
1

Chapter forThe Grid: Blueprint for a New Computing Infrastructure. Edited by Ian Foster and
Carl Kesselman. Morgan Kaufmann, Pubs.

Real-Time Widely Distributed Instrumentation Systems
William E. Johnston1 and Brian Tierney

Ernest Orlando Lawrence Berkeley National Laboratory
Berkeley, CA, 94720

Abstract

In the future, real-time, on-line instrument systems connected by wide area networks will be the norm for
scientific, medical, and similar data generating systems, because the associated human community, the
instruments, and the resources required for data processing are increasingly distributed. The modern instrument
environment is characterized by steadily increasing quantities and rates of data, together with the remote
interaction of the humans and hardware.

This environment gives rise to the need for a variety of capabilities: dynamically schedulable resources, easily
administered and enforced use-conditions and access control for all elements, systems designed to adapt to
varying conditions in the distributed environment, automated approaches to managing the data streams,
automated control and guidance systems that facilitate remote (in time, space, and scale) operations, and a myriad
of reservation and scheduling capabilities for all of the resources involved. Brokered construction of these
systems will probably also be necessary in order to reduce the capital investment needed for instrument systems
that only operate with small duty cycles, but which require large storage and computing capacity while operating.

When the instrument is connected directly to the network, architectural considerations for systems that deal with
real-time distributed data sources include high-speed network based data caches and associated distributed
processing for on-line data analysis, real-time cataloguing of the original and processed data based on provided or
derived metadata, transparent and distributed security mechanisms that control access to the data and the system
elements by a distributed user community, as well as maintaining the internal integrity of the distributed system,
and mechanisms for standardized monitoring and management of every component and communication path in
order to detect “congestion” of all forms and provide information that allows the distributed system to adapt.

This chapter describes some of the architectural and implementation issues based on examples of high
performance, real-time, on-line systems that illustrate the above points. The examples include a media-rich,
remote collaboration environment, an on-line medical imaging system that collects, processes, and catalogues
tens of gigabytes per day in a metropolitan area network, a high data-rate, high volume data collection system,
and remote operation based on a semi-autonomous control system. Also discussed are several supporting
middleware services, including a distributed-parallel network data cache (whose internal architecture also
illustrates many of the points mentioned above), agent-based monitoring and distributed system management,
and a public-key cryptography infrastructure based access control system.

1.0 Chapter Outline

In this chapter we first provide some rationale for remote, real-time applications. In section 3 we characterize the
problems, discussing the nature of remote operation in terms of an example that is “collaboration rich”, followed

1. Author’s address: Lawrence Berkeley National Laboratory, MS 50B-2239, Berkeley, CA 94720. Tel: +1-510-486-5014, fax:
+1-510-486-6363, wejohnston@lbl.gov, http://www-itg.lbl.gov/~johnston. This document is report LBNL-41000.



Real-Time Widely Distributed Instrumentation Systems2

draft chapter for “Building a Computational Grid”, Foster and Kesselman, eds.

by a discussion of a system that depends on real-time data cataloguing, an architecture for a very high data rate
and volume system, and a control-centered remote system. In section 4 we discuss some of the issues and
approaches to providing the infrastructure that is required to support the applications described in section 3. We
describe a model architecture, network-based caches, agent-based management and monitoring, policy-based
access control systems, and a computational architecture for remote servoing. Finally we acknowledge some of
the many contributors to this work, and provide some references for further reading.

2.0 Introduction

Useful and robust operation of real-time distributed systems requires many capabilities:
• automated management of data streams (cataloguing and storage),
• automated and autonomous management of the distributed system components,
• semi-autonomous operation of remote instrument systems,
• generalized access control,
• dynamic scheduling and resource reservation,
• application designs that can adapt to congestion in the processing, storage, and communication

infrastructure.
• mechanisms for brokering dynamic, just-in-time construction of systems.

These capabilities will be built on supporting architecture, middleware, and low-level services, such as:

• high-speed, network based caches

• real-time cataloguing system (asynchronous generation of metadata that builds indexed object archives)

• distributed management of distributed access control that supports
- distributed system internal integrity
- enforcement of resource and data use-conditions
- security (confidentiality and protection from malicious behavior)

• agent-based systems that provide
- autonomous monitoring of all resources (including data)
- dynamic analysis of performance
- autonomous component management for reliability/survivability
- automated resource brokering for dynamic system construction.

2.1 Rationale for distributed real-time applications

High-speed data streams result from the operation of many types of on-line instruments and imaging systems, and
are a “staple” of modern scientific, health care, and intelligence environments. The advent of shared, widely
available, high-speed networks is providing the potential for new approaches to the collection, organization,
storage, analysis, and distribution of the large-data-objects that result from such data streams. The result will be to
make both the data and its analysis much more readily available. To illustrate this emerging paradigm, we
examine several examples from quite different application domains, but which have a number of similar
architectural elements.

Health care imaging systemsillustrate both high data rates and the need for real-time cataloguing. High-volume
health care video and image data used for diagnostic purposes — e.g., X-ray CT, MRI, and cardio-angiography
— are collected at centralized facilities and, through widely distributed systems, may be stored, managed,



Real-Time Widely Distributed Instrumentation Systems 3

draft chapter for “Building a Computational Grid”, Foster and Kesselman, eds.

accessed, and referenced at locations other than the point of collection (e.g., the hospitals of the referring
physicians).

In health care imaging systems the importance of remote user access is that the health care professionals at the
referring facility (hospitals or clinics frequently remote from the tertiary imaging facility) have ready access to
not only the image analyst’s reports, but the original image data as well. Additionally, the importance of
providing and managingdistributedaccess to tertiary storage is that laboratory instrumentation environments,
hospitals, etc., are frequently not the best place to maintain a large-scale digital storage system. Such systems can
have considerable economy of scale in operational aspects, and an affordable, easily accessible, high-bandwidth
network can provide location independence for such systems.

High energy physics experimentsillustrate both very high data rates and volumes that have to be processed and
archived in real time, and must be accessible to large scientific collaborations -- typically hundreds of
investigators at dozens of institutions around the world.

High-bandwidth (20-40 megabytes/s) data handling for analysis of high-energy and nuclear physics data is
increasingly likely to have a source of data that is remote from the computational and storage facilities. The
output from particle detectors (the instrument) is subjected to several stages of data reduction and analysis. After
the initial processing the analysis functions are carried out by dispersed collaborators and facilities. Their analysis
is then organized in information systems that may reside on a single storage system or be distributed among
several physical systems.

Remote microscopy controlillustrates the problem of the human always being remote from the controlled system
or object of interest. Data is typically collected as images (in the spacial or Fourier domains) that are then
analyzed to provide information both for experiment control and analysis. Experiment and instrument control
includes object tracking, both in order to keep the object visible (e.g., drift and depth-of-focus compensation) and
to observe changes in the object. Some of this information may be fed back to the apparatus that is acting on the
object, as in application of electromagnetic fields, thermal gradients, etc. (These are “in-situ” experiments.) In all
of these cases the operator is “remote”, since the precision, repetition, or time scale means that humans cannot
effectively directly perform the required tasks. The human operators provide the high-level control, such as
initially identifying objects of interest, establishing operating set points, defining protocols for the in-situ
experiments, etc. By providing automated operation of the low latency low-level control, the human functions
can be carried out over wide area as well as local area networks.

3.0 Problem Characterization and Prototypes

There are several aspects to real-time management of distributed instrumentation systems involving the
operations that they perform and/or the data that they collect. Most broadly stated, these systems involve one or
more of:

• remote operation of instrument control functions

• distributed data collection and management

• distributed data analysis and cataloguing

Each of these regimes requires a supporting infrastructure of both middleware, and systems and communications
services. Some of the required middleware services include:



Real-Time Widely Distributed Instrumentation Systems4

draft chapter for “Building a Computational Grid”, Foster and Kesselman, eds.

• automated cataloguing and tertiary storage system interfaces (i.e. a digital library system between the
instrument and the user)

• automated monitoring and management systems for all aspects of the distributed components

• policy-based access control systems to support scheduling and resource allocation (e.g. quality-of-service),
security, distributed system integrity, and (potentially) automated brokering and system construction

• rich media capabilities to support telepresence and collaboration

Supporting systems and communications services include

• flexible transport mechanisms

• reliable and unreliable wide-area multicast

• resource reservation and quality-of-service for computing, storage, and communications

• security to protect the network-level infrastructure

These capabilities are not sufficient, but are a representative collection of necessary services for remotely
operated, high-performance data systems. In the next few sections we will illustrate some of the issues that give
rise to the need for these services.

