Group 2: Response

Co-chairs: Dr. Walter Bach, Army Research Office

Mr. Paul Bryant, Insurance and Mitigation Division, FEMA

Rapporteurs: *Mr. Thomas Fraim, Office of the Federal Coordinator for Meteorology*

Dr. Jason Ching, Air Quality Modeling Group, EPA

Introduction

Breakout Group 1 considered what is required during the response phase of a crisis involving four scenarios. These are not only actions to be taken but also modeling requirements. The scenarios were a surface release of Sarin in an urban setting, explosion of a "dirty nuke", aircraft impact with a nuclear power plant facility, and the airborne release of anthrax. The timeframe for the response phase was defined to start at the time of the incident and extend through thirty-six hours. The actions and requirements for each scenario were prioritized as high, medium, or low.

Results

Scenario 1 – Urban Sarin Release

It was noted that this is really a multi-scale problem and although a CFD type model may be required initially, as time goes on it will also become a regional scale problem requiring a different type model.

Criterion	Priority
Model the source characteristics correctly.	Н
Trained personnel in source mitigation.	Н
Model must be capable of handling a pooled surface	Н
source and account for various surface characteristics	
affecting evaporation, etc.	
Model must incorporate micrometeorology in its	Н
interaction with the geometry and physical properties of	
the surface.	
CFD type model with space resolution on the order of a	Н
meter or less and time resolution on the order of 60	
seconds or less.	
Capable of modeling the hazard to 10 km and the	Н
meteorology to 100 km.	
Need for trained response personnel.	М

Scenario 2 – Dirty Nuke

The group felt that this would be a short-term problem given fairly large particulate matter that deposits fairly quickly, although resuspension may be a consideration. The emphasis will likely be on now-casting and immediate evacuation. It was noted that a probabilistic approach might be more appropriate than a binary yes/no approach.

Criterion	Priority
Source location and characterization.	Н
Wind speed and direction.	Н
Deposition (knowledge of particle size required).	Н
Current and forecast precipitation and resulting spread	Н
of material by hydrologic processes.	
Model must run quickly; i.e., fairly simple model with	Н
basic inputs.	
Knowledge of wind variability.	М
Model should account for resuspension.	М
Building morphology and terrain	L

Scenario 3 – Nuclear Power Plant Attack

Criterion	Priority
May not have an immediate release of radioactive	Н
material, so the model should be fairly fast. This would	
allow running "what if" scenarios before an actual	
release.	
Model should account for a time variant source term.	Н
Event will be long range and long duration so model	Н
must be capable of handling out to continental scale	
and larger.	
Model should be able to ingest observed and forecast	Н
weather on almost a continuous basis.	
Model should account for radiological decay and	Н
wet/dry deposition.	
Need a good GIS mapping capability.	Н
Buoyancy/plume rise.	М
Land use.	М
Building wake effects.	L

Other issues brought up deal with coastal/lake effects and the re-circulation problem; installation of meso-nets around power plants; and the capability to run different dispersion modules similar to an ensemble approach.

Criterion	Priority
Source characterization; e.g., release time and height, virility of material, UV interaction.	Н
Model must handle small mesoscale resolution and ranges out to 100+ km.	Н
Good GIS mapping capability.	Н
Model must handle multiple time scales.	Н
Should be able to quantify uncertainty.	Н
Model should be capable of continual updating and reanalysis.	Н

Scenario 4 – Crop Duster - Anthrax

Common themes across all four scenarios deal were source characterization, multiple time and space scales, and multiple scales for observed and forecast meteorology inputs. A point brought up during the plenary session was that a probabilistic approach (quantify the uncertainty) may be more beneficial to the decision-maker than strictly a binary yes/no approach. Also, given the multiple time and space scales involved with the dispersion problem, we should take a systems approach. Rather than considering just a dispersion model, consider a system that may in fact have several dispersion modules each capable of dealing with different scales, sources, types of dispersion, etc.