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ANALYTICAL MODEL OF FLAME SPREAD IN FULL-
SCALE ROOM/CORNER TESTS (ISO9705)

Mark Dietenberger, USDA Forest Service, Forest Products Laboratory, Madison, Wisconsin*
and Ondrej Grexa, State Forest Products Research Institute, Bratislava, Slovak Republic

ABSTRACT
A physical, yet analytical, model of fire growth has predicted flame spread and rate of heat

release (RHR) for an ISO9705 test scenario using bench-scale data from the cone calorimeter. The test
scenario simulated was the propane ignition burner at the comer with a 100/300 kW program and the
specimen lined on the walls only. Four phases of fire growth were simulated. The first two phases, the
wall ignition and upward flame spread, have separate physical formulations. Some empiricism,
however, was required to predict the phases of lateral and downward flame spread. Two groups of
materials seem to exist that have different characteristics of lateral flame spread. The first group,
containing the heavy composite boards, displayed a continuously increasing RHR along with
accelerating flame spread. The second group, which contains plywoods and lumbers, have a constant
or decreasing RHR while in a slow flame spreading mode. The analytical model has predicted
sensitivity of RHR to various systematic measurement errors. Disagreements about RHR at flashover
were predicted as a result of differing gas analysis systems between laboratories. Delay of wall
ignition due to differing sluggishness of the burner between laboratories was predicted. Other results
with burner program and upper gas layer mixing are reported.

BACKGROUND
Two analytical models for room fire growth were found with a literature search. The first is by

Wickstrom and Goransson1 in which the cone calorimeter data are used as input to a simplified fire
growth model. The second model by Karlson2 takes a more physically reasonable approach by
extending the model of Saito and others3 (SQW) for thermal modeling of upward spread on a wall to a
thermal model of flame spread along the ceiling lining. After the initial phases of wall and ceiling
ignitions, the flame spread model uses a decaying heat release flux profile coupled with the flame
spread rate formula to analytically simulate accelerating, oscillating, or decaying fire growth behavior.
Neither of the models is applicable to the test scenario with test materials on the wall only.

The four significant stages of fire growth leading to flashover are back wall ignition, upward flame
spread to the ceiling, lateral-ceiling flame spread nearly to the ends of the room, and finally, a rapid
uniform downward flame spread just prior to flashover4,5. A numerical model covering all four phases
(modification of Quintiere’s model6) to predict a fire growth scenario for use on a personal computer
was described previously by Janssens and others7. Some first order differential equations were set up
to simulate specific events such as upward, lateral, and downward flame spread while including
material burnout, approximated radiation from upper gas layer, and temperature responses of wall
lining and upper gas layers. However, there were also limitations to this and other recent models.
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Evaluation of recent experimental data suggests some simple formulations of submodels for the room
fire growth model. The average surface heat flux within the initial ignition area has been measured
with fluxmeters at around 55 kW/m2 for the burner’s RHR from 40 to 300 kW for both ISO and
ASTM burner8,9 (also our facility). At the flame height, the total heat flux already decreases to about
25 kW/m2 and continues to decrease similarly to a decaying exponential function. A real material
would have even lower surface heat flux because a surface temperature approaching the pyrolysis
temperature would lower flame heat flux and increase the surface re-radiating cooling flux. Similar
adjustments to surface heat flux will also be required in the cone calorimeter test conditions. With the
gypsum board as a back board to testing materials, recent cone calorimeter tests show that the
secondary peak RHR often noted for wood-based materials is significantly reduced and extends for
longer period of time (even up to 20 minutes) due to heat losses into the back board. Thus, the
exponentially decaying RHR profile in the Karlson model would be more realistic than the modified
Quintiere model’s constant RHR and then sharp drop of RHR at burnout time.