3.1 The nature of remote operation

Distributed instruments can be remote in space, time, or scale.

Remote in space is the typical circumstance for network distributed scientific collaboration, where instruments
are located at one facility, principal investigators are located at others, and data processing and storage at yet
others.

Another common circumstance is that the controlled function is sufficiently remote in scale that direct control is
not possible. Many microscopic experiment environments fall into this category.

The operation of the Mars Pathfinder mission Rover vehicle provides an example of functional control that is
remote in time. (Rover operation was specified a day in advance, and then the actions were uploaded for the
following day’s mission which was carried out autonomously.)

Each of these scenarios provides circumstances that have to be addressed for remote operation.

When the operator is remote from the instrument, as is the case when the instrument is located at a national

facility like LBNL’s Advanced Light Source2 and the investigators are located at Universities and laboratories
scattered across the country, then several issues result. Multiple media streams are typically required in order to
support human interaction (audio and video conferencing and worksurface sharing) and to provide a sense of
presence (remote environment monitoring) so that the general environment, including the equipment area, local
personnel, etc., can be observed in order to verify general operational status. The experiment itself (e.g. a sample
chamber) must typically be visually monitored as a “sanity” check to ensure that the data stream is actually the
result of the intended experiment, etc. Finally, the data is shared in real time among several experimenters, and so

2. The Advanced Light Source is a particle accelerator that is specialized to produce high intensity, highly monochromatic X-rays. Such
electromagnetic radiation provides important analytical capabilities for material and biological sciences.



Real-Time Widely Distributed Instrumentation Systems 5

draft chapter for “Building a Computational Grid”, Foster and Kesselman, eds.

more other data streams are required for the on-line analysis and control. (See Figure 1, [Agarwal97],
[Agarwal95], and [Sachs96] .)

Multiple collaborators, each of whom need to see the instrument output in real-time and potentially control the
instrument, require synchronized and reliable access to the data and control. The shared control panels shown in
Figure 1 illustrate such a capability that is based on reliable multicast protocols.

The model for real-time capture and cataloguing is that a data source generates units of data that have associated
auxiliary information. As the data is processed in real-time, the “units” can be identified as such, and the
appropriate associated data can also be identified.

Experimenter at
Univ. of Wisconsin

Advanced Light Source,
Lawrence Berkeley National Laboratory

Wide Area
Network

2200 miles
125 ms packet roundtrip

Figure 1 Beamline 7 of the ALS is a media-rich remote experiment environment: many media streams are
required to provide telepresence and data sharing in complex remote instrumentation.



Real-Time Widely Distributed Instrumentation Systems6

draft chapter for “Building a Computational Grid”, Foster and Kesselman, eds.

A key issue with “identification” of a unit of data is to know when the unit has been completely received so that
cataloguing and processing to create a data-object can commence. This identification can take the form of explicit
in-band markers in the data stream, or out-of-band notification that all of the data of one unit has been sent, or the
identification could be implicit, such as a data unit being defined by a timing mechanism (e.g., one data unit is
whatever is received in some specified period of time) or by a quantity mechanism (e.g., one data unit is a fixed
quantity of data). Likewise, the acquisition of associated information (metadata pre-cursors) can be via explicit
in-band or out-of-band separate data units, or implicit (e.g., the timestamp of a data unit whose boundary is
defined by a point in time).

When the scale of the operations is very different than human scale, then remote operation must typically involve
some machine intelligence. The automated operations will analyze the sensor data in real-time and adapt the
progress of the experiment depending on the results of analysis. The human function is to set up the experiment,
identify the object of interest in the experiment environment, etc., but the actual operation cannot be in human
hands as noted above.

This same approach can also be the key to remote operation of experiments. That is, a network of unpredictable
or high latency (the norm in wide-area IP networks) cannot be used to provide fine-grained, real-time control (e.g.
in a closed loop servo system where the operating functions are at one end of the network and the data analysis
that provide the feedback is at the other end). In this situation it is again the case that incorporating machine
intelligence into the experiment control system, and performing monitoring and data analysis remotely is an
architecture that addresses this problem.

These issues are illuminated with specific examples in the next several sections, as are some approaches to
addressing the issues.

3.2 Real-time Data Cataloguing: An on-line cardio-angiography3 system

In many environments the key aspect of real-time data is the immediate and automated processing necessary to
organize and catalogue the data and make it available to remote sites.

This example illustrates a scenario where data is generated in large volumes and with high throughput, and
especially in a distributed environment where the people generating the data are geographically separated from
the people cataloguing or using the data, there are several important considerations for managing this type of
instrument generated data:

• automatic generation of at least minimal metadata;

• automatic cataloguing of the data and the metadata as the data is received (or as close to real time as
possible);

• transparent management of tertiary storage systems where the original data is archived;

• facilitation of co-operative research by providing specified users at local and remote sites immediate as well
as long term access to the data;

• incorporation of the data into other databases or documents.

3. Cardio-angiography imaging involves a two plane, X-ray video imaging system that produces from several to tens of minutes of digital
video sequences for each patient study. The digital video is organized as tens of data-objects, each of which are of the order of 100 megabytes.



Real-Time Widely Distributed Instrumentation Systems 7

draft chapter for “Building a Computational Grid”, Foster and Kesselman, eds.

For the on-line cardio-angiography system (a remote medical imaging system), a real-time digital library system
collects data from the instrument and automatically processes, catalogues, and archives each data unit together
with the derived data and metadata, with the result being a Web-based object representing each data set. This
automatic system operates 10 hours/day, 5-6 days/week with data rates of about 30 Mbits/sec during the data
collection phase (about 20 minutes/hour). (See Figure 2.)

WALDO (“wide-area large-data-objects”) is a real-time digital library system that uses federated textual and URL
linked metadata to represent the characteristics of large data sets. (see Figure 3 and [DIGLIB].) Automatic
cataloguing of incoming data is accomplished by extracting associated metadata and converting it into text
records, by generating auxiliary metadata and derived data, and by combining these into Web-based objects that
include persistent references to the original data-components. Tertiary storage management for the
data-components (i.e., the original datasets) is accomplished by using the remote program execution capability of
Web servers to manage the data on a mass storage system. For subsequent use, the data-components may be
staged to a local disk and then returned as usual via the Web browser, or, as is the case of high performance
applications, moved to a high speed cache for direct access by the specialized applications. The location of the
data-components on tertiary storage, how to access them, and other descriptive material, are all part of the object
definition. The creation of object definitions, the inclusion of “standardized” derived-data-objects as part of the

NTON
network
testbed

to the
MAGIC
testbed

Lawrence Berkeley National
Laboratory and Kaiser

Permanente
On-line Health Care Imaging

Experiment

San Francisco Bay Area

LBNL WALDO server and
DPSS for data processing,
cataloguing, and storage

Kaiser San Francisco Hospital Cardiac
Catheterization Lab (digital video capture)

Kaiser Oakland
Hospital

(physicians and
databases)

Kaiser
Division of
Research

Figure 2 A distributed health care imaging application. (See [DIGLIB].)



Real-Time Widely Distributed Instrumentation Systems8

draft chapter for “Building a Computational Grid”, Foster and Kesselman, eds.

metadata, and the use of typed links in the object definition, are intended to provide a general framework for
dealing with many different types of data, including, for example, abstract instrument data and multi-component
multimedia programs.

WALDO uses an object-oriented approach to provide for capture, storage, catalogue, retrieval, and management
of large-data-objects and their associated metadata. The architecture includes a collection of widely distributed
services to provide flexibility in managing storage resources, reliability and integrity of access, and high
performance access, all in an open environment where the use-conditions for resources and stored information are
guaranteed through the use of a strong, but decentralized, security architecture.

The WALDO model for the capabilities of a distributed, real-time cataloguing, large-data-object system includes
the following elements:

• real-time cataloguing of extensible, linked, multi-component data-objects that can be asynchronously
generated by remote, on-line data sources

• class-based methods for management of the large-data-objects
• on-line metadata, with cacheable off-line components
• representation of the object components as Web-accessible elements
• explicit association of access methods with the data components
• flexible curator / collection-owner management of collections of data-objects, including “any-time”

management of the collection organization and object metadata
• globally unique and persistent naming of the objects and their various components via URLs and URNs
• strong access control at the level of individual object components based on use-condition certificates

managed by the data owner
• high-performance application access to the data-components
• flexible and extensible approaches to searching.

