength and those made with isocyanate adhesive lost 64% internal bond strength. Failure was due mainly to great strength reductions in the wood caused by fungal attack. Acetylated aspen flakeboards lost much less internal bond strength during the 16-week exposure to *T. palustris* or 6-month soil burial. The isocyanate adhesive was somewhat more resistant to fungal attack than the phenol-formaldehyde adhesive. In the case of acetylated composites, loss in internal bond strength was mainly due to fungal attack in the adhesive and moisture, which caused a small amount of swelling in the boards.

Another test for biological resistance that has been done on acetylated composites is with brown-, white-, and soft-rot fungi and tunneling bacteria in a fungal cellar (Table 8). Control blocks were destroyed in less than 6 months while flakeboards made from acetylated furnish above 16 WPG showed no attack after 1 year. [Nilsson et al 1988, Rowell et al 1988a]. This data shows that no attack occurs until swelling of the wood occurs [Rowell and Ellis 1984, Rowell et al 1988a]. This is more evidence that the moisture content of the cell wall is critical before attack can take place.

 Table 9. Ratings of chemically modified southern pine exposed to a marine environment [1]

| Weight<br>Percent |                             | _                                               | rating due to attack                                                                            |
|-------------------|-----------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Gain              | DAPO                        | Limnoriid an                                    |                                                                                                 |
| 0                 | 1                           | 2 - 4                                           | 3.4                                                                                             |
| 26                | 11.5<br>3                   | 10                                              | 3.8                                                                                             |
| 28                | 8.5                         | 9.9<br>3                                        | 8.0                                                                                             |
| 29                | 6.5                         | 10                                              |                                                                                                 |
| 22                | 3                           | 8                                               | 8.8                                                                                             |
|                   | Percent<br>Gain  0 26 28 29 | Percent Gain Expos  0 1 26 11.5 3 28 8.5 29 6.5 | Percent Exposure by Gain Limnoriid an Teredinid Bo  0 1 2-4 26 11.5 10 3 28 8.5 9.9 3 29 6.5 10 |

[1] Rating system - 10 = no attack; 9 = slight attack; 7 = some attack; 4 = heavy attack; 0 = destroyed

**Table 10.** Weight loss and erosion of aspen fiberboards made from control and acetylated fiber after 700 hours of accelerated weathering

| Specimen   | Weight loss  | Erosion | Reduction in Erosion | Depth of<br>Penetration of |
|------------|--------------|---------|----------------------|----------------------------|
|            | <i>%/</i> hr | µm/hr   | % µm                 | Weathering<br>µm           |
| Control    | 0.019        | 0.121   |                      | 199-210                    |
| Acetylated | 0.010        | 0.059   | 51                   | 85-105                     |

Table 9 shows the data for chemically modified pine flakeboards in a marine environment [Johnson and Rowell 1988]. As with the termite test, all types of chemical modifications of wood help resist attack by marine organisms. Control flakeboards were destroyed in 6 months to 1 year, mainly because of attack by *Limnoria tripunctata*, while chemically modified flakeboards show little or no attck after 8 to 10 years.

All laboratory tests for biological resistance conducted to this point show that acetylation is an effective means of reducing or eliminating attack by soft-, white-, and brown-rot fungi, tunneling bacteria, marine organisms, and subterranean termites.

#### **Ultraviolet Resistance**

Acetylation has also been shown to improve ultraviolet resistance of aspen fiberboards [Feist et al 1991a]. Table 10 shows the weight loss, erosion rate, and depth of penetration resulting from 700 hours of accelerated weathering. Control specimens erode at about 0.12  $\mu m/hr$  or about 0.02 %/hr. Acetylation reduces surface erosion by 50 percent. The depth of the effects of weathering is about 200  $\mu m$  into the fiber surface for the unmodified boards and about half that of the acetylated boards. Table 11 shows the acetyl and lignin content of the outer 0.5 mm surface and of the remaining specimen after the surface had been removed before and after accelerated weathering . The acetyl content is reduced in the surface after weathering which shows that the acetyl blocking group is removed during weathering. UV radiation does not remove all of the blocking acetyl group so some stabilizing effect to photochemical degradation still is in effect. The loss of acetate is confined to the outer 0.5 mm since the remaining wood has the same acetyl content before and after accelerated weathering. The lignin content is also greatly reduced in the surface as a result of weathering which is the main cell wall polymer degraded by UV radiation. Cellulose and the hemicelluloses are much more stable to photochemical degradation.