In detailed measurements by Kulkarni and others10 of upward flame propagation on finitely thick
materials exposed to external flux, the flame flux profile follows a decaying exponential form
immediately at the pyrolysis front. However, in the analytical model, all the surface heat fluxes are
incorporated into the “flame flux profile” to completely avoid calculation of preheat temperatures11

and thus maintain the simplicity of the model for the ISO9705 test conditions. One might assert that
preheat temperatures due to radiation from the upper hot gas layer need to be calculated just prior to
flashover to create the accelerating RHR profile typically observed. However, an actual RHR that
uniformly increases with time in the room will be observed as an accelerating profile because the RHR
measurements are affected significantly by the gas mixing time responses in the gas train and in the
room’s upper gas layer. Secondly, it is possible to evaluate radiation view factors from the bottom
surface of the hot smoky gas layer to the walls so that a flame flux profile is formulated for the
downward flame spread. The analytical model developed here will actually demonstrate these effects,
and then their importance can be assessed.

MODEL FORMULATION

Wall Ignition Phase

In the analysis for ignition, we used the ignitability parameters derived from the cone calorimeter data.
Since the imposed heat flux is from the propane burner rather than the cone heater, the equation for
surface heat flux being absorbed into the surface (fluxmeter or material) is

[1]

The parameters that are known in the case of fluxmeters are 
ε m = 0.97. Three remaining parameters are properties of the propane flame only. The temperature
rise above ambient of the propane flame above the ignition area has been measured at about 880~C by
Hasemi12, 959QC by Kokkala and Heinila8, and 754QC  by Janssens and Tran13. Most revealing are the
contour plots of flame temperatures at 30 mm from the surface by Kokkala and Heinila8 in which the
contour of 900~C  covers a reasonably sized ignition area for various burner sizes and output. With
these considerations and using the flame temperature Tf = 1173 K, we obtain the high but still
reasonable values of flame emissivity and convective coefficient of ε f = 0.395 and

hc = 0.0165 kW / m2K to match the heat flux observed with the fluxmeters. The heat loss flux to
ambient in which the steady state surface temperature is the ignition temperature is given by

[2]

and
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The Janssens14 correlation for time to ignition has good accuracy for the heat flux ratios from 1 to 10

and Fourier number, ktig / Cpρδ 2

m , less than 0.33, which are expected for our room tests. His analytic

expression for time to ignition is

[3]

Suppose the imposed flux from the burner has the sluggish response as in (and showing the Duhamel’s
convolution integral equivalent)

The effect of a sluggish burner on the classical surface temperature rise is analyzed with the
Duhamel’s supposition integral and solved by the Laplace transform method with the result

[4]

[5]

The result is the appearance of the Dawson function as the exponential-integral term, and its
evaluation is available in the literature as an accurate functional relationship. The square root of the
right side of Equation [3] is approximately proportional to the temperature rise to the ignition point
for typical times to ignition. Therefore, we can apply Equation [5] to delay the time to ignition as in

[6]
This nonlinear function was solved by an interval-halving method rather than the standard Newton-
Raphson method to ensure rapid and correct convergence. To use Equation [3], the material properties
of thermal conductivity, volumetric heat capacity, surface emissivity, and surface temperature at
ignition are required. These properties were determined using the method by Dietenberger15. Derived
material property values for Equations [1] to [3] are listed in Tables 1 and 2. Using Equation [6] for
the room test materials, the range of time to ignitions in the case of instant burner response, τb = 0, is
from 8.4 seconds for the oak-veneer plywood to 23 seconds for the particle board. Setting the burner
time constant to 1 and 6 seconds, respectively, generally increases the time to ignition by 1.03 seconds
and 6.7 seconds, respectively. It has been shown that a burner’s time constant of 6 seconds is enough
to account for the increase in time to ignition indicated by Karlson2. That is, Karlson found the time to
ignition on the wall to correlate best with the cone heater flux of 50 kW / m2, providing a
multiplication factor of 1.7 times the time to ignition from the cone calorimeter data was used. Even if
this may not be a problem with the data used by Karlson, the effect of not knowing the propane burner
response can be a significant source of confusion and error in ignitability in room tests between
laboratories or even within a laboratory if quality control is not maintained. Because of our use of the
electronic mass flow controller, we only expect a 1-second delay in the time to ignition. This was
found to be consistent with our existing data on the time to ignition of the wall.