WALDO Software Architecture

Figure 3 illustrates the data flow and overall organization of the WALDO architecture. It also indicates the central
role of high-speed caches which are used both for initial data collection, and to provide subsequent high-speed
access by applications.

The basic elements of the architecture (referring to Figure 3) include:
• data collection systems and the instrument-network interfaces (1)
• high-speed, network-based cache storage for receiving data, for providing intermediate storage for

processing, and for high-speed application access (2)
• transparent tertiary storage (“mass storage”) management for the data-components (8)
• processing mechanisms for various sorts of data analysis and derived data generation (3)
• data management that provides for the automatic cataloguing and metadata generation that produces the

large-data-object definitions (4)
• data access interfaces, including application-oriented interfaces (5)
• curator interfaces for managing both the metadata and the LDO collection organization (9)
• user access interfaces for all relevant aspects of the data (applications, data, and metadata) (10)
• flexible mechanisms for providing various searching strategies (6)
• transparent security that provides strong access control for the data components based on data-owner

policies (7)



Real-Time Widely Distributed Instrumentation Systems 9

draft chapter for “Building a Computational Grid”, Foster and Kesselman, eds.

These elements are all provided with flexible, location-independent interfaces so that they can be freely
(transparently) moved around the network as required for operational or other logistical convenience.

This general model has been used in several data-intensive computing applications, however it raises a number of
issues. The distributed cache is an important component, but one that requires distributed management and
distributed security. The incorporation of a digital library-like function is an important consideration, but such
automatic cataloguing in the face of human error in the operation of the instrument (and the resulting errors in the
metadata and cataloguing) require human curation of the library. Access control is a critical aspect when sensitive
or confidential data are involved, and the management of the access control must also be distributed to the various
principals. Approaches to several of these issues are discussed below.

Application
+ cache-based or

Web-based
access to LDO
components

LDO “object”
description

generation (4)

consumerproducer
(capture, catalogue)

Web browser
+ data-user interface(10)
+ curator interface(9)

Processing (3)
+ generate:

• object template
• metadata
• derived represen-

tations
+ manage initial

archival storage

search engine (6)

m
et

ad
at

a

DPSS (2)
+ high speed data

cache for
incoming data

Web server
+ LDO access

methods
+ search engine

management
+ cache/MSS

management(8)
+ some LDO

data-components

Data
Source (1)

+ collection
+ buffering
+ network

transport

DPSS (2)
+ cache for high

speed application
access to data

MSS
+ tertiary storage archiving

of large-data-components

local storage
+ WALDO Web

server based
LDO
component
storage

access control (7)

public-key
infrastructure
use-condition

certificates

object management
(persistence, metadata mg’mt,

storage mg’mt)

(5)

(5)

Figure 3 The distributed Large-Data-Object overall architecture and data flow.



Real-Time Widely Distributed Instrumentation Systems10

draft chapter for “Building a Computational Grid”, Foster and Kesselman, eds.

3.3 High Data Rate Systems: Particle accelerator detectors

High Energy and Nuclear Physics experiments consists of detector systems at particle accelerators. Modern

detectors like STAR4 will generate 20-40 megabytes/sec of data that has to be processed in two phases - data
collection and event reconstruction (phase 1) and physics analysis (phase 2). (See [Greiman] and [Johnston97b].)

In phase 1 of physics experiment data
analysis, a detector puts out a steady
state high data-rate stream (20-40
megabytes/s for STAR). Traditionally,
these data are archived and a first level
of processing is performed at the
experiment site. The resulting
second-level data are also archived and
then used for the subsequent physics
analysis. The data is thus archived at the
experiment site in “medium” sized
tertiary storage systems. This approach
has disadvantages in that large mass
storage systems are one of the few
computing technologies that continue to
exhibit significant economies of scale,
and therefore central sites like the large

mass storage systems at NERSC5

remain an important architectural
component in high data-volume
systems. However, the potential
problems of the network access to
large-scale storage systems must be
overcome with network-based caching.

In a computational grid environment the “medium” sized tertiary systems at experiment sites can be replaced by a
distributed cache consisting of a high-speed, high-capacity network-based cache and very large tertiary systems
at dedicated storage sites.

The Distributed-Parallel Storage System (DPSS -- described below) can serve as the cache for all stages of data
manipulation. The DPSS provides a scalable, dynamically configurable, high-performance, and highly distributed

4. The STAR detector (Solenoidal Tracker at the Relativistic Heavy Ion Collider at the Brookhaven National Laboratory) will search for
signatures of quark-gluon plasma (QGP) formation and investigate the behavior of strongly interacting matter at high energy density. The
emphasis will be the correlation of many observables on an event-by-event basis. In the absence of definitive signatures for the QGP, it is
imperative that such correlations be used to identify special events and possible signatures. This requires a flexible detection system that can
simultaneously measure many experimental observables. See http://www.rhic.bnl.gov/STAR/star.html .

5. The National Energy Research Scientific Computing Center provides high-performance computing services to researchers supported by
the US Department of Energy Office of Energy Research. NERSC is located at the Ernest Orlando Lawrence Berkeley National Laboratory.
See http://www.nersc.gov .

Detector

Detector Environment

Off-line
Event

Archive

On-line
Event Data

Storage
(DPSS)

(mass storage
systems exhibit

significant
economies of

scale)

Local Data
Buffer

ATM
LAN

A
T
M
W
A
N

multiplex
approximately to

the
reconstruction
platform level

load-balancing as required
here rather that at head-endreconstruction data flow

Reconstruction
and

High-Performance
Analysis Cluster

Figure 4a Distributed physics data handling, Phase 1 data
flows.



Real-Time Widely Distributed Instrumentation Systems 11

draft chapter for “Building a Computational Grid”, Foster and Kesselman, eds.

storage system that is usually used as a (relatively long-term) cache of data. It is typically used to collect data
from on-line instruments and then supply that data to analysis applications, or to high data-rate visualization
applications (as in the case of the MAGIC, wide-area gigabit testbed where the DPSS was originally developed --
see [Lau], [DPSS], and [MAGIC]). The system is also being used in satellite image processing systems and for
the distributed, on-line, high data-rate health care imaging systems described above.

The architecture illustrated in Figure 4a
and Figure 4b supports distributed
computational systems doing the phase
1 data processing in real time. The
real-time processing of this data
potentially also supports two
capabilities. First, it can provide
auxiliary information to assist in the
organization of data as it is transferred
to tertiary storage (the STAR
experiment will generate about 1.7
terabytes/day), and second, it can
provide feedback to the instrument
operators about the functioning of the
accelerator - detector system and the
progress of the experiment, so that
changes and corrections may be made.

In the phase 2 processing (interactive
analysis), the architecture enables an
efficient implementation of the
second-level analysis of the data. This
involves using a high-speed cache like
the DPSS as a large “window” on the tape-based data in the tertiary storage system in order to support the use of
both local and remote computational resources. This is illustrated in Figure 4b. Prototype version of this
architecture have been successfully tested, and this is described in [Johnston97b].

The issues raised in this environment include the use of distributed caches, the organization of the cache, the
various interfaces to the cache, the management of the movement of data to and from the tertiary storage systems,
and management of the cache components in a wide area network.

Off-line
Event

Archive

On-line
Event Data

Storage
(DPSS)

Remote
Analysts

Remote
Analysts

analysis data flow

Reconstruction
and

High-Performance
Analysis Cluster

ATM
Net

A
T
M
W
A
N

Local Event
caching on

(DPSS)

Local Event
caching on

(DPSS)

Figure 4b Distributed physics data handling, Phase 2 data
flows.



Real-Time Widely Distributed Instrumentation Systems12

draft chapter for “Building a Computational Grid”, Foster and Kesselman, eds.

3.4 Control Centered Systems: In-situ electron microscopy

An evolutionary step in multimedia systems is for them to
provide the computational framework to extract meaningful
information from images and video sequences in real-time, and
then use this information tomanipulateexperiments, or perform
other operations, based on the information content of the images.
This real-time analysis enables semi-autonomous, remote control
by enabling servoing based on the image content. One such
application of this approach is a system for remote operation of
in-situ microscopy. A testbed for this approach is a 1.5 million
electron volt (MeV) transmission electron microscope (HVEM),
shown in Figure 5, that is operated by the National Center for

Electron Microscopy6.