In outdoor tests, flakeboards made from acetylated pine flakes maintain a light yellow color after one year while control boards turn dark orange to light gray during this time [Feist et al 1991b].

**Table 11.** - Acetyl and lignin analysis before and after 700 hours of accelerated weathering of aspen fiberboards made from control and acetylated fiber.

| Specimen   | Before we | athering          | After weath       | nering    |
|------------|-----------|-------------------|-------------------|-----------|
|            |           | Remainder<br>etyl | Surface<br>Acetyl | Remainder |
|            | <         | %                 | ·····             | >         |
| Control    | 4.5       | 4.5               | 1.9               | 3.9       |
| Acetylated | 17.5      | 18.5              | 12.8              | 18.3      |
|            | Lig       | gnin              | Lignin            |           |
| Control    | 19.8      | 20.5              | 1.9               | 17.9      |
| Acetylated | 18.5      | 19.2              | 5.5               | 18.1      |

**Table 12.** Modulus of rupture (MOR), modulus of elasticity (MOE), and tensile strength (TS) parallel to the board surface of fiberboards made from control or acetylated fiber and phenolic resin [1].

| MOR<br>-MPa> | MOE<br>-GPa>                        | TS<br>-MPa>                                                          |
|--------------|-------------------------------------|----------------------------------------------------------------------|
|              |                                     |                                                                      |
| 37.1         | 3.7                                 | 19.0                                                                 |
| 27.9         | 3.3                                 | 13.6                                                                 |
|              |                                     |                                                                      |
| 47.1         | 4.6                                 | 31.0                                                                 |
| 38.6         | 5.1                                 | 27.1                                                                 |
|              |                                     |                                                                      |
| 66.0         | 6.0                                 | 33.9                                                                 |
| 51.1         | 5.0                                 | 32.1                                                                 |
| 31.0         |                                     | 10.3                                                                 |
|              | -MPa> 37.1 27.9 47.1 38.6 66.0 51.1 | -MPa> -GPa>  37.1 3.7 27.9 3.3  47.1 4.6 38.6 5.1  66.0 6.0 51.1 5.0 |

[1] Resin content of boards: Pine 8%, Kenaf 8%, Hemlock 8%

#### **Strength Properties**

The modulus of rupture (MOR), modulus of elasticity (MOE) in bending and tensile strength (TS) parallel to the board surface are shown in Table 12 for fiberboards made from control and acetylated pine kenaf and hemlock fiber. Acetylation results in a small decrease in MOR but about equal values in MOE and TS. All strength values given in Table 12 are above the minimum standard as given by the American Hardboard Association [ANSI 1982]. It has been shown that there is very little effect on strength properties of thin flakes as a result of acetylation [Rowell and Banks 1987]. The small decrease in some strength properties resulting from acetylation may be attributed to the hydrophobic nature of the acetylated furnish which may not allow the water soluble phenolic or isocyanate resins to penetrate into the flake. The adhesives used in these tests have also been developed for unmodified lignocellullsics. Different types of adhesives may be needed in chemically modified boards [Vick and Rowell 1990].

It should also be pointed out that strength properties of lignocellulosics are very dependent on the moisture content of the cell wall. Fiber stress at proportional limit, work to proportional limit, fiber stress at proportional limit, and maximum crushing strength are the mechanical properties most affected by changing moisture content by only +/- one percent below FSP [Rowell 1984, USDA 1987]. Since the EMC and FSP are much lower for chemically modified fiber than for control fiber, strength properties will be different due to this fact alone.