Formulation for Rate of Flame Spread

The next three phases of fire growth are similar in that they involve the flame spreading process. The
first step of the analysis is to describe the extended flame flux profile as an imposed flux applied over
the distance, yc, followed by an exponential decay with characteristic length, δ f, as in

where H(y) is the heavyside function. In the case where flame is only from the material burning,
Kulkarni et al.10 have found the characteristic length to be proportional to the extended flame length
and correlated as δ f = (yf - yp) / cf , with value of cf as 1.37. However, with the pilot burner

[7]
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flames merging with the material flames in the ISO9705 test protocol, the more appropriate data to
use is reported by Kokkala and Heininla8. Using their figures of the flame flux profiles for different
burner sizes and outputs, we estimated that the values for the ratio of extended flame length over
characteristic length would vary from 1.2 to 1.4. Having established flame heat flux profile, we
analyzed for the quasi-steady speed of the pyrolysis front by simply using the equality,
y – yig = vp(tig – t), in Equation [7] to represent the sliding movement of the imposed heat flux
profile over a given spot until ignition is reached. With this substitution, the Duhamel’s supposition
integral is the convolution of the material’s thermal response with the time changing imposed flux as

[8]

where the integration is taken from zero to the time of ignition, tig, to correspond to ignition
temperature, Tig. To accommodate the approaching steady state condition, the cooling flux given by
Equation [2] is subtracted from Equation [7] (replace Tig by Ts in Equation [2]) for use in Equation
[8]. The resulting complex solutionl1 is greatly simplified by using the experimental results from
Kulkarni et al.10 to observe that yp = yig = yc and yo – yig >> δ f. The simplified formula is

[9]
where for thermally thick materials, the material time constant is

and for thermally thin materials, the material time constant is instead

[10]

[11]

An accurate but simple interpolation formula for the material time constant over the full thermal
regime from thick to thin was derived by Dietenberger11 with the result

[12]

where the value n = 13 obtained for the polymethyl methacrylate (PMMA) material is assumed to
apply for other materials.

Coefficients for Upward and Downward Flame Spread

The final parameter to model is the characteristic length of flame extension. We begin with the
correlation from experimental data13 for the visible flame height:

[13]

Since the arc length of the pyrolysis front is 2w, Equation [13] is rearranged as the flame area:

[14]
In the linearization of Equation [14] (required for analytic solution), a good reference point is the
transition from upward to lateral flame spread at the flame height, yfu – yo = 2.4 – 0.3 = 2.1 m.
Substitution into Equation [14] shows that the RHR at the reference point can be related as
Qtu = 161 Afu. The linear approximation to Equation [14] is then

[15]
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At first, it seems the derivative of the flame area should also be evaluated at the reference point.
However, the flame area would be much too large at lower values of RHR, particularly at 40 kW for
the ASTM burner and 100 kW for the ISO burner. With only a 23% increase in the derivative at the
reference point, the formula for the flame area for use in the model becomes

[16]

In the case of the ASTM burner, where RHR is 40 kW and burner width is 0.3 m, the computed flame
area impinged on the wall is 0.429 m2. This converts to a flame length of 0.715 m compared with 0.71
m obtained with Equation [13]. Likewise, for the case of the ISO burner, where RHR is 100 kW and
burner width is 0.17 m, the computed flame area is 0.638 m2. This converts to a flame length of 1.88
m compared with 1.91 m obtained with Equation [13]. Returning lastly to the discussion after
Equation [7] concerning the flame characteristic length, the coefficients a, b, & c are defined as
follows:

[17]

The model for during downward flame spread is based on a simple concept. The radiative flux profile
developed at the flame front is due to the view factor of radiation from the bottom surface of the
smoky hot upper gas layer to a narrow strip ahead of the flame front. Thus, the view factor to a narrow
strip ahead of the flame edge from a perpendicularly finitely wide sheet of width    islis

[18]

Considering the similarity with Equation [7], it is obvious to make the identification, f = δ f. Since
the length of the flame edge is the length of the room, the coefficient a is merely the area of the
radiating sheet for downward flame spread along one wall. Since there are three walls with downward
flame spreading, the identification for the coefficients is

[19]

The coefficient b is defined to allow for damping of fire growth as all of the material becomes
involved. Finally, the material time constant is not changed because there is not a better estimate for
the imposed heat flux at the flame front for downward flame spreading.

