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The proposed method of modelling orthotropic solids that have a nonlinear constitutive material relationship affords several advantages. The first ad- 
vantage is the application of a simple bilinear stress-strain curve to represent the material response on two orthogonal axes as well as in shear, even 
for markedly nonlinear materials. The second advantage is that this method correlates yield strengths in the orthogonal directions, which is necessi- 
tated by some finite-element programs. Herein, we provide an algorithm for fitting bilinear stress versus strain curves to data, such that the derived 
stress-strain law on each orthogonal axis is coupled by means of a common strain energy density function. Nonlinear stress-strain data for paper and 
paperboard illustrate the procedure. This method can be readily implemented in finite element applications. 

La méthode proposée pour la modélisation des solides orthotropes ayant une relation matérielle constitutive non linéaire offre plusieurs avantages. Le 
premier est l’application d’une simple courbe effort-allongement bilinéaire pour représenter la réponse matérielle de deux axes orthogonaux comme 
duns le cisaillement, même pour les matières notablement non linéaires. Le second est que cette méthode met en corrélation la limite conventionnelle 
d’élasticité dans les sens orthogonaux, ce qui est requis par certains programmes d’éléments finis. Nous fournissons ici un algorithme pour adapter 
aux données l’effort bilinéaire par rapport aux courbes d’allongement, de façon à ce que la loi effort-allongement dérivée de chaque axe orthogonal 
soit associée au moyen d’une fonction de densité de l’énergie d’allongement commune. Les données sur l’effort-allongement non linéaire pour le 
papier et le carton illustrent la méthode. Cette derniére peut être facilement employée dans les applications d’éléments finis. 

INTRODUCTION 
There are many cellulosic materials that 

can be modelled as orthotropic solids with non- 
linear constitutive relationships. Paper, paper- 
board, wood-based panels are several such 
materials, which engineers and analysts have 
modelled by means of continuum-mechanics 
methods or the finite-element method. Finite- 
element software readily allows engineers to 
perform nonlinear analyses. For the case of iso- 
tropic materials, nonlinear material property 
laws are easily input. The situation is more 
complicated for orthotropic plates that exhibit 
nonlinear stress versus strain responses. Some 
researchers choose to create constitutive mod- 
els that do not obey invariance laws of tensor 
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transformation [1]. Others have created nonlin- 
ear orthotropic models which couple the yield 
stresses on orthogonal axes, but do not couple 
the material moduli [2]. Still others have pro- 
posed nonlinear orthotropic constitutive laws 
that either do not include shear [3] or do include 
shear but do not couple orthogonal responses 
[4]. Johnson and Urbanik [5] have shown that 
the material moduli on orthogonal axes must be 
coupled to each other. We present a modifica- 
tion of their theory by creating bilinear consti- 
tutive models of orthotropic materials 
subjected to plane stress. The proposed method 
can be readily incorporated into finite-element 
modelling of cellulosic materials such as paper 
and paperboard. Others have also incorporated 
nonlinear orthotropic constitutive models into 
finite element codes [6], but their model does 
not couple material moduli or yield stresses as 
does ours. 

We will demonstrate our model’s effec- 
tiveness by examining six different experimen- 
tal data sets. The first set examined is the most 
complete set available to us. It is a study of non- 
linear properties of high-strength paperboards, 
conducted by Qiu et al. [7]. Laminates made up 
of paperboard were fabricated to create 

orthotropic specimens with a pronounced 
strong axis (1 axis) and a weak axis (2 axis). 
Compression tests along each axis, as well as 
shear tests in the 12 plane, were conducted. The 
data sets from Suhling [8] and Gerhardt [9] are 
also on paperboard, with Suhling using individ- 
ual sheets and Gerhardt using laminates, as did 
Qiu. The remaining two data sets are composite 
materials that exhibit nonlinear orthotropicity. 