#### FUTURE OF LIGNOCELLULOSIC COMPOSITES

Fiber technology, high performance adhesives, and fiber modification can be used to manufacture structural lignocellulosic composites with uniform densities, durability in adverse environments, and high strength. Fiber modification can also be used to improve properties in composites made of both natural and synthetic resources used for geotextiles, filters, sorbents, packaging, and non-structural composites.

Products having complex shapes can be produced using flexible chemically modified fiber mats. which can be made by nonwoven needling or thermoplastic fiber melt matrix technologies. Within certain limits, the mats can be pressed into any desired shape, size, thickness, and density. With fiber mat technology, a complex product can be made directly from a lignocellulosic fiber blend. In general, the present technology requires the formation of flat sheets prior to the shaping of complex parts.

All of this technology can be applied to recycled lignocellulosic fiber as well as virgin fiber, which can be derived from many sources. Agricultural residues, all types of waste

paper, yard waste, industrial fiber residues, residential fiber waste, and many other forms of waste lignocellulosic fiber can also be used to make property enhanced composites.

#### **REFERENCES**

- Andersson, M. and Tillman, A.-M., (1989). Acetylation of Jute. Effects on strength, rot resistance and hydrofobicity, J. Applied Polymer Sci., 37, 3437.
- ANSI (1982). American National Standard. Basic Hardboard. ANSI/AHA 135.4 (reaffirmed Jan, 1988), American Hardboard Association, Palatine, IL.
- Banks, W. B. and Lawther, J. M., (1994). Derivation of wood in composites, In, Cellulosic polymers, blends and composites, Gilbert, R. G. ed., Hanser Publishers, New York, NY, 131.
- Callow, H. J., (1951). Acetylation of cellulose and lignin in jute fiber, *Journal of the Indian Chemical Society*, 43, 605.
- Cowling, E. B., (1961). Comparative biochemistry of the decay of Sweetgum sapwood by white-rot and brown-rot fungus, U.S. Department of Agriculture, Forest Serv. Technol. Bull., No. 1258, 50.
- Feist, W. C., Rowell, R. M., and Ellis, W. D., (1991a). Moisture sorption and accelerated weathering of acetylated and/or methyl methacrylate treated aspen, *Wood and Fiber Sci.*, 23(1), 128.
- Feist, W. C., Rowell, R. M., and Youngquist, J. A., (1991b). Weathering and finish performance of acetylated aspen fiberboard, Wood and Fiber Sci., 23(2), 260.
- Hon. D. N.-S., (1992). Chemical modification of lignocellulosic materials: old chemistry, new approaches, *Polymer News*, (17), 102.
- Imamura, Y., and Nishimoto, K., (1985). Bending creep test of wood-based materials under fungal attack. J. Soc. Materials Sci. 34(38), 985.
- Imamura, Y., Nishimoto, K., Rowell, R. M., (1987). Internal bond strength of acetylated flakeboard exposed to decay hazard, *Mokuzai Gakkaishi*. 33(12), 986.
- Imamura, Y., Rowell, R. M., Simonson, R., and Tillman, A.-M., (1988). Bending-creep tests on acetylated pine and birch particleboards during white- and brown-rot fungal attack, *Paperi ja Puu*, 9, 816.
- Johnson, B. R., and Rowell, R. M., (1988). Resistance of chemically-modified wood to marine borers, *Material und Organismen*, 23(2), 147.
- Krzysik, A. M., Youngquist, J. A., Muehl, J. M., Rowell. R. M., Chow, P., and Shook, S. R., (1992). Dry-process hardboards from recycled newsprint paper fibers. In, *Materials interactions relevant to recycling of wood-based materials*, Rowell, R. M., Laufenberg, T. L., and Rowell, J. K., eds., Materials Research Society, Pittsburgh, PA, 266, 73.
- Krzysik, A. M., Youngquist, J. A., Rowell, R. M., Muehl, J. M., Chow, P., and Shook. S. R., (1993). Feasibility of using recycled newspaper as a fiber source for dry-process hardboards. For. Prod. J., 43(7/8), 53.
- Kumar, S, (1994). Chemical modification of wood, Wood and Fiber Sci, 26(2) 270.
- Nilsson, T., (1986). Personal communication, Upsalla, Sweden.
- Nilsson, T., Rowell, R. M., Simonson, R., and Tillman, A.-M., (1988). Fungal resistance of pine particle boards made from various types of acetylated chips, *Holzforschung.*, 42(2), 123.