Analytical Solution of Flame Spread

By substituting Equation [17] into Equation [9], the result is the controlling equation for fire growth:

where the total RHR is given by

[20]

[21]

The index i provides tracking of changes in the burner output, which is given as user input values. The
index j provides tracking of changes in the phase of fire growth due to the coefficients
a, b, & c changing or to “instantaneous” ignition of newly covered areas for step increases of the

burner. The next step is to determine the heat release flux profile, Q"m(t - tj), as an analytic
approximation to the cone calorimeter data so that an analytic Laplace solution is found for Equation
[20]. Earlier, it was described as an exponential decay function:

[22]

Substitution of Equation [22] into Equation [21] and setting t* = t – tj > 0, the solution by the
Laplace transform gives the result for the pyrolysis area and RHR in the recursive form as
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[23]

[24]

where for brevity, we define 

[25]

Equation [25] involves complex numbers, which means the above solutions are considered to be in the
complex variable domain. Specialized computer algorithms were developed for complex evaluations
so that the above functions could be programmed directly.

Rate of Heat Release of Materials and Effect of Instrument Response

It is well known that the gas mixing in the gas flow train can make the peak rate of heat release flux
(PRHR) appear significantly flattened. Thus, the flattening of PRHR with the profile of Equation [22]
is given by a Duhamel convolution with the cone calorimeter’s gas system response function as

[26]

The total heat release flux (THR) is the integral of Equation [26], THR = Q"m,ig / ω m, and PRHR is
the local maximum value of Equation [26]. Since previous measurements have τc = 9.3 seconds, the

THR and PRHR are used as inputs to derive values for Q" m, ig / and ωm. As a further validity,
Equation [26] reproduced the ramp behavior of RHR immediately following ignition for most
materials tested in the cone calorimeter.

For all tested materials, the measured PRHR and THR were found approximately as linear functions
of the cone heater flux16 and their coefficients are listed in Table 2. To determine the appropriate cone
flux level for use in the fire growth model, we considered the data from Rhodes17 in which a small
diameter fluxmeter was inserted through a PMMA sample (which has emissivity of unity) exposed to
the cone heater flux of 50 kW/m2. At this flux level, the PMMA flame is more than 20 cm high, which
gives the flame emissivity17 as 0.09. Under these conditions, the fluxmeter has the value 77 kW/m2.
From Dietenberger15, we used the convective heat transfer coefficient calibrated for the horizontal
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position of specimen as hc = 0.01433 + 1.33x10 -4 kW / m2K. From Janssens14, we find the
view factor from the cone heater to a 3-mm-diameter fluxmeter is very nearly unity, and to a 100- by
100-mm specimen, the view facter is 0.9679. Using these assumptions, we obtained a flame
temperature of 1154 K (by setting Eq. [1] equal to 77 minus 50 kW/m2), which corresponds to a flame
radiative flux of 9 kW/m2 and a convective flux of 18 kW/m2 on the fluxmeter. In recent tests with
different wood materials, we placed a 0.6-mm thermocouple near the spark ignition position. Values
of 1,075 to 1,225 K were measured whenever the thermocouple was immersed in a flame, which
allows us to adopt the PMMA flame property values for wood products in the cone calorimeter
environment. In the next step, the net flux on the PMMA surface must account for the reduction in the
cone heater view-factor and for the setting of surface temperature to about 600 K for pyrolyzing
PMMA instead of 298 K for the fluxmeter. This means the flame flux is reduced and radiation from
the surface is increased such that the net heat flux is calculated as 62 kW/m2, a reduction of 15 kW/m2

from that measured with the fluxmeter and an increase of 12 kW/m2 from that of the cone heater set
point.

Similarly, by using Equation [1], the 55 kW/m2 measured with a fluxmeter on the wall corresponds to
a net flux of 44.5 kW/m2 for the PMMA material at pyrolyzing temperatures (recall Tf = 1173 K,

ε f = 0395, and hc = 0.0165 kW / m2K for propane burner). Using the procedure in the previous
paragraph, the cone heater flux would have had to be set at 33 kW/m2 to produce a net flux of 44.5
kW/m2 on the burning PMMA specimen and thus also achieve the same level of heat release flux
expected in the room test. Other materials gave similar results for the required cone flux levels.