BACKGROUND THEORY 
Some researchers have used linear 

orthotropic elasticity when analyzing paper- 
board structural systems, although the inherent 
limitation of this approach excludes it from our 
consideration. Thorpe and Yang [10] presented 
tangential nonlinear elastic finite-element anal- 
yses of paper sheets. Their work updated the 
modulus of elasticity as a function of stress, but 
their work was limited to isotropic modelling. 
Suhling [8] has modelled nonlinear elastic be- 
haviour by means of a hyperelastic formulation 
and applied the model to paperboard. Such an 
approach requires a strain energy density func- 
tion to characterize the plate’s constitutive re- 
sponse. Suhling’s work was based on a special 
assumed form for the strain energy density 
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function in terms of an effective strain variable, 
as suggested by Johnson and Urbanik [5]. 

This research also begins with the ap- 
proach of a single effective strain. The required 
expression for strain energy can be found by the 
uniaxial response in either orthogonal direction 
or by shear response. The ability to extract the 
strain energy by either of these tests links the re- 
sponses in the orthogonal directions as well as 
to the shear response. 

We start by expressing the in-plane 
stresses s ij in terms of the strain energy density 
H : 

where h is the plate thickness and Nij is the force 
per unit width and where 

and 

(3) 

where 

(4) 

In [5], Johnson and Urbanik recognized 
that the form of H ( e ) for nonlinear orthotropic 
elasticity would necessitate a complete set of all 
possible loading conditions in terms of middle 
surface strains. Clearly, then as now, such data 
does not exist. Our assumption here is that one 
could always develop some H ( e ) based on ex- 
perimental results and in this paper we work 
with a limited set of data. As was done in [5], 
we assume that H ( e ) is valid for linear as well as 
for nonlinear experimental data. Either term in 
Eq. (1) could be used to quantify the term 
H' ( e ). Of course, other loading conditions 
could also be analyzed, such as biaxial loading 
or twisting loading. The term H' ( e ) could be 
extracted from these loadings as well, if they 
were available. The most convincing descrip- 
tion of H' ( e ) would arise from a truly com- 
bined loading case where biaxial in-plane loads 
are combined with twisting loads. For now, we 
limit ourselves to an investigation of uniaxial 
tests and we seek a proper mathematical fit to 
describe H' ( e ). 

In constructing this bilinear model, we 
have incorporated the modifications to Hill's 
yield criterion, which accounts for differences 
in yield strengths in orthogonal directions that 
have been proposed by Shih and Lee [2]. This 
takes into account possible differences in yield 
strength in tension and compression. 

One result of this criterion is that the 
stress versus strain response on each of the 
three orthogonal axes can be bilinear, if we pro- 
vide an initial modulus of elasticity and a sec- 
ondary modulus of elasticity for stresses higher 
than the yield stress. This secondary modulus 

can be zero, resulting 
in an elastic-plastic 
model or it can be 
very nearly equal to 
the initial modulus, 
resulting in a nearly 
linear constitutive 
model. The 
breakpoint in this 
bilinear model is lo- 
cated by the yield 
point. We incorporate 
this same bilinear 
stress versus strain 
law in the shear re- 
sponse. 

Fig. 1. Bilinear constitutive law. 

APPLICATION TO CELLULOSIC 
ORTHOTROPIC PLANE STRESS 
STRUCTURE 

Let the initial portion of the bilinear 
curve be defined as s = A e where A is the initial 
slope of the curve (Fig. 1). The second portion 
of the curve is defined as s = B e + C, where B 
is the slope of the second straight line, and Cis  
the y intercept. The strain corresponding to the 
breakpoint is found by equating the two straight 
lines. 

When 

then 

(5) 

Referring back to Eq. ( I ) ,  we can extract 
the term H ( e ) by integrating the expression for 
s(e). In the bilinear case shown in Fig. 1, the in- 
tegration will have to be broken up into two 
cases, one before the breakpoint and one after 
the breakpoint. Having H ( e ), we can then ob- 
tain H' ( e ). 