In-situ microscopy refers to a class of scientific experiments in
which a specimen is excited by external stimuli and the response
must either be observed or controlled. The stimuli could, e.g., be
in the form of temperature variation or stress in the sample
environment. The interaction of the external stimuli and
specimen can result in sample drift, shape deformation, changes
in object localization, changes in focus, or simply anomalous specimen responses to normal operating conditions.
Currently, during the in-situ experiments the operator must make constant adjustments to the instrument to
maintain depth of focus and compensate for various drifts. These are labor intensive and error prone tasks --
requiring a high bandwidth video link to the operator -- that are nearly impossible to do in wide area networks due
to limited network bandwidth.

Considering a specific example, there is a class of in-situ electron microscopy experiments that require dynamic
interaction with the specimen under observation as it is excited with external stimuli, i.e., temperature variation,
EM field variation, etc. The dynamic operations include control of the sample’s position and orientation under the
electron beam, the illumination conditions and focus, etc. Remote control via wide area networks like the Internet
that do not offer real time data and command delivery guarantees are not practical for the finely tuned
adjustments that dynamic studies require.

Enabling remote control of dynamic experiments involves separating the basic human interaction of establishing
control system parameters like gross positioning, identifying objects of interest, etc. (that do not require low
latency interaction) from the control servoing that performs operations like auto-focus, object detection,
continuous fine positioning due to thermal drift, etc., that do require low latency interaction.

The human interaction operations, together with the supporting human communication involving video and audio
teleconferencing, can easily be performed in a wide area network environment ([Floyd], [McCanne]).

6. The National Center for Electron Microscopy is a DOE User Facility providing the U.S. electron microscopy community with advanced
instrumentation for electron-optical characterization of materials. The NCEM is part of the Materials Science Division of the Ernest Orlando
Lawrence Berkeley National Laboratory. See http://ncem.lbl.gov .

Figure 5 The high voltage electron
microscope at NCEM



Real-Time Widely Distributed Instrumentation Systems 13

draft chapter for “Building a Computational Grid”, Foster and Kesselman, eds.

The dynamic control operations must occur in a much more controlled environment where the control operation
and the monitored response to the control or stimuli have to be coupled by low latency communication that is not
possible in wide area networks.

So, the approach is that dynamic remote control applications involveautomatedcontrol operations performed
near the instrument in order to eliminate the wide area network real-time delivery requirement.

This approach requires determining the type of servo loops needed to enable remote operation and collaboration,
and the implementation of a control architecture. The basic aspect of the architecture is a partitioning that
separates the low frequency servo loop functions that enables direct human interaction performed over the wide
area network, and those functions that require low latency control are performed locally using automated
techniques (see Figure 6). The approach hides the latencies in the wide area network and permits effective remote
operation. The result is telepresence that provides the illusion of close geographical proximity for in-situ studies.
Using this approach, the testbed 1.5 MeV transmission electron microscope can now be used on-line via the
global Internet.

In the case of image-based
instrumentation, the automated
control may be accomplished
by using computer vision
algorithms that permit
instrumentation adjustments to
be made automatically in
response to information
extracted from the video signal
generated by the microscope
imaging system. Thus, by
relieving the operator of having
to do the dynamic adjustment
of the experimental setup,
remote collaboration and
remote operation of the in-situ
studies over a wide area
network are made possible.
The computational vision
techniques that support remote
in-situ microscopy applications
include: 1) image compression,
2) autofocusing, 3) self
calibration, 4) object detection,
5) tracking using either high
level or low level features, and
6) servo-loop control mechanisms. (See [Parvin95a] and [Parvin95b]).

The image content analysis that provides the information that is fed back to the control system is automated and
performed in the environment local to the instrument. That is, the computers that acquire and analyze the video

server for
operating
control

equipment

video to
network
interface

Video stream
analysis

(e.g. for auto
focus and shape

detection)

Local Environment

gateway

Remote
Control

Environment

compressed
video for

monitoring

human
interaction,

e.g. establish
“set point”
information
for “coarse”

control
stage
drive

video
imagin

microscope

unpredictable
WAN

Figure 6 Remote, semi-autonomous, dynamic experiment operation
architecture



Real-Time Widely Distributed Instrumentation Systems14

draft chapter for “Building a Computational Grid”, Foster and Kesselman, eds.

images and then communicate with the control system are all connected by fast local area networks. The set
points that initialize the servo loops - the selection of objects-of-interest, the parameters of external forcing
functions, etc., as well as the monitoring of the experiment, may be carried out in a wide-area network
environment.

The microscope and experiment
control interface, and a typical
image, together with the results of
video content analysis for shape and
drift velocity, are illustrated in Figure
7.

The main issues that are raised by
this sort of remote operation are the
servoing architecture and the
algorithms used for information
extraction and control. (See
[Parvin97].)

3.5 Summary

The examples presented in this
section (a media-rich instrument
control environment, a health care
imaging system doing autonomous
data collection and cataloguing, a
high data volume physics experiment environment, and a semi-autonomous control system) illustrate several
aspects of remote operation, and expose some of the capabilities that will be needed to support routine
construction and use of these types of systems in the future. In summary, the on-line angiography system requires
automated management of data streams, the use of a network cache, automatic cataloguing, and distributed access
control. These, in turn, require semi-autonomous monitoring, quality-of-service guarantee mechanisms in the
network and in the processing and storage systems. The STAR detector scenario uses a widely distributed
configuration of the network cache and distributed management of computational resources and data. The shared
interface example of the ALS Beamline 7 requires reliable multicast in wide-are networks and rich media
management mechanisms. All of the examples require distributed management of system resources and
distributed management of distributed access control, both for security and for the “distributed enterprise”
management of users and resources.

In the next section we examine some approaches to providing these capabilities.

In addition, most of the scenarios would potentially benefit from bandwidth adaptive interface features, and the
Beamline 7 and microscopy scenarios are candidates for dynamic system construction with brokered resources to
support their transient needs for significant computational resources. These desired capabilities are noted as
potentially important, however are not addressed in our current systems.

Figure 7 Remote in-situ experiment interface for the NCEM
HVEM microscope.



Real-Time Widely Distributed Instrumentation Systems 15

draft chapter for “Building a Computational Grid”, Foster and Kesselman, eds.

4.0 Issues, Capabilities, and Future Directions

In this section we describe some of the architectural and middleware approaches that are proving useful, and
sometimes critical, in implementing high-performance distributed instrumentation and data systems.

4.1 A Model Architecture for Data Intensive Environments

One model that has proven successful in the automated cataloguing and high data-rate application domains is that
of using a high-speed distributed cache as a common element for all of the sources and sinks of data involved in
high-performance data systems.

This cache-based approach provides
standard interfaces to a large,
application-oriented, distributed, on-line,
transient storage system: Each data source
deposits its data in the cache, and each data
consumer takes data from the cache,
usually writing the processed data back to
the cache. In almost every case there is also
a tertiary storage system manager that
migrates data to and from the cache at
various stages of processing. (See Figure
8.)

For the various data sources and sinks, the
cache, which is itself a complex and widely
distributed system, provides:

• a standardized approach for high
data-rate interfaces;

• an “impedance” matching function
(e.g., between the coarse-grained
nature of parallel tape drives in the
tertiary storage system and the fine-grained access of hundreds of applications);

• flexible management of on-line storage resources to support initial caching of data, processing, and
interfacing to tertiary storage.

Depending on the size of the cache relative to the objects of interest, the tertiary storage system management
(object manager + archive data mover of Figure 8) may only involve moving partial objects to the cache; that is,
the cache is a moving window for the off-line object/data set. The application interface to the cache can support a
variety of I/O semantics, including Unix disk I/O semantics (i.e., upon posting a read, the available data is
returned; requests for data in the data set but not yet migrated to cache cause the application-level read to block
until the data is migrated from tape to cache).

Generally, the cache storage configuration is large compared to the available disks of a typical computing
environment, and very large compared to any single disk (e.g., hundreds of gigabytes).

tertiary storage
system

(e.g., HPSS)

high-speed,
distributed random

access cache

initial data
processing analysis

applications

archive data
mover

instrument
(e.g., detector)

cache interfacecache interface

cache interface

object
management

object archiving
and management

ca
ch

e
in

te
rf

a
ce

MSS interface

Figure 8 The Data Handling Model



Real-Time Widely Distributed Instrumentation Systems16

draft chapter for “Building a Computational Grid”, Foster and Kesselman, eds.