Since the measurement of RHR for the room tests is based on the oxygen consumption method (see
ISO9705), similar to the cone calorimeter, the consideration of gas flow train affecting the time
response of RHR also applies. With a formula like Equation [26], the gas profiles responding to
changes in the calibration gases for oxygen, carbon dioxide, and carbon monoxide are most consistent
with the time constant, τ g = 10 sec. Thus, a low-pass digital filter with a time constant of 10 seconds
is applied to the signal from the electronic mass flow device for propane flow. Although the mass
flow rate signal is already quite smooth, it is a quick response signal that needs filtering to mimic the
time response of the gas analysis system. The filtered signal is then multiplied by the heat of
combustion of propane. The resulting RHR is found to be in close agreement with the RHR from the
oxygen consumption method even during step changes in the burner output.

For the case of the burner in the test room corner, the mixing of combustion products in the upper gas
layer adds an effective time constant to the gas concentrations escaping out the doorway to the hood.
We derived the upper-gas-layer time constant as τ room = 18 sec, by applying a second low-pass
digital filter to the filtered signal of propane mass flow rate, multiplying by the heat of combustion
and matching the result with the RHR from the oxygen consumption method. Thus, without a
submodel for the gas mixing in the upper hot gas layer, a double low-pass filter with time constants of
10 and 18 seconds should be applied to the model predictions to compare with the room test results.
The analytical equivalent for the analytical fire growth model is the double application of the
Duhamel’s integral to Equation [24] as

[27]
Simplicity of the model is maintained using the following generic substitutions in Equation [27]:

[28]
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Empirical Relationships to Predict Lateral Flame Spread

At some critical time of fire growth, the RHR will change direction when upward flame spreading is
exhausted. This occurs when the pyrolysis area reaches a critical level given by

[29]
This is equivalent to a critical lateral spread of the pyrolysis region at the ceiling with an extension
length slightly greater than the width of the burner. At the critical time, it is expected that the nature of
flame extension on the ceiling will change the coefficients a, b, & c, which will require a solution
restart. The simplest change is to modify the parameter, cf, which is the ratio of flame extension
length over the imposed flux profile characteristic length. For further simplification, we only
considered the materials that flashed over during the 100-kW output of the burner. This left us with
eleven materials, none of which had fire-retardant treatment (FRT). Six of these eleven materials
correlated well with the value cf = 15 and are the materials with a constant or decreasing RHR during
the lateral flame spread phase. See Figures 1 and 2 for Tests 3, 5, 9, 12, 14, and 16. The pyrolysis area
continuously increases while the RHR is decreasing. Because of the order of magnitude increase in the
value of cf, it was assumed that the dominant process is lateral flame spread in opposed flow. For the
remaining five materials, it was also necessary to go back to Equation [15] and change the derivative
to a different constant d Af / dQt = 0.011 m 2 / kW. This is also the value consistent with
experimental data obtained for flame spread with assisting flow, such as that in the Steiner tunnel
(ASTM E84). The cf in this case correlated best with the value 5. These five materials correspond to
Tests 10, 11, 13, 17, and 18, and all of them had continuously rising RHR to flashover. For a clear
demarcation into two groups of lateral flame spread, the product of time to ignition and total heat
release flux is used to define a switching function as

[30]
so it can be used in the following functions:

[31]

[32]

Thus, materials in the first group with low enough values of time to ignition or total heat release flux
will have a relatively slow lateral flame spreading and result in a high value of time to flashover
compared with materials in the second group. It seems contradictory that as ignition time is decreased,
the time to flashover will increase. To clarify this, we note that within a group, a decrease in the time
to ignition will also decrease the time to flashover. It is in the ability to go from a group of materials
associated with fast flame spread to a group associated with slow flame spread that a decrease in time
to ignition would achieve a higher time to flashover.