- Rowell, R. M., (1975). Chemical modification of wood: advantages and disadvantages, *Proceedings, Am. Wood Preservers' Assoc.*, 71, 41.
- Rowell, R. M., (1982). Distribution of reacted chemicals in southern pine modified with acetic anhydride, Wood Sci. 15(2), 172.
- Rowell, R. M., (1983). Chemical modification of wood: A review, Commonwealth Forestry Bureau, Oxford, England, 6(12), 363.
- Rowell, R. M., (1984). The Chemistry of Solid Wood, Advances in Chemistry Series No. 207, American Chemical Society, Washington, DC.
- Rowell, R. M., (1990). Chemical modification of wood: Its application to composite wood products, *Proceedings, Composite Products Symposium*, *Rotorua*, *New Zealand*, *November*, 1988, FRI Bulletin, No. 153, 57.
- Rowell, R. M., (1991). Chemical modification of wood, Handbook on Wood and Cellulosic Materials, Hon, D. N.-S., and Shiraishi, N.,eds., Marcel Dekker, Inc., New York, NY, 703.
- Rowell, R. M., (1992). Property enhancement of wood composites, *Composites Applications: The role of matrix, fiber, and interface*, Vigo, T. L., and Kinzig, B.J.,eds., VCH Publishers, Inc, New York, NY, 365.
- Rowell, R. M., (1993). Opportunities for composite materials from jute and kenaf, International consultation of jute and the environment, Food and Agricultural Organization of the United Nations, ESC:JU/IC 93/15, 1.
- Rowell, R. M., and Banks, W. B., (1985). Water repellency and dimensional stability of wood, USDA Forest Service General Technical Report FPL 50, Forest Products Laboratory, Madison, WI.
- Rowell, R. M., and Banks, W. B., (1987). Tensile strength and work to failure of acetylated pine and lime flakes, *British Polymer J.*, 19, 479.
- Rowell, R. M. and Ellis, W. D., (1984). Reaction of epoxides with wood, *USDA Forest Service Research Paper*, FPL 451, Forest Products Laboratory, Madison, WI.
- Rowell, R. M., Esenther, G. R., Youngquist, J. A., Nicholas, D. D., Nilsson, T., Imamura, Y., Kerner-Gang, W., Trong, L., and Deon, G., (1988a). Wood modification in the protection of wood composites, *Proceedings: IUFRO wood protection subject group*, Honey Harbor, Ontario, Canada. Canadian Forestry Service, 238.
- Rowell, R. M., and Harrison, S. E., (1993). Property enhanced kenaf fiber composites, *Proceedings, Fifth Annual International Kenaf Conference*, Bhangoo, M. S., ed., California State University Press, Fresno, CA, 129.
- Rowell, R. M., Hart, S. V. and Esenther, G. R. (1979). Resistance of alkylene-oxide treatments on dimensional stability of wood, *Wood Sci*, 11(4), 271.
- Rowell, R. M., and Keany, F., (1991). Fiberboards made from acetylated bagasse fiber, Wood and Fiber Sci. 23(1), 15.
- Rowell, R. M., and Konkol, P., (1987). Treatments that enhance physical properties of wood, USDA, Forest Service, Forest Products Laboratory Gen. Technical Report FPL-GTR-55, Madison, WI.
- Rowell, R. M., and Norimoto, M., (1987). Acetylation of bamboo fiber, J. Jap. Wood Res. Soc., 33(11), 907.