4.2 Network-based caches

The Distributed-Parallel Storage System (DPSS) serves several roles in high-performance, data-intensive
computing environments. This application-oriented cache provides a standard interface for high-speed data
access, and provides the functionality of a single very large, random access, block-oriented I/O device (i.e., a
“virtual disk”). It provides high capacity (we anticipate a terabyte sized system for physics data) and serves to
isolate the application from the tertiary storage system. Many large data sets can be logically present in the cache
by virtue of the block index maps being loaded even if the data is not yet available. In this way processing can
begin as soon as the first data has been migrated from tertiary storage.

Generally speaking, the DPSS can serve as an application cache for any number of high-speed data sources
(instruments, multiple mass storage systems, etc.). The naming issue (e.g., resolving independent name space
conflicts) is handled elsewhere. For example, in the on-line health care imaging system mentioned above, the
name space issue is addressed by having all of the data represented by Web-based objects which are managed by
the Wide Area Large Data Object management architecture (WALDO) [DIGLIB]. At the minimum WALDO
provides globally unique naming and serves as a mechanism for collecting different sources of information about
the data. The Web object system can also provides a uniform user (or application) front-end for managing the data
components (e.g., migration to and from different mass storage systems) and it manages object use-conditions
(PKI access control - see [Johnston97a]).

The DPSS provides several important and unique capabilities for the distributed architecture. The system
provides application-specific interfaces to an extremely large space of logical blocks (16-byte indices); the DPSS
may be dynamically configured by aggregating workstations and disks from all over the network (this is routinely
done in the MAGIC testbed [MAGIC], and will in the future be mediated by the agent-based management
system); it offers the ability to build large, high-performance storage systems from inexpensive commodity
components; and it offers the ability to increase performance by increasing the number of parallel DPSS servers.
A cache management policy module operates on a per-data set basis to provide block aging and replacement
when the cache is serving as a front-end for tertiary storage.

The high performance of the DPSS -- about 10 megabytes/sec of data delivered to the user application per disk
server -- is obtained through parallel operation of independent, network-based components. Flexible resource
management -- dynamically adding and deleting storage elements, partitioning the available storage, etc. -- is
provided by design, as are high availability and strongly bound security contexts. The scalable nature of the
system is provided by many of the same design features that provide the flexible resource management (that
provides the capability to aggregate dispersed and independently owned storage resources into a single cache).

When data sets are identified by the object manager (e.g. as in Figure 8) and are requested from tertiary storage,
the logical-to-physical block maps become immediately available. The data mover operates asynchronously, and
if an application “read” requests a block that has not yet been loaded, then the application is notified (e.g., the
read operation blocks). At this point the application can wait or request information on available blocks in order
to continue processing.

While the basic interface provides for requesting lists of named logical blocks, many applications use file I/O
semantics, and these are provided in the DPSS client-side interface library.

The internal architecture of the DPSS is illustrated in Figure 9.



Real-Time Widely Distributed Instrumentation Systems 17

draft chapter for “Building a Computational Grid”, Foster and Kesselman, eds.

.

Typical DPSS implementations consist of several low-cost workstations, each with several disk controllers, and
several disks on each controller. A three-server DPSS can thus provide transparent parallel access to 20-30 disks.
The data layout on the disks is completely up to the application, and the usual strategy for sequential reading
applications is to write the data “round-robin” (stripe across servers), otherwise the most common strategy is to
determine the physical block locations randomly when they are written. (Our experience has shown that with the
high degree of parallelism provided at the block level when a DPSS is configured from, say, 30 disks spread
across three servers, that random placement of blocks provides nearly optimal access time for a wide range of
read patterns.)

returned data stream
(“third-party” transfers
directly from the storage

servers to the application)

Application
(client)

+ block storage
+ block-level access control

Disk Servers

security context - 1
(system integrity &
physical resources) Application data access

methods
(data structure to logical
block-id mappings - e.g.,

+ JPEG video
+ multi-res image pyramids
+ Unix file i/o
+ XDR

data
requests

security context - 2
(data use conditions)

Agent-based
management of dataset

metadata - locations,
state, etc.

Agent-based
management
of redundant

Masters

Agent-based management of
storage server and network state

vis a vis applications

mem
buf

physical
block

requests logical block
requests

Data Set Manager
+ user security context

establishment
+ data set access control
+ metadata

Request Manager
+ logical to physical name

translation
+ cache management

DPSS API
(client-side library)

Resource Manager
+ allocate disk resources
+ server/disk resource access

control

DPSS Master

Figure 9 Distributed-Parallel Storage System Architecture



Real-Time Widely Distributed Instrumentation Systems18

draft chapter for “Building a Computational Grid”, Foster and Kesselman, eds.

Directions

In order for such distributed caches to provide significant value to the remote operation and computational grid
environments, several issues are addressed by the DPSS, and some remain to be addressed. For example:

♦ Dynamic reconfiguration of DPSS (needs to be agent managed)
• adding and deleting servers and storage resources during operation

♦ Replication for reliability and performance (needs to be agent managed)
• data replication
• name translation and disk servers may be replicated

♦ Data block request semantics to support application data prediction
• prioritized request lists
• new request cancels currently unsatisfied (flushes disk read and network write queues, but not memory

cache)

♦ Application access semantics
• DPSS logical block model is supplemented by data type-specific access methods
• a large block index space allows some encoding of some application information (e.g. long., lat., and

elevation for TerraVision tiled image data)
• incoming blocks from the many servers are placed directly into a client-side / application buffer, whence they

are transformed to application data structures, and the application is notified that the data can be used -
blocking and poling are implemented in client-side libraries

♦ Data layout issues
• writing mechanism provides complete freedom of data layout, however experience has shown that random

placement when using a high degree of disk-level parallelism provides a significant fraction of optimal
layout latency

♦ Support for per-dataset cache strategies provide storage system partitioning

♦ Coherency of client-side cache when doing block write-after-read is not currently provided, and will probably
be a broker and agent function

4.3 Agent-Based Management and Monitoring

The combination of generalized, autonomous management of distributed components and accurate monitoring of
all aspects of the environment in which data moves, has turned out to be a critical aspect of the debugging,
evaluation, adaptation, and management of widely distributed, high data-rate applications.

In widely distributed systems, the issue is that when you observe that something has gone wrong it is generally
too late to react - in fact, you frequently can’t even tell what is wrong, because

• the problem depends on a history of events
• you can’t get at the needed information any more
• it will take too long to ask and answer all of the required questions

An agent-based approach for analysis of the operation of distributed applications in high-speed wide-area
networks can be used to monitor and identify all of the factors that affect performance, and to isolate the problems
arising from individual hardware and software components. Agents can not only provide standardized access to
comprehensive monitoring, but can perform tasks such as keeping a state history in order to answer the question



Real-Time Widely Distributed Instrumentation Systems 19

draft chapter for “Building a Computational Grid”, Foster and Kesselman, eds.

“how did we get here?” Active analysis of operational patterns (e.g. pattern analysis of event-based lifeline
traces) will lead to adapting behavior / configuration to avoid or correct problems.

Monitoring

One successful monitoring methodology involves recording every event of potential significance together with
precision timestamps, and then correlating events on the basis of the logged information. This allows constructing
a comprehensive view of the overall operation, under realistic operating conditions, revealing the behavior of all
the elements of the application-to-application communications path in order to determine exactly what is
happening within complex distributed systems. This approach has been used in the DPSS distributed storage
system and its client applications. As data requests flow through the system, timestamps and log records are
generated at every critical point. Network and operating system monitoring tools are used to log additional events
of interest using a common format. This monitoring functionality is designed to facilitate performance tuning,
distributed application performance research, the characterization of distributed algorithms, and the management
of functioning systems (by providing the input that allows adaptation to changes in operating conditions). The
approach allows measuring network performance in a manner that is a much better “real-world” test than, e.g.,
ttcp, et al, and allows us to accurately measure the dynamic throughput and latency characteristics of our
distributed application code -- “top-to-bottom” and “end-to-end”. (See [Johnston97b].)

This sort of detailed monitoring is also a practical tool for system-level problem analysis, as has been
demonstrated in the analysis of a TCP over ATM problem that was uncovered while developing the monitoring
methodology in the ARPA-funded MAGIC gigabit testbed (a large-scale, high-speed, ATM network). See
[Tierney].

The high-level motivation for this work is two-fold.

First, when developing high-speed network-based distributed services, one often observes unexpectedly low
network throughput and/or high latency. The reason for the poor performance is frequently not obvious. The
bottlenecks can be (and have been) in any of the components: the applications, the operating systems, the device
drivers, the network adapters on either the sending or receiving host (or both), the network switches and routers,
and so on. It is difficult to track down performance problem because of the complex interaction between the many
distributed system components, and the fact that problems in one place may be most apparent somewhere else. A
precision and comprehensive monitoring and event analysis methodology is an invaluable tool for diagnosing
such problems.