To complete the model, the criteria for the transition to downward flame spread is needed so that the
fire growth solution can be restarted with the new coefficients. Using the pyrolysis area or any other
single parameter generally did not succeed as a candidate criteria. However, an empirical relationship
was found to relate the time at the transition of lateral to downward flame spread as a function of time,
RHR and pyrolysis area at the transition points as

[33]

With this function, we focus only on the fire growth characteristics. For materials with FRT, there are
only three tests in which it is not really possible to develop empirical relationships. Thus, they are
modeled on a case by case basis with a view towards demonstrating features of the model.
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RESULTS AND CONCLUSION
Our analytical model to predict flame spread and RHR for an ISO9705 test scenario contains

many features that are critically lacking in similar models. The most significant example is the explicit
inclusion of instrument responses into the model’s prediction of RHR. With the oxygen consumption
method providing the measurements of RHR, the model accounts for the room upper-gas-layer mixing
using a time constant of 18 seconds and for the dead air mixing in the gas analyzing system using a
time constant of 10 seconds. Figures 1 and 2 show the dotted curves predicted by the model that
represents true RHR, Qt, rather than the “measured” RHR, Qtest. The initial growth of pyrolysis
areas has similar profiles to the true RHR but will continue to monotonically increase when the true
RHR eventually peaks and decays. If the time responses of the gas flow train suddenly vanish during a
test, the expected RHR at the derived flashover times range from 1,500 to 3,500 kW (Table 3). Since
it is not possible to eliminate gas mixing in the upper gas layer of the room, suppose just the time
constant for gas sampling system suddenly vanished. Then the expected RHR at the derived flashover
times for the tests ranges from 740 to 1,210 kW. Thus, an RHR criteria of 1,000 kW for the flashover
event may find agreement with a highly developed model of fire growth5 but not with the room test
data in various laboratories. As a result, different laboratories will not be able to agree on the RHR
flashover criteria because each has inherently different time response for upper-gas-layer mixing and
gas analyzing system. For the FPL room tests, the RHR at fkshover is 600 kW, while other
laboratories have reported 1 MW at flashover. Using the criteria of 600 kW with “measured” RHR
Qtest, we derived the times to flashover for the eleven materials without FRT (Table 3). The modeled
values for time to flashover agree with the observed values within 1.2 percent standard deviation and
are valid only for the untreated wood products in a single fire growth scenario.

Another instrument response often not considered is the time profile of the burner’s heat flux on the
wall. Laboratories will have inherently different setups for the propane gas delivery and this leads to
different results on time to ignition of the wall specimen. With our electronic mass flow controller
close to the test room, we derived a delay of one second to time of ignition for FPL room tests.

Our use of cone calorimeter data to derive material properties has significant advancements. First,
materials with very low THR, such as rigid polyurethane foam, have their actual peak value of RHR
about doubled the observed PRHR because of the 9 seconds for the time constant of the gas analyzing
system. Next, we used an advanced ignitability analysis to report material properties of heat capacity,
thermal conductivity, surface emissivity, and surface temperature at ignition for each tested material.
Thus, unreasonable values for material properties derived for heavy and thin wood products with the
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former thermally thick method were avoided. Lastly, using PMMA as an example, we derived that a
cone flux of 33 kW/m2 instead of 55 kW/m2 is required to properly define the material’s RHR for use
in the fire growth model. The correct cone flux corresponds to the net heat flux from the burner flame
on the burning wall material as being the same as that on the same burning material in the cone
calorimeter. These advancements to using cone calorimeter data provide more reasonable properties
for the tested materials.

The upward flame flux profile, as measured with fluxmeters, is a well-known nonlinear function of a
burner’s width and RHR. An appropriate linear approximation to the nonlinear function resulted in an
exact Laplace solution to RHR and pyrolysis area and predicted well the upward fire growth of all
tested materials. No similar correlation exists for the flame flux profile in the lateral direction. Thus,
empirical modification to one or two coefficients for the upward flame flux profile seemed sufficient
to predict lateral fire growth and to show that two groups of untreated flammable materials exist. The
first group is described as continuously increasing RHR along with accelerating flame spread. These
tend to be associated with high values of THR and time to ignitions, as with the heavy composite
boards. The second group could be described as constant or decreasing RHR while in a slow lateral
flame spreading mode. Plywood and lumber are in this second group.

The last group of materials tested consisted of three materials with FRT and the gypsum board. The
results with the model show that a sudden increase in ignited area of 2.9 m2 at the time of the burner’s
step increase from 100 to 300 kW corresponds to the peak value of RHR attained for the four tested
materials. Although it is possible to specify a multistep burner profile in the current model by user
input (and it is even set up to simulate all four scenarios of fire growth allowed in ISO 9705), the
degree of empiricism required in the current model still prevents a valid general application.

NOMENCLATURE
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