- Rowell, R. M., and Norimoto, M., (1988). Dimensional stability of bamboo particleboards made from acetylated particles, *Mokuzai Gakkaishi*, 34(7), 627.
- Rowell, R. M, and Rowell, J. S., (1989). Moisture sorption of various types of acetylated lignocellulosic fibers, *Cellulose and Wood*, Schuerch, C., ed., John Wiley and Sons, New York, NY, 343.
- Rowell, R. M., Simonson, R., Hess, S., Plackett, D. V., Cronshaw, D., and Dunningham, E., (1994b). Acetyl distribution in acetylated whole wood and reactivity of isolated wood cell wall components to acetic anhydride, *Wood and Fiber Sci.*, 26(1), 11.
- Rowell, R. M., Simonson, R., and Tillman, A. -M., (1991). A process for improving dimensional stability and biological resistance of lignocellulosic materials, *European Patent 0213252*.
- Rowell, R. M., Susott, R. A., De Groot, W. G., and Shafizadeh, F., (1984). Bonding fire retardants to wood. Part I, Wood and Fiber Sci., 16(2), 214.
- Rowell, R. M., Tillman, A.-M., and Simonson, R., (1986). A simplified procedure for the acetylation of hardwood and softwood flakes for flakeboard production, *J. Wood Chem. and Tech.*, 6(3), 427.
- Rowell, R. M.; Youngquist, J. A., and Imamura, Y., (1988b). Strength tests on acetylated flakeboards exposed to a brown rot fungus, Wood and Fiber Sci., 20(2), 266.
- Rowell, R. M., and Youngs, R. L., (1981). Dimensional stabilization of wood in use, USDA Forest Serv. Res. Note. FPL-0243, Forest Products Laboratory, Madison, WI.
- Stamm, A. J., (1964). Wood and Cellulose Science; The Ronald Press Co., New York.
- United States Department of Agriculture, Forest Service, (1987). Wood Handbook, USDA Agri. Handbook 72, Washington, D.C.
- Vick, C. B., and Rowell, R. M., (1990). Adhesive bonding of acetylated wood, *Internat. J. Adhesion and Adhesives*, 10(4), 263.

# Science and Technology of Polymers and Advanced Materials

## Emerging Technologies and Business Opportunities

Edited by

Paras N. Prasad

Stare University of New York at Buffalo Buffalo, New York

James E. Mark

University of Cincinnati Cincinnati, Ohio

Sherif H. Kandil

Alexandria University Alexandria, Egypt

and

Zakya H. Kafafi

Naval Research Laboratory Washington, D. C.

Plenum Press • New York and London

Library of Congress Cataloging-in-Publication Data

Science and technology of polymers and advanced materials: emerging technologies and business opportunities / edited by Paras N. Prasad . . . [et al.].

p. cm.

"Proceedings of the Fourth International Conference on Frontiers of Polymers and Advanced Materials, held January 4-9. 1997, in Cairo, Egypt"—Tp. verso.

Includes bibliographical references and index.

ISBN 0-306-45820-9

1. Polymers—Congresses. I. Prasad, Paras N. II. International Conference on Frontiers of Polymers and Advanced Materials (4th: 1997: Cairo, Egypt)

TA455.P58S38 1998

620.1'92—dc21 98-21006

CIP

Proceedings of the Fourth International Conference on Frontiers of Polymers and Advanced Materials, held January 4 - 9, 1997, in Cairo, Egypt

ISBN 0-306-45820-9

© 1998 Plenum Press, New York A Division of Plenum Publishing Corporation 233 Spring Street, New York, N.Y. 10013

http://www.plenum.com

10987654321

All rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher

Printed in the United States of America