Second, such monitoring is one aspect of an approach to building predictable, high-speed components that can be
used as building blocks for high-performance applications, rather than having to “tune” the applications
top-to-bottom as is all too common today. Continuous and comprehensive monitoring can provide the basis of
adapting distributed system behavior to “congestion” in processing, storage, and communication elements.

Agent-Based Management of Widely Distributed Systems

If comprehensive monitoring is the key to diagnosis, agent-based management may be the key to keeping widely
distributed systems running reliably.

In one prototype system (see [Where]) “agents” are
• autonomous
• adaptable



Real-Time Widely Distributed Instrumentation Systems20

draft chapter for “Building a Computational Grid”, Foster and Kesselman, eds.

• monitors
• managers
• information aggregates
• KQML based information filters
• implemented in Java
• constantly communicating with peers and resources

Initial experimentation with such agents in the Distributed-Parallel Storage System (see Figure 10) indicates the

potential for:

♦ Structured access to current and historical information regarding the state of the DPSS components

♦ Reliability - by keeping track of all components within the system and restarts any component that has crashed,
including one of the other agents (addresses fault tolerance)
• “associated” agents communicate with each other using IP multicast

DPSS
server

DPSS serverDPSS
server

WH

WH WH WHER
E agent

DPSS
Master

DPSS
server

DPSS serverDPSS
server

WH

WH WH WHER
E agent

DPSS
Master

Data Curator 2

DPSS server DPSS server

DPSS Master

DPSS server

Data Curator 1 Client Application

DPSS
broker

dataset
agent

dataset
agent

dataset
broker

client
agent

Monitor
Interface

1 = distributed system
management

2 = data state management

11

1

1

1

1

2

2

WHERE
agent Other caches

1

2

WHERE
agent

WHERE
agent

WHERE
agent

Figure 10 An agent-based monitoring architecture that addresses adaptive operation,
reliability/survivability, and dynamically updated metadata for data

repositories.



Real-Time Widely Distributed Instrumentation Systems 21

draft chapter for “Building a Computational Grid”, Foster and Kesselman, eds.

♦ Automatic reconfiguration - when new components are added, such as a new disk server, the agents do not
have to be reconfigured - an agent is started on the new host, and it will inform all other agents about itself and
the new server
• brokers and agents may discover interesting new agents via a dynamic directory protocol like SDR or by the

support of reliable multicast protocols that provide inter-agent communication, whence the new agent - and
resource that it represents - is added to the configuration

♦ Information management -broker agentsmanage information from a collection ofmonitor agents(usually on
behalf of a user client) and provide an integrated view for applications such as the graphical status interface
illustrated in Figure 11.
• for data set state management

- agents manage dataset metadata (dynamic state, alternate locations, tertiary location) at each storage
system
+ brokers provide an integrated view of the data over several storage systems

• for dynamic configuration and application adaptation
- agents continuously monitor state of all network interfaces and data paths

+ brokers analyze this information on behalf of a client to determine which DPSS has the best network
connectivity

- agents monitor the load of each DPSS disk server
+ broker can analyze to decide which servers to use when data is replicated (addresses high

availability)

♦ User representation - brokers can perform actions on behalf of a user
• e.g., if a data set is not currently loaded onto a DPSS (which is typically used as a cache), the broker can

cause the dataset to be loaded from tertiary storage

♦ System administration - a broker/agent architecture allows the system administrators to separate mechanism
from policy
• agent rule-based operation can be used to determine what policies are be enforced while remaining separate

from the actual mechanism used to implement these policies

♦ Flexible functionality - new agent methods can be added at any time
• e.g., the brokers have an algorithm for determining which DPSS configuration to use based on a set of

parameters that include network bandwidth, latency and disk server load - this algorithm can be modified “on
the fly” by loading new methods into the agents

• related agents are part of the same security context, and new code/methods presented to the agents is
cryptographically signed for origin verification and integrity

Prototype implementation

Using a prototype of such an agent architecture in the MAGIC testbed, an application uses aggregated
information from a broker to present an adaptive and dynamic view of the system: data throughput, server state,
and dataset metadata as reported by the agents. Self configuring user interfaces (e.g. as in Figure 11) can be built
dynamically, based on a broker agent collecting and organizing classes of information from the relevant set of
monitor agents.



Real-Time Widely Distributed Instrumentation Systems22

draft chapter for “Building a Computational Grid”, Foster and Kesselman, eds.

4.4 Policy-Based Access Control in Widely Distributed Environments

Widely distributed systems and collaborative environments that involve

• multi-user instruments at national facilities

• widely distributed supercomputers and large-scale storage systems

• data sharing in restricted collaborations

• network-based multimedia collaboration channels

Figure 11 Prototype automatically generated DPSS monitor interface (a Java applet) for brokers
aggregating information from DPSS system-state and dataset-state monitoring agents

(corresponding to the emphasized elements in the previous figure)

di
sk

ca
ch

e
se

rv
er

be
ha

vi
or

cu
rr

en
tn

et
w

or
k

co
nf

ig
ur

at
io

n



Real-Time Widely Distributed Instrumentation Systems 23

draft chapter for “Building a Computational Grid”, Foster and Kesselman, eds.

give rise to a range of requirement for distributed access control. Among other things, for example,
administration of such resources as network quality-of-service will need to be handled by an automated
authorization infrastructure so that management of both resource availability and allocation, as well as
subsequent enforcement of use-conditions, can be done automatically and without recourse to a central or single
authority.

In all of these scenarios, the resource (data, instrument, computational and storage capacity, communication
channel) has multiple stakeholders (typically the intellectual principals and policy makers), and each stakeholder
will impose use-conditions on the resource. All of the use-conditions must be met simultaneously in order to
satisfy the requirements for access. This model is common in society, and is illustrated in Figure 12.

Further, it is common that scientific collaborations are diffuse, with the principals and stakeholders being
geographically distributed and multi-organizational. Therefore the access control mechanism must accommodate
these circumstances by providing:

• distributed management of policy-based access control for all resources

Figure 12 Societal Access Control Model

good country

LBNL
employee or

guest

X-ray 101

approved
protocol

Medical R&D
group

access request

UC

Group PI

ALS Medical

Beamline*

ac
ce

ss
co

nt
ro

l

DOE-HQ

LBNL

ALS

Memo

Memo

exclude “bad”
countries

include all LBNL
staff and guests

Memo

Memo

Memo

must have X-ray
safety training

must have
approved
protocol

must be group
member

Use-conditions are Imposed by Stakeholders

Stakeholders
provide and

maintain and
use-conditions

Attribute certifiers
trusted by the
stakeholders

Access is Granted after Matching
Use-conditions and Attributes*hypothetical

Users have Attributes that Match the
Use-conditions

Passport
agency

ALS Medical
Beamline
group PI

U.C. Human
Use Committee

XYZ State
University

LBNL
Personnel Dept.



Real-Time Widely Distributed Instrumentation Systems24

draft chapter for “Building a Computational Grid”, Foster and Kesselman, eds.

• authentication, integrity, confidentiality, etc. of resource related information

• mechanisms supporting the internal integrity of distributed systems.

We also anticipate that the resulting infrastructure will support automated brokering and policy-based negotiation
for resources.

Goals

The goal for access control in such distributed environments is to reflect, in a computing and communication
based working environment, the general principles that have been established in society for policy-based resource
access control.

Each responsible entity -- principals and stakeholders -- should be able to make their assertions (as they do now
by signing, e.g., a policy statement) without reference to a mediator, and especially without reference to a
centralized mediator (e.g. a system administrator) who must act on their behalf. The mechanism must be dynamic
and easily used while maintaining strong assurances. Only in this way will computer-based security systems
achieve the decentralization and utility needed for the scalability to support large distributed environments.

The computer systems based resource access control mechanisms should be able to collect all of the relevant
assertions (stakeholder use-conditions and corresponding attributes) and make an unambiguous access decision
without requiring entity-specific or resource-specific local, static configuration information that must be centrally
administered. (This does not imply that such specific configuration is precluded, only that it should not be
required.) The mechanism (Figure 13) should also be based on, and evolve with, the emerging, commercially
supplied, public-key certificate infrastructure components.