UNIAXIAL LOADING 
IN THE 2 DIRECTION 

First, we consider the case of uniaxial 
loading in the 2 direction. The 1 direction could 
also be chosen as the starting point of an analy- 
sis; we choose the 2 direction to make our re- 
search consistent with the original Johnson and 
Urbanik study [5]. Also, the large nonlinearity 
of the 2 direction makes it a convenient first 
choice for modelling. 

(6) 
where A 2, B 2 and C 2 describe the two straight 
lines of the stress versus strain curve in the 2 di- 
rection. By the second line of Eq. (1), this is re- 
written as: 

(7) 

Integrating d H / d e 2 produces the two- 
component strain energy density function: 

(8) 

We seek to derive H' ( e ), so first we make H a  
function of e rather than of e. 

Setting N 11 = 0, e1 = –v 2 e 2 and g 12 = 0, 
and solving Eq. (3) for e 2 as a function of e 
gives the strain energy density in terms of e.  

Now, differentiate the above expression with re- 
spect to e,  to obtain H' ( e ). 
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UNIAXIAL LOADING 
IN THE 1 DIRECTION 

Next, we consider the case of uniaxial 
loading in the 1 direction. We will see how the 
response on the 1 axis is related to A 2, B 2 and 
C 2, which are the bilinear curve parameters on 
the 2 axis. We follow the same steps as were 
performed in Eqs. (6) through (10). 

(11) 

By inspection of Eq. (11), it becomes immedi- 
ately obvious that the parameters describing the 
bilinear curve on the 1 axis are coupled to the 
parameters of the 2 axis curve by 

Further inspection of Eq. (11) compared with 
Eq. (6) shows also how the breakpoints are cou- 
pled to each other. In Eq. (12), it was useful to 
define the ratio v 1/ v 2 as the orthotropicity ratio 
O R . 

(13) 

SHEAR LOADING 
IN THE 12 PLANE 

Finally, we consider the case of shear 
loading in the 12 plane. As we did above, we 
determine the coupled form of s12(g12) given 
s 2(e 2) .  If the initial shear modulus G 12 is not 
known, one can estimate it by means of the em- 
pirical relationship proposed by Panc [11]: 

(14) 

Note the substitution for A 1 in the second step of 
the above equation. This arises from Eq. (12). 
Proceeding, we obtain 

Inspection of Eq. (15) leads to the con- 
clusion that the shear response is correlated to 
the axial response along one of the orthogonal 
axes, in this case axis 2. Thus: 

and the break in the shear bilinear curve is also 
linked to the normal bilinear curve 

An advantage of this model is that it is simple to 
use and that the required data are readily avail- 
able either from uniaxial tests or from biaxial 
tests. The model, as such, has been developed to 
solve planar problems. However, Chen and 
Saleeb [12] have demonstrated that such mod- 
els have limited validity in three-dimensional 
situations. This is so because experimental evi- 
dence points to abrupt volume changes near the 
peak stresses in multiaxial compression tests. 

APPLICATION OF THE COUPLED 
BILINEAR CONSTITUTIVE MODEL 
Algorithm for Creating Coupled 
Bilinear Constitutive Model 

The technique we used to construct the 
coupled bilinear constitutive model is governed 
by Eqs. (6), ( 1 1 )  and (15). These describe the 
stress versus strain response on the 2, 1 and 12 
axes, respectively and they are coupled to each 
other by common constants describing the 
slopes of the bilinear 
curves. Four parame- 
ters are needed to con- 
struct the two normal 
stress versus strain 
curves on orthogonal 
axes: Ai, Bi, Ci and OR . 
Five parameters are 
needed if one wants to 
model both normal 
and shear responses: 
Ai, Bi, Ci, OR and G l2.  
However, if G 12 is un- 
available, it can be ap- 
proximated by Eq. 
(14), requiring only 
four independent pa- 
rameters provided 

ratios are available. 