Expected Benefits

For security to be successful in distributed environments -- providing both protection and policy enforcement --
each principal entity should have no more nor less involvement than they do in the currently established
procedure that operates in the absence of computer security. That is, those who have the authority to set access
conditions or use-conditions by, e.g., holographically signing statements in a paper environment, will digitally
sign functionally equivalent statements in a distributed computing based environment. The use of these
credentials should be automatic, and the functions of checking credentials, auditing, etc. are performed by
appropriate entities in either circumstance.

The expected advantages of computer-based systems are in maintaining access control policy, but with greatly
increased independence from temporal and spatial factors (e.g. time zone differences and geographic separation),
together with automation of redundant tasks such as credential checking and auditing.

The intended outcome is that the scientific community will more easily share expensive resources, unique
systems, sensitive data, etc.

A further expected benefit is that this sort of a security infrastructure should provide the basis of automated
brokering of resources that precede the construction of dynamically, and just-in-time configured systems to
support, e.g., scientific experiments with transient computing, communication, or storage requirements.



Real-Time Widely Distributed Instrumentation Systems 25

draft chapter for “Building a Computational Grid”, Foster and Kesselman, eds.

Authorization Based Distributed Security

An approach that addresses the general goals noted above can be based on authorization and attribute certificates.
These digitally signed documents have the characteristic that they assert document validity without physical
presence of the signer, or physical possession of holographically signed documents. The result is that the digitally
signed documents that provide the assertions of the principals, stakeholders, attribute authorities, etc., may be
generated, represented, used, and verified independent of time or location.

Other parts of the approach are implemented through the use of “authorities” that provide delegation mechanisms
and assured information as digitally signed documents: identity authorities connect human entities and systems to
digital signatures; stakeholder authorities provide use-conditions; attribute authorities attest to user
characteristics, etc. Additional components include reliable mechanisms for generating, distributing, and
verifying the digitally signed documents, mechanisms that match use-conditions and attributes; and resource
access control mechanisms that use the resulting credentials to enforce policy for the specific resource. (For a
general introduction to public-key infrastructure see [Ford] or [Schneier].)

Architecture for Distributed Management of Fine-grained Access Control

A prototype implementation (see [Johnston97a]) that is addressing distributed management of access control to
limited, valuable, or large-scale resources / data / objects -- e.g. large scientific instruments, distributed
supercomputers, sensitive but unclassified databases (e.g. Internet vulnerability and incident databases) is
providing some experience with decentralized security environments. The elements of the prototype include:

1) Fully distributed resource management and access: In our target environment, the resource users, resources
owners, and other stakeholders, are remote from the protected resource -- the norm in, among others, large-scale
scientific instrument environments.

2) Multiple stakeholders: All significant resources have many stakeholders, all of whom will provide their own
use-conditions. These use-conditions are specified in the environment of the stakeholder and then provided to the
resource access control mechanism.

3) Attribute-based access policy: Users are permitted access to resources based on their attributes that satisfy the
stakeholder use-conditions. These attributes are attested to by trusted third parties.

4) Validation of the right-of-access is typically used to establish the security context for an underlying security
system such as SSL (e.g. between Web browser and servers, see [Netscape]) and GSS (secure messaging between
components of distributed systems, see [Linn]).

The prototype provides for objects / data / resource owners and other stakeholders to be able to remotely exercise
control over access to the resource, for legitimate users (those that satisfy the use-conditions of the resource
stakeholders) to obtain easy access, and for unqualified / un-authorized users to be strongly denied access. The
architecture is illustrated in Figure 13.

In addition to the technology issues of integrity and management of the access control system and associated
computing platforms, useful security is as much (or more) a deployment and user-ergonomics issue. That is, the
problem is as much trying to find out how to integrate good security into the end-user (e.g. scientific)
environment so that it will be used, trusted to provide the protection that it claims, easily administered, and
genuinely useful in the sense of “providing distributed enterprise capabilities” (that is, providing new



Real-Time Widely Distributed Instrumentation Systems26

draft chapter for “Building a Computational Grid”, Foster and Kesselman, eds.

functionality that supports distributed organizations and operation), as it is trying to address the more traditional
security issues.

While the security architecture provides the basic technology, in order to accomplish a useful service the
architecture must be applied in such a way that the resources are protected as intended by the principals. This
involves understanding the information / resource use and structure model, and developing a policy model that

user client
application
(e.g. Web
browser)

certificate servers
♦ identity
♦ use-conditions
♦ attributes

resource
(e.g. data-objects,
instruments, etc.)

au
th

or
iz

e
op

er
at

e
ge

ne
ra

te
au

th
or

ita
tiv

e
in

fo
rm

at
io

n

policy engine
(acts on behalf of all stakeholders)

♦ Verify stakeholder representation
♦ Evaluate policy and verify certificates (i.e., matches

use-conditions and attributes)
♦ Issue an access capability/decision for an entity (user)

access control gateway
• Pass user access request to policy engine
• Enforce “check immediate”

requirements (e.g. re-authenticate user
identity and/or use-condition
certificates, collect payment, etc.)

• Set up security context between
user-client and resource

Certification Authorities
(identity)

(e.g. X.509)

Attribute Authorities
(user characteristics)

Authorization Authorities
(resource owner generated

use-conditions)

d
ig

itally
sig

n
e

d
d

o
cum

e
n

ts
g

e
ne

ra
te

d
by

m
a

ny
diffe

re
n

tp
rin

cip
a

ls

Stakeholder
identities

authorization
request

responseauthorization
request

User
identity

Figure 13 An authorization and attribute based access control architecture.



Real-Time Widely Distributed Instrumentation Systems 27

draft chapter for “Building a Computational Grid”, Foster and Kesselman, eds.

will support the intended access control. These must be supported by a security model that specifies how the
elements of the security architecture and infrastructure will implement the policy model.

A prototype implementation of this architecture (see [Johnston97a]) provides a policy engine that:
• implements both flat and hierarchical, multiple use-condition policy models
• uses X.509 identity certificates, and ad-hoc attribute and use-condition certificates obtained from Web and

LDAP servers
• provides a policy evaluation service to the Apache Web server and an implementation of SPKM/GSS.

4.5 Remote interaction and latency hiding: “Machine Intelligence” for remote control

This section provides some insight into one approach for latency hiding in remote operation environments,
however the architecture is sufficiently general that it has been applied to several classes of microscope-like
instruments.The general idea (e.g., as in Figure 6) is to have a semi-autonomous servo system that is local to the
instrument perform the fine control operations based on “set points” provided by the remote operator. In the case
of imaging systems like microscopes, this problem typically involves the accurate, real-time extraction of object
boundaries from noisy, low contrast images and video, and then tracking those objects as they move, change
shape, etc. (See, e.g., Figure 7). The information from the tracking is then used in a closed-loop feedback system
whose function is to, for example, keep the object focused and in the field of view, control external stimuli to
either drive the object transformation or systematically catalogue its response to external forces, etc. The overall
process is called visual servoing, and the “control external stimuli” example is referred to as in-situ microscopy.

The computational architecture that implements the automated control in the local environment must be able to
acquire images, process them at the required bandwidth, and manipulate a large number of functions for operating
the instrument (e.g., the HVEM shown in Figure 5). A strategy for partitioning the required operations is based
partly on design philosophy, i.e., scalability, modularity, and cost, and partly on the availability of data acquisition
components (DAC) for various hardware platforms. For these reasons separate servers are used for image capture
(the video server), computation (the motion server -- a symmetric multiprocessor for the CPU intensive
operations), and several PCs that are used for data acquisition and motor control (control servers). The video
server and the control servers operate close to the microscope as they have various analogue connections to the
instrument, while the computation server is located anywhere in the fast LAN environment (i.e. anywhere on the
campus). The configuration is illustrated in Figure 14.



Real-Time Widely Distributed Instrumentation Systems28

draft chapter for “Building a Computational Grid”, Foster and Kesselman, eds.

Electron
Microscope

System

Control Server
(DAC)

Video Server
--

User Interface

Motion Server:
Image Analysis

and Object
Tracking

FDDI/ATM

L
oc

a
lA

re
a

N
e

tw
or

k

Wide Area
Network

Remote User
Interface

Dynamic Experiment
(e.g thermal cycling)

Optical
Microscope and

Micro-robot

optical
microscope

mechanical
drive

y

x

micro-
manipulator

DNA

video
camera

KRATOS
EM-1500
HVEM

z
(focus)

video
capture

standardized
interfaces

control
interface

video
capture

control
interface

video
capture

Figure 14 Overall architecture for remote in-situ microscopy.



Real-Time Widely Distributed Instrumentation Systems 29

draft chapter for “Building a Computational Grid”, Foster and Kesselman, eds.

Software architecture

The software architecture
follows a distributed
client-server model for
scalability, performance,
and modularity. There are
four servers that interact
with each other as
illustrated in Figure 15.
These are the video server,
motion server, stage control
server, and the DAC server.
The video-server captures
images and transfer them in
their entirely or partially to
the motion server. The
motion server manages all
the image analysis and
servoing. These modules
are executed
asynchronously and use a
threads programming
paradigm for parallel
decomposition. The stage server handles all the manual interaction between the remote user and the electron
microscope, i.e., changing magnification, shifting the beam, etc. The DAC server (running on a PC) reads from
and writes to the data acquisition components for a desired function. The DAC server uses remote procedure calls
for communication and the remaining servers use data streams through sockets for minimum delay.

A critical aspect of dynamic analysis needed for semi-autonomous system is in the design of the motion-server
that identifies and tracks objects of interest. This server has four threads that run asynchronously as shown in
Figure 15. The stage-thread handles all the interaction with the stage-server, and it has been isolated for
modularity and higher throughput. When using a 4 CPU, DEC Alpha SMP and video-sized images, the tracking
thread operates at 5-8 Hz depending to the size of the object of interest, and runs with a concurrency of two. The
compression-thread runs at 1.4 Hz over the shared data, and the focus-thread runs on a single thread over the
target region when the tracking thread is inactive. These rates are sufficient for the experiment environment of the
HVEM.

This approach has proven useful for the remote operation of dynamic experiments and has enabled remote
operation of the experiments and instrument both to automate the experiment protocols in the local environment
and to permit remote operation via wide-area networks.

Video
Server

Shared Data

Focus
Thread

Track
Thread

Wait for
Client

Request

Compression
Thread

Broadcast
Image &

Data

Stage
Thread

Remote
Client
(User

Interface)

Figure 15 The software architecture for the motion-server uses four
distinct threads that run asynchronously.



Real-Time Widely Distributed Instrumentation Systems30

draft chapter for “Building a Computational Grid”, Foster and Kesselman, eds.

5.0 Acknowledgments

The material presented in this chapter represents the work of numerous people, including, in particular, Deborah
Agarwal, Bahram Parvin, and Mary Thompson, as well as the authors and others at the Lawrence Berkeley
National Laboratory. More information may be found at http://www-itg.lbl.gov. Physicists Craig Tull and Doug
Olson are our collaborators in the STAR project, Drs. Joe Terdiman and Bob Lundstrum of the Kaiser Permanente
and Evert-Jan Pol of Philips Research are our collaborators for the cardio-angiography project, Prof. Brian
Tonner of the University of Wisconsin-Milwaukee is our collaborator on the ALS Beamline 7,
Spectro-Microscopy Collaboratory, and Ulrich Dahmen is our collaborator at the NCEM. We would also like to
acknowledge Stewart C. Loken, Division Director, Information and Computing Sciences Division, LBNL, for his
long term support and contributions to this work specifically, and the idea of collaboratories generally. The work
described here is supported by the U. S. Dept. of Energy, Energy Research Division, Mathematical, Information,
and Computational Sciences and ER-LTT offices, under contract DE-AC03-76SF00098 with the University of
California, and by DARPA, ISTO.

6.0 References and Notes

Agarwal97 “The Reality of Collaboratories,” D. A. Agarwal, S. R. Sachs, and W. E. Johnston, in Proceedings
of Computing in High Energy Physics, April 7-11, 1997, Berlin, Germany. Available at
http://www-itg.lbl.gov/~deba/ALS.DCEE/project.publications.html.

Agarwal95 “Reliable Ordered Delivery Across Interconnected Local-Area Networks,” D. A. Agarwal, L. E.
Moser, P. M. Melliar-Smith, and R. Budhia, Proceedings of the International Conference on Network
Protocols, Tokyo, Japan (November 1995), 365-374. Available at
http://www-itg.lbl.gov/~deba/ALS.DCEE/project.publications.html.

Aiken “A Public Key Infrastructure for DOE Security Research” Findings from U. S. Department of Energy,
Joint Energy Research / Defense Programs Computing-related Security Research Requirements -
Workshop-II”, R. Aiken, et al. Dec 11-13, 1996, Albuquerque, New Mexico. Available at
http://www-itg.lbl.gov/security

DIGLIB “Real-Time Generation and Cataloguing of Large Data-Objects in Widely Distributed Environments”,
W.Johnston, Jin G., C. Larsen, J. Lee, G. Hoo, M. Thompson, B. Tierney, J. Terdiman. To be published in
International Journal of Digital Libraries - Special Issue on “Digital Libraries in Medicine”. Available at
http://www-itg.lbl.gov/WALDO.

DPSS “The Distributed-Parallel Storage System (DPSS)”. See http://www-itg.lbl.gov/DPSS.

Floyd “A reliable multicast framework for lightweight sessions and application level framing.” S. Floyd, V.
Jacobson, C. Liu, S. McCanne, and L. Zhang. In ACM SIGCOMM, pages 342-356, 1995.

Ford Computer Communications Security: Principles, Standards, Protocols, and Techniques. W. Ford,
Prentice-Hall, Englewood Cliffs, New Jersey, 07632, 1995.

Greiman “High-Speed Distributed Data Handling for HENP”. W. Greiman, W. E. Johnston, C. McParland, D.
Olson, B. Tierney, C. Tull. Computing in High Energy Physics, April, 1997. Berlin, Germany. Available at
http://www-itg.lbl.gov/STAR .



Real-Time Widely Distributed Instrumentation Systems 31

draft chapter for “Building a Computational Grid”, Foster and Kesselman, eds.

Johnston97a “Security Architectures for Large-Scale Remote Collaboratory Environments: A Use-Condition
Centered Approach to Authenticated Global Capabilities”. W. Johnston and C. Larsen, (draft at
http://www-itg.lbl.gov/security/publications.html)

Johnston97b “High-Speed Distributed Data Handling for On-Line Instrumentation Systems”.
W. E. Johnston, W. Greiman, G. Hoo, J. Lee, B. Tierney, C. Tull, D. Olson. Proceedings of IEEE/ACM

Supercomputing 97. Available at http://www-itg.lbl.gov/DPSS/papers.html .

Lau “TerraVision: a Terrain Visualization System”. S. Lau, Y. Leclerc, Technical Note 540, SRI International,
Menlo Park, CA, Mar. 1994. Also see: http://www.ai.sri.com/~magic/terravision.html.

Linn “Generic Security Service Application Program Interface”, John Linn, Sep 1993. Available at
http://ds.internic.net/rfc/rfc1508.txt. Also see more recent and related drafts at the IETF Common
Authentication Technology home page (http://www.ietf.cnri.reston.va.us/html.charters/cat-charter.html)
and at http://www.ietf.cnri.reston.va.us/ids.by.wg/cat.html.

MAGIC “The MAGIC Gigabit Network”, See: http://www.magic.net/

McCanne S. McCanne and V. Jacobson. vic: An extensible framework for packet video. In ACM Multimedia,
pages 511-522, 1995.

Netscape “The SSL Protocol” http://live.netscape.com/newsref/std/SSL.html

Parvin95a “Tracking of tubular molecules for scientific applications.” B. Parvin, C. Peng, W. Johnston, and M.
Maestre. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17:800-805, 1995.

Parvin95b ““Tracking of convex objects.” B. Parvin, S. Viswanatha, and U. Dahmen. In Int. Symp. on
Computer Vision, 1995.

Parvin97 “Visual Servoing for Online Facilities.” B. Parvin, J. Taylor, D. E. Callahan, W. Johnston, U. Dahmen,
IEEE Computer July 1997.

Sachs96 “Working Group Report on Electronic Notebooks,” S. R. Sachs and J. Myers, WETICE'96
proceedings, pp. 53-57, June 19-21, 1996, Stanford, CA. Available at
http://www-itg.lbl.gov/~deba/ALS.DCEE/project.publications.html.

Schneier Applied Cryptography, Second Edition. B. Schneier, John Wiley & Sons, 1996

Tierney “Performance Analysis in High-Speed Wide Area ATM Networks: Top-to-bottom end-to-end
Monitoring”, B. Tierney, W. Johnston, J. Lee, G. Hoo. IEEE Networking, May 1996. An updated version
of this paper is available at http://www-itg.lbl.gov/DPSS/papers.html.

Where “WHERE: Wide-area Helpers Enabling Reliable Environments”
http://www-itg.lbl.gov/DPSS/agents/WHERE.html