Demonstrating the Algorithm’s 
Effectiveness by Comparison 
to Experimental Data 
Data from Qiu et al. [7] 

Since this data set was the most com- 
plete available to us, including two axial re- 
sponses as well as a shear response, our 
technique for arriving at the constants called for 
finding five constants. We minimized the error 
of the two axial response predictions (Eqs. 
6 , l l )  and the error of the shear response predic- 
tion (Eq. 15) simultaneously, by means of a 
spreadsheet calculation. The spreadsheet ap- 
proach to iterating these five constants was ad- 
vantageous because those five constants affect 
the constitutive response on the 1 axis, the 2 
axis, as well as the 12 axis. By iteration, the best 
values for the five parameters A 2,  B2, C2, OR 

and G 12 = A 12 were found, which provided opti- 
mum fits for axes 1, 2 and 12. These constants 
are shown in Table I. These five constants lead 
to values for e2 break in the 2 direction; A 1, B 1, C 1 

and e1 break in the 1 direction; and B 12,  C 12 and 
g12 break in the 12 direction (Table I). Interest- 
ingly, our obtained orthotropicity ratio of OR = 
3.1 is close to the experimentally obtained 
value OR = 3.3 reported in Qiu et al. [7]. Figure 
2 depicts the applicability of the coupled 
bilinear model. 

Qiu et al. also experimentally obtained 
the shear stress versus strain response and, by 
determining the initial slope of their published 
data, we can arrive at an initial shear modulus 
of A 12 = G 12 = 1.81 GPa. The disparity between 
this experimental G 12 and our evaluation of 
3.30 GPa (Table I) can be dealt with by further 
generalizing our curve-fitting procedure. We 
can thus tit our model to all available data and 
minimize the expression 

where ri is a prediction error associated with 
data in the i direction and wi is an assigned 
weighting factor between 0 and 1 .  Our first eval- 
uation (Table I) is with the weighting w 1 = w 2 = 

However, if the data along a particular 
w 12 = 1. 

that the two Poisson Fig. 2. Data from Qiu et al. [7] with predictions. 
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Minimum 
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axis is suspect, other possible weighting combi- 
nations could be used. If the material was truly 
bilinear, all weighting procedures should be 
equal. If the model could be expanded to in- 
clude other loading cases, then Eq. (18) could 
be expanded as well. 

Data from Suhling [8] 
Suhling examined paperboard subjected 

to axial loads. Nonlinear shear data was not 
available, although they did experimentally ob- 
tain the initial shear modulus by means of a tor- 
sion test. We arrived at evaluations for the four 
parameters A 2, B 2, C 2 and OR for this data set. 
Recall that a case without shear data necessi- 
tates four parameters. The fit led to e2 break in the 
2 direction and A 1, B 1, C 1 and e1 break in the 1 
direction (Table I). 

We can compare the initial slope of our 
generated shear stress versus strain response 
with the value obtained by Suhling's. Our 
model predicts an initial slope A 12 = G 12 = 1.75 
GPa, whereas Suhling experimentally obtained 
G 12 = 1.69 GPa. Figure 3 depicts the applicabil- 
ity of the coupled bilinear model. 

Data from Gerhardt [9] 
Gerhardt analyzed paperboard laminates 

as did Qiu. No shear response was determined. 
However, axial data and Poisson ratio data was 
found. As was done previously, we fit the 2 di- 
rection parameters from which we determined 
e2 break and the 1 direction parameters (Table I). 
Our calculated OR = 3.6 compares well with 
Gerhardt's average experimental OR = 3.1. Fig- 
ure 4 depicts the applicability of the coupled 

bilinear model. In Fig. 4, we show the predicted 
shear response, even though there is no experi- 
mental shear data. 

Data from Erickson and Boller [13] 
These data tested plastic impregnated 

paper, which approaches more traditional com- 
posites. Again, there are only axial data on two 
orthogonal axes to which we fit the 2 direction 
parameters and determined e2 break and the 1 di- 
rection parameters (Table I). Figure 5 depicts 
the applicability of the coupled bilinear model. 

Data from Kuenzi 
and Jenkinson [14] 

These data report on a panel constructed 
of honeycombed sections of reinforced 
polyamide. The experimental data presents 1 

TABLE I 
EVALUATIONS OF PARAMETERS IN BILINEAR CONSTITUTIVE MODEL FIT TO DATA 

1 direction 2 direction 12 direction 

Data A 1 B 1 C 1 e1 break A 2 B 2 C 2 e2 break OR A 12 B 12 C 12 g12 break 
(GPa) (GPa) (MPa) (mm/m) Source (GPa) (GPa) (MPa) (mm/m) (GPa) (GPa) (MPa) (mm/m) 

[7] 7.68 1.49 22.2 3.59 2.50 0.485 12.7 6.29 3.1 3.30 0.641 7.28 2.73 
[8] 6.93 4.94 4.91 2.47 2.80 2.00 3.12 3.88 2.5 1.75 1.25 1.23 2.45 

8.76 2.18 1.93 0.801 4.64 4.11 3.6 1.50 0.622 2.04 2.33 [9] 6.88 2.86 — 1.98 91.4 6.95 9.77 1.28 73.4 8.65 1.5 — — — [13] 15.1 
[14] 0.139 0.0397 1.44 14.5 — — — — — 0.0546 0.0156 0.453 11.6 

Note: Figures in bold are solved for via regression; others are calculated dependencies. 

Fig. 3. Data from Suhling [8] with predictions. 

Fig. 5. Data from Erickson and Boller [13] with predictions. 
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Fig. 4. Data from Gerhardt [9] with predictions. 

Fig. 6. Data from Kuenzi and Jenkinson [14] with predictions. 
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axis axial stress versus strain, as well as shear 
stress versus shear strain (12 axis data). Conse- 
quently, we started by analyzing the 1 axis and 
then we predicted the shear response. We 
arrived at values for A,, B1, CI, GI? and Op and . . .- 
then determined Elbreak BIZ, c12 and “?break 
(Table I). Figure 6 depicts the applicabil~tv of 

OR Orthotropicity ratio 
Yi Yield stress 

.- 
the coupled bilinear model. 

CONCLUSIONS 
Examination of Figs. 2 through 5 show 

that our proposed technique does capture be- 
haviour that was previously not reported in the 
literature. We have demonstrated that the con- 
stitutive response on orthogonal axes and in 
shear are coupled to each other. We also present 
a technique for constructing a bilinear 
orthotropic model which has the ability to pre- 
dict responses on the 1 and 12 axes based on the 
response on the 2 axis. 

NOMENCLATURE 
e break Strain associated with Yi 

e l Engineering normal strain 
s l Engineering stress 
g ij Engineering shear strain 
vij Poisson ratio 
Ei Young’s modulus 
Ai 

Bi 

Ci 

c 

First slope of bilinear curve i 
Second slope of bilinear curve i 
Shearing constant 

curve i 
e Generalized strain 
Gij Shear modulus 
h Plate thickness 2003. 
H = H ( e ) Strain energy density 
H' ( e ) 
Nij Force per unit width 

y intercept of second line of bilinear REFERENCE: SALIKLIS, E.P., URBANIK, T.J. and TOKYAY, B., Bilinear Modelling of Cellulosic 
Orthotropic Nonlinear Materials, Journal of Pulp and Paper Science, 29(12):407-411 December 
2003. Paper offered as a contribution to the Journal of Pulp and Paper Science. Not to be repro- 
duced without permission from the Pulp and Paper Technical Association of Canada. Manuscript 
received April 20,2002; revised manuscript approved for publication by the Review Panel July 30, 

Derivative of H ( e ) with respect to e KEYWORDS: STRESS STRAIN PROPERTIES, PAPER, PAPER BOARDS, MATHE- 
MATICAL MODELS, ALGORITHMS, DATA. 
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